1
|
Brígido HPC, dos Santos LGA, de Barros RC, Correa-Barbosa J, dos Santos PVB, Paz RFL, Pereira AR, de Albuquerque KCO, Campos MB, Silveira FT, Percário S, Dolabela MF. The Role of Oxidative Stress in the Pathogenesis and Treatment of Leishmaniasis: Impact on Drug Toxicity and Therapeutic Potential of Natural Products. TOXICS 2025; 13:190. [PMID: 40137517 PMCID: PMC11945835 DOI: 10.3390/toxics13030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
The treatment of leishmaniasis has limitations due to drug toxicity and the increasing resistance of the parasite. In this study, we analyze the role of oxidative stress in the pathogenesis and treatment of leishmaniasis, as well as in new therapeutic alternatives of natural origin. The evasion mechanisms against the host immune response involve surface molecules present in the parasite, which modulate oxidative stress to ensure its survival. Drug treatment requires strict monitoring to minimize adverse reactions and ensure patient safety, as mechanisms such as lipid peroxidation, mitochondrial dysfunction, and depletion of antioxidant defenses are associated with drug toxicity. Plant-derived products with antileishmanial activity impact the parasite's redox balance, inducing apoptosis and reducing its parasitic load. Most studies are still in preliminary stages, making in vivo assays and clinical studies essential, along with the development of accessible formulations. Oxidative stress is involved in the pathogenesis of leishmaniasis, as Leishmania manipulates the host's redox balance to survive. It also contributes to drug toxicity, as antimonials and amphotericin B increase reactive oxygen species, causing cellular damage. Several plant-derived compounds have demonstrated antileishmanial activity by modulating oxidative stress and promoting parasite apoptosis. Examples include alkaloids from Aspidosperma nitidum, lignans from Virola surinamensis, flavonoids from Geissospermum vellosii, and triterpenoids such as β-sitosterol. Although these compounds show promising selectivity, most studies remain in preliminary stages, requiring in vivo assays and clinical studies to confirm efficacy and safety, as well as the development of affordable formulations.
Collapse
Affiliation(s)
- Heliton Patrick Cordovil Brígido
- National Council for Scientific and Technological Development (CNPq), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
| | | | - Renilson Castro de Barros
- Pharmaceutical Sciences Postgraduate Program, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Juliana Correa-Barbosa
- Postgraduate Pharmaceutical Innovation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | | | - Rayana Franciele Lopes Paz
- Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.G.A.d.S.); (P.V.B.d.S.); (R.F.L.P.)
| | - Amanda Ramos Pereira
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
| | | | - Marliane Batista Campos
- Parasitology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (M.B.C.); (F.T.S.)
| | - Fernando Tobias Silveira
- Parasitology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (M.B.C.); (F.T.S.)
| | - Sandro Percário
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
| | - Maria Fâni Dolabela
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
- Pharmaceutical Sciences Postgraduate Program, Federal University of Pará, Belém 66075-110, PA, Brazil;
- Postgraduate Pharmaceutical Innovation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| |
Collapse
|
2
|
Schiavoni V, Emanuelli M, Sartini D, Salvolini E, Pozzi V, Campagna R. Curcumin and its Analogues in Oral Squamous Cell Carcinoma: State-of-the-art and Therapeutic Potential. Anticancer Agents Med Chem 2025; 25:313-329. [PMID: 38757321 DOI: 10.2174/0118715206297840240510063330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Oral Squamous Cell Carcinoma (OSCC) is the most common cancer arising from squamous epithelium in the oral cavity and is characterized by high aggressiveness and metastatic potential, which together with a late diagnosis results in a 5-year survival rate of only 50% of patients. The therapeutic options for OSCC management are limited and largely influenced by the cancer stage. While radical surgery can be curative in early stage of disease, most cases require adjuvant therapies, including chemotherapy and radiotherapy which, however, often achieve poor curative rates and are associated with important negative effects. Therefore, there is an urgent need to discover new alternative treatment strategies to improve patients' outcomes. Several medicinal herbs are being studied for their preventive or therapeutic effect in several diseases, including cancer. In particular, the Indian spice curcumin, largely used in oriental countries, has been studied as a chemopreventive or adjuvant agent for different malignancies. Indeed, curcumin is characterized by important biological properties, including antioxidant, anti-inflammatory, and anticancer effects, which could also be exploited in OSCC. However, due to its limited bioavailability and poor aqueous solubility, this review is focused on studies designing new synthetic analogues and developing novel types of curcumin delivery systems to improve its pharmacokinetic and biological properties. Thus, this review analyses the potential therapeutic role of curcumin in OSCC by providing an overview of current in vitro and in vivo studies demonstrating the beneficial effects of curcumin and its analogues in OSCC.
Collapse
Affiliation(s)
- Valentina Schiavoni
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, 60131, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| | - Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| |
Collapse
|
3
|
Madan E, Palma AM, Vudatha V, Kumar A, Bhoopathi P, Wilhelm J, Bernas T, Martin PC, Bilolikar G, Gogna A, Peixoto ML, Dreier I, Araujo TF, Garre E, Gustafsson A, Dorayappan KDP, Mamidi N, Sun Z, Yekelchyk M, Accardi D, Olsen AL, Lin L, Titelman AA, Bianchi M, Jessmon P, Farid EA, Pradhan AK, Neufeld L, Yeini E, Maji S, Pelham CJ, Kim H, Oh D, Rolfsnes HO, Marques RC, Lu A, Nagane M, Chaudhary S, Gupta K, Gogna KC, Bigio A, Bhoopathi K, Mannangatti P, Achary KG, Akhtar J, Belião S, Das S, Correia I, da Silva CL, Fialho AM, Poellmann MJ, Javius-Jones K, Hawkridge AM, Pal S, Shree KS, Rakha EA, Khurana S, Xiao G, Zhang D, Rijal A, Lyons C, Grossman SR, Turner DP, Pillappa R, Prakash K, Gupta G, Robinson GLWG, Koblinski J, Wang H, Singh G, Singh S, Rayamajhi S, Bacolod MD, Richards H, Sayeed S, Klein KP, Chelmow D, Satchi-Fainaro R, Selvendiran K, Connolly D, Thorsen FA, Bjerkvig R, Nephew KP, Idowu MO, Kühnel MP, Moskaluk C, Hong S, Redmond WL, Landberg G, Lopez-Beltran A, Poklepovic AS, Sanyal A, Fisher PB, Church GM, Menon U, Drapkin R, Godwin AK, Luo Y, Ackermann M, Tzankov A, et alMadan E, Palma AM, Vudatha V, Kumar A, Bhoopathi P, Wilhelm J, Bernas T, Martin PC, Bilolikar G, Gogna A, Peixoto ML, Dreier I, Araujo TF, Garre E, Gustafsson A, Dorayappan KDP, Mamidi N, Sun Z, Yekelchyk M, Accardi D, Olsen AL, Lin L, Titelman AA, Bianchi M, Jessmon P, Farid EA, Pradhan AK, Neufeld L, Yeini E, Maji S, Pelham CJ, Kim H, Oh D, Rolfsnes HO, Marques RC, Lu A, Nagane M, Chaudhary S, Gupta K, Gogna KC, Bigio A, Bhoopathi K, Mannangatti P, Achary KG, Akhtar J, Belião S, Das S, Correia I, da Silva CL, Fialho AM, Poellmann MJ, Javius-Jones K, Hawkridge AM, Pal S, Shree KS, Rakha EA, Khurana S, Xiao G, Zhang D, Rijal A, Lyons C, Grossman SR, Turner DP, Pillappa R, Prakash K, Gupta G, Robinson GLWG, Koblinski J, Wang H, Singh G, Singh S, Rayamajhi S, Bacolod MD, Richards H, Sayeed S, Klein KP, Chelmow D, Satchi-Fainaro R, Selvendiran K, Connolly D, Thorsen FA, Bjerkvig R, Nephew KP, Idowu MO, Kühnel MP, Moskaluk C, Hong S, Redmond WL, Landberg G, Lopez-Beltran A, Poklepovic AS, Sanyal A, Fisher PB, Church GM, Menon U, Drapkin R, Godwin AK, Luo Y, Ackermann M, Tzankov A, Mertz KD, Jonigk D, Tsung A, Sidransky D, Trevino J, Saavedra AP, Winn R, Won KJ, Moreno E, Gogna R. Ovarian tumor cells gain competitive advantage by actively reducing the cellular fitness of microenvironment cells. Nat Biotechnol 2024:10.1038/s41587-024-02453-3. [PMID: 39653752 DOI: 10.1038/s41587-024-02453-3] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/25/2024] [Indexed: 01/20/2025]
Abstract
Cell competition and fitness comparison between cancer and tumor microenvironment (TME) cells determine oncogenic fate. Our previous study established a role for human Flower isoforms as fitness fingerprints, where the expression of Flower Win isoforms in tumor cells leads to growth advantage over TME cells expressing Lose isoforms. Here we demonstrate that the expression of Flower Lose and reduced microenvironment fitness is not a pre-existing condition but, rather, a cancer-induced phenomenon. Cancer cells actively reduce TME fitness by the exosome-mediated release of a cancer-specific long non-coding RNA, Tu-Stroma, which controls the splicing of the Flower gene in the TME cells and expression of Flower Lose isoform, which leads to reduced fitness status. This mechanism controls cancer growth, metastasis and host survival in ovarian cancer. Targeting Flower protein with humanized monoclonal antibody (mAb) in mice significantly reduces cancer growth and metastasis and improves survival. Pre-treatment with Flower mAb protects intraperitoneal organs from developing lesions despite the presence of aggressive tumor cells.
