1
|
Le Y, Zhou L, He Y, Zhou J, Zhan J, Zhang H, Chen X, Xiong J, Fang Z, Xiang X. SNX5 facilitates the progression of gastric cancer by increasing the membrane localization of LRP5. Oncogene 2025; 44:1182-1196. [PMID: 39922976 DOI: 10.1038/s41388-025-03298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/05/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Endocytosis is essential for cancer cell motility, which is predominantly mediated by the sorting nexin (SNX) family. Previous studies have demonstrated that SNX5 is elevated in several tumors, while its clinical significance and underlying mechanism in gastric cancer (GC) remain uninvestigated. In this study, we reported that SNX5 is highly expressed in GC and promotes the malignant biological behavior of GC cells. Its upregulation is closely related to poor prognosis in GC patients. Mechanistically, we observed an interaction between SNX5 and low-density lipoprotein receptor-related protein5 (LRP5) in GC cells. SNX5 inhibits LRP5 internalization and promotes its recycling to the cell membrane, which prevents LRP5 from being degraded in the lysosome. The increased membrane localization of LRP5 facilitates β-catenin stabilization, thus activating the Wnt signaling pathway, leading to tumorigenesis and progression.
Collapse
Affiliation(s)
- Yi Le
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Ling Zhou
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Yan He
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Juanjuan Zhou
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Jinbo Zhan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Hongjiao Zhang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Xiao Chen
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China.
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| | - Ziling Fang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China.
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China.
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Robleto VL, Zhuo Y, Crecelius JM, Benzow S, Marchese A. SNX9 family mediates βarrestin-independent GPCR endocytosis. Commun Biol 2024; 7:1455. [PMID: 39511325 PMCID: PMC11544122 DOI: 10.1038/s42003-024-07157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Agonist-stimulated GPCR endocytosis typically occurs via the multi-faceted adaptor proteins known as βarrestins. However, endocytosis of several GPCRs occurs independently of β-arrestins, suggesting an additional mode of GPCR endocytosis, but the mechanisms remain unknown. Here we provide evidence that sorting nexin 9 (SNX9), a previously described endocytic remodeling protein, functions as a novel cargo adaptor that promotes agonist-stimulated GPCR endocytosis. We show that SNX9 and SNX18, but not β-arrestins, are necessary for endocytosis of the chemokine receptor CXCR4. SNX9 is recruited to CXCR4 at the plasma membrane and interacts directly with the carboxyl-terminal tail of the receptor in a phosphorylation-dependent manner. We also provide evidence that some receptors do not require SNX9 and SNX18 nor β-arrestins for endocytosis, suggesting additional modes for GPCR endocytosis. These results provide novel insights into the mechanisms regulating GPCR trafficking and broaden our overall understanding of GPCR regulation.
