1
|
Alavi M, Roudi R, D'Angelo A, Sobhani N, Safari F. Current understanding of PEAK family members in regulation of cellular signaling pathways and cancer therapy. Mol Cell Biochem 2025; 480:3521-3533. [PMID: 39922936 DOI: 10.1007/s11010-025-05219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/26/2025] [Indexed: 02/10/2025]
Abstract
Cancer evades therapy by multiple mechanisms, leading to uncontrolled cell growth and metastasis. Targeted therapies have shown promise in treating cancer by focusing on pathways within cancer cells. The PEAK family, comprising PEAK1 (SgK269), PEAK2 (SgK223/Pragmin), and the latest addition, PEAK3 (C19orf35), plays a crucial role in modulating cellular processes. Dysregulation and hyperactivity of these proteins, through overexpression or mutations, are associated with a wide range of cancers. This review delves into the different roles of the PEAK family members in regulating cell signaling pathways and highlights their potential in cancer therapy.
Collapse
Affiliation(s)
- Mana Alavi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | | | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
2
|
Yang X, Ma X, Zhao T, Croucher DR, Nguyen EV, Clark KC, Hu C, Latham SL, Bayly-Jones C, Nguyen BV, Budnar S, Shin SY, Nguyen LK, Cotton TR, Chüeh AC, Lim Kam Sian TCC, Stratton MM, Ellisdon AM, Daly RJ. Activation of CAMK2 by pseudokinase PEAK1 represents a targetable pathway in triple negative breast cancer. Nat Commun 2025; 16:1871. [PMID: 39984440 PMCID: PMC11845518 DOI: 10.1038/s41467-025-57046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
The PEAK family of pseudokinases, comprising PEAK1-3, play oncogenic roles in several poor prognosis human cancers, including triple negative breast cancer (TNBC). However, therapeutic targeting of pseudokinases is challenging due to their lack of catalytic activity. To address this, we screen for PEAK1 effectors and identify calcium/calmodulin-dependent protein kinase 2 (CAMK2)D and CAMK2G. PEAK1 promotes CAMK2 activation in TNBC cells via PLCγ1/Ca2+ signalling and direct binding to CAMK2. In turn, CAMK2 phosphorylates PEAK1 to enhance association with PEAK2, which is critical for PEAK1 oncogenic signalling. To achieve pharmacologic targeting of PEAK1/CAMK2, we repurpose RA306, a second generation CAMK2 inhibitor. RA306 inhibits PEAK1-enhanced migration and invasion of TNBC cells in vitro and significantly attenuates TNBC xenograft growth and metastasis in a manner mirrored by PEAK1 ablation. Overall, these studies establish PEAK1 as a critical cell signalling nexus that integrates Ca2+ and tyrosine kinase signals and identify CAMK2 as a therapeutically 'actionable' target downstream of PEAK1.
Collapse
Affiliation(s)
- Xue Yang
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Xiuquan Ma
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Tianyue Zhao
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - David R Croucher
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Elizabeth V Nguyen
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Kimberley C Clark
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Changyuan Hu
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Sharissa L Latham
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Charles Bayly-Jones
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Bao V Nguyen
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Srikanth Budnar
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Sung-Young Shin
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Lan K Nguyen
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Thomas R Cotton
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Anderly C Chüeh
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Terry C C Lim Kam Sian
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Andrew M Ellisdon
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Roger J Daly
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Lucet IS, Daly RJ. View from the PEAKs: Insights from structural studies on the PEAK family of pseudokinases. Curr Opin Struct Biol 2024; 89:102932. [PMID: 39321525 DOI: 10.1016/j.sbi.2024.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The PEAK family of pseudokinase scaffolds, comprising PEAK1 (originally termed SgK269), PEAK2 (SgK223, the human orthologue of rat Pragmin) and PEAK3 (C19orf35), have emerged as important regulators and integrators of cellular signaling and also play oncogenic roles in a variety of human cancers. These proteins undergo both homo- and heterotypic association that act to diversify signal output. Recently, structural and functional characterization of PEAK3 and its protein-protein interactions have shed light on PEAK signaling dynamics and the interdependency of PEAK family members, how PEAK dimerization regulates the binding of downstream effectors, and how 14-3-3 binding acts to regulate PEAK3 signal output. These important advances form the basis of this review.
Collapse
Affiliation(s)
- Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Roger J Daly
- Cancer Program, Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
4
|
Yang X, Ma X, Zhao T, Croucher DR, Nguyen EV, Clark KC, Hu C, Latham SL, Bayly-Jones C, Nguyen VCB, Budnar S, Shin S, Nguyen LK, Cotton TR, Chueh AC, Sian TCLK, Stratton MM, Ellisdon AM, Daly RJ. Feed-forward stimulation of CAMK2 by the oncogenic pseudokinase PEAK1 generates a therapeutically "actionable" signalling axis in triple negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580406. [PMID: 38405732 PMCID: PMC10888886 DOI: 10.1101/2024.02.14.580406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The PEAK family of pseudokinases, comprising PEAK1-3, are signalling scaffolds that play oncogenic roles in several poor prognosis human cancers, including triple negative breast cancer (TNBC). However, therapeutic targeting of pseudokinases is challenging due to their lack of catalytic activity. To address this, we screened for PEAK1 effectors by affinity purification and mass spectrometry, identifying calcium/calmodulin-dependent protein kinase 2 (CAMK2)D and CAMK2G. PEAK1 promoted CAMK2D/G activation in TNBC cells via a novel feed-forward mechanism involving PEAK1/PLCg1/Ca2+ signalling and direct binding via a consensus CAMK2 interaction motif in the PEAK1 N-terminus. In turn, CAMK2 phosphorylated PEAK1 to enhance association with PEAK2, which is critical for PEAK1 oncogenic signalling. To achieve pharmacologic targeting of PEAK1/CAMK2, we repurposed RA306, a second generation CAMK2 inhibitor under pre-clinical development for treatment of cardiovascular disease. RA306 demonstrated on-target activity against CAMK2 in TNBC cells and inhibited PEAK1-enhanced migration and invasion in vitro. Moreover, RA306 significantly attenuated TNBC xenograft growth and blocked metastasis in a manner mirrored by CRISPR-mediated PEAK1 ablation. Overall, these studies establish PEAK1 as a critical cell signalling nexus, identify a novel mechanism for regulation of Ca2+ signalling and its integration with tyrosine kinase signals, and identify CAMK2 as a therapeutically "actionable" target downstream of PEAK1.
Collapse
|
5
|
Raimi OG, Ojha H, Ehses K, Dederer V, Lange SM, Rivera CP, Deegan TD, Chen Y, Wightman M, Toth R, Labib KPM, Mathea S, Ranson N, Fernández-Busnadiego R, Muqit MMK. Mechanism of human PINK1 activation at the TOM complex in a reconstituted system. SCIENCE ADVANCES 2024; 10:eadn7191. [PMID: 38848361 PMCID: PMC11160474 DOI: 10.1126/sciadv.adn7191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024]
Abstract
Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) are a frequent cause of early-onset Parkinson's disease (PD). Stabilization of PINK1 at the translocase of outer membrane (TOM) complex of damaged mitochondria is critical for its activation. The mechanism of how PINK1 is activated in the TOM complex is unclear. Here, we report that co-expression of human PINK1 and all seven TOM subunits in Saccharomyces cerevisiae is sufficient for PINK1 activation. We use this reconstitution system to systematically assess the role of each TOM subunit toward PINK1 activation. We unambiguously demonstrate that the TOM20 and TOM70 receptor subunits are required for optimal PINK1 activation and map their sites of interaction with PINK1 using AlphaFold structural modeling and mutagenesis. We also demonstrate an essential role of the pore-containing subunit TOM40 and its structurally associated subunits TOM7 and TOM22 for PINK1 activation. These findings will aid in the development of small-molecule activators of PINK1 as a therapeutic strategy for PD.