Collapse
Affiliation(s)
- Esha Madan
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
- VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - António M Palma
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Amit Kumar
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Praveen Bhoopathi
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Universities Giessen & Marburg Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Universities Giessen & Marburg Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Tytus Bernas
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick C Martin
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gaurav Bilolikar
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Maria Leonor Peixoto
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Isabelle Dreier
- Universities Giessen & Marburg Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Thais Fenz Araujo
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elena Garre
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Gustafsson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Kalpana Deepa Priya Dorayappan
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Narsimha Mamidi
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Zhaoyu Sun
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Michail Yekelchyk
- Universities Giessen & Marburg Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | | | - Amalie Lykke Olsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Asaf Ashkenazy Titelman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | | | | | - Elnaz Abbasi Farid
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lena Neufeld
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Santanu Maji
- VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Hyobin Kim
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel Oh
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hans Olav Rolfsnes
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Amy Lu
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Masaki Nagane
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Sahil Chaudhary
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Kartik Gupta
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Keshav C Gogna
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Ana Bigio
- Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Karthikeya Bhoopathi
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Padmanabhan Mannangatti
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | | | - Sara Belião
- Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Swadesh Das
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Isabel Correia
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Arsénio M Fialho
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Michael J Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Adam M Hawkridge
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Kumari S Shree
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Emad A Rakha
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Sambhav Khurana
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Dongyu Zhang
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Arjun Rijal
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Charles Lyons
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven R Grossman
- Department of Internal Medicine, Keck School of Medicine, USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - David P Turner
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Raghavendra Pillappa
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Karanvir Prakash
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Gaurav Gupta
- VCU Division of Nephrology, Virginia Commonwealth University, VCU School of Medicine, Richmond, VA, USA
| | | | - Jennifer Koblinski
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Hongjun Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
- Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, NJ, USA
| | | | | | - Sagar Rayamajhi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Hope Richards
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sadia Sayeed
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Katherine P Klein
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, VCU School of Medicine, Richmond, VA, USA
| | - David Chelmow
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, VCU School of Medicine, Richmond, VA, USA
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Denise Connolly
- Fox Chase Cancer Center Biosample Repository Facility, Philadelphia, PA, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Frits Alan Thorsen
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Rolf Bjerkvig
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- NORLUX Neuro-Oncology Laboratory, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Oncology, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, China
| | - Kenneth P Nephew
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael O Idowu
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Commonwealth University Health, Richmond, VA, USA
| | - Mark P Kühnel
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hanover, Germany
| | | | - Seungpyo Hong
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, WI, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Göran Landberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Antonio Lopez-Beltran
- Champalimaud Center for the Unknown, Lisbon, Portugal
- Department of Morphological Sciences, Cordoba University Medical School, Cordoba, Spain
- Departamento de Patología, Centro Clínico Champalimaud, Lisboa, Portugal
- Department of Surgery, Cordoba University Medical School, Cordoba, Spain
| | - Andrew S Poklepovic
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Arun Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Paul B Fisher
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Kirsten D Mertz
- Institute of Medical Genetics and Pathology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Danny Jonigk
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hanover, Germany
| | - Allan Tsung
- Department of Surgery, Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jose Trevino
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Arturo P Saavedra
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Dermatology, VCU School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Robert Winn
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, VCU School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Kyoung Jae Won
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Rajan Gogna
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
- VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
4
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Qayoom H, Mir MA. Mutant P53 modulation by cryptolepine through cell cycle arrest and apoptosis in triple negative breast cancer. Biomed Pharmacother 2024; 179:117351. [PMID: 39216450 DOI: 10.1016/j.biopha.2024.117351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Triple Negative Breast cancer is an aggressive breast cancer subtype. It has a more aggressive clinical course, an earlier age of onset, a larger propensity for metastasis, and worse clinical outcomes as evidenced by a higher risk of recurrence and a shorter survival rate. Currently, the primary options for TNBC treatment are surgery, radiation, and chemotherapy. These treatments however remain ineffective due to recurrence. However, given that p53 mutations have been identified in more than 60-88 % of TNBC, translating p53 into the clinical situation is particularly important in TNBC. In this study, we screened and evaluated the therapeutic potential of cryptolepine (CRP) in TNBC in-vitro models being an anti-malarial drug it could be repurposed as an anti-cancer therapeutic targeting TNBC. Moreover, the cytotoxicity activity of cryptolepine to TNBC cells and a detailed anti-tumor mechanism in mutant P53 has not been reported before. METHODS MTT assays were used to examine the cytotoxicity and cell viability activity of Cryptolepine in TNBC, non-TNBC T47D and MCF-7 and non-malignant MCF10A cells. Scratch wound and clonogenic assay was used to evaluate the cryptolepine's effect on migration and colony forming ability of TNBC cells. Flow cytometry, MMP and DAPI was used to assess cell cycle arrest and cell apoptosis mechanism. The expression of proteins was detected by western blots. The differential expression of RNAs was evaluated by RT-PCR and the interaction between P53 and drug was evaluated computationally using in-silico approach and in-vitro using ChIP assay. RESULTS In this study, we found that cryptolepine has more preferential cytotoxicity in TNBC than non-TNBC cells. Notably, our studies revealed the mechanism by which cryptolepine induces intrinsic apoptosis and inhibit migration, colony formation ability, induce cell cycle arrest by inducing conformational change in the mutant P53 thereby increasing its DNA binding ability, hence activating its tumor suppressing potential significantly. CONCLUSION Our study revealed that CRP significantly reduced the proliferation, migration and colony forming ability of TNBC cells lines. Moreover, it was revealed that CRP induces cell cycle arrest and apoptosis by activating mutant P53 and enhancing its DNA binding ability to induce its tumor suppressing ability.
Collapse
Affiliation(s)
- Hina Qayoom
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Manzoor A Mir
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
6
|
Wang H, Wang X, Wang L, Wang H, Zhang Y. Plant‐Derived Phytochemicals and Their Nanoformulations for Inducing Programed Cell Death in Cancer. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 01/05/2025]
Abstract
AbstractPhytochemicals are a diverse class of compounds found in various plant‐based foods and beverages that have displayed the capacity to exert powerful anticancer effects through the induction of programed cell death (PCD) in malignancies. PCD is a sophisticated process that maintains in upholding tissue homeostasis and eliminating injured or neoplastic cells. Phytochemicals have shown the potential to induce PCD in malignant cells through various mechanisms, including modulation of cell signaling pathways, regulation of reactive oxygen species (ROS), and interaction with critical targets in cells such as DNA. Moreover, recent studies have suggested that nanomaterials loaded with phytochemicals may enhance cell death in tumors, which can also stimulate antitumor immunity. In this review, a comprehensive overview of the current understanding of the anticancer effects of phytochemicals and their potential as a promising approach to cancer therapy, is provided. The impacts of phytochemicals such as resveratrol, curcumin, apigenin, quercetin, and some approved plant‐derived drugs, such as taxanes on the regulation of some types of PCD, including apoptosis, pyroptosis, anoikis, autophagic cell death, ferroptosis, and necroptosis, are discussed. The underlying mechanisms and the potential of nanomaterials loaded with phytochemicals to enhance PCD in tumors are also explained.
Collapse
Affiliation(s)
- Haoyu Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Xiaoyang Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Long Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| | - Haifan Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Yuxing Zhang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| |
Collapse
|
7
|
Hsueh KC, Ju PC, Hsieh YH, Su SC, Yeh CB, Lin CW. HO-3867, a curcumin analog, elicits cell apoptosis and p38-mediated caspase activation in hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:794-802. [PMID: 37782689 DOI: 10.1002/tox.23977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
HO-3867, a synthetic curcumin analog, has displayed various tumor-suppressive characteristics and improved bioabsorption over its parent compound. However, its influences on the development of hepatocellular carcinoma (HCC) are poorly defined. To address this, we tested the anticarcinogenic impact of HO-3867 and investigated the underlying mechanisms in fighting liver cancer. Our result demonstrated that HO-3867 reduced the viability of HCC cells, accompanied by promotion of cell cycle arrest at the sub-G1 stage and apoptotic responses. Furthermore, a distinctive profile of apoptosis associated proteins, encompassing elevated heme oxygenase-1 (HO-1) level and caspase activation, was detected in HO-3867-stimulated HCC cells. In addition, such HO-3867-mediated elevation in caspase activation was dampened by pharmacological suppression of p38 activities. Taken together, our findings unveiled that HO-3867 triggered cell cycle arrest and apoptotic events in liver cancer, involving a p38-mediated activation of caspase cascades. These data highlighted a usefulness of curcumin or its analogs on the management of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Kuan-Chun Hsueh
- Division of General Surgery, Department of Surgery, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Po-Chung Ju
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chao-Bin Yeh
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
Devor EJ, Thomas AE, Schickling BM. BRCA2 Status Alters the Effect of the P53 Reactivator HO-3867 in Ovarian Cancer Cells. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2023; 7:86-92. [PMID: 40084269 PMCID: PMC11905286 DOI: 10.26502/jcsct.5079197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The vast majority of ovarian cancers have a TP53 mutation. Among these, a substantial proportion also have a BRCA1 and/or a BRCA2 mutation. Given a rising interest in the therapeutic use of p53 reactivating agents, we assessed the effect that such BRCA mutants would have on the action of a p53 reactivator. As an initial tool to examine the effect of a BRCA mutation on the action of a p53 reactivator we chose to utilize a naturally occurring experimental model. The high grade serous ovarian cancer cell lines PEO1 and PEO4 were established from the same patient. Both cell lines have a missense TP53 mutation, G244D. However, PEO1 cells also have a nonsense BRCA2 mutation, Y1655ter, which is cancelled out by a second mutation, Y1655Y, that renders PEO4 cells BRCA2 wild-type. This makes these cell lines an ideal experimental platform to begin to assess the effect of a BRCA mutation on the action of a p53 reactivator. Both PEO1 and PEO4 cells were treated with a p53 reactivator, the synthetic curcumin analog HO-3867. The effect of treatment was assessed through quantitative PCR (qPCR) assays of fourteen known p53 target loci, including p53 itself. In all cases there was a definite difference between treated and untreated cells relative to their BRCA2 status. While these results are preliminary, the fact that BRCA2 status influences the effect of a p53 reactivator on numerous target loci suggests that this relationship should be further investigated and that, in future, the BRCA status of ovarian tumors containing missense TP53 mutations should be considered when opting for the therapeutic use of a p53 reactivator.
