1
|
Loginova DB, Zhuravleva AA, Silkova OG. Random chromosome distribution in the first meiosis of F1 disomic substitution line 2R(2D) x rye hybrids (ABDR, 4× = 28) occurs without bipolar spindle assembly. COMPARATIVE CYTOGENETICS 2020; 14:453-482. [PMID: 33117496 PMCID: PMC7567738 DOI: 10.3897/compcytogen.v14.i4.55827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The assembly of the microtubule-based spindle structure in plant meiosis remains poorly understood compared with our knowledge of mitotic spindle formation. One of the approaches in our understanding of microtubule dynamics is to study spindle assembly in meiosis of amphyhaploids. Using immunostaining with phH3Ser10, CENH3 and α-tubulin-specific antibodies, we studied the chromosome distribution and spindle organisation in meiosis of F1 2R(2D)xR wheat-rye hybrids (genome structure ABDR, 4× = 28), as well as in wheat and rye mitosis and meiosis. At the prometaphase of mitosis, spindle assembly was asymmetric; one half of the spindle assembled before the other, with simultaneous chromosome alignment in the spindle mid-zone. At diakinesis in wheat and rye, microtubules formed a pro-spindle which was subsequently disassembled followed by a bipolar spindle assembly. In the first meiosis of hybrids 2R(2D)xR, a bipolar spindle was not found and the kinetochore microtubules distributed the chromosomes. Univalent chromosomes are characterised by a monopolar orientation and maintenance of sister chromatid and centromere cohesion. Presence of bivalents did not affect the formation of a bipolar spindle. Since the central spindle was absent, phragmoplast originates from "interpolar" microtubules generated by kinetochores. Cell plate development occurred with a delay. However, meiocytes in meiosis II contained apparently normal bipolar spindles. Thus, we can conclude that: (1) cohesion maintenance in centromeres and between arms of sister chromatids may negatively affect bipolar spindle formation in the first meiosis; (2) 2R/2D rye/wheat chromosome substitution affects the regulation of the random chromosome distribution in the absence of a bipolar spindle.
Collapse
Affiliation(s)
- Dina B. Loginova
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| | - Anastasia A. Zhuravleva
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| | - Olga G. Silkova
- Institute of Cytology and Genetics, SB RAS, pr. Lavrentyeva 10, Novosibirsk 630090, Russian FederationInstitute of Cytology and GeneticsNovosibirskRussia
| |
Collapse
|
2
|
Giantulli S, De Iuliis F, Taglieri L, Carradori S, Menichelli G, Morrone S, Scarpa S, Silvestri I. Growth arrest and apoptosis induced by kinesin Eg5 inhibitor K858 and by its 1,3,4-thiadiazoline analogue in tumor cells. Anticancer Drugs 2019; 29:674-681. [PMID: 29738338 DOI: 10.1097/cad.0000000000000641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tumors are complex and heterogeneous but, despite this, they share the ability to proliferate continuously, irrespective of the presence of growth signals, leading to a higher fraction of actively growing and dividing cells compared with normal tissues. For this reason, the cytotoxic antimitotic treatments remain an important clinical tool for tumors. Among these drugs, antitubulin compounds constitute one of the most effective anticancer chemotherapies; however, they cause dose-limiting side effects. Therefore, it is still necessary to develop compounds with new targets and new mechanisms of action to reduce side effects or chemoresistance. Mitosis-specific kinesin Eg5 can represent an attractive target for discovering such new anticancer agents because its role is fundamental in mitotic progression. Therefore, we analyzed the effects induced by an inhibitor of kinesin Eg5, K858, and by its 1,3,4-thiadiazoline analogue on human melanoma and prostate cancer cell lines. We found that both compounds have an antiproliferative effect, induce apoptosis, and can determine a downmodulation of survivin.
Collapse
Affiliation(s)
| | | | | | - Simone Carradori
- Department of Pharmacy, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | | | | | - Susanna Scarpa
- Experimental Medicine, Sapienza University of Rome, Rome
| | | |
Collapse
|
3
|
Recent Progress on the Localization of the Spindle Assembly Checkpoint Machinery to Kinetochores. Cells 2019; 8:cells8030278. [PMID: 30909555 PMCID: PMC6468716 DOI: 10.3390/cells8030278] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 12/14/2022] Open
Abstract
Faithful chromosome segregation during mitosis is crucial for maintaining genome stability. The spindle assembly checkpoint (SAC) is a surveillance mechanism that ensures accurate mitotic progression. Defective SAC signaling leads to premature sister chromatid separation and aneuploid daughter cells. Mechanistically, the SAC couples the kinetochore microtubule attachment status to the cell cycle progression machinery. In the presence of abnormal kinetochore microtubule attachments, the SAC prevents the metaphase-to-anaphase transition through a complex kinase-phosphatase signaling cascade which results in the correct balance of SAC components recruited to the kinetochore. The correct kinetochore localization of SAC proteins is a prerequisite for robust SAC signaling and, hence, accurate chromosome segregation. Here, we review recent progresses on the kinetochore recruitment of core SAC factors.