Collapse
Affiliation(s)
- Olawale G. Raimi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Hina Ojha
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kenneth Ehses
- Institute of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Verena Dederer
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, 60438 Frankfurt, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, 60438 Frankfurt, Germany
| | - Sven M. Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Cristian Polo Rivera
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Tom D. Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Yinchen Chen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Melanie Wightman
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Karim P. M. Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sebastian Mathea
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, 60438 Frankfurt, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, 60438 Frankfurt, Germany
| | - Neil Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Faculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Miratul M. K. Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
6
|
Dessaux C, Ganier L, Guiraud L, Borg JP. Recent insights into the therapeutic strategies targeting the pseudokinase PTK7 in cancer. Oncogene 2024; 43:1973-1984. [PMID: 38773263 PMCID: PMC11196218 DOI: 10.1038/s41388-024-03060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
The generation of drugs counteracting deregulated protein kinases has been a major focus in cancer therapy development. Breakthroughs in this effort have produced many therapeutic agents to the benefit of patients, mostly through the development of chemical or antibody-based drugs targeting active kinases. These strategies are challenged when considering catalytically inactive protein kinases (or pseudokinases), which represent 10% of the human kinome with many of relevance in cancer. Among the so-called pseudotyrosine kinases, the PTK7 receptor tyrosine kinase (RTK) stands as a bona fide target overexpressed in several solid tumors and hematological malignancies and linked to metastasis, poor prognosis, and resistance to treatment. Despite the lack of catalytic activity, PTK7 has signaling capacities through heterodimerization with active RTKs and offers pharmacological targeting opportunities through its inactive kinase domain. Moreover, PTK7-targeting strategies based on antibody-drug conjugates, aptamers, and CAR-T cell-based therapies have demonstrated encouraging results in preclinical and clinical settings. We review the most recent data assigning to PTK7 a prominent role in cancer progression as well as current preclinical and clinical targeting strategies against RTK family pseudokinases including PTK7.
Collapse
Affiliation(s)
- Charlotte Dessaux
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Laetitia Ganier
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
- adMare BioInnovations, Vancouver, BC, Canada
| | - Louis Guiraud
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
7
|
Roy MJ, Surudoi MG, Kropp A, Hou J, Dai W, Hardy JM, Liang LY, Cotton TR, Lechtenberg BC, Dite TA, Ma X, Daly RJ, Patel O, Lucet IS. Structural mapping of PEAK pseudokinase interactions identifies 14-3-3 as a molecular switch for PEAK3 signaling. Nat Commun 2023; 14:3542. [PMID: 37336884 DOI: 10.1038/s41467-023-38869-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 06/21/2023] Open
Abstract
PEAK pseudokinases regulate cell migration, invasion and proliferation by recruiting key signaling proteins to the cytoskeleton. Despite lacking catalytic activity, alteration in their expression level is associated with several aggressive cancers. Here, we elucidate the molecular details of key PEAK signaling interactions with the adapter proteins CrkII and Grb2 and the scaffold protein 14-3-3. Our findings rationalize why the dimerization of PEAK proteins has a crucial function in signal transduction and provide biophysical and structural data to unravel binding specificity within the PEAK interactome. We identify a conserved high affinity 14-3-3 motif on PEAK3 and demonstrate its role as a molecular switch to regulate CrkII binding and signaling via Grb2. Together, our studies provide a detailed structural snapshot of PEAK interaction networks and further elucidate how PEAK proteins, especially PEAK3, act as dynamic scaffolds that exploit adapter proteins to control signal transduction in cell growth/motility and cancer.
Collapse
Affiliation(s)
- Michael J Roy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Minglyanna G Surudoi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ashleigh Kropp
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jianmei Hou
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Weiwen Dai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joshua M Hardy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Lung-Yu Liang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Thomas R Cotton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Bernhard C Lechtenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Toby A Dite
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Xiuquan Ma
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
8
|
Trempe JF, Gehring K. Structural mechanisms of mitochondrial quality control mediated by PINK1 and parkin. J Mol Biol 2023:168090. [PMID: 37054910 DOI: 10.1016/j.jmb.2023.168090] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and represents a looming public health crisis as the global population ages. While the etiology of the more common, idiopathic form of the disease remains unknown, the last ten years have seen a breakthrough in our understanding of the genetic forms related to two proteins that regulate a quality control system for the removal of damaged or non-functional mitochondria. Here, we review the structure of these proteins, PINK1, a protein kinase, and parkin, a ubiquitin ligase with an emphasis on the molecular mechanisms responsible for their recognition of dysfunctional mitochondria and control of the subsequent ubiquitination cascade. Recent atomic structures have revealed the basis of PINK1 substrate specificity and the conformational changes responsible for activation of PINK1 and parkin catalytic activity. Progress in understanding the molecular basis of mitochondrial quality control promises to open new avenues for therapeutic interventions in PD.
Collapse
Affiliation(s)
- Jean-François Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale
| |
Collapse
|
9
|
Sheetz JB, Lemmon MA. Looking lively: emerging principles of pseudokinase signaling. Trends Biochem Sci 2022; 47:875-891. [PMID: 35585008 PMCID: PMC9464697 DOI: 10.1016/j.tibs.2022.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Progress towards understanding catalytically 'dead' protein kinases - pseudokinases - in biology and disease has hastened over the past decade. An especially lively area for structural biology, pseudokinases appear to be strikingly similar to their kinase relatives, despite lacking key catalytic residues. Distinct active- and inactive-like conformation states, which are crucial for regulating bona fide protein kinases, are conserved in pseudokinases and appear to be essential for function. We discuss recent structural data on conformational transitions and nucleotide binding by pseudokinases, from which some common principles emerge. In both pseudokinases and bona fide kinases, a conformational toggle appears to control the ability to interact with signaling effectors. We also discuss how biasing this conformational toggle may provide opportunities to target pseudokinases pharmacologically in disease.
Collapse
Affiliation(s)
- Joshua B Sheetz
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06505, USA; Yale Cancer Biology Institute, Yale West Campus, West Haven, CT 06516, USA.
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06505, USA; Yale Cancer Biology Institute, Yale West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
10
|
Riegel K, Vijayarangakannan P, Kechagioglou P, Bogucka K, Rajalingam K. Recent advances in targeting protein kinases and pseudokinases in cancer biology. Front Cell Dev Biol 2022; 10:942500. [PMID: 35938171 PMCID: PMC9354965 DOI: 10.3389/fcell.2022.942500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Kinases still remain the most favorable members of the druggable genome, and there are an increasing number of kinase inhibitors approved by the FDA to treat a variety of cancers. Here, we summarize recent developments in targeting kinases and pseudokinases with some examples. Targeting the cell cycle machinery garnered significant clinical success, however, a large section of the kinome remains understudied. We also review recent developments in the understanding of pseudokinases and discuss approaches on how to effectively target in cancer.
Collapse
Affiliation(s)
- Kristina Riegel
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | | | - Petros Kechagioglou
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Katarzyna Bogucka
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
- *Correspondence: Krishnaraj Rajalingam,
| |
Collapse
|
11
|
Oncogenic Signalling of PEAK2 Pseudokinase in Colon Cancer. Cancers (Basel) 2022; 14:cancers14122981. [PMID: 35740644 PMCID: PMC9221080 DOI: 10.3390/cancers14122981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Catalytically inactive kinases, also named pseudokinases, play important roles in the regulation of cell growth and adhesion. While frequently deregulated in human cancer, their role in tumour development is partially elucidated. Here, we report an important tumour function for the pseudokinase PEAK2 in colorectal cancer (CRC) and propose that PEAK2 upregulation can affect cancer cell adhesive properties through an ABL-dependent mechanism to enable cancer progression. Therefore, targeting PEAK2 oncogenic activity with small tyrosine kinases (TK) inhibitors may be of therapeutic interest in colorectal cancer (CRC). Abstract The PEAK family pseudokinases are essential components of tyrosine kinase (TK) pathways that regulate cell growth and adhesion; however, their role in human cancer remains unclear. Here, we report an oncogenic activity of the pseudokinase PEAK2 in colorectal cancer (CRC). Notably, high PRAG1 expression, which encodes PEAK2, was associated with a bad prognosis in CRC patients. Functionally, PEAK2 depletion reduced CRC cell growth and invasion in vitro, while its overexpression increased these transforming effects. PEAK2 depletion also reduced CRC development in nude mice. Mechanistically, PEAK2 expression induced cellular protein tyrosine phosphorylation, despite its catalytic inactivity. Phosphoproteomic analysis identified regulators of cell adhesion and F-actin dynamics as PEAK2 targets. Additionally, PEAK2 was identified as a novel ABL TK activator. In line with this, PEAK2 expression localized at focal adhesions of CRC cells and induced ABL-dependent formation of actin-rich plasma membrane protrusions filopodia that function to drive cell invasion. Interestingly, all these PEAK2 transforming activities were regulated by its main phosphorylation site, Tyr413, which implicates the SRC oncogene. Thus, our results uncover a protumoural function of PEAK2 in CRC and suggest that its deregulation affects adhesive properties of CRC cells to enable cancer progression.