Collapse
Affiliation(s)
- Eric J Devor
- Department of Obstetrics and Gynecology, University of Iowa College of Medicine, Iowa, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa, USA
| | - Ariane E Thomas
- Department of Obstetrics and Gynecology, University of Iowa College of Medicine, Iowa, USA
- Department of Anthropology, University of Iowa, Iowa, USA
| | - Brandon M Schickling
- Department of Obstetrics and Gynecology, University of Iowa College of Medicine, Iowa, USA
| |
Collapse
|
9
|
Curcumin Analog, HO-3867, Induces Both Apoptosis and Ferroptosis via Multiple Mechanisms in NSCLC Cells with Wild-Type p53. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:8378581. [PMID: 36814470 PMCID: PMC9940973 DOI: 10.1155/2023/8378581] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/26/2022] [Accepted: 12/08/2022] [Indexed: 02/16/2023]
Abstract
Over the last decade, researchers have paid more and more attention to the natural compound curcumin for its potential application in anticancer therapy. However, the application of curcumin has been limited owing to its rapid metabolism in the body. HO-3867, a stable curcumin analog, shows potent antitumor activities against various tumor cells. Yet, information on HO-3867's impact on non-small-cell lung cancer (NSCLC) cells is lacking. Herein, we evaluated the cytotoxicity of HO-3867 in NSCLC cells. We discovered that HO-3867 suppressed the viability of NSCLC cells containing wild-type p53. In NSCLC cells, HO-3867 promotes both apoptosis and ferroptosis, the latter of which is a newly discovered mode of cell death. Mechanically, HO-3867-induced apoptosis relied on the inhibition of Mcl-1 and Bcl-2 and the upregulation of Bax. Moreover, NSCLC cells undergo ferroptosis when treated with HO-3867 via activating the p53-DMT1 axis and suppressing GPX4. Additionally, HO-3867 caused an accumulation of reactive oxygen species (ROS) in NSCLC in a way that was dependent on the presence of iron. Our findings point to the possibility that HO-3867 might be employed as a therapeutic agent for treating NSCLC.
Collapse
|
10
|
Marvalim C, Datta A, Lee SC. Role of p53 in breast cancer progression: An insight into p53 targeted therapy. Theranostics 2023; 13:1421-1442. [PMID: 36923534 PMCID: PMC10008729 DOI: 10.7150/thno.81847] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 03/14/2023] Open
Abstract
The transcription factor p53 is an important regulator of a multitude of cellular processes. In the presence of genotoxic stress, p53 is activated to facilitate DNA repair, cell cycle arrest, and apoptosis. In breast cancer, the tumor suppressive activities of p53 are frequently inactivated by either the overexpression of its negative regulator MDM2, or mutation which is present in 30-35% of all breast cancer cases. Notably, the frequency of p53 mutation is highly subtype dependent in breast cancers, with majority of hormone receptor-positive or luminal subtypes retaining the wild-type p53 status while hormone receptor-negative patients predominantly carry p53 mutations with gain-of-function oncogenic activities that contribute to poorer prognosis. Thus, a two-pronged strategy of targeting wild-type and mutant p53 in different subtypes of breast cancer can have clinical relevance. The development of p53-based therapies has rapidly progressed in recent years, and include unique small molecule chemical inhibitors, stapled peptides, PROTACs, as well as several genetic-based approaches using vectors and engineered antibodies. In this review, we highlight the therapeutic strategies that are in pre-clinical and clinical development to overcome p53 inactivation in both wild-type and mutant p53-bearing breast tumors, and discuss their efficacies and limitations in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Charlie Marvalim
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
- ✉ Corresponding authors: C.M. E-mail: ; L.S.C. E-mail: ; Tel: (65) 6516 7282
| | - Arpita Datta
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119228, Singapore
- ✉ Corresponding authors: C.M. E-mail: ; L.S.C. E-mail: ; Tel: (65) 6516 7282
| |
Collapse
|
11
|
Modified Curcumins as Potential Drug Candidates for Breast Cancer: An Overview. Molecules 2022; 27:molecules27248891. [PMID: 36558022 PMCID: PMC9784715 DOI: 10.3390/molecules27248891] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC), the most common malignancy in women, results from significant alterations in genetic and epigenetic mechanisms that alter multiple signaling pathways in growth and malignant progression, leading to limited long-term survival. Current studies with numerous drug therapies have shown that BC is a complex disease with tumor heterogeneity, rapidity, and dynamics of the tumor microenvironment that result in resistance to existing therapy. Targeting a single cell-signaling pathway is unlikely to treat or prevent BC. Curcumin (a natural yellow pigment), the principal ingredient in the spice turmeric, is well-documented for its diverse pharmacological properties including anti-cancer activity. However, its clinical application has been limited because of its low solubility, stability, and bioavailability. To overcome the limitation of curcumin, several modified curcumin conjugates and curcumin mimics were developed and studied for their anti-cancer properties. In this review, we have focused on the application of curcumin mimics and their conjugates for breast cancer.
Collapse
|
12
|
Malhotra L, Sharma S, Hariprasad G, Dhingra R, Mishra V, Sharma RS, Kaur P, Ethayathulla AS. Mechanism of apoptosis activation by Curcumin rescued mutant p53Y220C in human pancreatic cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119343. [PMID: 36007676 DOI: 10.1016/j.bbamcr.2022.119343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The mutant p53Y220C (mutp53Y220C) is frequently observed in numerous tumors, including pancreatic cancer. The mutation creates a crevice in the DNA binding core domain and makes p53 a thermally unstable non-functional protein that assists tumor progression and confers resistance to chemotherapeutic drugs. Restoring mutp53 function to its wild type by selectively targeting this crevice with small molecules is a pivotal strategy to promote apoptosis. In this study, we have shown through different biophysical and cell-based studies that curcumin binds and rescues mutp53Y220C to an active wild-type conformation and restores its apoptotic transcription function in BxPC-3-pancreatic cancer cells. In addition, the curcumin-rescued-p53Y220C (CRp53) showed significant hyperphosphorylation at Ser15, Ser20, and acetylation at Lys382 with an 8-fold increase in transcription activity in the BxPC-3 cell lines. We also observed that the active CRp53 escapes Mdm2-mediated proteasomal degradation and the majority of the proteins were localized inside the nucleus with an increased half-life and transcription restoration compared to untreated BxPC-3 cells. By label-free proteomics analysis, we observed that upon curcumin treatment almost 227 proteins were dysregulated with the majority of them being transcriptional targets of p53. Based on our studies, it reflects that apoptosis in pancreatic cancer cells is mediated by curcumin-rescued mutant p53Y220C.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saurabh Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Renu Dhingra
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Radhey S Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
13
|
Lu PWA, Chou CH, Yang JS, Hsieh YH, Tsai MY, Lu KH, Yang SF. HO-3867 Induces Apoptosis via the JNK Signaling Pathway in Human Osteosarcoma Cells. Pharmaceutics 2022; 14:pharmaceutics14061257. [PMID: 35745828 PMCID: PMC9229449 DOI: 10.3390/pharmaceutics14061257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/17/2023] Open
Abstract
Metastatic osteosarcoma often results in poor prognosis despite the application of surgical en bloc excision along with chemotherapy. HO-3867 is a curcumin analog that induces cell apoptosis in several cancers, but the apoptotic effect and its mechanisms on osteosarcoma cells are still unknown. After observing the decrease in cellular viability of three human osteosarcoma U2OS, HOS, and MG-63 cell lines, and the induction of cellular apoptosis and arrest in sub-G1 phase in U2OS and HOS cells by HO-3867, the human apoptosis array showed that heme oxygenase (HO)-1 and cleaved caspase-3 expressions had significant increases after HO-3867 treatment in U2OS cells and vice versa for cellular inhibitors of apoptosis (cIAP)1 and X-chromosome-linked IAP (XIAP). Western blot analysis verified the results and showed that HO-3867 activated the initiators of both extrinsic caspase 8 and intrinsic caspase 9, and significantly increased cleaved PARP expression in U2OS and HOS cells. Moreover, with the addition of HO-3867, ERK1/2, and JNK1/2 phosphorylation were increased in U2OS and HOS cells. Using the inhibitor of JNK (JNK in 8), HO-3867’s increases in cleaved caspases 3, 8, and 9 could be expectedly suppressed, indicating that JNK signaling is responsible for both apoptotic pathways, including extrinsic and intrinsic, in U2OS and HOS cells caused by HO-3867. Through JNK signaling, HO-3867 has proven to be effective in causing both extrinsic and intrinsic apoptotic pathways of human osteosarcoma cells.