Collapse
|
4
|
Ramos F, Villoria MT, Alonso-Rodríguez E, Clemente-Blanco A. Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response. Cell Stress 2019; 3:70-85. [PMID: 31225502 PMCID: PMC6551743 DOI: 10.15698/cst2019.03.178] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintenance of genome integrity is fundamental for cellular physiology. Our hereditary information encoded in the DNA is intrinsically susceptible to suffer variations, mostly due to the constant presence of endogenous and environmental genotoxic stresses. Genomic insults must be repaired to avoid loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental anomalies and tumorigenesis. To safeguard our genome, cells have evolved a series of mechanisms collectively known as the DNA damage response (DDR). This surveillance system regulates multiple features of the cellular response, including the detection of the lesion, a transient cell cycle arrest and the restoration of the broken DNA molecule. While the role of multiple kinases in the DDR has been well documented over the last years, the intricate roles of protein dephosphorylation have only recently begun to be addressed. In this review, we have compiled recent information about the function of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DDR, focusing mainly on their capacity to regulate the DNA damage checkpoint and the repair mechanism encompassed in the restoration of a DNA lesion.
Collapse
Affiliation(s)
- Facundo Ramos
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - María Teresa Villoria
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Esmeralda Alonso-Rodríguez
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| |
Collapse
|
5
|
Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PMA, Bousbaa H. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett 2018; 440-441:64-81. [PMID: 30312726 DOI: 10.1016/j.canlet.2018.10.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Current microtubule-targeting agents (MTAs) remain amongst the most important antimitotic drugs used against a broad range of malignancies. By perturbing spindle assembly, MTAs activate the spindle assembly checkpoint (SAC), which induces mitotic arrest and subsequent apoptosis. However, besides toxic side effects and resistance, mitotic slippage and failure in triggering apoptosis in various cancer cells are limiting factors of MTAs efficacy. Alternative strategies to target mitosis without affecting microtubules have, thus, led to the identification of small molecules, such as those that target spindle Kinesins, Aurora and Polo-like kinases. Unfortunately, these so-called second-generation of antimitotics, encompassing mitotic blockers and mitotic drivers, have failed in clinical trials. Our recent understanding regarding the mechanisms of cell death during a mitotic arrest pointed out apoptosis as the main variable, providing an opportunity to control the cell fates and influence the effectiveness of antimitotics. Here, we provide an overview on the second-generation of antimitotics, and discuss possible strategies that exploit SAC activity, mitotic slippage/exit and apoptosis induction, in order to improve the efficacy of anticancer strategies that target mitosis.
Collapse
Affiliation(s)
- Ana C Henriques
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - Diana Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal
| | - Joel Pedrosa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
6
|
Chao MW, Huang HL, HuangFu WC, Hsu KC, Liu YM, Wu YW, Lin CF, Chen YL, Lai MJ, Lee HY, Liou JP, Teng CM, Yang CR. An oral quinoline derivative, MPT0B392, causes leukemic cells mitotic arrest and overcomes drug resistant cancer cells. Oncotarget 2018; 8:27772-27785. [PMID: 28186963 PMCID: PMC5438607 DOI: 10.18632/oncotarget.15115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Despite great advances in the treatment of acute leukemia, a renaissance of current chemotherapy needs to be improved. The present study elucidates the underlying mechanism of a new synthetic quinoline derivative, MPT0B392 (B392) against acute leukemia and its potential anticancer effect in drug resistant cells. B392 caused mitotic arrest and ultimately led to apoptosis. It was further demonstrated to be a novel microtubule-depolymerizing agent. The effects of oral administration of B392 showed relative potent anti-leukemia activity in an in vivo xenograft model. Further investigation revealed that B392 triggered induction of the mitotic arrest, followed by mitochondrial membrane potential loss and caspases cleavage by activation of c-Jun N-terminal kinase (JNK). In addition, B392 enhanced the cytotoxicity of sirolimus in sirolimus-resistant acute leukemic cells through inhibition of Akt/mTOR pathway and Mcl-1 protein expression, and also was active in the p-glycoprotein (p-gp)-overexpressing National Cancer Institute/Adriamycin-Resistant cells with little susceptibility to p-gp. Taken together, B392 has potential as an oral mitotic drug and adjunct treatment for drug resistant cancer cells.
Collapse
Affiliation(s)
- Min-Wu Chao
- The Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Li Huang
- The Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Chun HuangFu
- The Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Kai-Cheng Hsu
- The Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Min Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Wen Wu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chao-Feng Lin
- The Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Lin Chen
- The Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Mei-Jung Lai
- Translational Research Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Che-Ming Teng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.,Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
7
|
Zich J, May K, Paraskevopoulos K, Sen O, Syred HM, van der Sar S, Patel H, Moresco JJ, Sarkeshik A, Yates JR, Rappsilber J, Hardwick KG. Mps1Mph1 Kinase Phosphorylates Mad3 to Inhibit Cdc20Slp1-APC/C and Maintain Spindle Checkpoint Arrests. PLoS Genet 2016; 12:e1005834. [PMID: 26882497 PMCID: PMC4755545 DOI: 10.1371/journal.pgen.1005834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/09/2016] [Indexed: 01/01/2023] Open
Abstract
The spindle checkpoint is a mitotic surveillance system which ensures equal segregation of sister chromatids. It delays anaphase onset by inhibiting the action of the E3 ubiquitin ligase known as the anaphase promoting complex or cyclosome (APC/C). Mad3/BubR1 is a key component of the mitotic checkpoint complex (MCC) which binds and inhibits the APC/C early in mitosis. Mps1Mph1 kinase is critical for checkpoint signalling and MCC-APC/C inhibition, yet few substrates have been identified. Here we identify Mad3 as a substrate of fission yeast Mps1Mph1 kinase. We map and mutate phosphorylation sites in Mad3, producing mutants that are targeted to kinetochores and assembled into MCC, yet display reduced APC/C binding and are unable to maintain checkpoint arrests. We show biochemically that Mad3 phospho-mimics are potent APC/C inhibitors in vitro, demonstrating that Mad3p modification can directly influence Cdc20Slp1-APC/C activity. This genetic dissection of APC/C inhibition demonstrates that Mps1Mph1 kinase-dependent modifications of Mad3 and Mad2 act in a concerted manner to maintain spindle checkpoint arrests. When cells divide they need to ensure that a complete copy of their genetic material is transmitted to both daughter cells. Cells have evolved many controls to ensure that every division is carried out with very high fidelity. The spindle checkpoint is one such control, which acts as a surveillance system during mitosis. Defects in this checkpoint control lead to unequal segregation of DNA/chromosomes, termed aneuploidy, which is responsible for human birth defects and is very common in tumour cells. The molecular components of the spindle checkpoint, identified initially through yeast genetics, include several protein kinases. Surprisingly few of their substrates have been identified. Here we identify the checkpoint protein Mad3 as an important substrate of the Mps1Mph1 kinase. We show that Mps1Mph1-dependent modification of Mad3 and Mad2 acts to delay cell division in situations where the genetic material would not be equally inherited by daughter cells. This delay enables the cell to correct any problems within the division machinery and thus avoid aneuploidy.