Collapse
|
12
|
Zuidema A, Atherton P, Kreft M, Hoekman L, Bleijerveld OB, Nagaraj N, Chen N, Fässler R, Sonnenberg A. PEAK1 Y635 phosphorylation regulates cell migration through association with Tensin3 and integrins. J Biophys Biochem Cytol 2022; 221:213273. [PMID: 35687021 PMCID: PMC9194829 DOI: 10.1083/jcb.202108027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/22/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023] Open
Abstract
Integrins mediate cell adhesion by connecting the extracellular matrix to the intracellular cytoskeleton and orchestrate signal transduction in response to chemical and mechanical stimuli by interacting with many cytoplasmic proteins. We used BioID to interrogate the interactomes of β1 and β3 integrins in epithelial cells and identified PEAK1 as an interactor of the RGD-binding integrins α5β1, αVβ3, and αVβ5 in focal adhesions. We demonstrate that the interaction between integrins and PEAK1 occurs indirectly through Tensin3, requiring both the membrane-proximal NPxY motif on the integrin β tail and binding of the SH2 domain of Tensin3 to phosphorylated Tyr-635 on PEAK1. Phosphorylation of Tyr-635 is mediated by Src and regulates cell migration. Additionally, we found that Shc1 localizes in focal adhesions in a PEAK1 phosphorylated Tyr-1188-dependent fashion. Besides binding Shc1, PEAK1 also associates with a protein cluster that mediates late EGFR/Shc1 signaling. We propose a model in which PEAK1 binds Tensin3 and Shc1 to converge integrin and growth factor receptor signal transduction.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul Atherton
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Onno B. Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nagarjuna Nagaraj
- Mass Spectrometry Core Facility at the Max-Planck Institute of Biochemistry, Planegg, Germany
| | - Nanpeng Chen
- Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Planegg, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Planegg, Germany
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands,Correspondence to Arnoud Sonnenberg:
| |
Collapse
|
13
|
Patel O, Surudoi M, Dai W, Hardy JM, Roy MJ, Lucet IS. Production and purification of the PEAK pseudokinases for structural and functional studies. Methods Enzymol 2022; 667:1-35. [PMID: 35525538 DOI: 10.1016/bs.mie.2022.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The PEAK family of pseudokinases, which comprises PEAK1, PEAK2 and PEAK3, are newly identified scaffolds that dynamically assemble oncogenic signaling pathways known to contribute to the development of several aggressive cancers. A striking feature of this unique family of pseudokinase scaffolds is their large multi-domain structure, which allows them to achieve protein complex assemblies through their structural plasticity and functional versatility. Recent structural advances have begun to reveal the critical regulatory elements that control their function. Specifically, the dimer-dependent scaffolding activity of PEAK pseudokinases is emerging as a critical mechanism for their signaling function, in addition to their ability to hetero-associate to form higher-order regulatory networks to diversify and amplify their signaling output. Here, we present a suite of techniques that enable the efficient expression and purification of PEAK proteins for functional characterization.
Collapse
Affiliation(s)
- Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia; Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia.
| | - Minglyanna Surudoi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia; Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Weiwen Dai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia; Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Joshua M Hardy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia; Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Michael J Roy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia; Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia; Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia.
| |
Collapse
|
14
|
Fitzgibbon C, Meng Y, Murphy JM. Co-expression of recombinant RIPK3:MLKL complexes using the baculovirus-insect cell system. Methods Enzymol 2022; 667:183-227. [PMID: 35525542 DOI: 10.1016/bs.mie.2022.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudokinase domains are found throughout the kingdoms of life and serve myriad roles in cell signaling. These domains, which resemble protein kinases but are catalytically-deficient, have been described principally as protein interaction domains. Broadly, pseudokinases have been reported to function as: allosteric regulators of conventional enzymes; scaffolds to nucleate assembly and/or localization of signaling complexes; molecular switches; or competitors of signaling complex assembly. From detailed structural and biochemical studies of individual pseudokinases, a picture of how they mediate protein interactions is beginning to emerge. Many such studies have relied on recombinant protein production in insect cells, where endogenous chaperones and modifying enzymes favor bona fide folding of pseudokinases. Here, we describe methods for co-expression of pseudokinases and their interactors in insect cells, as exemplified by the MLKL pseudokinase, which is the terminal effector in the necroptosis cell death pathway, and its upstream regulator kinase RIPK3. These methods are broadly applicable to co-expression of other pseudokinases with their interaction partners from bacmids using the baculovirus-insect cell expression system.
Collapse
Affiliation(s)
- Cheree Fitzgibbon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
15
|
Paul MD, Torosyan H, Jura N. Piquing our interest: Insights into the role of PEAK3 in signaling and disease. Sci Signal 2022; 15:eabm9396. [PMID: 35192418 PMCID: PMC9288111 DOI: 10.1126/scisignal.abm9396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pseudokinases are critical signaling hubs that are increasingly appreciated as important disease targets. In this issue of Science Signaling, Hou et al. bring new insights into the signaling mechanisms of the pseudokinase PEAK3 by characterizing its epidermal growth factor-dependent interactome and demonstrating oncogenic effects of PEAK3 overexpression.
Collapse
Affiliation(s)
- Michael D. Paul
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Hayarpi Torosyan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Hou J, Nguyen EV, Surudoi M, Roy MJ, Patel O, Lucet IS, Ma X, Daly RJ. Distinct PEAK3 interactors and outputs expand the signaling potential of the PEAK pseudokinase family. Sci Signal 2022; 15:eabj3554. [PMID: 35192416 DOI: 10.1126/scisignal.abj3554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pseudokinase scaffolds PEAK1 and PEAK2 are implicated in cancer cell migration and metastasis. We characterized the regulation and role of the third family member PEAK3 in cell signaling. Similar to PEAK1 and PEAK2, PEAK3 formed both homotypic and heterotypic complexes. In addition, like PEAK1, it bound to the adaptors Grb2 and CrkII. However, unlike PEAK1 and PEAK2, homodimerized PEAK3 also interacted with the ARF GTPase-activating protein ASAP1, the E3 ubiquitin ligase Cbl, and the kinase PYK2. Dimerization and subsequent phosphorylation on Tyr24, likely by a Src family kinase, were required for the binding of PEAK3 to Grb2 and ASAP1. Interactions with Grb2, CrkII, ASAP1, Cbl, and PYK2 exhibited contrasting dynamics upon cell stimulation with epidermal growth factor (EGF), in part due to PEAK3 dephosphorylation mediated by the phosphatase PTPN12. Overexpressing PEAK3 in mesenchymal-like MDA-MB-231 breast cancer cells enhanced cell elongation in a manner dependent on PEAK3 dimerization, and manipulation of PEAK3 expression demonstrated a positive role for this scaffold in regulating cell migration. Overexpressing PEAK3 in PEAK1/2 double-knockout MCF-10A breast epithelial cells enhanced acinar growth, impaired basement membrane integrity, and promoted invasion in three-dimensional cultures, with the latter two effects dependent on the binding of PEAK3 to Grb2 and ASAP1. PEAK1 and PEAK2 quantitatively and temporally influenced PEAK3 function. These findings characterize PEAK3 as an integral, signal-diversifying member of the PEAK family with scaffolding roles that promote cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Jianmei Hou
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Elizabeth V Nguyen
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Minglyanna Surudoi
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Michael J Roy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Onisha Patel
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Xiuquan Ma
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
17
|
Gan ZY, Callegari S, Cobbold SA, Cotton TR, Mlodzianoski MJ, Schubert AF, Geoghegan ND, Rogers KL, Leis A, Dewson G, Glukhova A, Komander D. Activation mechanism of PINK1. Nature 2022; 602:328-335. [PMID: 34933320 PMCID: PMC8828467 DOI: 10.1038/s41586-021-04340-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022]
Abstract
Mutations in the protein kinase PINK1 lead to defects in mitophagy and cause autosomal recessive early onset Parkinson's disease1,2. PINK1 has many unique features that enable it to phosphorylate ubiquitin and the ubiquitin-like domain of Parkin3-9. Structural analysis of PINK1 from diverse insect species10-12 with and without ubiquitin provided snapshots of distinct structural states yet did not explain how PINK1 is activated. Here we elucidate the activation mechanism of PINK1 using crystallography and cryo-electron microscopy (cryo-EM). A crystal structure of unphosphorylated Pediculus humanus corporis (Ph; human body louse) PINK1 resolves an N-terminal helix, revealing the orientation of unphosphorylated yet active PINK1 on the mitochondria. We further provide a cryo-EM structure of a symmetric PhPINK1 dimer trapped during the process of trans-autophosphorylation, as well as a cryo-EM structure of phosphorylated PhPINK1 undergoing a conformational change to an active ubiquitin kinase state. Structures and phosphorylation studies further identify a role for regulatory PINK1 oxidation. Together, our research delineates the complete activation mechanism of PINK1, illuminates how PINK1 interacts with the mitochondrial outer membrane and reveals how PINK1 activity may be modulated by mitochondrial reactive oxygen species.