Collapse
Affiliation(s)
| | - Chia-Hsuan Chou
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-H.C.); (J.-S.Y.); (Y.-H.H.); (M.-Y.T.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-H.C.); (J.-S.Y.); (Y.-H.H.); (M.-Y.T.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-H.C.); (J.-S.Y.); (Y.-H.H.); (M.-Y.T.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Meng-Ying Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-H.C.); (J.-S.Y.); (Y.-H.H.); (M.-Y.T.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Correspondence: (K.-H.L.); (S.-F.Y.); Tel.: +886-4-24739595-34253 (S.-F.Y.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-H.C.); (J.-S.Y.); (Y.-H.H.); (M.-Y.T.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (K.-H.L.); (S.-F.Y.); Tel.: +886-4-24739595-34253 (S.-F.Y.)
| |
Collapse
|
14
|
Gubat J, Selvaraju K, Sjöstrand L, Kumar Singh D, Turkina MV, Schmierer B, Sabatier P, Zubarev RA, Linder S, D’Arcy P. Comprehensive Target Screening and Cellular Profiling of the Cancer-Active Compound b-AP15 Indicate Abrogation of Protein Homeostasis and Organelle Dysfunction as the Primary Mechanism of Action. Front Oncol 2022; 12:852980. [PMID: 35530310 PMCID: PMC9076133 DOI: 10.3389/fonc.2022.852980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022] Open
Abstract
Dienone compounds have been demonstrated to display tumor-selective anti-cancer activity independently of the mutational status of TP53. Previous studies have shown that cell death elicited by this class of compounds is associated with inhibition of the ubiquitin-proteasome system (UPS). Here we extend previous findings by showing that the dienone compound b-AP15 inhibits proteasomal degradation of long-lived proteins. We show that exposure to b-AP15 results in increased association of the chaperones VCP/p97/Cdc48 and BAG6 with proteasomes. Comparisons between the gene expression profile generated by b-AP15 to those elicited by siRNA showed that knock-down of the proteasome-associated deubiquitinase (DUB) USP14 is the closest related to drug response. USP14 is a validated target for b-AP15 and we show that b-AP15 binds covalently to two cysteines, Cys203 and Cys257, in the ubiquitin-binding pocket of the enzyme. Consistent with this, deletion of USP14 resulted in decreased sensitivity to b-AP15. Targeting of USP14 was, however, found to not fully account for the observed proteasome inhibition. In search for additional targets, we utilized genome-wide CRISPR/Cas9 library screening and Proteome Integral Solubility Alteration (PISA) to identify mechanistically essential genes and b-AP15 interacting proteins respectively. Deletion of genes encoding mitochondrial proteins decreased the sensitivity to b-AP15, suggesting that mitochondrial dysfunction is coupled to cell death induced by b-AP15. Enzymes known to be involved in Phase II detoxification such as aldo-ketoreductases and glutathione-S-transferases were identified as b-AP15-targets using PISA. The finding that different exploratory approaches yielded different results may be explained in terms of a “target” not necessarily connected to the “mechanism of action” thus highlighting the importance of a holistic approach in the identification of drug targets. We conclude that b-AP15, and likely also other dienone compounds of the same class, affect protein degradation and proteasome function at more than one level.
Collapse
Affiliation(s)
- Johannes Gubat
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karthik Selvaraju
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Linda Sjöstrand
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Dhananjay Kumar Singh
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Pharmacy, Central University of South Bihar, Gaya, India
| | - Maria V. Turkina
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bernhard Schmierer
- Department of Medical Biochemistry and Biophysics, Division of Chemical Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Sabatier
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | - Roman A. Zubarev
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmacological and Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stig Linder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pádraig D’Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Pádraig D’Arcy,
| |
Collapse
|
15
|
Chen CW, Hsieh MJ, Ju PC, Hsieh YH, Su CW, Chen YL, Yang SF, Lin CW. Curcumin analog HO-3867 triggers apoptotic pathways through activating JNK1/2 signalling in human oral squamous cell carcinoma cells. J Cell Mol Med 2022; 26:2273-2284. [PMID: 35191177 PMCID: PMC8995445 DOI: 10.1111/jcmm.17248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Human oral squamous cell carcinoma (OSCC) is the common head and neck malignancy in the world. While surgery, radiotherapy and chemotherapy are emerging as the standard treatment for OSCC patients, the outcome is limited to the recurrence and side effects. Therefore, patients with OSCC require alternative strategies for treatment. In this study, we aimed to explore the therapeutic effect and the mode of action of the novel curcumin analog, HO-3867, against human OSCC cells. We analysed the cytotoxicity of HO-3867 using MTT assay. In vitro mechanic studies were performed to determine whether MAPK pathway is involved in HO-3867 induced cell apoptosis. As the results, we found HO-3867 suppressed OSCC cells growth effectively. The flow cytometry data indicate that HO-3867 induce the sub-G1 phase. Moreover, we found that HO-3867 induced cell apoptosis by triggering formation of activated caspase 3, caspase 8, caspase 9 and PARP. After dissecting MAPK pathway, we found HO-3867 induced cell apoptosis via the c-Jun N-terminal kinase (JNK)1/2 pathway. Our results suggest that HO-3867 is an effective anticancer agent as its induction of cell apoptosis through JNK1/2 pathway in human oral cancer cells.
Collapse
Affiliation(s)
- Chi-Wei Chen
- Department of Life Science, College of Science and Engineering, National Dong Hwa University, Hualien, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Po-Chung Ju
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yen-Lin Chen
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
16
|
von Grabowiecki Y, Phatak V, Aschauer L, Muller PAJ. Rab11-FIP1/RCP Functions as a Major Signalling Hub in the Oncogenic Roles of Mutant p53 in Cancer. Front Oncol 2021; 11:804107. [PMID: 35757381 PMCID: PMC9231559 DOI: 10.3389/fonc.2021.804107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Rab11-FIP1 is a Rab effector protein that is involved in endosomal recycling and trafficking of various molecules throughout the endocytic compartments of the cell. The consequence of this can be increased secretion or increased membrane expression of those molecules. In general, expression of Rab11-FIP1 coincides with more tumourigenic and metastatic cell behaviour. Rab11-FIP1 can work in concert with oncogenes such as mutant p53, but has also been speculated to be an oncogene in its own right. In this perspective, we will discuss and speculate upon our observations that mutant p53 promotes Rab11-FIP1 function to not only promote invasive behaviour, but also chemoresistance by regulating a multitude of different proteins.
Collapse
Affiliation(s)
- Yannick von Grabowiecki
- Tumour Suppressors Group, Cancer Research United Kingdom (UK) Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | - Vinaya Phatak
- Medical Research Council (MRC) Toxicology Unit, Cambridge, United Kingdom
- Avacta Life Sciences, Cambridge, United Kingdom
| | - Lydia Aschauer
- Medical Research Council (MRC) Toxicology Unit, Cambridge, United Kingdom
- Orbit Discovery, Oxford, United Kingdom
| | - Patricia A. J. Muller
- Tumour Suppressors Group, Cancer Research United Kingdom (UK) Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
- Department of Biosciences, Faculty of Science, Durham University, Durham, United Kingdom
- *Correspondence: Patricia A. J. Muller,
| |
Collapse
|
17
|
Das A, Kamran M, Ali N. HO-3867 Induces ROS-Dependent Stress Response and Apoptotic Cell Death in Leishmania donovani. Front Cell Infect Microbiol 2021; 11:774899. [PMID: 34926321 PMCID: PMC8677699 DOI: 10.3389/fcimb.2021.774899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Lack of vaccine and increasing chemotherapeutic toxicities currently necessitate the development of effective and safe drugs against various forms of leishmaniases. We characterized the cellular stress induced by a novel curcumin analogue, HO-3867, encapsulated within the phosphatidylcholine-stearylamine (PC-SA) liposome for the first time against Leishmania. The liposomal formulation of HO-3867 (i.e., PC-SA/HO-3867) initiated oxidative stress-induced apoptosis in L. donovani, revealed by altered cell morphology, phosphatidylserine externalization, mitochondrial depolarization, intracellular lipid accumulation, and cell cycle arrest in promastigotes. Liposomal HO-3867 was observed to be a strong apoptosis inducer in L. donovani and L. major in a dose-dependent manner, yet completely safe for normal murine macrophages. Moreover, PC-SA/HO-3867 treatment induced L. donovani metacaspase and PARP1 activation along with downregulation of the Sir2 gene. PC-SA/HO-3867 arrested intracellular L. donovani amastigote burden in vitro, with reactive oxygen species (ROS) and nitric oxide (NO)-mediated parasite killing. These data suggest that liposomal HO-3867 represents a highly promising and non-toxic nanoparticle-based therapeutic platform against leishmaniasis inspiring further preclinical developments.
Collapse
Affiliation(s)
| | | | - Nahid Ali
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
18
|
Butturini E, Butera G, Pacchiana R, Carcereri de Prati A, Mariotto S, Donadelli M. Redox Sensitive Cysteine Residues as Crucial Regulators of Wild-Type and Mutant p53 Isoforms. Cells 2021; 10:cells10113149. [PMID: 34831372 PMCID: PMC8618966 DOI: 10.3390/cells10113149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The wild-type protein p53 plays a key role in preventing the formation of neoplasms by controlling cell growth. However, in more than a half of all cancers, the TP53 gene has missense mutations that appear during tumorigenesis. In most cases, the mutated gene encodes a full-length protein with the substitution of a single amino acid, resulting in structural and functional changes and acquiring an oncogenic role. This dual role of the wild-type protein and the mutated isoforms is also evident in the regulation of the redox state of the cell, with antioxidant and prooxidant functions, respectively. In this review, we introduce a new concept of the p53 protein by discussing its sensitivity to the cellular redox state. In particular, we focus on the discussion of structural and functional changes following post-translational modifications of redox-sensitive cysteine residues, which are also responsible for interacting with zinc ions for proper structural folding. We will also discuss therapeutic opportunities using small molecules targeting cysteines capable of modifying the structure and function of the p53 mutant isoforms in view of possible anticancer therapies for patients possessing the mutation in the TP53 gene.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Mariotto
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| | - Massimo Donadelli
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| |
Collapse
|
19
|
Devor EJ, Schickling BM, Lapierre JR, Bender DP, Gonzalez-Bosquet J, Leslie KK. The Synthetic Curcumin Analog HO-3867 Rescues Suppression of PLAC1 Expression in Ovarian Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14090942. [PMID: 34577642 PMCID: PMC8465575 DOI: 10.3390/ph14090942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Elevated expression of placenta-specific protein 1 (PLAC1) is associated with the increased proliferation and invasiveness of a variety of human cancers, including ovarian cancer. Recent studies have shown that the tumor suppressor p53 directly suppresses PLAC1 transcription. However, mutations in p53 lead to the loss of PLAC1 transcriptional suppression. Small molecules that structurally convert mutant p53 proteins to wild-type conformations are emerging. Our objective was to determine whether the restoration of the wild-type function of mutated p53 could rescue PLAC1 transcriptional suppression in tumors harboring certain TP53 mutations. Ovarian cancer cells OVCAR3 and ES-2, both harboring TP53 missense mutations, were treated with the p53 reactivator HO-3867. Treatment with HO-3867 successfully rescued PLAC1 transcriptional suppression. In addition, cell proliferation was inhibited and cell death through apoptosis was increased in both cell lines. We conclude that the use of HO-3867 as an adjuvant to conventional therapeutics in ovarian cancers harboring TP53 missense mutations could improve patient outcomes. Validation of this conclusion must, however, come from an appropriately designed clinical trial.