Collapse
Affiliation(s)
- Judith Zich
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen May
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Konstantinos Paraskevopoulos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Onur Sen
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather M. Syred
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sjaak van der Sar
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Hitesh Patel
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - James J. Moresco
- Scripps Research Institute, La Jolla, California, United States of America
| | - Ali Sarkeshik
- Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Scripps Research Institute, La Jolla, California, United States of America
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Bioanalytics, Institute of Biotechnology, Technische Universitat Berlin, Berlin, Germany
| | - Kevin G. Hardwick
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Design strategies, structure activity relationship and mechanistic insights for purines as kinase inhibitors. Eur J Med Chem 2016; 112:298-346. [PMID: 26907156 DOI: 10.1016/j.ejmech.2016.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/22/2022]
Abstract
Kinases control a diverse set of cellular processes comprising of reversible phosphorylation of proteins. Protein kinases play a pivotal role in human tumor cell proliferation, migration and survival of neoplasia. In the recent past, purine based molecules have emerged as significantly potent kinase inhibitors. In view of their promising potential for the inhibition of kinases, this review article focuses on purines which have progressed as kinase inhibitors during the last five years. A detailed account of the design strategies employed for the synthesis of purine analogs exerting inhibitory effects on diverse kinases has been presented. Apart from presenting the design strategies, the article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of the purine analogs for kinase inhibition. The interactions with the amino acid residues responsible for kinase inhibitory potential of purine based molecules have also been discussed. In this assemblage, purine based protein kinase inhibitors patented in the past have also been summarized in the tabular form. This compilation will be of great interest for the researchers working in the area of protein kinase inhibitors.
Collapse
|
9
|
Albataineh MT, Kadosh D. Regulatory roles of phosphorylation in model and pathogenic fungi. Med Mycol 2015; 54:333-52. [PMID: 26705834 PMCID: PMC4818690 DOI: 10.1093/mmy/myv098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/01/2015] [Indexed: 12/25/2022] Open
Abstract
Over the past 20 years, considerable advances have been made toward our understanding
of how post-translational modifications affect a wide variety of biological
processes, including morphology and virulence, in medically important fungi.
Phosphorylation stands out as a key molecular switch and regulatory modification that
plays a critical role in controlling these processes. In this article, we first
provide a comprehensive and up-to-date overview of the regulatory roles that both
Ser/Thr and non-Ser/Thr kinases and phosphatases play in model and pathogenic fungi.
Next, we discuss the impact of current global approaches that are being used to
define the complete set of phosphorylation targets (phosphoproteome) in medically
important fungi. Finally, we provide new insights and perspectives into the potential
use of key regulatory kinases and phosphatases as targets for the development of
novel and more effective antifungal strategies.
Collapse
Affiliation(s)
- Mohammad T Albataineh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - David Kadosh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
10
|
Niu B, Wang L, Zhang L, Ren D, Ren R, Copenhaver GP, Ma H, Wang Y. Arabidopsis Cell Division Cycle 20.1 Is Required for Normal Meiotic Spindle Assembly and Chromosome Segregation. THE PLANT CELL 2015; 27:3367-82. [PMID: 26672070 PMCID: PMC4707457 DOI: 10.1105/tpc.15.00834] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/16/2015] [Accepted: 11/22/2015] [Indexed: 05/18/2023]
Abstract
Cell division requires proper spindle assembly; a surveillance pathway, the spindle assembly checkpoint (SAC), monitors whether the spindle is normal and correctly attached to kinetochores. The SAC proteins regulate mitotic chromosome segregation by affecting CDC20 (Cell Division Cycle 20) function. However, it is unclear whether CDC20 regulates meiotic spindle assembly and proper homolog segregation. Here, we show that the Arabidopsis thaliana CDC20.1 gene is indispensable for meiosis and male fertility. We demonstrate that cdc20.1 meiotic chromosomes align asynchronously and segregate unequally and the metaphase I spindle has aberrant morphology. Comparison of the distribution of meiotic stages at different time points between the wild type and cdc20.1 reveals a delay of meiotic progression from diakinesis to anaphase I. Furthermore, cdc20.1 meiocytes exhibit an abnormal distribution of a histone H3 phosphorylation mark mediated by the Aurora kinase, providing evidence that CDC20.1 regulates Aurora localization for meiotic chromosome segregation. Further evidence that CDC20.1 and Aurora are functionally related was provided by meiosis-specific knockdown of At-Aurora1 expression, resulting in meiotic chromosome segregation defects similar to those of cdc20.1. Taken together, these results suggest a critical role for CDC20.1 in SAC-dependent meiotic chromosome segregation.