Collapse
Affiliation(s)
- Zhong Yan Gan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sylvie Callegari
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Simon A Cobbold
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas R Cotton
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J Mlodzianoski
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Niall D Geoghegan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Leis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alisa Glukhova
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Drug Discovery Biology, Monash Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - David Komander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Kakade P, Ojha H, Raimi OG, Shaw A, Waddell AD, Ault JR, Burel S, Brockmann K, Kumar A, Ahangar MS, Krysztofinska EM, Macartney T, Bayliss R, Fitzgerald JC, Muqit MMK. Mapping of a N-terminal α-helix domain required for human PINK1 stabilization, Serine228 autophosphorylation and activation in cells. Open Biol 2022; 12:210264. [PMID: 35042401 PMCID: PMC8767193 DOI: 10.1098/rsob.210264] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Autosomal recessive mutations in the PINK1 gene are causal for Parkinson's disease (PD). PINK1 encodes a mitochondrial localized protein kinase that is a master-regulator of mitochondrial quality control pathways. Structural studies to date have elaborated the mechanism of how mutations located within the kinase domain disrupt PINK1 function; however, the molecular mechanism of PINK1 mutations located upstream and downstream of the kinase domain is unknown. We have employed mutagenesis studies to define the minimal region of human PINK1 required for optimal ubiquitin phosphorylation, beginning at residue Ile111. Inspection of the AlphaFold human PINK1 structure model predicts a conserved N-terminal α-helical extension (NTE) domain forming an intramolecular interaction with the C-terminal extension (CTE), which we corroborate using hydrogen/deuterium exchange mass spectrometry of recombinant insect PINK1 protein. Cell-based analysis of human PINK1 reveals that PD-associated mutations (e.g. Q126P), located within the NTE : CTE interface, markedly inhibit stabilization of PINK1; autophosphorylation at Serine228 (Ser228) and Ubiquitin Serine65 (Ser65) phosphorylation. Furthermore, we provide evidence that NTE and CTE domain mutants disrupt PINK1 stabilization at the mitochondrial Translocase of outer membrane complex. The clinical relevance of our findings is supported by the demonstration of defective stabilization and activation of endogenous PINK1 in human fibroblasts of a patient with early-onset PD due to homozygous PINK1 Q126P mutations. Overall, we define a functional role of the NTE : CTE interface towards PINK1 stabilization and activation and show that loss of NTE : CTE interactions is a major mechanism of PINK1-associated mutations linked to PD.
Collapse
Affiliation(s)
- Poonam Kakade
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Hina Ojha
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Olawale G. Raimi
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Andrew Shaw
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Andrew D. Waddell
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - James R. Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sophie Burel
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Kathrin Brockmann
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- The German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Atul Kumar
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mohd Syed Ahangar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ewelina M. Krysztofinska
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Julia C. Fitzgerald
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Miratul M. K. Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
19
|
Ounoughene Y, Fourgous E, Boublik Y, Saland E, Guiraud N, Recher C, Urbach S, Fort P, Sarry JE, Fesquet D, Roche S. SHED-Dependent Oncogenic Signaling of the PEAK3 Pseudo-Kinase. Cancers (Basel) 2021; 13:cancers13246344. [PMID: 34944965 PMCID: PMC8699254 DOI: 10.3390/cancers13246344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The human kinome is composed of about 50 pseudo-kinases with unclear function, because they are predicted to be catalytically inactive; however, they are shown to play an important role in cancer, similar to active kinases. Understanding how these pseudo-kinases promote tumor formation despite their catalytic inactivity is a great challenge, which may lead to innovative anti-cancer therapies. The PEAK1 and 2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism via a conserved split helical dimerization (SHED) module. In this study, we uncovered a similar SHED-dependent oncogenic activity for PEAK3, a recently discovered new member of this family. We also show that this new signaling mechanism may be implicated in acute myeloid leukemia. Abstract The PEAK1 and Pragmin/PEAK2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism that involves a conserved split helical dimerization (SHED) module. We recently identified PEAK3 as a novel member of this family based on structural homology; however, its signaling mechanism remains unclear. In this study, we found that, although it can self-associate, PEAK3 shows higher evolutionary divergence than PEAK1/2. Moreover, the PEAK3 protein is strongly expressed in human hematopoietic cells and is upregulated in acute myeloid leukemia. Functionally, PEAK3 overexpression in U2OS sarcoma cells enhanced their growth and migratory properties, while its silencing in THP1 leukemic cells reduced these effects. Importantly, an intact SHED module was required for these PEAK3 oncogenic activities. Mechanistically, through a phosphokinase survey, we identified PEAK3 as a novel inducer of AKT signaling, independent of growth-factor stimulation. Then, proteomic analyses revealed that PEAK3 interacts with the signaling proteins GRB2 and ASAP1/2 and the protein kinase PYK2, and that these interactions require the SHED domain. Moreover, PEAK3 activated PYK2, which promoted PEAK3 tyrosine phosphorylation, its association with GRB2 and ASAP1, and AKT signaling. Thus, the PEAK1-3 pseudo-kinases may use a conserved SHED-dependent mechanism to activate specific signaling proteins to promote oncogenesis.
Collapse
Affiliation(s)
- Youcef Ounoughene
- CRBM, University Montpellier, CNRS, Equipe Labellisée Ligue Contre le Cancer, F-34000 Montpellier, France; (Y.O.); (E.F.); (Y.B.); (P.F.)
| | - Elise Fourgous
- CRBM, University Montpellier, CNRS, Equipe Labellisée Ligue Contre le Cancer, F-34000 Montpellier, France; (Y.O.); (E.F.); (Y.B.); (P.F.)
| | - Yvan Boublik
- CRBM, University Montpellier, CNRS, Equipe Labellisée Ligue Contre le Cancer, F-34000 Montpellier, France; (Y.O.); (E.F.); (Y.B.); (P.F.)
| | - Estelle Saland
- CRCT, INSERM, CNRS, University of Toulouse, Equipe Labellisée Ligue Contre le Cancer, F-31037 Toulouse, France; (E.S.); (N.G.); (C.R.); (J.-E.S.)
| | - Nathan Guiraud
- CRCT, INSERM, CNRS, University of Toulouse, Equipe Labellisée Ligue Contre le Cancer, F-31037 Toulouse, France; (E.S.); (N.G.); (C.R.); (J.-E.S.)
| | - Christian Recher
- CRCT, INSERM, CNRS, University of Toulouse, Equipe Labellisée Ligue Contre le Cancer, F-31037 Toulouse, France; (E.S.); (N.G.); (C.R.); (J.-E.S.)
| | - Serge Urbach
- IGF, CNRS, INSERM, University Montpellier, F-34000 Montpellier, France;
| | - Philippe Fort
- CRBM, University Montpellier, CNRS, Equipe Labellisée Ligue Contre le Cancer, F-34000 Montpellier, France; (Y.O.); (E.F.); (Y.B.); (P.F.)
| | - Jean-Emmanuel Sarry
- CRCT, INSERM, CNRS, University of Toulouse, Equipe Labellisée Ligue Contre le Cancer, F-31037 Toulouse, France; (E.S.); (N.G.); (C.R.); (J.-E.S.)
| | - Didier Fesquet
- CRBM, University Montpellier, CNRS, Equipe Labellisée Ligue Contre le Cancer, F-34000 Montpellier, France; (Y.O.); (E.F.); (Y.B.); (P.F.)