Collapse
Affiliation(s)
- Eric J. Devor
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Correspondence:
| | - Brandon M. Schickling
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
| | - Jace R. Lapierre
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
| | - David P. Bender
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Jesus Gonzalez-Bosquet
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Kimberly K. Leslie
- Department of Obstetrics and Gynecology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; (B.M.S.); (J.R.L.); (D.P.B.); (J.G.-B.); (K.K.L.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
20
|
Selvaraju K, Lotfi K, Gubat J, Miquel M, Nilsson A, Hill J, Jensen LD, Linder S, D’Arcy P. Sensitivity of Acute Myelocytic Leukemia Cells to the Dienone Compound VLX1570 Is Associated with Inhibition of the Ubiquitin-Proteasome System. Biomolecules 2021; 11:biom11091339. [PMID: 34572552 PMCID: PMC8470745 DOI: 10.3390/biom11091339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022] Open
Abstract
Dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore have been widely reported to show tumor cell selectivity. These compounds target the ubiquitin-proteasome system (UPS), known to be essential for the viability of tumor cells. The induction of oxidative stress, depletion of glutathione, and induction of high-molecular-weight (HMW) complexes have also been reported. We here examined the response of acute myeloid leukemia (AML) cells to the dienone compound VLX1570. AML cells have relatively high protein turnover rates and have also been reported to be sensitive to depletion of reduced glutathione. We found AML cells of diverse cytogenetic backgrounds to be sensitive to VLX1570, with drug exposure resulting in an accumulation of ubiquitin complexes, induction of ER stress, and the loss of cell viability in a dose-dependent manner. Caspase activation was observed but was not required for the loss of cell viability. Glutathione depletion was also observed but did not correlate to VLX1570 sensitivity. Formation of HMW complexes occurred at higher concentrations of VLX1570 than those required for the loss of cell viability and was not enhanced by glutathione depletion. To study the effect of VLX1570 we developed a zebrafish PDX model of AML and confirmed antigrowth activity in vivo. Our results show that VLX1570 induces UPS inhibition in AML cells and encourage further work in developing compounds useful for cancer therapeutics.
Collapse
Affiliation(s)
- Karthik Selvaraju
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-581 85 Linköping, Sweden; (K.S.); (K.L.); (J.G.); (M.M.); (A.N.); (J.H.); (S.L.)
| | - Kourosh Lotfi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-581 85 Linköping, Sweden; (K.S.); (K.L.); (J.G.); (M.M.); (A.N.); (J.H.); (S.L.)
- Department of Hematology, Linköping University Hospital, SE-581 85 Linköping, Sweden
| | - Johannes Gubat
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-581 85 Linköping, Sweden; (K.S.); (K.L.); (J.G.); (M.M.); (A.N.); (J.H.); (S.L.)
| | - Maria Miquel
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-581 85 Linköping, Sweden; (K.S.); (K.L.); (J.G.); (M.M.); (A.N.); (J.H.); (S.L.)
| | - Amanda Nilsson
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-581 85 Linköping, Sweden; (K.S.); (K.L.); (J.G.); (M.M.); (A.N.); (J.H.); (S.L.)
| | - Julia Hill
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-581 85 Linköping, Sweden; (K.S.); (K.L.); (J.G.); (M.M.); (A.N.); (J.H.); (S.L.)
| | - Lasse D. Jensen
- Department of Health, Medical and Caring Sciences (HMV), Linköping University, SE-581 85 Linköping, Sweden;
| | - Stig Linder
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-581 85 Linköping, Sweden; (K.S.); (K.L.); (J.G.); (M.M.); (A.N.); (J.H.); (S.L.)
- Department of Oncology-Pathology, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Pádraig D’Arcy
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-581 85 Linköping, Sweden; (K.S.); (K.L.); (J.G.); (M.M.); (A.N.); (J.H.); (S.L.)
- Correspondence:
| |
Collapse
|
21
|
Ravi Y, Sai-Sudhakar CB, Kuppusamy P. PTEN as a Therapeutic Target in Pulmonary Hypertension Secondary to Left-heart Failure: Effect of HO-3867 and Supplemental Oxygenation. Cell Biochem Biophys 2021; 79:593-607. [PMID: 34133009 DOI: 10.1007/s12013-021-01010-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 01/27/2023]
Abstract
Pulmonary hypertension (PH) is a condition when the pressure in the lung blood vessels is elevated. This leads to increase in thickness of the blood vessels and increases the workload of the heart and lungs. The incidence and prevalence of PH has been on the increase in the last decade. It is estimated that PH affects about 1% of the global population and about 10% of individuals >65 years of age. Of the various types, Group 2 PH is the most common type seen in the elderly population. Fixed PH or PH refractive to therapies is considered a contraindication for heart transplantation; the 30-day mortality in heart transplant recipients is significantly increased in the subset of this population. In general, the pathobiology of PH involves multiple factors including hypoxia, oxidative stress, growth factor receptors, vascular stress, etc. Hence, it is challenging and important to identify specific mechanisms, diagnosis and develop effective therapeutic strategies. The focus of this manuscript is to review some of the important pathobiological processes and mechanisms in the development of PH. Results from our previously reported studies, including targeted treatments along with some new data on PH secondary to left-heart failure, are presented.
Collapse
Affiliation(s)
- Yazhini Ravi
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Periannan Kuppusamy
- Departments of Radiology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
22
|
Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Structural and Drug Targeting Insights on Mutant p53. Cancers (Basel) 2021; 13:3344. [PMID: 34283062 PMCID: PMC8268744 DOI: 10.3390/cancers13133344] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
p53 is a transcription factor with a pivotal role in cell homeostasis and fate. Its impairment is a major event in tumor onset and development. In fact, about half of human cancers bear TP53 mutations that not only halt the normal function of p53, but also may acquire oncogenic gain of functions that favor tumorigenesis. Although considered undruggable for a long time, evidence has proven the capability of many compounds to restore a wild-type (wt)-like function to mutant p53 (mutp53). However, they have not reached the clinic to date. Structural studies have strongly contributed to the knowledge about p53 structure, stability, dynamics, function, and regulation. Importantly, they have afforded relevant insights into wt and mutp53 pharmacology at molecular levels, fostering the design and development of p53-targeted anticancer therapies. Herein, we provide an integrated view of mutp53 regulation, particularly focusing on mutp53 structural traits and on targeting agents capable of its reactivation, including their biological, biochemical and biophysical features. With this, we expect to pave the way for the development of improved small molecules that may advance precision cancer therapy by targeting p53.
Collapse
Affiliation(s)
- Ana Sara Gomes
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| |
Collapse
|
23
|
Gouda M, Bawzeer M, Hegazy L, Azab M, Elagawany M, Rateb M, Yaseen M, Elgendy B. Design, Synthesis, and Antitumor Activity of Novel Dispiro[oxindole-cyclohexanone]-pyrrolidines. Curr Pharm Des 2021; 28:198-207. [PMID: 34176458 DOI: 10.2174/1381612827666210625160627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Spirooxindoles are privileged scaffolds in medicinal chemistry and were identified through Wang's pioneering work as inhibitors of MDM2-p53 interactions. OBJECTIVE To design and synthesize 2,6-diarylidenecyclohexanones and dispiro[oxindole-cyclohexanone]-pyrrolidines of potential antitumor effect. METHOD Dispiro[oxindole-cyclohexanone]-pyrrolidines 6a-h were synthesized in a regioselective manner via 1,3-dipolar cycloaddition reaction of 2,6-diarylidenecyclohexanones 3a-h, isatin, and sarcocine. Compounds 6a-h were alkylated to give (7-10) a,b. All compounds were evaluated in vitro for their antitumor activity and cytotoxic selectivity against breast cancer cell lines (MCF-7, and MDA-MB-231), breast fibrosis cell line (MCF10a) and placental cancer cell line (JEG-3). Molecular modeling inside the MDM2 binding site was performed using AutoDock4.2. RESULTS Synthesized compounds showed antitumor activity comparable to tamoxifen, and compounds 3a,b,f,g, and 9a,b showed selective cytotoxicity against tumor cells but reduced toxicity toward MCF-10a cells. Molecular modelling shows that both classes of synthesized compounds are predicted to fit the deep hydrophobic cleft on the surface of MDM2 and mimic the interactions between p53 and MDM2. CONCLUSION The synthesized compounds have antitumor activity against MCF-7, MDA-MB-231, and JEG-3. Few compounds showed a selective cytotoxic effect and may have the potential to inhibit MDM2 and stimulate p53. Future medicinal chemistry optimization and mechanistic study will be conducted to enhance the inhibition effect of identified compounds and elucidate their mechanism of action.