Collapse
Affiliation(s)
- Baixiao Niu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Liudan Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Liangsheng Zhang
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding Ren
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ren Ren
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Gregory P Copenhaver
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280 Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-3280
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China Center for Evolutionary Biology, Institutes of Biomedical Sciences School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
11
|
Ling Y, Zhang X, Bai Y, Li P, Wei C, Song T, Zheng Z, Guan K, Zhang Y, Zhang B, Liu X, Ma RZ, Cao C, Zhong H, Xu Q. Overexpression of Mps1 in colon cancer cells attenuates the spindle assembly checkpoint and increases aneuploidy. Biochem Biophys Res Commun 2014; 450:1690-5. [PMID: 25063032 DOI: 10.1016/j.bbrc.2014.07.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 12/25/2022]
Abstract
The spindle assembly checkpoint kinase Mps1 is highly expressed in several types of cancers, but its cellular involvement in tumorigenesis is less defined. Herein, we confirm that Mps1 is overexpressed in colon cancer tissues. Further, we find that forced expression of Mps1 in the colon cancer cell line SW480 enables cells to become resistant to both Mps1 inhibition-induced checkpoint depletion and cell death. Overexpression of Mps1 also increases genome instability in tumor cells owing to a weakened spindle assembly checkpoint. Collectively, our findings suggest that high levels of Mps1 contribute to tumorigenesis by attenuating the spindle assembly checkpoint.
Collapse
Affiliation(s)
- Youguo Ling
- Department of Life Science, Anhui University, Hefei, China; Beijing Institute of Biotechnology, Beijing, China
| | - Xiaojuan Zhang
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Bai
- Beijing Institute of Biotechnology, Beijing, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Beijing, China
| | - Ting Song
- Beijing Institute of Biotechnology, Beijing, China
| | - Zirui Zheng
- Beijing Institute of Biotechnology, Beijing, China
| | - Kai Guan
- Beijing Institute of Biotechnology, Beijing, China
| | | | - Buchang Zhang
- Department of Life Science, Anhui University, Hefei, China
| | - Xuedong Liu
- University of Colorado at Boulder, Boulder, CO, USA
| | - Runlin Z Ma
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing, China.
| | - Hui Zhong
- Beijing Institute of Biotechnology, Beijing, China.
| | - Quanbin Xu
- Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
12
|
Abstract
The propagation of all organisms depends on the accurate and orderly segregation of chromosomes in mitosis and meiosis. Budding yeast has long served as an outstanding model organism to identify the components and underlying mechanisms that regulate chromosome segregation. This review focuses on the kinetochore, the macromolecular protein complex that assembles on centromeric chromatin and maintains persistent load-bearing attachments to the dynamic tips of spindle microtubules. The kinetochore also serves as a regulatory hub for the spindle checkpoint, ensuring that cell cycle progression is coupled to the achievement of proper microtubule-kinetochore attachments. Progress in understanding the composition and overall architecture of the kinetochore, as well as its properties in making and regulating microtubule attachments and the spindle checkpoint, is discussed.
Collapse
|
13
|
Chung KS, Choi HE, Shin JS, Cho YW, Choi JH, Cho WJ, Lee KT. 6,7-Dimethoxy-3-(3-methoxyphenyl)isoquinolin-1-amine induces mitotic arrest and apoptotic cell death through the activation of spindle assembly checkpoint in human cervical cancer cells. Carcinogenesis 2013; 34:1852-60. [DOI: 10.1093/carcin/bgt133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
14
|
Zhang X, Ling Y, Wang W, Zhang Y, Ma Q, Tan P, Song T, Wei C, Li P, Liu X, Ma RZ, Zhong H, Cao C, Xu Q. UV-C irradiation delays mitotic progression by recruiting Mps1 to kinetochores. Cell Cycle 2013; 12:1292-302. [PMID: 23531678 DOI: 10.4161/cc.24403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vijay Kumar D, Hoarau C, Bursavich M, Slattum P, Gerrish D, Yager K, Saunders M, Shenderovich M, Roth BL, McKinnon R, Chan A, Cimbora DM, Bradford C, Reeves L, Patton S, Papac DI, Williams BL, Carlson RO. Lead optimization of purine based orally bioavailable Mps1 (TTK) inhibitors. Bioorg Med Chem Lett 2012; 22:4377-85. [PMID: 22632936 DOI: 10.1016/j.bmcl.2012.04.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 12/17/2022]
Abstract
Efforts to optimize biological activity, novelty, selectivity and oral bioavailability of Mps1 inhibitors, from a purine based lead MPI-0479605, are described in this Letter. Mps1 biochemical activity and cytotoxicity in HCT-116 cell line were improved. On-target activity confirmation via mechanism based G2/M escape assay was demonstrated. Physico-chemical and ADME properties were optimized to improve oral bioavailability in mouse.