Collapse
Affiliation(s)
- Valeria L Robleto
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ya Zhuo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Joseph M Crecelius
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sara Benzow
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
3
|
Melano I, Cheng WC, Kuo LL, Liu YM, Chou YC, Hung MC, Lai MMC, Sher YP, Su WC. A disintegrin and metalloproteinase domain 9 facilitates SARS-CoV-2 entry into cells with low ACE2 expression. Microbiol Spectr 2023; 11:e0385422. [PMID: 37713503 PMCID: PMC10581035 DOI: 10.1128/spectrum.03854-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/18/2023] [Indexed: 09/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the Coronavirus disease-19 (COVID-19) pandemic, utilizes angiotensin-converting enzyme 2 (ACE2) as a receptor for virus infection. However, the expression pattern of ACE2 does not coincide with the tissue tropism of SARS-CoV-2, hinting that other host proteins might be involved in facilitating SARS-CoV-2 entry. To explore potential host factors for SARS-CoV-2 entry, we performed an arrayed shRNA screen in H1650 and HEK293T cells. Here, we identified a disintegrin and a metalloproteinase domain 9 (ADAM9) protein as an important host factor for SARS-CoV-2 entry. Our data showed that silencing ADAM9 reduced virus entry, while its overexpression promoted infection. The knockdown of ADAM9 decreased the infectivity of the variants of concern tested-B.1.1.7 (alpha), B.1.617.2 (delta), and B.1.1.529 (omicron). Furthermore, mechanistic studies indicated that ADAM9 is involved in the binding and endocytosis stages of SARS-CoV-2 entry. Through immunoprecipitation experiments, we demonstrated that ADAM9 binds to the S1 subunit of the SARS-CoV-2 Spike. Additionally, ADAM9 can interact with ACE2, and co-expression of both proteins markedly enhances virus infection. Moreover, the enzymatic activity of ADAM9 facilitates virus entry. Our study reveals an insight into the mechanism of SARS-CoV-2 virus entry and elucidates the role of ADAM9 in virus infection. IMPORTANCE COVID-19, an infectious respiratory disease caused by SARS-CoV-2, has greatly impacted global public health and the economy. Extensive vaccination efforts have been launched worldwide over the last couple of years. However, several variants of concern that reduce the efficacy of vaccines have kept emerging. Thereby, further understanding of the mechanism of SARS-CoV-2 entry is indispensable, which will allow the development of an effective antiviral strategy. Here, we identify a disintegrin and metalloproteinase domain 9 (ADAM9) protein as a co-factor of ACE2 important for SARS-CoV-2 entry, even for the variants of concern, and show that ADAM9 interacts with Spike to aid virus entry. This virus-host interaction could be exploited to develop novel therapeutics against COVID-19.
Collapse
Affiliation(s)
- Ivonne Melano
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taipei, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Li-Lan Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yuag-Meng Liu
- Department of Internal Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Infectious Diseases, Changhua Christian Medical Foundation, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Michael M. C. Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taipei, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- International Master’s Program of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- International Master’s Program of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Meyer C, Larghero P, Almeida Lopes B, Burmeister T, Gröger D, Sutton R, Venn NC, Cazzaniga G, Corral Abascal L, Tsaur G, Fechina L, Emerenciano M, Pombo-de-Oliveira MS, Lund-Aho T, Lundán T, Montonen M, Juvonen V, Zuna J, Trka J, Ballerini P, Lapillonne H, Van der Velden VHJ, Sonneveld E, Delabesse E, de Matos RRC, Silva MLM, Bomken S, Katsibardi K, Keernik M, Grardel N, Mason J, Price R, Kim J, Eckert C, Lo Nigro L, Bueno C, Menendez P, Zur Stadt U, Gameiro P, Sedék L, Szczepański T, Bidet A, Marcu V, Shichrur K, Izraeli S, Madsen HO, Schäfer BW, Kubetzko S, Kim R, Clappier E, Trautmann H, Brüggemann M, Archer P, Hancock J, Alten J, Möricke A, Stanulla M, Lentes J, Bergmann AK, Strehl S, Köhrer S, Nebral K, Dworzak MN, Haas OA, Arfeuille C, Caye-Eude A, Cavé H, Marschalek R. The KMT2A recombinome of acute leukemias in 2023. Leukemia 2023; 37:988-1005. [PMID: 37019990 PMCID: PMC10169636 DOI: 10.1038/s41375-023-01877-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023]
Abstract
Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5'-KMT2A, two patients had a 5'-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival.