Collapse
Affiliation(s)
- Magy Gouda
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Majed Bawzeer
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, Scotland, United Kingdom
| | - Lamees Hegazy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, United States
| | - Mohamed Azab
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Mohamed Elagawany
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, United States
| | - Mostafa Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, Scotland, United Kingdom
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, Scotland, United Kingdom
| | - Bahaa Elgendy
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
24
|
He Y, Li W, Zhang J, Yang Y, Qian YW, Zhou D. The curcumin analog EF24 is highly active against chemotherapy-resistant melanoma cells. Curr Cancer Drug Targets 2021; 21:608-618. [PMID: 33655859 DOI: 10.2174/1568009621666210303092921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/11/2020] [Accepted: 01/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Malignant melanoma (MM) is an aggressive type of skin cancer with a poor prognosis, because MM cells are characterized by unresponsiveness to chemotherapy. OBJECTIVE In this study, we evaluated the effectiveness of several curcumin analogs on four MM cell lines (SK-MEL-28, MeWo, A-375, and CHL-1), and explored their underlying mechanisms of action. METHODS Cell viability was measured by a Tetrazolium-based MTS assay. Cell apoptosis, reactive oxygen species (ROS), and cell cycle were assayed by flow cytometry. Protein levels were assayed by western blotting. RESULTS MM cells are quite resistant to the conventional chemotherapeutics cisplatin and dacarbazine, and the targeted therapy drug vemurafinib. Among the curcumin analogs, EF24 is the most potent compound against the resistant MM cells. EF24 dose- and time-dependently reduced the viability of MM cells by inducing apoptosis. Although EF24 did not increase the production of reactive oxygen species (ROS), it upregulated the endoplasmic reticulum (ER) stress marker BiP, but downregulated the unfolded protein response (UPR) signaling. Moreover, treatment of MM cells with EF24 downregulated the expression of the anti-apoptotic protein Bcl-2, as well as the inhibitor of apoptosis proteins (IAPs) XIAP, cIAP1, and Birc7, which are known to protect MM cells from apoptosis. The downregulation of Bcl-2 and IAP expression by EF24 was associated with the inhibition of the NF-κB pathway. CONCLUSION These findings demonstrate that EF24 is a potent anti-MM agent. The anti-MM effect is likely mediated by the suppression of UPR and the NF-κB pathway.
Collapse
Affiliation(s)
- Yonghan He
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610. United States
| | - Wen Li
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610. United States
| | - Junling Zhang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610. United States
| | - Yang Yang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610. United States
| | - Ya-Wei Qian
- Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205. United States
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610. United States
| |
Collapse
|
25
|
Abstract
![]()
The biological responses to dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl
pharmacophore have been studied extensively. Despite their expected
general thiol reactivity, these compounds display considerable degrees
of tumor cell selectivity. Here we review in vitro and preclinical studies of dienone compounds including b-AP15, VLX1570,
RA-9, RA-190, EF24, HO-3867, and MCB-613. A common property of these
compounds is their targeting of the ubiquitin–proteasome system
(UPS), known to be essential for the viability of tumor cells. Gene
expression profiling experiments have shown induction of responses
characteristic of UPS inhibition, and experiments using cellular reporter
proteins have shown that proteasome inhibition is associated with
cell death. Other mechanisms of action such as reactivation of mutant
p53, stimulation of steroid receptor coactivators, and induction of
protein cross-linking have also been described. Although unsuitable
as biological probes due to widespread reactivity, dienone compounds
are cytotoxic to apoptosis-resistant tumor cells and show activity
in animal tumor models.
Collapse
Affiliation(s)
- Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stig Linder
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-58183 Linköping, Sweden.,Department of Oncology and Pathology, Karolinska Institute, SE-17176 Stockholm, Sweden
| |
Collapse
|
26
|
The Curcumin Analogue, MS13 (1,5-Bis(4-hydroxy-3- methoxyphenyl)-1,4-pentadiene-3-one), Inhibits Cell Proliferation and Induces Apoptosis in Primary and Metastatic Human Colon Cancer Cells. Molecules 2020; 25:molecules25173798. [PMID: 32825505 PMCID: PMC7504349 DOI: 10.3390/molecules25173798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/26/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
The cytotoxic and apoptotic effects of turmeric (Curcuma longa) on colon cancer have been well documented but specific structural modifications of curcumin have been shown to possess greater growth-suppressive potential on colon cancer than curcumin. Therefore, the aim of this study is to identify the anti-cancer properties of curcumin analogue-MS13, a diarylpentanoid on the cytotoxicity, anti-proliferative and apoptotic activity of primary (SW480) and metastatic (SW620) human colon cancer cells. A cell viability assay showed that MS13 has greater cytotoxicity effect on SW480 (EC50: 7.5 ± 2.8 µM) and SW620 (EC50: 5.7 ± 2.4 µM) compared to curcumin (SW480, EC50: 30.6 ± 1.4 µM) and SW620, EC50: 26.8 ± 2.1 µM). Treatment with MS13 at two different doses 1X EC50 and 2X EC50 suppressed the colon cancer cells growth with lower cytotoxicity against normal cells. A greater anti-proliferative effect was also observed in MS13 treated colon cancer cells compared to curcumin at 48 and 72 h. Subsequent analysis on the induction of apoptosis showed that MS13 treated cells exhibited morphological features associated with apoptosis. The findings are also consistent with cellular apoptotic activities shown by increased caspase-3 activity and decreased Bcl-2 protein level in both colon cancer cell lines. In conclusion, MS13 able to suppress colon cancer cell growth by inhibiting cell proliferation and induce apoptosis in primary and metastatic human colon cancer cells.
Collapse
|
27
|
Liu L, Yu ZY, Yu TT, Cui SH, Yang L, Chang H, Qu YH, Lv XF, Zhang XA, Ren CC. A Slug-dependent mechanism is responsible for tumor suppression of p53-stabilizing compound CP-31398 in p53-mutated endometrial carcinoma. J Cell Physiol 2020; 235:8768-8778. [PMID: 32633026 DOI: 10.1002/jcp.29720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
Mutation in the tumor suppressor gene p53 is the most frequent molecular defect in endometrial carcinoma (EC). Recently, CP-31398, a p53-stabilizing compound, has been indicated to possess the ability to alter the expression of non-p53 target genes in addition to p53 downstream genes in tumor cells. Herein, we explore the alternative mechanisms underlying the restoration of EC tumor suppressor function in mutant p53 by CP-31398. A p53-mutated EC cell was constructed in AN3CA cells with restored or partial loss of Slug using lentiviral vectors, followed by treatment with 25 μM CP-31398. A p53-independent mechanism of CP-31398 was confirmed by the interaction between mouse double minute 2 homolog (MDM2) and Slug AN3CA cells treated with IWR-1 (inhibitor of Wnt response 1). Furthermore, the AN3CA cells were treated with short hairpin RNA against Slug, Wnt-specific activators (LiCl) or inhibitors (XAV-939) followed by CP-31398 treatment. Moreover, AN3CA cell proliferation and apoptosis were examined. A tumorigenicity assay was conducted in nude mice. CP-31398 could promote the apoptosis of p53-mutated EC cells, while Slug reversed this effect. Slug ubiquitination was found to occur via binding of Slug to MDM2 in AN3CA cells. We found that CP-31398 increased the GSK-3ß, p-Slug, Puma, Wtp53, and Bax expressions whereas Wnt, Mtp-53, Slug, Bcl-2, and Ki-67 expressions were decreased. However, these findings were reversed following the activation of the Wnt pathway and overexpression of Slug. Finally, the in vivo experimental evidence confirmed that CP-31398 with depleted Slug suppressed tumor growth by downregulating the Slug. Collectively, CP-31398-regulated Slug downregulation represses the p53-mutated EC via the p53/Wnt/Puma pathway.