Collapse
Affiliation(s)
- D Vijay Kumar
- Department of Medicinal Chemistry, Myrexis Inc., 305 Chipeta Way, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang H, Zuo B, Wang H, Ren L, Yang P, Zeng M, Duan D, Liu C, Li M. CGK733 enhances multinucleated cell formation and cytotoxicity induced by taxol in Chk1-deficient HBV-positive hepatocellular carcinoma cells. Biochem Biophys Res Commun 2012; 422:103-8. [PMID: 22564734 DOI: 10.1016/j.bbrc.2012.04.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 04/22/2012] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly human cancers. Chronic hepatitis B virus (HBV) infection is one of the predominant risk factors associated with the development of HCC and complicates the treatment of HCC. In this study, we demonstrate that a HBV-positive HCC cell line HepG2.2.15, was more resistant to chemotherapy agents than its parental HBV-negative cell line HepG2. HBV-positive HCC cells exhibited defective Chk1 phosphorylation and increased chromosomal instability. CGK733, a small molecule inhibitor reportedly targeting the kinase activities of ATM and ATR, significantly enhanced taxol-induced cytotoxicity in HBV-positive HepG2.2.15 cells. The mechanism lies in CGK733 triggers the formation of multinucleated cells thus promotes the premature mitotic exit of taxol-induced mitotic-damaged cells through multinucleation and mitotic catastrophe in HBV-positive HepG2.2.15 cells. These results suggest that CGK733 could potentially reverse the taxol resistance in HBV-positive HCC cells and may suggest a novel strategy to treat HBV-infected HCC patients.
Collapse
Affiliation(s)
- Huan Wang
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The spindle assembly checkpoint controls cell cycle progression during mitosis, synchronizing it with the attachment of chromosomes to spindle microtubules. After the discovery of the mitotic arrest deficient (MAD) and budding uninhibited by benzymidazole (BUB) genes as crucial checkpoint components in 1991, the second decade of checkpoint studies (2001–2010) witnessed crucial advances in the elucidation of the mechanism through which the checkpoint effector, the mitotic checkpoint complex, targets the anaphase-promoting complex (APC/C) to prevent progression into anaphase. Concomitantly, the discovery that the Ndc80 complex and other components of the microtubule-binding interface of kinetochores are essential for the checkpoint response finally asserted that kinetochores are crucial for the checkpoint response. Nevertheless, the relationship between kinetochores and checkpoint control remains poorly understood. Crucial advances in this area in the third decade of checkpoint studies (2011–2020) are likely to be brought about by the characterization of the mechanism of kinetochore recruitment, activation and inactivation of checkpoint proteins, which remains elusive for the majority of checkpoint components. Here, we take a molecular view on the main challenges hampering this task.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
18
|
Zich J, Sochaj A, Syred H, Milne L, Cook A, Ohkura H, Rappsilber J, Hardwick K. Kinase activity of fission yeast Mph1 is required for Mad2 and Mad3 to stably bind the anaphase promoting complex. Curr Biol 2012; 22:296-301. [PMID: 22281223 PMCID: PMC3315010 DOI: 10.1016/j.cub.2011.12.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 11/14/2011] [Accepted: 12/16/2011] [Indexed: 01/19/2023]
Abstract
Defects in chromosome segregation result in aneuploidy, which can lead to disease or cell death [1, 2]. The spindle checkpoint delays anaphase onset until all chromosomes are attached to spindle microtubules in a bipolar fashion [3, 4]. Mad2 is a key checkpoint component that undergoes conformational activation, catalyzed by a Mad1-Mad2 template enriched at unattached kinetochores [5]. Mad2 and Mad3 (BubR1) then bind and inhibit Cdc20 to form the mitotic checkpoint complex (MCC), which binds and inhibits the anaphase promoting complex (APC/C). Checkpoint kinases (Aurora, Bub1, and Mps1) are critical for checkpoint signaling, yet they have poorly defined roles and few substrates have been identified [6-8]. Here we demonstrate that a kinase-dead allele of the fission yeast MPS1 homolog (Mph1) is checkpoint defective and that levels of APC/C-associated Mad2 and Mad3 are dramatically reduced in this mutant. Thus, MCC binding to fission yeast APC/C is dependent on Mph1 kinase activity. We map and mutate several phosphorylation sites in Mad2, producing mutants that display reduced Cdc20-APC/C binding and an inability to maintain checkpoint arrest. We conclude that Mph1 kinase regulates the association of Mad2 with its binding partners and thereby mitotic arrest.
Collapse
Affiliation(s)
- Judith Zich
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Alicja M. Sochaj
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Heather M. Syred
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Laura Milne
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Atlanta G. Cook
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Hiro Ohkura
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Kevin G. Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| |
Collapse
|
19
|
KNL1/Spc105 recruits PP1 to silence the spindle assembly checkpoint. Curr Biol 2011; 21:942-7. [PMID: 21640906 DOI: 10.1016/j.cub.2011.04.011] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 12/24/2022]
Abstract
The spindle assembly checkpoint (SAC) delays anaphase onset until kinetochores accomplish bioriented microtubule attachments [1]. Although several centromeric and kinetochore kinases, including Aurora B, regulate kinetochore-microtubule attachment and/or SAC activation [2-4], the molecular mechanism that translates bioriented attachment into SAC silencing remains unclear [5]. Employing a method to rapidly induce exact gene replacement in budding yeast [6], we show here that the binding of protein phosphatase 1 (PP1/Glc7) to the evolutionarily conserved RVSF motif of the kinetochore protein Spc105 (KNL1/Blinkin/CASC5) is essential for viability by silencing the SAC, while it plays an auxiliary nonessential role for physical chromosome segregation. Although Aurora B may inhibit this binding, persistent PP1-Spc105 interaction does not affect chromosome segregation and is insufficient to silence the SAC in the absence of microtubules, indicating that dynamic regulation of this interaction is dispensable. However, the amount of PP1 targeted to kinetochores must be finely tuned, because recruitment of either no or one extra copy of PP1 to Spc105 is detrimental, illustrating the vital impact of targeting an exiguous fraction of PP1 to the kinetochore. We propose that the PP1-Spc105 interaction enables local regulation of dynamic phosphorylation and dephosphorylation at the kinetochore to couple microtubule attachment and SAC silencing.