- Correspondence: (D.F.); (S.R.)
| | - Serge Roche
- CRBM, University Montpellier, CNRS, Equipe Labellisée Ligue Contre le Cancer, F-34000 Montpellier, France; (Y.O.); (E.F.); (Y.B.); (P.F.)
- Correspondence: (D.F.); (S.R.)
| |
Collapse
|
20
|
Rasool S, Veyron S, Soya N, Eldeeb MA, Lukacs GL, Fon EA, Trempe JF. Mechanism of PINK1 activation by autophosphorylation and insights into assembly on the TOM complex. Mol Cell 2021; 82:44-59.e6. [PMID: 34875213 DOI: 10.1016/j.molcel.2021.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/05/2021] [Accepted: 11/11/2021] [Indexed: 12/26/2022]
Abstract
Mutations in PINK1 cause autosomal-recessive Parkinson's disease. Mitochondrial damage results in PINK1 import arrest on the translocase of the outer mitochondrial membrane (TOM) complex, resulting in the activation of its ubiquitin kinase activity by autophosphorylation and initiation of Parkin-dependent mitochondrial clearance. Herein, we report crystal structures of the entire cytosolic domain of insect PINK1. Our structures reveal a dimeric autophosphorylation complex targeting phosphorylation at the invariant Ser205 (human Ser228). The dimer interface requires insert 2, which is unique to PINK1. The structures also reveal how an N-terminal helix binds to the C-terminal extension and provide insights into stabilization of PINK1 on the core TOM complex.
Collapse
Affiliation(s)
- Shafqat Rasool
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Simon Veyron
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Naoto Soya
- Department of Physiology and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Mohamed A Eldeeb
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Gergely L Lukacs
- Department of Physiology and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Edward A Fon
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada.
| |
Collapse
|
21
|
Mace PD, Murphy JM. There's more to death than life: Noncatalytic functions in kinase and pseudokinase signaling. J Biol Chem 2021; 296:100705. [PMID: 33895136 PMCID: PMC8141879 DOI: 10.1016/j.jbc.2021.100705] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Protein kinases are present in all domains of life and play diverse roles in cellular signaling. Whereas the impact of substrate phosphorylation by protein kinases has long been appreciated, it is becoming increasingly clear that protein kinases also play other, noncatalytic, functions. Here, we review recent developments in understanding the noncatalytic functions of protein kinases. Many noncatalytic activities are best exemplified by protein kinases that are devoid of enzymatic activity altogether-known as pseudokinases. These dead proteins illustrate that, beyond conventional notions of kinase function, catalytic activity can be dispensable for biological function. Through key examples we illustrate diverse mechanisms of noncatalytic kinase activity: as allosteric modulators; protein-based switches; scaffolds for complex assembly; and as competitive inhibitors in signaling pathways. In common, these noncatalytic mechanisms exploit the nature of the protein kinase fold as a versatile protein-protein interaction module. Many examples are also intrinsically linked to the ability of the protein kinase to switch between multiple states, a function shared with catalytic protein kinases. Finally, we consider the contemporary landscape of small molecules to modulate noncatalytic functions of protein kinases, which, although challenging, has significant potential given the scope of noncatalytic protein kinase function in health and disease.
Collapse
Affiliation(s)
- Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - James M Murphy
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
22
|
Preuss F, Chatterjee D, Mathea S, Shrestha S, St-Germain J, Saha M, Kannan N, Raught B, Rottapel R, Knapp S. Nucleotide Binding, Evolutionary Insights, and Interaction Partners of the Pseudokinase Unc-51-like Kinase 4. Structure 2020; 28:1184-1196.e6. [PMID: 32814032 DOI: 10.1016/j.str.2020.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/17/2020] [Accepted: 07/29/2020] [Indexed: 01/11/2023]
Abstract
Unc-51-like kinase 4 (ULK4) is a pseudokinase that has been linked to the development of several diseases. Even though sequence motifs required for ATP binding in kinases are lacking, ULK4 still tightly binds ATP and the presence of the co-factor is required for structural stability of ULK4. Here, we present a high-resolution structure of a ULK4-ATPγS complex revealing a highly unusual ATP binding mode in which the lack of the canonical VAIK motif lysine is compensated by K39, located N-terminal to αC. Evolutionary analysis suggests that degradation of active site motifs in metazoan ULK4 has co-occurred with an ULK4-specific activation loop, which stabilizes the C helix. In addition, cellular interaction studies using BioID and biochemical validation data revealed high confidence interactors of the pseudokinase and armadillo repeat domains. Many of the identified ULK4 interaction partners were centrosomal and tubulin-associated proteins and several active kinases suggesting interesting regulatory roles for ULK4.
Collapse
Affiliation(s)
- Franziska Preuss
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Deep Chatterjee
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sebastian Mathea
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Safal Shrestha
- Institute of Bioinformatics & Department of Biochemistry and Molecular Biology, University of Georgia, 120 Green Street, Athens, GA 30602-7229, USA
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada
| | - Manipa Saha
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada
| | - Natarajan Kannan
- Institute of Bioinformatics & Department of Biochemistry and Molecular Biology, University of Georgia, 120 Green Street, Athens, GA 30602-7229, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada; Departments of Medicine, Immunology and Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada; Division of Rheumatology, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) and Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany.
| |
Collapse
|
23
|
Jiang X, Fan X, Zhang R, Xu W, Wu H, Zhao F, Xiao H, Zhang C, Zhao C, Wu G. In situ tumor-triggered subcellular precise delivery of multi-drugs for enhanced chemo-photothermal-starvation combination antitumor therapy. Theranostics 2020; 10:12158-12173. [PMID: 33204335 PMCID: PMC7667678 DOI: 10.7150/thno.52000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: Drug combination therapy for cancer treatment exerts a more potent antitumor effect. The targeted delivery and release of multiple drugs in a patient's body thus presents a more effective treatment approach, warranting further research. Methods: Two antitumor drugs (ICG: indocyanine green and THP: pirarubicin) were successfully screened to sequentially trigger self-assembling peptides (P60) to produce bacteria-sized particles (500-1000 nm, P60-ICG-THP). First, after mixing equal amount of P60 and ICG, trace amount of water (the mass ratio between P60 and water: 100:1) was used to trigger their assembly into P60-ICG. Subsequently, the assembly of P60-ICG and THP was further triggered by ultrasound treatment to produce P60-ICG-THP. Results: P60-ICG-THP constituted a cluster of several nanoparticles (50-100 nm) and possessed a negative charge. Owing to its size and charge characteristics, P60-ICG-THP could remain outside the cell membrane, avoiding the phagocytic clearance of blood and normal tissue cells in vivo. However, after localizing in the tumor, the size and charge switches of P60-ICG-THP, rapidly triggered by the low pH of the tumor microenvironment, caused P60-ICG-THP to segregate into two parts: (i) positively charged nanoparticles with a size of approximately 50 nm, and (ii) negatively charged particles of an uneven size. The former, mainly carrying THP (chemotherapeutic agent), could immediately cross the cell membrane and deliver pirarubicin into the nucleus of tumor cells. The latter, carrying ICG (used for photothermal therapy), could also enter the cell via the endocytosis pathway or accumulate in tumor blood vessels to selectively block the supply of nutrients and oxygen (cancer starvation). Both these particles could avoid the rapid excretion of ICG in the liver and were conducive to accumulation in the tumor tissue for photothermal therapy. Conclusion: Our drug delivery system not only achieves the precise subcellular delivery of two anticancer drugs due to their size and charge switches in the tumor site, but also provides a new strategy to combine chemotherapy, photothermal therapy, and cancer starvation therapy for the development of a highly efficient antitumor therapeutic regimen.