Collapse
Affiliation(s)
- C Meyer
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
| | - P Larghero
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
| | - B Almeida Lopes
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - T Burmeister
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept. of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - D Gröger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept. of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - R Sutton
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - N C Venn
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - G Cazzaniga
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - L Corral Abascal
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - G Tsaur
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - L Fechina
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - M Emerenciano
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | | | - T Lund-Aho
- Laboratory of Clinical Genetics, Fimlab Laboratories, Tampere, Finland
| | - T Lundán
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - M Montonen
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - V Juvonen
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - J Zuna
- CLIP, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - J Trka
- CLIP, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - P Ballerini
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - H Lapillonne
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - V H J Van der Velden
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - E Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - E Delabesse
- Institut Universitaire du Cancer de Toulouse, Toulouse Cedex 9, France
| | - R R C de Matos
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - M L M Silva
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - S Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - K Katsibardi
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - M Keernik
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - N Grardel
- Department of Hematology, CHU Lille, France
| | - J Mason
- Northern Institute for Cancer Research, Newcastle University and the Great North Children's West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, United Kingdom
| | - R Price
- Northern Institute for Cancer Research, Newcastle University and the Great North Children's West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, United Kingdom
| | - J Kim
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
- Department of Laboratory Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - C Eckert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology/Hematology, Berlin, Germany
| | - L Lo Nigro
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico", Catania, Italy
| | - C Bueno
- Josep Carreras Leukemia Research Institute. Barcelona, Spanish Network for Advanced Therapies (RICORS-TERAV, ISCIII); Spanish Collaborative Cancer Network (CIBERONC. ISCIII); University of Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute. Barcelona, Spanish Network for Advanced Therapies (RICORS-TERAV, ISCIII); Spanish Collaborative Cancer Network (CIBERONC. ISCIII); Department of Biomedicine. University of Barcelona; and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - P Menendez
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico", Catania, Italy
| | - U Zur Stadt
- Pediatric Hematology and Oncology and CoALL Study Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P Gameiro
- Instituto Português de Oncologia, Departament of Hematology, Lisbon, Portugal
| | - L Sedék
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - T Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - A Bidet
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - V Marcu
- Hematology Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - K Shichrur
- Molecular Oncology Laboratory, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - S Izraeli
- Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H O Madsen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - B W Schäfer
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - S Kubetzko
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - R Kim
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, INSERM/CNRS U944/UMR7212, Institut de recherche Saint-Louis, Paris, France
| | - E Clappier
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, INSERM/CNRS U944/UMR7212, Institut de recherche Saint-Louis, Paris, France
| | - H Trautmann
- Laboratory for Specialized Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - M Brüggemann
- Laboratory for Specialized Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - P Archer
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, United Kingdom
| | - J Hancock
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, United Kingdom
| | - J Alten
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - A Möricke
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - M Stanulla
- Department of Pediatrics, MHH, Hanover, Germany
| | - J Lentes
- Institute of Human Genetics, Medical School Hannover, Hannover, Germany
| | - A K Bergmann
- Institute of Human Genetics, Medical School Hannover, Hannover, Germany
| | - S Strehl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - S Köhrer
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - K Nebral
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - M N Dworzak
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - O A Haas
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - C Arfeuille
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
| | - A Caye-Eude
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
- Université Paris Cité, Inserm U1131, Institut de recherche Saint-Louis, Paris, France
| | - H Cavé
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
- Université Paris Cité, Inserm U1131, Institut de recherche Saint-Louis, Paris, France
| | - R Marschalek
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany.
| |
Collapse
|
5
|
Heyn J, Heuschkel MA, Goettsch C. Mitochondrial-Derived Vesicles-Link to Extracellular Vesicles and Implications in Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24032637. [PMID: 36768960 PMCID: PMC9917113 DOI: 10.3390/ijms24032637] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are dynamic organelles regulating metabolism, cell death, and energy production. Therefore, maintaining mitochondrial health is critical for cellular homeostasis. Mitophagy and mitochondrial reorganization via fission and fusion are established mechanisms for ensuring mitochondrial quality. In recent years, mitochondrial-derived vesicles (MDVs) have emerged as a novel cellular response. MDVs are shed from the mitochondrial surface and can be directed to lysosomes or peroxisomes for intracellular degradation. MDVs may contribute to cardiovascular disease (CVD) which is characterized by mitochondrial dysfunction. In addition, evidence suggests that mitochondrial content is present in extracellular vesicles (EVs). Herein, we provide an overview of the current knowledge on MDV formation and trafficking. Moreover, we review recent findings linking MDV and EV biogenesis and discuss their role in CVD. Finally, we discuss the role of vesicle-mediated mitochondrial transfer and its potential cardioprotective effects.