Collapse
|
20
|
Kasuboski JM, Bader JR, Vaughan PS, Tauhata SBF, Winding M, Morrissey MA, Joyce MV, Boggess W, Vos L, Chan GK, Hinchcliffe EH, Vaughan KT. Zwint-1 is a novel Aurora B substrate required for the assembly of a dynein-binding platform on kinetochores. Mol Biol Cell 2011; 22:3318-30. [PMID: 21775627 PMCID: PMC3172258 DOI: 10.1091/mbc.e11-03-0213] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aurora B (AurB) is a mitotic kinase responsible for multiple aspects of mitotic progression, including assembly of the outer kinetochore. Cytoplasmic dynein is an abundant kinetochore protein whose recruitment to kinetochores requires phosphorylation. To assess whether AurB regulates recruitment of dynein to kinetochores, we inhibited AurB using ZM447439 or a kinase-dead AurB construct. Inhibition of AurB reduced accumulation of dynein at kinetochores substantially; however, this reflected a loss of dynein-associated proteins rather than a defect in dynein phosphorylation. We determined that AurB inhibition affected recruitment of the ROD, ZW10, zwilch (RZZ) complex to kinetochores but not zwint-1 or more-proximal kinetochore proteins. AurB phosphorylated zwint-1 but not ZW10 in vitro, and three novel phosphorylation sites were identified by tandem mass spectrometry analysis. Expression of a triple-Ala zwint-1 mutant blocked kinetochore assembly of RZZ-dependent proteins and induced defects in chromosome movement during prometaphase. Expression of a triple-Glu zwint-1 mutant rendered cells resistant to AurB inhibition during prometaphase. However, cells expressing the triple-Glu mutant failed to satisfy the spindle assembly checkpoint (SAC) at metaphase because poleward streaming of dynein/dynactin/RZZ was inhibited. These studies identify zwint-1 as a novel AurB substrate required for kinetochore assembly and for proper SAC silencing at metaphase.
Collapse
Affiliation(s)
- James M Kasuboski
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pulipati NR, Jin Q, Liu X, Sun B, Pandey MK, Huber JP, Ding W, Mulder KM. Overexpression of the dynein light chain km23-1 in human ovarian carcinoma cells inhibits tumor formation in vivo and causes mitotic delay at prometaphase/metaphase. Int J Cancer 2011; 129:553-64. [PMID: 21469138 DOI: 10.1002/ijc.25954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 12/30/2010] [Indexed: 11/06/2022]
Abstract
km23-1 is a dynein light chain that was identified as a TGFβ receptor-interacting protein. To investigate whether km23-1 controls human ovarian carcinoma cell (HOCC) growth, we established a tet-off inducible expression system in SKOV-3 cells in which the expression of km23-1 is induced upon doxycycline removal. We found that forced expression of km23-1 inhibited both anchorage-dependent and anchorage-independent growth of SKOV-3 cells. More importantly, induction of km23-1 expression substantially reduced the tumorigenicity of SKOV-3 cells in a xenograft model in vivo. Fluorescence-activated cell sorting analysis of SKOV-3 and IGROV-1 HOCCs demonstrated that the cells were accumulating at G2/M. Phospho-MEK, phospho-ERK and cyclin B1 were elevated, as was the mitotic index, suggesting that km23-1 suppresses HOCCs growth by inducing a mitotic delay. Immunofluorescence analyses demonstrated that the cells were accumulating at prometaphase/metaphase with increases in multipolar and multinucleated cells. Further, although the mitotic spindle assembly checkpoint protein BubR1 was present at the prometaphase kinetochore in Dox+/- cells, it was inappropriately retained at the metaphase kinetochore in Dox- cells. Thus, the mechanism by which high levels of km23-1 suppress ovarian carcinoma growth in vitro and inhibit ovary tumor formation in vivo appears to involve a BubR1-related mitotic delay.