Collapse
Affiliation(s)
- Xinglu Jiang
- Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Rui Zhang
- Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Wei Xu
- Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Hailu Wu
- Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Fengfeng Zhao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Han Xiao
- Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Chen Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Chenggui Zhao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, People's Republic of China
| |
Collapse
|
24
|
Abstract
Pseudokinases are members of the protein kinase superfamily but signal primarily through noncatalytic mechanisms. Many pseudokinases contribute to the pathologies of human diseases, yet they remain largely unexplored as drug targets owing to challenges associated with modulation of their biological functions. Our understanding of the structure and physiological roles of pseudokinases has improved substantially over the past decade, revealing intriguing similarities between pseudokinases and their catalytically active counterparts. Pseudokinases often adopt conformations that are analogous to those seen in catalytically active kinases and, in some cases, can also bind metal cations and/or nucleotides. Several clinically approved kinase inhibitors have been shown to influence the noncatalytic functions of active kinases, providing hope that similar properties in pseudokinases could be pharmacologically regulated. In this Review, we discuss known roles of pseudokinases in disease, their unique structural features and the progress that has been made towards developing pseudokinase-directed therapeutics.
Collapse
|
25
|
Patel O, Roy MJ, Murphy JM, Lucet IS. The PEAK family of pseudokinases, their role in cell signalling and cancer. FEBS J 2019; 287:4183-4197. [PMID: 31599110 DOI: 10.1111/febs.15087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/11/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022]
Abstract
The study of pseudokinases has uncovered that catalysis-independent functions play a critical role in cell signalling regulation. However, how pseudokinases dynamically assemble and regulate oncogenic signalling pathways remains, in most cases, unclear due to a limited knowledge of the structural determinants that are critical for their functions. Here, we review the recent progress made to unravel the role of the PEAK family of pseudokinases, which comprises SgK269, SgK223 and the recently identified PEAK3, in assembling specific oncogenic signalling pathways that contribute to the progression of several aggressive cancers. We focus on recent structural advances revealing that SgK269 and SgK223 can homo- and heteroassociate via a unique dimerisation domain, comprising conserved regulatory helices directly surrounding the pseudokinase domain, which is also conserved in PEAK3. We also highlight a potential oligomerisation mechanism driven by the pseudokinase domain. While it is likely that homo- or heterodimerisation and oligomerisation mechanisms contribute to the assembly of complex signalling hubs and provide a means to spatially and temporally modulate and diversify signalling outputs, the exact role that these oncogenic scaffolds play in regulating cell migration, invasion and morphology remains unclear. Here, we attempt to link their structural characteristics to their cellular functions by providing a thorough analysis of the signalling transduction pathways they are known to modulate.
Collapse
Affiliation(s)
- Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Michael J Roy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
26
|
Pseudokinases: From Allosteric Regulation of Catalytic Domains and the Formation of Macromolecular Assemblies to Emerging Drug Targets. Catalysts 2019. [DOI: 10.3390/catal9090778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pseudokinases are a member of the kinase superfamily that lack one or more of the canonical residues required for catalysis. Protein pseudokinases are widely distributed across species and are present in proteins that perform a great diversity of roles in the cell. They represent approximately 10% to 40% of the kinome of a multicellular organism. In the human, the pseudokinase subfamily consists of approximately 60 unique proteins. Despite their lack of one or more of the amino acid residues typically required for the productive interaction with ATP and metal ions, which is essential for the phosphorylation of specific substrates, pseudokinases are important functional molecules that can act as dynamic scaffolds, competitors, or modulators of protein–protein interactions. Indeed, pseudokinase misfunctions occur in diverse diseases and represent a new therapeutic window for the development of innovative therapeutic approaches. In this contribution, we describe the structural features of pseudokinases that are used as the basis of their classification; analyse the interactome space of human pseudokinases and discuss their potential as suitable drug targets for the treatment of various diseases, including metabolic, neurological, autoimmune, and cell proliferation disorders.
Collapse
|
27
|
Ribeiro AJM, Das S, Dawson N, Zaru R, Orchard S, Thornton JM, Orengo C, Zeqiraj E, Murphy JM, Eyers PA. Emerging concepts in pseudoenzyme classification, evolution, and signaling. Sci Signal 2019; 12:eaat9797. [PMID: 31409758 DOI: 10.1126/scisignal.aat9797] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 21st century is witnessing an explosive surge in our understanding of pseudoenzyme-driven regulatory mechanisms in biology. Pseudoenzymes are proteins that have sequence homology with enzyme families but that are proven or predicted to lack enzyme activity due to mutations in otherwise conserved catalytic amino acids. The best-studied pseudoenzymes are pseudokinases, although examples from other families are emerging at a rapid rate as experimental approaches catch up with an avalanche of freely available informatics data. Kingdom-wide analysis in prokaryotes, archaea and eukaryotes reveals that between 5 and 10% of proteins that make up enzyme families are pseudoenzymes, with notable expansions and contractions seemingly associated with specific signaling niches. Pseudoenzymes can allosterically activate canonical enzymes, act as scaffolds to control assembly of signaling complexes and their localization, serve as molecular switches, or regulate signaling networks through substrate or enzyme sequestration. Molecular analysis of pseudoenzymes is rapidly advancing knowledge of how they perform noncatalytic functions and is enabling the discovery of unexpected, and previously unappreciated, functions of their intensively studied enzyme counterparts. Notably, upon further examination, some pseudoenzymes have previously unknown enzymatic activities that could not have been predicted a priori. Pseudoenzymes can be targeted and manipulated by small molecules and therefore represent new therapeutic targets (or anti-targets, where intervention should be avoided) in various diseases. In this review, which brings together broad bioinformatics and cell signaling approaches in the field, we highlight a selection of findings relevant to a contemporary understanding of pseudoenzyme-based biology.
Collapse
Affiliation(s)
- António J M Ribeiro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sayoni Das
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Natalie Dawson
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rossana Zaru
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Christine Orengo
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, Molecular and Cellular Biology, Faculty of Biological Sciences, Astbury Building, Room 8.109, University of Leeds, Leeds LS2 9JT, UK
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
28
|
Chojnowski G, Pereira J, Lamzin VS. Sequence assignment for low-resolution modelling of protein crystal structures. Acta Crystallogr D Struct Biol 2019; 75:753-763. [PMID: 31373574 PMCID: PMC6677015 DOI: 10.1107/s2059798319009392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/30/2019] [Indexed: 01/08/2023] Open
Abstract
The performance of automated model building in crystal structure determination usually decreases with the resolution of the experimental data, and may result in fragmented models and incorrect side-chain assignment. Presented here are new methods for machine-learning-based docking of main-chain fragments to the sequence and for their sequence-independent connection using a dedicated library of protein fragments. The combined use of these new methods noticeably increases sequence coverage and reduces fragmentation of the protein models automatically built with ARP/wARP.
Collapse
Affiliation(s)
- Grzegorz Chojnowski
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Joana Pereira
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Victor S. Lamzin
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
29
|
PEAK3/C19orf35 pseudokinase, a new NFK3 kinase family member, inhibits CrkII through dimerization. Proc Natl Acad Sci U S A 2019; 116:15495-15504. [PMID: 31311869 DOI: 10.1073/pnas.1906360116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Members of the New Kinase Family 3 (NKF3), PEAK1/SgK269 and Pragmin/SgK223 pseudokinases, have emerged as important regulators of cell motility and cancer progression. Here, we demonstrate that C19orf35 (PEAK3), a newly identified member of the NKF3 family, is a kinase-like protein evolutionarily conserved across mammals and birds and a regulator of cell motility. In contrast to its family members, which promote cell elongation when overexpressed in cells, PEAK3 overexpression does not have an elongating effect on cell shape but instead is associated with loss of actin filaments. Through an unbiased search for PEAK3 binding partners, we identified several regulators of cell motility, including the adaptor protein CrkII. We show that by binding to CrkII, PEAK3 prevents the formation of CrkII-dependent membrane ruffling. This function of PEAK3 is reliant upon its dimerization, which is mediated through a split helical dimerization domain conserved among all NKF3 family members. Disruption of the conserved DFG motif in the PEAK3 pseudokinase domain also interferes with its ability to dimerize and subsequently bind CrkII, suggesting that the conformation of the pseudokinase domain might play an important role in PEAK3 signaling. Hence, our data identify PEAK3 as an NKF3 family member with a unique role in cell motility driven by dimerization of its pseudokinase domain.