Collapse
Affiliation(s)
- Ling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Prenatal Diagnosis and Fetal Therapy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Ying Yu
- Department of Gynecology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Tan-Tan Yu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Prenatal Diagnosis and Fetal Therapy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hong Cui
- Department of Prenatal Diagnosis and Fetal Therapy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Chang
- Department of Prenatal Diagnosis and Fetal Therapy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan-Hong Qu
- Department of Prenatal Diagnosis and Fetal Therapy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Feng Lv
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-An Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Garufi A, Baldari S, Pettinari R, Gilardini Montani MS, D’Orazi V, Pistritto G, Crispini A, Giorno E, Toietta G, Marchetti F, Cirone M, D’Orazi G. A ruthenium(II)-curcumin compound modulates NRF2 expression balancing the cancer cell death/survival outcome according to p53 status. J Exp Clin Cancer Res 2020; 39:122. [PMID: 32605658 PMCID: PMC7325274 DOI: 10.1186/s13046-020-01628-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor progression and tumor response to anticancer therapies may be affected by activation of oncogenic pathways such as the antioxidant one induced by NRF2 (nuclear factor erythroid 2-related factor 2) transcription factor and the pathways modified by deregulation of oncosuppressor p53. Often, oncogenic pathways may crosstalk between them increasing tumor progression and resistance to anticancer therapies. Therefore, understanding that interplay is critical to improve cancer cell response to therapies. In this study we aimed at evaluating NRF2 and p53 in several cancer cell lines carrying different endogenous p53 status, using a novel curcumin compound since curcumin has been shown to target both NRF2 and p53 and have anti-tumor activity. METHODS We performed biochemical and molecular studies by using pharmacologic of genetic inhibition of NRF2 to evaluate the effect of curcumin compound in cancer cell lines of different tumor types bearing wild-type (wt) p53, mutant (mut) p53 or p53 null status. RESULTS We found that the curcumin compound induced a certain degree of cell death in all tested cancer cell lines, independently of the p53 status. At molecular level, the curcumin compound induced NRF2 activation, mutp53 degradation and/or wtp53 activation. Pharmacologic or genetic NRF2 inhibition further increased the curcumin-induced cell death in both mutp53- and wtp53-carrying cancer cell lines while it did not increase cell death in p53 null cells, suggesting a cytoprotective role for NRF2 and a critical role for functional p53 to achieve an efficient cancer cell response to therapy. CONCLUSIONS These findings underline the prosurvival role of curcumin-induced NRF2 expression in cancer cells even when cells underwent mutp53 downregulation and/or wtp53 activation. Thus, NRF2 inhibition increased cell demise particularly in cancer cells carrying p53 either wild-type or mutant suggesting that p53 is crucial for efficient cancer cell death. These results may represent a paradigm for better understanding the cancer cell response to therapies in order to design more efficient combined anticancer therapies targeting both NRF2 and p53.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- University “G. D’Annunzio”, School of Medicine, Chieti, Italy
| | - Silvia Baldari
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Medical, Surgical Sciences, and Biotechnologies, Sapienza University, Latina, Italy
| | - Riccardo Pettinari
- School of Pharmacy, Chemistry Section, University of Camerino, Camerino Macerata, Italy
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, Sapienza University, laboratory affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Rome, Italy
| | - Valerio D’Orazi
- Department of Surgical Sciences, Sapienza University, Rome, Italy
| | - Giuseppa Pistritto
- Italian medicines agency-Aifa, centralized procedure office, Rome, Italy
| | - Alessandra Crispini
- Department of Chemistry and Chemical Technologies, laboratory MAT-IN LAB, Calabria University, Rende, Italy
| | - Eugenia Giorno
- Department of Chemistry and Chemical Technologies, laboratory MAT-IN LAB, Calabria University, Rende, Italy
| | - Gabriele Toietta
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabio Marchetti
- School of Science and Technology, Chemistry Section, University of Camerino, Camerino Macerata, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University, laboratory affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Rome, Italy
| | - Gabriella D’Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
29
|
Recent Synthetic Approaches towards Small Molecule Reactivators of p53. Biomolecules 2020; 10:biom10040635. [PMID: 32326087 PMCID: PMC7226499 DOI: 10.3390/biom10040635] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
The tumor suppressor protein p53 is often called "the genome guardian" and controls the cell cycle and the integrity of DNA, as well as other important cellular functions. Its main function is to trigger the process of apoptosis in tumor cells, and approximately 50% of all cancers are related to the inactivation of the p53 protein through mutations in the TP53 gene. Due to the association of mutant p53 with cancer therapy resistance, different forms of restoration of p53 have been subject of intense research in recent years. In this sense, this review focus on the main currently adopted approaches for activation and reactivation of p53 tumor suppressor function, focusing on the synthetic approaches that are involved in the development and preparation of such small molecules.
Collapse
|
30
|
Loh SN. Follow the Mutations: Toward Class-Specific, Small-Molecule Reactivation of p53. Biomolecules 2020; 10:biom10020303. [PMID: 32075132 PMCID: PMC7072143 DOI: 10.3390/biom10020303] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
The mutational landscape of p53 in cancer is unusual among tumor suppressors because most of the alterations are of the missense type and localize to a single domain: the ~220 amino acid DNA-binding domain. Nearly all of these mutations produce the common effect of reducing p53’s ability to interact with DNA and activate transcription. Despite this seemingly simple phenotype, no mutant p53-targeted drugs are available to treat cancer patients. One of the main reasons for this is that the mutations exert their effects via multiple mechanisms—loss of DNA contacts, reduction in zinc-binding affinity, and lowering of thermodynamic stability—each of which involves a distinct type of physical impairment. This review discusses how this knowledge is informing current efforts to develop small molecules that repair these defects and restore function to mutant p53. Categorizing the spectrum of p53 mutations into discrete classes based on their inactivation mechanisms is the initial step toward personalized cancer therapy based on p53 allele status.
Collapse
Affiliation(s)
- Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
31
|
Lopes EA, Gomes S, Saraiva L, Santos MM. Small Molecules Targeting Mutant P53: A Promising Approach for Cancer Treatment. Curr Med Chem 2020; 26:7323-7336. [DOI: 10.2174/0929867325666181116124308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
:
More than half of all human tumors express mutant forms of p53, with the ovary,
lung, pancreas, and colorectal cancers among the tumor types that display the highest prevalence
of p53 mutations. In addition, the expression of mutant forms of p53 in tumors is associated
with poor prognosis due to increased chemoresistance and invasiveness. Therefore, the
pharmacological restoration of wild-type-like activity to mutant p53 arises as a promising therapeutic
strategy against cancer. This review is focused on the most relevant mutant p53 small
molecule reactivators described to date. Despite some of them have entered into clinical trials,
none has reached the clinic, which emphasizes that new pharmacological alternatives, particularly
with higher selectivity and lower adverse toxic side effects, are still required.
Collapse
Affiliation(s)
- Elizabeth A. Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Gomes
- LAQV-REQUIMTE, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Lucília Saraiva
- LAQV-REQUIMTE, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria M.M. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
32
|
Raimundo L, Ramos H, Loureiro JB, Calheiros J, Saraiva L. BRCA1/P53: Two strengths in cancer chemoprevention. Biochim Biophys Acta Rev Cancer 2020; 1873:188339. [PMID: 31917206 DOI: 10.1016/j.bbcan.2020.188339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Increasing emphasis has been given to prevention as a feasible approach to reduce the cancer burden. However, for its clinical success, further advances are required to identify effective chemopreventive agents. This review affords a critical and up-to-date discussion of issues related to cancer prevention, including an in-depth knowledge on BRCA1 and p53 tumor suppressor proteins as key molecular players. Indeed, it compiles the most recent advances on the topic, highlighting the unique potential of BRCA1 and p53 germline mutations as molecular biomarkers for risk assessment and targets for chemoprevention. Relevant evidences are herein provided supporting the effectiveness of distinct pharmacological agents in cancer prevention, by targeting BRCA1 and p53. Moreover, the rationale for using germline mutant BRCA1- or p53-related cancer syndromes as model systems to investigate effective chemopreventive agents is also addressed. Altogether, this work provides an innovative conception about the dependence on p53 and BRCA1 co-inactivation in tumor formation and development, emphasizing the relationship between these two proteins as an encouraging direction for future personalized pharmacological interventions in cancer prevention.
Collapse
Affiliation(s)
- Liliana Raimundo
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Joana B Loureiro
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Juliana Calheiros
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
33
|
Madan E, Parker TM, Pelham CJ, Palma AM, Peixoto ML, Nagane M, Chandaria A, Tomás AR, Canas-Marques R, Henriques V, Galzerano A, Cabral-Teixeira J, Selvendiran K, Kuppusamy P, Carvalho C, Beltran A, Moreno E, Pati UK, Gogna R. HIF-transcribed p53 chaperones HIF-1α. Nucleic Acids Res 2019; 47:10212-10234. [PMID: 31538203 PMCID: PMC6821315 DOI: 10.1093/nar/gkz766] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/14/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic hypoxia is associated with a variety of physiological conditions such as rheumatoid arthritis, ischemia/reperfusion injury, stroke, diabetic vasculopathy, epilepsy and cancer. At the molecular level, hypoxia manifests its effects via activation of HIF-dependent transcription. On the other hand, an important transcription factor p53, which controls a myriad of biological functions, is rendered transcriptionally inactive under hypoxic conditions. p53 and HIF-1α are known to share a mysterious relationship and play an ambiguous role in the regulation of hypoxia-induced cellular changes. Here we demonstrate a novel pathway where HIF-1α transcriptionally upregulates both WT and MT p53 by binding to five response elements in p53 promoter. In hypoxic cells, this HIF-1α-induced p53 is transcriptionally inefficient but is abundantly available for protein-protein interactions. Further, both WT and MT p53 proteins bind and chaperone HIF-1α to stabilize its binding at its downstream DNA response elements. This p53-induced chaperoning of HIF-1α increases synthesis of HIF-regulated genes and thus the efficiency of hypoxia-induced molecular changes. This basic biology finding has important implications not only in the design of anti-cancer strategies but also for other physiological conditions where hypoxia results in disease manifestation.