Collapse
Affiliation(s)
- Nageswara R Pulipati
- Department of Biochemistry and Molecular Biology, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Maldonado M, Kapoor TM. Constitutive Mad1 targeting to kinetochores uncouples checkpoint signalling from chromosome biorientation. Nat Cell Biol 2011; 13:475-82. [PMID: 21394085 PMCID: PMC3076698 DOI: 10.1038/ncb2223] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/08/2011] [Indexed: 12/20/2022]
Abstract
Accurate chromosome segregation depends on biorientation, whereby sister chromatids attach to microtubules emanating from opposite spindle poles. The spindle assembly checkpoint is a conserved surveillance mechanism in eukaryotes that inhibits anaphase onset until all chromosomes are bioriented1, 2, 3. In current models, the recruitment of Mad2, via Mad1, to improperly attached kinetochores is a key step needed to stop cell cycle progression3, 4, 5, 6. However, it is not known if the localization of Mad1-Mad2 to kinetochores is sufficient to block anaphase. Furthermore, it is unclear if other signalling proteins (e.g. Aurora kinases7) that regulate chromosome biorientation have checkpoint functions downstream of Mad1-Mad2 recruitment to kinetochores or if they act upstream to merely quench the primary error signal8. Here, to address both these issues, we engineered a Mad1 construct which, unlike endogenous Mad1, localizes to kinetochores that are bioriented. We show that Mad1’s constitutive localization at kinetochores is sufficient for a metaphase arrest that depends on Mad1-Mad2 binding. By uncoupling the checkpoint from its primary error signal, we show that Aurora kinase, Mps1 and BubR1, but not Polo-like kinase, are needed to maintain the checkpoint arrest even when Mad1 is present on bi-oriented kinetochores. Together, our data suggest a model in which the biorientation errors, which recruit Mad1-Mad2 to kinetochores, may be signalled not only through Mad2’s templated activation dynamics, but also through the activity of widely-conserved kinases, to ensure the fidelity of cell division.
Collapse
Affiliation(s)
- Maria Maldonado
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
23
|
Abstract
The gonadoblastoma locus on the human Y chromosome (GBY) is postulated to serve normal functions in spermatogenesis, but could exert oncogenic properties in predisposing susceptible germ cells to tumorigenesis in incompatible niches such as streaked gonads in XY sex reversed patients or dysfunctional testis in males. The testis-specific protein Y-linked (TSPY) repeat gene has recently been demonstrated to be the putative gene for GBY, based on its location on the GBY critical region, expression patterns in early and late stages of gonadoblastoma and ability to induce gonadoblastoma-like structures in the ovaries of transgenic female mice. Over-expression of TSPY accelerates G(2)/M progression in the cell cycle by enhancing the mitotic cyclin B-CDK1 kinase activities. Currently the normal functions of TSPY in spermatogenesis are uncertain. Expression studies of TSPY, and its X-homologue, TSPX, in normal human testis suggest that TSPY is co-expressed with cyclin B1 in spermatogonia and various stages of spermatocytes while TSPX is principally expressed in Sertoli cells in the human testis. The co-expression pattern of TSPY and cyclin B1 in spermatogonia and spermatocytes suggest respectively that 1) TSPY is important for male spermatogonial cell replication and renewal in the testis; and 2) TSPY could be a catalyst/meiotic factor essential for augmenting the activities of cyclin B-cyclin dependent kinases, important for the differentiation of the spermatocytes in prophase I and in preparation for consecutive rounds of meiotic divisions without an intermediate interphase during spermatogenesis.
Collapse
Affiliation(s)
- Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA.
| | | | | |
Collapse
|
24
|
Cannon JF. Function of protein phosphatase-1, Glc7, in Saccharomyces cerevisiae. ADVANCES IN APPLIED MICROBIOLOGY 2010; 73:27-59. [PMID: 20800758 DOI: 10.1016/s0065-2164(10)73002-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Budding yeast, Saccharomyces cerevisiae, and its close relatives are unique among eukaryotes in having a single gene, GLC7, encoding protein phosphatase-1 (PP1). This enzyme with a highly conserved amino acid sequence controls many processes in all eukaryotic cells. Therefore, the study of Glc7 function offers a unique opportunity to gain a comprehensive understanding of this critical regulatory enzyme. This review summarizes our current knowledge of how Glc7 function modulates processes in the cytoplasm and nucleus. Additionally, global Glc7 regulation is described.
Collapse
Affiliation(s)
- John F Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
25
|
Santaguida S, Tighe A, D'Alise AM, Taylor SS, Musacchio A. Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. ACTA ACUST UNITED AC 2010; 190:73-87. [PMID: 20624901 PMCID: PMC2911657 DOI: 10.1083/jcb.201001036] [Citation(s) in RCA: 420] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The catalytic activity of the MPS1 kinase is crucial for the spindle assembly checkpoint and for chromosome biorientation on the mitotic spindle. We report that the small molecule reversine is a potent mitotic inhibitor of MPS1. Reversine inhibits the spindle assembly checkpoint in a dose-dependent manner. Its addition to mitotic HeLa cells causes the ejection of Mad1 and the ROD-ZWILCH-ZW10 complex, both of which are important for the spindle checkpoint, from unattached kinetochores. By using reversine, we also demonstrate that MPS1 is required for the correction of improper chromosome-microtubule attachments. We provide evidence that MPS1 acts downstream from the AURORA B kinase, another crucial component of the error correction pathway. Our experiments describe a very useful tool to interfere with MPS1 activity in human cells. They also shed light on the relationship between the error correction pathway and the spindle checkpoint and suggest that these processes are coregulated and are likely to share at least a subset of their catalytic machinery.