Collapse
|
30
|
Preuß F, Mathea S, Knapp S. A Pseudo-Kinase Double Act. Structure 2019; 26:527-528. [PMID: 29617648 DOI: 10.1016/j.str.2018.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Pragmin is a catalytically inactive pseudo-kinase that is important in regulating cellular growth and adhesion. In this issue of Structure, Lecointre et al. (2018) present the structure of Pragmin, illustrating a dimerization domain flanking its pseudo-kinase domain that is important for Pragmin-mediated activation of the non-receptor tyrosine kinase CSK.
Collapse
Affiliation(s)
- Franziska Preuß
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Sebastian Mathea
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany; German Cancer Consortium DKTK Frankfurt/Mainz, Frankfurt, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany; German Cancer Consortium DKTK Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
31
|
Morris C, Andreetto P, Banci L, Bonvin AMJJ, Chojnowski G, Cano LD, Carazo JM, Conesa P, Daenke S, Damaskos G, Giachetti A, Haley NEC, Hekkelman ML, Heuser P, Joosten RP, Kouřil D, Křenek A, Kulhánek T, Lamzin VS, Nadzirin N, Perrakis A, Rosato A, Sanderson F, Segura J, Schaarschmidt J, Sobolev E, Traldi S, Trellet ME, Velankar S, Verlato M, Winn M. West-Life: A Virtual Research Environment for structural biology. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 1:100006. [PMID: 32647812 PMCID: PMC7337051 DOI: 10.1016/j.yjsbx.2019.100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Data processing and data management services for structural biology. Enhancements to existing web services for structure solution and analysis. New pipelines to link these services into more complex higher-level workflows. New data management facilities. Making the benefits of European e-Infrastructures more accessible to structural biologists.
The West-Life project (https://about.west-life.eu/) is a Horizon 2020 project funded by the European Commission to provide data processing and data management services for the international community of structural biologists, and in particular to support integrative experimental approaches within the field of structural biology. It has developed enhancements to existing web services for structure solution and analysis, created new pipelines to link these services into more complex higher-level workflows, and added new data management facilities. Through this work it has striven to make the benefits of European e-Infrastructures more accessible to life-science researchers in general and structural biologists in particular.
Collapse
Affiliation(s)
| | | | - Lucia Banci
- Magnetic Resonance Center, University of Florence, Italy
| | | | - Grzegorz Chojnowski
- European Molecular Biology Laboratory, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | | | | | | | - George Damaskos
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Maarten L Hekkelman
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philipp Heuser
- European Molecular Biology Laboratory, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Robbie P Joosten
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - Victor S Lamzin
- European Molecular Biology Laboratory, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Nurul Nadzirin
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Anastassis Perrakis
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Antonio Rosato
- Magnetic Resonance Center, University of Florence, Italy
| | | | | | | | - Egor Sobolev
- European Molecular Biology Laboratory, c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | | | - Sameer Velankar
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | | | | |
Collapse
|
32
|
Roche S, Lecointre C, Simon V, Labesse G. SHEDding light on the role of Pragmin pseudo-kinases in cancer. Am J Cancer Res 2019; 9:449-454. [PMID: 30906642 PMCID: PMC6405979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023] Open
Abstract
The human kinome comprises more than 50 pseudo-kinases with unclear biological function due to the absence of apparent catalytic activity, and therefore, with presumably little interest for cancer drug discovery. However, it is now acknowledged that several of them, such as Pragmin family members, play roles as important as those of active kinases in human cancer. How these pseudo-kinases promote tumor formation is largely unknown. Recently, independent structural analyses of three Pragmin pseudo-kinases (Pragmin, SGK223, and SGK269/PEAK1) revealed a split helical dimerization (SHED)-based mechanism of action. Additional sequence-structure analysis identified C19orf35 as a new member of the Pragmin family. Based on the results of these molecular studies, we present a unified model on how Pragmin pseudo-kinases may regulate oncogenic signaling, and suggest potential therapeutic strategies to block their tumor activity.
Collapse
Affiliation(s)
- Serge Roche
- CRBM, CNRS, University Montpellier, Equipe labellisée Ligue Contre le CancerF-34000 Montpellier, France
| | - Céline Lecointre
- CRBM, CNRS, University Montpellier, Equipe labellisée Ligue Contre le CancerF-34000 Montpellier, France
| | - Valérie Simon
- CRBM, CNRS, University Montpellier, Equipe labellisée Ligue Contre le CancerF-34000 Montpellier, France
| | - Gilles Labesse
- CBS, CNRS, INSERM, University MontpellierF34090 Montpellier, France
| |
Collapse
|
33
|
PseudoGTPase domains in p190RhoGAP proteins: a mini-review. Biochem Soc Trans 2018; 46:1713-1720. [PMID: 30514771 DOI: 10.1042/bst20180481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023]
Abstract
Pseudoenzymes generally lack detectable catalytic activity despite adopting the overall protein fold of their catalytically competent counterparts, indeed 'pseudo' family members seem to be incorporated in all enzyme classes. The small GTPase enzymes are important signaling proteins, and recent studies have identified many new family members with noncanonical residues within the catalytic cleft, termed pseudoGTPases. To illustrate recent discoveries in the field, we use the p190RhoGAP proteins as an example. p190RhoGAP proteins (ARHGAP5 and ARHGAP35) are the most abundant GTPase activating proteins for the Rho family of small GTPases. These are key regulators of Rho signaling in processes such as cell migration, adhesion and cytokinesis. Structural biology has complemented and guided biochemical analyses for these proteins and has allowed discovery of two cryptic pseudoGTPase domains, and the re-classification of a third, previously identified, GTPase-fold domain as a pseudoGTPase. The three domains within p190RhoGAP proteins illustrate the diversity of this rapidly expanding pseudoGTPase group.
Collapse
|
34
|
Ding C, Tang W, Wu H, Fan X, Luo J, Feng J, Wen K, Wu G. The PEAK1-PPP1R12B axis inhibits tumor growth and metastasis by regulating Grb2/PI3K/Akt signalling in colorectal cancer. Cancer Lett 2018; 442:383-395. [PMID: 30472186 DOI: 10.1016/j.canlet.2018.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/28/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
Pseudopodium enriched atypical kinase 1 (PEAK1), a novel non-receptor tyrosine kinase, was recently implicated in cancer pathogenesis. However, its functional role in colorectal cancer (CRC) is not well known. Herein, we demonstrated that PEAK1 was frequently downregulated in CRC and significantly associated with tumor size, differentiation status, metastasis, and clinical stage. PEAK1 overexpression suppressed CRC cell growth, invasion, and metastasis in vitro and in vivo, whereas knockout had the opposite effects. Further evaluation revealed that PEAK1 expression was positively correlated with protein phosphatase 1 regulatory subunit 12B (PPP1R12B) in CRC cell lines and clinical tissues, and this protein was found to suppress activation of the Grb2/PI3K/Akt pathway. Moreover, PPP1R12B knockdown markedly abrogated PEAK1-mediated tumor suppressive effects, whereas its upregulation recapitulated the effects of PEAK1 knockout on cell behaviours and the activation of signalling. Mechanistically, PI3K and Akt inhibitors reversed impaired the effect of PEAK1 function on cell proliferation, migration, and invasion. Our results provide compelling evidence that the PEAK1-PPP1R12B axis inhibits colorectal tumorigenesis and metastasis through deactivation of the Grb2/PI3K/Akt pathway, which might provide a novel therapeutic strategy for CRC treatment.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, China; Center of Clinical Laboratory Medicine, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| | - Wendong Tang
- Medical School of Southeast University, Nanjing, China
| | - Hailu Wu
- Medical School of Southeast University, Nanjing, China; Department of Gastroenterology, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, China
| | - Junmin Luo
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jihong Feng
- Department of Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kunming Wen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, China; Center of Clinical Laboratory Medicine, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| |
Collapse
|
35
|
Stiegler AL, Boggon TJ. The N-Terminal GTPase Domain of p190RhoGAP Proteins Is a PseudoGTPase. Structure 2018; 26:1451-1461.e4. [PMID: 30174148 PMCID: PMC6249675 DOI: 10.1016/j.str.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/28/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022]
Abstract
The pseudoGTPases are a rapidly growing and important group of pseudoenzymes. p190RhoGAP proteins are critical regulators of Rho signaling and contain two previously identified pseudoGTPase domains. Here we report that p190RhoGAP proteins contain a third pseudoGTPase domain, termed N-GTPase. We find that GTP constitutively purifies with the N-GTPase domain, and a 2.8-Å crystal structure of p190RhoGAP-A co-purified with GTP reveals an unusual GTP-Mg2+ binding pocket. Six inserts in N-GTPase indicate perturbed catalytic activity and inability to bind to canonical GTPase activating proteins, guanine nucleotide exchange factors, and effector proteins. Biochemical analysis shows that N-GTPase does not detectably hydrolyze GTP, and exchanges nucleotide only under harsh Mg2+ chelation. Furthermore, mutational analysis shows that GTP and Mg2+ binding stabilizes the domain. Therefore, our results support that N-GTPase is a nucleotide binding, non-hydrolyzing, pseudoGTPase domain that may act as a protein-protein interaction domain. Thus, unique among known proteins, p190RhoGAPs contain three pseudoGTPase domains.