Collapse
Affiliation(s)
- Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Taylor M Parker
- Department of Surgery, Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher J Pelham
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Antonio M Palma
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Maria L Peixoto
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Masaki Nagane
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Aliya Chandaria
- Biosciences unit, College of Life and Environmental Sciences, University of Exeter, Stocker Road Exeter EX4 4QD, UK
| | - Ana R Tomás
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | | | | | | | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Periannan Kuppusamy
- Department of Radiology and Medicine, 601 Rubin Building, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Carlos Carvalho
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Antonio Beltran
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Eduardo Moreno
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Uttam K Pati
- Transcription and Human Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajan Gogna
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
34
|
Chung SS, Dutta P, Chard N, Wu Y, Chen QH, Chen G, Vadgama J. A novel curcumin analog inhibits canonical and non-canonical functions of telomerase through STAT3 and NF-κB inactivation in colorectal cancer cells. Oncotarget 2019; 10:4516-4531. [PMID: 31360301 PMCID: PMC6642039 DOI: 10.18632/oncotarget.27000] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Curcumin is a biologically active polyphenol that exists in Indian spice turmeric. It has been reported that curcumin exerted anti-inflammatory, anti-oxidant and anti-cancer effects in numerous in vitro and in vivo studies. However, it is not well-understood the molecular mechanism of curcumin for the cancer stem cells and telomerase in colorectal cancer. In this study, compound 19, a nitrogen-containing curcumin analog, was used to treat human colorectal cancer cells. Compound 19 showed a greater anti-proliferative activity than curcumin while displayed no significant toxicity toward normal human colon epithelial cells. Compound 19 exerted anti-inflammatory activities by deactivating STAT3 and NF-κB. In cancer stem cell populations, CD44, Oct-4 and ALDHA1 expressions were abolished upon treating with compound 19. Cancer stem cell biomarkers CD51 and CD133 positive populations were reduced and telomerase activities were decreased with the reduced STAT3 binding to hTERT promoters. This means compound 19 dually inhibits canonical and non-canonical functions of telomerase. Furthermore, compound 19 treatments induced cell cycle arrest at G1 phase and apoptosis. Human apoptosis-related array screening revealed that activated caspase 3, catalase, clusterin and cytochrome C led to apoptosis. Taken together, our data suggest that compound 19 can be a novel therapeutic agent for metastatic colorectal cancer by concurrently targeting STAT3 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Seyung S Chung
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059, USA.,David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | - Pranabananda Dutta
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059, USA
| | - Nathaniel Chard
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059, USA
| | - Yong Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059, USA.,David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University at Fresno, Fresno, California 93740, USA
| | - Guanglin Chen
- Department of Chemistry, California State University at Fresno, Fresno, California 93740, USA
| | - Jaydutt Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, USA.,David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
35
|
Pelham CJ, Nagane M, Madan E. Cell competition in tumor evolution and heterogeneity: Merging past and present. Semin Cancer Biol 2019; 63:11-18. [PMID: 31323289 DOI: 10.1016/j.semcancer.2019.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
In many cases, cancers are difficult to eliminate because they develop resistance to a primary chemotherapy or targeted therapy. Tumors grow into diverse cell subpopulations, increasing the ability to resist elimination. The phenomenon of 'cell competition' describes our body's natural surveillance system to optimize tissue fitness by forcing viable but aberrant cells to undergo cell death. Cell competition is not simply comparison of cell division potential. Competition factors signal for 'loser' cell elimination and 'winner' cell dominance. New evidence demonstrates it is possible to restrict cancer growth by strengthening the cell fitness of surrounding healthy tissue via anti-apoptotic pathways. Hence, cell competition provides strong conceptual explanation for oncogenesis, tumor growth and suppression. Tumor heterogeneity is a hallmark of many cancers and establishes gradients in which competitive interactions are able to occur among tumor cell subpopulations as well as neighboring stromal tissue. Here we review cellular/molecular competition pathways in the context of tumor evolution, heterogeneity and response to interventions. We propose strategies to exploit these mediators and design novel broad-spectrum therapeutic approaches that eliminate cancer and enhance fitness of neighboring tissue to improve patient outcomes.
Collapse
Affiliation(s)
- Christopher J Pelham
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Masaki Nagane
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
36
|
Diarylidenylpiperidones, H-4073 and HO-3867, Induce G2/M Cell-Cycle Arrest, Apoptosis and Inhibit STAT3 Phosphorylation in Human Pancreatic Cancer Cells. Cell Biochem Biophys 2019; 77:109-119. [PMID: 31089934 DOI: 10.1007/s12013-019-00873-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023]
Abstract
Pancreatic cancer has a 5-year survival rate below 10% and the treatment options are limited. Signal transducer and activator of transcription (STAT3) is a constitutively expressed protein in human pancreatic cancers and is associated with their poor prognosis. Targeting of STAT3 signaling using novel therapeutic agents is a potential strategy for pancreatic cancer treatment. Diarylidenylpiperidone (DAP) compounds, such as H-4073 and HO-3867, have been shown to be STAT3 inhibitors in several human ovarian cancers. Particularly, HO-3867 is an N-hydroxypyrroline derivative of DAP that has targeted cytotoxicity toward cancer cells without affecting healthy cells. In the present study, we evaluated the anticancer efficacy of H-4073 and HO-3867 in a human pancreatic cell line (AsPC-1). We found that both the compounds exhibited potential cytotoxicity to AsPC-1 cells by inducing G2/M cell-cycle arrest, apoptosis, and cell death, by mitochondrial damage and inhibition of STAT3 phosphorylation. In summary, H-4073 and HO-3867 are cytotoxic to AsPC-1 cells and seem to act through similar mechanisms, including STAT3 inhibition, cell-cycle arrest, and apoptosis.
Collapse
|
37
|
Jiang L, Malik N, Acedo P, Zawacka-Pankau J. Protoporphyrin IX is a dual inhibitor of p53/MDM2 and p53/MDM4 interactions and induces apoptosis in B-cell chronic lymphocytic leukemia cells. Cell Death Discov 2019; 5:77. [PMID: 30886745 PMCID: PMC6412042 DOI: 10.1038/s41420-019-0157-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022] Open
Abstract
p53 is a tumor suppressor, which belongs to the p53 family of proteins. The family consists of p53, p63 and p73 proteins, which share similar structure and function. Activation of wild-type p53 or TAp73 in tumors leads to tumor regression, and small molecules restoring the p53 pathway are in clinical development. Protoporphyrin IX (PpIX), a metabolite of aminolevulinic acid, is a clinically approved drug applied in photodynamic diagnosis and therapy. PpIX induces p53-dependent and TAp73-dependent apoptosis and inhibits TAp73/MDM2 and TAp73/MDM4 interactions. Here we demonstrate that PpIX is a dual inhibitor of p53/MDM2 and p53/MDM4 interactions and activates apoptosis in B-cell chronic lymphocytic leukemia cells without illumination and without affecting normal cells. PpIX stabilizes p53 and TAp73 proteins, induces p53-downstream apoptotic targets and provokes cancer cell death at doses non-toxic to normal cells. Our findings open up new opportunities for repurposing PpIX for treating lymphoblastic leukemia with wild-type TP53.
Collapse
Affiliation(s)
- Liren Jiang
- 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden.,2Department of Immunology, Genetics and Pathology, Medical Faculty, Uppsala University, Box 256, 75105 Uppsala, Sweden.,3Present Address: Department of Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, 200080 Shanghai, China
| | - Natasha Malik
- 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Pilar Acedo
- 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Joanna Zawacka-Pankau
- 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| |
Collapse
|
38
|
Babikir HA, Afjei R, Paulmurugan R, Massoud TF. Restoring guardianship of the genome: Anticancer drug strategies to reverse oncogenic mutant p53 misfolding. Cancer Treat Rev 2018; 71:19-31. [DOI: 10.1016/j.ctrv.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023]
|
39
|
Talib WH, Al-Hadid SA, Ali MBW, Al-Yasari IH, Ali MRA. Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action. BREAST CANCER (DOVE MEDICAL PRESS) 2018; 10:207-217. [PMID: 30568488 PMCID: PMC6276637 DOI: 10.2147/bctt.s167812] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
p53 is a tumor suppressor gene involved in various cellular mechanisms including DNA repair, apoptosis, and cell cycle arrest. More than 50% of human cancers have a mutated nonfunctional p53. Breast cancer (BC) is one of the main causes of cancer-related deaths among females. p53 mutations in BC are associated with low survival rates and more resistance to the conventional therapies. Thus, targeting p53 activity was suggested as an important strategy in cancer therapy. During the past decades, cancer research was focused on the development of monotargeted anticancer therapies. However, the development of drug resistance by modulation of genes, proteins, and pathways was the main hindrance to the success of such therapies. Curcumin is a natural product, extracted from the roots of Curcuma longa, and possesses various biological effects including anticancer activity. Previous studies proved the ability of curcumin to modulate several signaling pathways and biomolecules in cancer. Safety and cost-effectiveness are additional inevitable advantages of curcumin. This review summarizes the effects of curcumin as a regulator of p53 in BC and the key molecular mechanisms of this regulation.
Collapse
Affiliation(s)
- Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan,
| | - Sonia A Al-Hadid
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan,
| | - Mai B Wild Ali
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan,
| | - Intisar Hadi Al-Yasari
- Food Technology Department, Faculty of Food Science, AL-Qasim Green University, Babylon, Iraq
| | | |
Collapse
|
40
|
Zhou G, Shi Y, Wei L, Sun G. Autophagy induction and antiproliferative effect of a novel curcumin derivative MOMI‐1 on the human lung cancer cells A549. J Biochem Mol Toxicol 2018; 33:e22280. [DOI: 10.1002/jbt.22280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/21/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Guang‐Zhou Zhou
- Department of Biotechnology, College of Bioengineering, Henan University of TechnologyZhengzhou China
| | - Yan‐Yan Shi
- Department of Biotechnology, College of Bioengineering, Henan University of TechnologyZhengzhou China
| | - Lin‐Lin Wei
- Department of Biotechnology, College of Bioengineering, Henan University of TechnologyZhengzhou China
| | - Gang‐Chun Sun
- Department of Chemistry, College of Chemistry and Chemical Engineering, Henan University of TechnologyZhengzhou China
| |
Collapse
|
41
|
APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis 2018; 9:439. [PMID: 29670092 PMCID: PMC5906465 DOI: 10.1038/s41419-018-0463-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 12/14/2022]
Abstract
The TP53 tumor suppressor gene is frequently inactivated in human tumors by missense mutations in the DNA binding domain. TP53 mutations lead to protein unfolding, decreased thermostability and loss of DNA binding and transcription factor function. Pharmacological targeting of mutant p53 to restore its tumor suppressor function is a promising strategy for cancer therapy. The mutant p53 reactivating compound APR-246 (PRIMA-1Met) has been successfully tested in a phase I/IIa clinical trial. APR-246 is converted to the reactive electrophile methylene quinuclidinone (MQ), which binds covalently to p53 core domain. We identified cysteine 277 as a prime binding target for MQ in p53. Cys277 is also essential for MQ-mediated thermostabilization of wild-type, R175H and R273H mutant p53, while both Cys124 and Cys277 are required for APR-246-mediated functional restoration of R175H mutant p53 in living tumor cells. These findings may open opportunities for rational design of novel mutant p53-targeting compounds.
Collapse
|