Collapse
Affiliation(s)
- Stefano Santaguida
- Department of Experimental Oncology, European Institute of Oncology, I-20139 Milan, Italy
| | | | | | | | | |
Collapse
|
26
|
Getting down to the phosphorylated ‘nuts and bolts’ of spindle checkpoint signalling. Trends Biochem Sci 2010; 35:18-27. [DOI: 10.1016/j.tibs.2009.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 12/26/2022]
|
27
|
Nezi L, Musacchio A. Sister chromatid tension and the spindle assembly checkpoint. Curr Opin Cell Biol 2009; 21:785-95. [PMID: 19846287 DOI: 10.1016/j.ceb.2009.09.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 09/12/2009] [Accepted: 09/18/2009] [Indexed: 01/07/2023]
Abstract
The spindle assembly checkpoint (SAC) is a feedback control system that monitors the state of kinetochore/microtubule attachment during mitosis and halts cell cycle progression until all chromosomes are properly aligned at the metaphase plate. The state of chromosome-microtubule attachment is implicated as a crucial factor in the checkpoint response. On the contrary, lack of tension in the centromere-kinetochore region of sister chromatids has been shown to regulate a pathway of correction of undesired chromosome-microtubule connections, while the presence of tension is believed to promote the stabilization of attachments. We discuss how tension-sensitive phenomena, such as attachment correction and stabilization, relate to the SAC and we speculate on the existence of a single pathway linking error correction and SAC activation.
Collapse
Affiliation(s)
- Luigi Nezi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | |
Collapse
|
28
|
De Wulf P, Montani F, Visintin R. Protein phosphatases take the mitotic stage. Curr Opin Cell Biol 2009; 21:806-15. [PMID: 19767188 DOI: 10.1016/j.ceb.2009.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 08/21/2009] [Accepted: 08/24/2009] [Indexed: 12/11/2022]
Abstract
Following the identification of cyclin-dependent kinases in the 1980s, kinases were hailed as the directors of mitosis. Although the action of kinases must necessarily be reversible, only recently has the involvement of specific phosphatases in mitosis become appreciated. Studies are now revealing how the timely execution of mitotic events depends on the delicate interplay between kinases and phosphatases. To date, the best-characterized mitotic phosphatases are Cdc25, that is required for entry into mitosis and Cdc14, that controls exit from mitosis in budding yeast. Recent work has now exposed the conserved serine-threonine phosphatases PP1 and PP2A as key regulators of various mitotic processes.
Collapse
Affiliation(s)
- Peter De Wulf
- European Institute of Oncology, Department of Experimental Oncology, IFOM-IEO Campus, Milan, Italy
| | | | | |
Collapse
|
29
|
Pinsky BA, Nelson CR, Biggins S. Protein phosphatase 1 regulates exit from the spindle checkpoint in budding yeast. Curr Biol 2009; 19:1182-7. [PMID: 19592248 DOI: 10.1016/j.cub.2009.06.043] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/26/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
Accurate chromosome segregation depends on sister kinetochores coming under tension when they make bioriented attachments to microtubules from opposite poles. The spindle checkpoint halts the cell cycle in response to defects in generating proper attachments or tension on kinetochores, although the precise signal that triggers the checkpoint is unclear because tension and attachment are coupled. The target of the checkpoint is the Cdc20 protein, which initiates the anaphase-promoting complex (APC)-dependent degradation of the anaphase inhibitor Pds1/securin. Although the molecular details of spindle checkpoint activation are still being elucidated, phosphorylation by at least four kinases is a crucial requirement. However, less is known about the mechanisms that silence the checkpoint after kinetochores biorient. Here, we show that the catalytic subunit of the budding yeast protein phosphatase 1 (PP1) homolog, Glc7, regulates exit from the checkpoint. Glc7 overexpression prevents spindle checkpoint activation in response to both tension and attachment defects. Although glc7 mutant cells are able to efficiently release from a non-checkpoint-mediated metaphase arrest, they are uniquely sensitive to transient spindle checkpoint activation as a result of a failure in spindle checkpoint exit. We therefore propose that PP1 activity silences the checkpoint by reversing key phosphorylation events.
Collapse
Affiliation(s)
- Benjamin A Pinsky
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, PO Box 19024, Seattle, WA 98109, USA
| | | | | |
Collapse
|
30
|
Vanoosthuyse V, Hardwick KG. A novel protein phosphatase 1-dependent spindle checkpoint silencing mechanism. Curr Biol 2009; 19:1176-81. [PMID: 19592249 PMCID: PMC2791888 DOI: 10.1016/j.cub.2009.05.060] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 12/23/2022]
Abstract
The spindle checkpoint is a surveillance system acting in mitosis to delay anaphase onset until all chromosomes are properly attached to the mitotic spindle [1, 2]. When the checkpoint is activated, the Mad2 and Mad3 proteins directly bind and inhibit Cdc20, which is an essential activator of an E3 ubiquitin ligase known as the anaphase-promoting complex (APC) [3]. When the checkpoint is satisfied, Cdc20-APC is activated and polyubiquitinates securin and cyclin, leading to the dissolution of sister chromatid cohesion and mitotic progression. Several protein kinases play critical roles in spindle checkpoint signaling, but the mechanism (or mechanisms) by which they inhibit mitotic progression remains unclear [4]. Furthermore, it is not known whether their activity needs to be reversed by protein phosphatases before anaphase onset can occur. Here we employ fission yeast to show that Aurora (Ark1) kinase activity is directly required to maintain spindle checkpoint arrest, even in the presence of many unattached kinetochores. Upon Ark1 inhibition, checkpoint complexes are disassembled and cyclin B is rapidly degraded. Importantly, checkpoint silencing and cyclin B degradation require the kinetochore-localized isoform of protein phosphatase 1 (PP1Dis2). We propose that PP1Dis2-mediated dephosphorylation of checkpoint components forms a novel spindle checkpoint silencing mechanism.
Collapse
Affiliation(s)
- Vincent Vanoosthuyse
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | | |
Collapse
|