Collapse
Affiliation(s)
- Amy L Stiegler
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
36
|
Lecointre C, Simon V, Kerneur C, Allemand F, Fournet A, Montarras I, Pons JL, Gelin M, Brignatz C, Urbach S, Labesse G, Roche S. Dimerization of the Pragmin Pseudo-Kinase Regulates Protein Tyrosine Phosphorylation. Structure 2018; 26:1563. [PMID: 30403993 DOI: 10.1016/j.str.2018.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Rasool S, Trempe JF. New insights into the structure of PINK1 and the mechanism of ubiquitin phosphorylation. Crit Rev Biochem Mol Biol 2018; 53:515-534. [PMID: 30238821 DOI: 10.1080/10409238.2018.1491525] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mutations in PINK1 cause early-onset recessive Parkinson's disease. This gene encodes a protein kinase implicated in mitochondrial quality control via ubiquitin phosphorylation and activation of the E3 ubiquitin ligase Parkin. Here, we review and analyze functional features emerging from recent crystallographic, nuclear magnetic resonance (NMR) and mass spectrometry studies of PINK1. We compare the apo and ubiquitin-bound PINK1 structures and reveal an allosteric switch, regulated by autophosphorylation, which modulates substrate recognition. We critically assess the conformational changes taking place in ubiquitin and the Parkin ubiquitin-like domain in relation to its binding to PINK1. Finally, we discuss the implications of these biophysical findings in our understanding of the role of PINK1 in mitochondrial function, and analyze the potential for structure-based drug design.
Collapse
Affiliation(s)
- Shafqat Rasool
- a Department of Biochemistry , McGill University , Montréal , Canada.,b Groupe de Recherche Axé sur la Structure des Protéines (GRASP) , Montréal , Canada
| | - Jean-François Trempe
- b Groupe de Recherche Axé sur la Structure des Protéines (GRASP) , Montréal , Canada.,c Department of Pharmacology & Therapeutics , McGill University , Montréal , Canada
| |
Collapse
|
38
|
Pseudopodium-enriched atypical kinase 1 mediates angiogenesis by modulating GATA2-dependent VEGFR2 transcription. Cell Discov 2018; 4:26. [PMID: 29872538 PMCID: PMC5972149 DOI: 10.1038/s41421-018-0024-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023] Open
Abstract
PEAK1 is a newly described tyrosine kinase and scaffold protein that transmits integrin-mediated extracellular matrix (ECM) signals to facilitate cell movement and growth. While aberrant expression of PEAK1 has been linked to cancer progression, its normal physiological role in vertebrate biology is not known. Here we provide evidence that PEAK1 plays a central role in orchestrating new vessel formation in vertebrates. Deletion of the PEAK1 gene in zebrafish, mice, and human endothelial cells (ECs) induced severe defects in new blood vessel formation due to deficiencies in EC proliferation, survival, and migration. Gene transcriptional and proteomic analyses of PEAK1-deficient ECs revealed a significant loss of vascular endothelial growth factor receptor 2 (VEGFR2) mRNA and protein expression, as well as downstream signaling to its effectors, ERK, Akt, and Src kinase. PEAK1 regulates VEGFR2 expression by binding to and increasing the protein stability of the transcription factor GATA-binding protein 2 (GATA2), which controls VEGFR2 transcription. Importantly, PEAK1-GATA2-dependent VEGFR2 expression is mediated by EC adhesion to the ECM and is required for breast cancer-induced new vessel formation in mice. Also, elevated expression of PEAK1 and VEGFR2 mRNA are highly correlated in many human cancers including breast cancer. Together, our findings reveal a novel PEAK1-GATA2-VEGFR2 signaling axis that integrates cell adhesion and growth factor cues from the extracellular environment necessary for new vessel formation during vertebrate development and cancer.
Collapse
|
39
|
Lecointre C, Simon V, Kerneur C, Allemand F, Fournet A, Montarras I, Pons JL, Gelin M, Brignatz C, Urbach S, Labesse G, Roche S. Dimerization of the Pragmin Pseudo-Kinase Regulates Protein Tyrosine Phosphorylation. Structure 2018; 26:545-554.e4. [PMID: 29503074 DOI: 10.1016/j.str.2018.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 12/31/2022]
Abstract
The pseudo-kinase and signaling protein Pragmin has been linked to cancer by regulating protein tyrosine phosphorylation via unknown mechanisms. Here we present the crystal structure of the Pragmin 906-1,368 amino acid C terminus, which encompasses its kinase domain. We show that Pragmin contains a classical protein-kinase fold devoid of catalytic activity, despite a conserved catalytic lysine (K997). By proteomics, we discovered that this pseudo-kinase uses the tyrosine kinase CSK to induce protein tyrosine phosphorylation in human cells. Interestingly, the protein-kinase domain is flanked by N- and C-terminal extensions forming an original dimerization domain that regulates Pragmin self-association and stimulates CSK activity. A1329E mutation in the C-terminal extension destabilizes Pragmin dimerization and reduces CSK activation. These results reveal a dimerization mechanism by which a pseudo-kinase can induce protein tyrosine phosphorylation. Further sequence-structure analysis identified an additional member (C19orf35) of the superfamily of dimeric Pragmin/SgK269/PEAK1 pseudo-kinases.
Collapse
Affiliation(s)
- Céline Lecointre
- CRBM, "Equipe Labellisée Ligue Contre le Cancer", Univ Montpellier, CNRS, 34000 Montpellier, France
| | - Valérie Simon
- CRBM, "Equipe Labellisée Ligue Contre le Cancer", Univ Montpellier, CNRS, 34000 Montpellier, France
| | - Clément Kerneur
- CRBM, "Equipe Labellisée Ligue Contre le Cancer", Univ Montpellier, CNRS, 34000 Montpellier, France
| | | | - Aurélie Fournet
- CBS, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Ingrid Montarras
- CRBM, "Equipe Labellisée Ligue Contre le Cancer", Univ Montpellier, CNRS, 34000 Montpellier, France
| | - Jean-Luc Pons
- CBS, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Muriel Gelin
- CBS, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Constance Brignatz
- CRBM, "Equipe Labellisée Ligue Contre le Cancer", Univ Montpellier, CNRS, 34000 Montpellier, France
| | - Serge Urbach
- IGF, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Gilles Labesse
- CBS, Univ Montpellier, CNRS, INSERM, 34090 Montpellier, France.
| | - Serge Roche
- CRBM, "Equipe Labellisée Ligue Contre le Cancer", Univ Montpellier, CNRS, 34000 Montpellier, France.
| |
Collapse
|