Collapse
|
6
|
Deb S, Sun J. Endosomal Sorting Protein SNX27 and Its Emerging Roles in Human Cancers. Cancers (Basel) 2022; 15:cancers15010070. [PMID: 36612066 PMCID: PMC9818000 DOI: 10.3390/cancers15010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
SNX27 belongs to the sorting nexin (SNX) family of proteins that play a critical role in protein sorting and trafficking in the endocytosis pathway. This protein family is characterized by the presence of a Phox (PX) domain; however, SNX27 is unique in containing an additional PDZ domain. Recently, SNX27 has gained popularity as an important sorting protein that is associated with the retromer complex and mediates the recycling of internalized proteins from endosomes to the plasma membrane in a PDZ domain-dependent manner. Over 100 cell surface proteins have been identified as binding partners of the SNX27-retromer complex. However, the roles and underlying mechanisms governed by SNX27 in tumorigenesis remains to be poorly understood. Many of its known binding partners include several G-protein coupled receptors, such as β2-andrenergic receptor and parathyroid hormone receptor, are associated with multiple pathways implicated in oncogenic signaling and tumorigenesis. Additionally, SNX27 mediates the recycling of GLUT1 and the activation of mTORC1, both of which can regulate intracellular energy balance and promote cell survival and proliferation under conditions of nutrient deprivation. In this review, we summarize the structure and fundamental roles of SNX proteins, with a focus on SNX27, and provide the current evidence indicating towards the role of SNX27 in human cancers. We also discuss the gap in the field and future direction of SNX27 research. Insights into the emerging roles and mechanism of SNX27 in cancers will provide better development strategies to prevent and treat tumorigenesis.
Collapse
Affiliation(s)
- Shreya Deb
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois at Chicago (UIC) Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence: ; Tel.: +1-312-996-5020
| |
Collapse
|
7
|
Joseph BB, Edeen PT, Meadows S, Binti S, Fay DS. An unexpected role for the conserved ADAM-family metalloprotease ADM-2 in Caenorhabditis elegans molting. PLoS Genet 2022; 18:e1010249. [PMID: 35639786 PMCID: PMC9187072 DOI: 10.1371/journal.pgen.1010249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/10/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Molting is a widespread developmental process in which the external extracellular matrix (ECM), the cuticle, is remodeled to allow for organismal growth and environmental adaptation. Studies in the nematode Caenorhabditis elegans have identified a diverse set of molting-associated factors including signaling molecules, intracellular trafficking regulators, ECM components, and ECM-modifying enzymes such as matrix metalloproteases. C. elegans NEKL-2 and NEKL-3, two conserved members of the NEK family of protein kinases, are essential for molting and promote the endocytosis of environmental steroid-hormone precursors by the epidermis. Steroids in turn drive the cyclic induction of many genes required for molting. Here we report a role for the sole C. elegans ADAM–meltrin metalloprotease family member, ADM-2, as a mediator of molting. Loss of adm-2, including mutations that disrupt the metalloprotease domain, led to the strong suppression of molting defects in partial loss-of-function nekl mutants. ADM-2 is expressed in the epidermis, and its trafficking through the endo-lysosomal network was disrupted after NEKL depletion. We identified the epidermally expressed low-density lipoprotein receptor–related protein, LRP-1, as a candidate target of ADM-2 regulation. Whereas loss of ADM-2 activity led to the upregulation of apical epidermal LRP-1, ADM-2 overexpression caused a reduction in LRP-1 levels. Consistent with this, several mammalian ADAMs, including the meltrin ADAM12, have been shown to regulate mammalian LRP1 via proteolysis. In contrast to mammalian homologs, however, the regulation of LRP-1 by ADM-2 does not appear to involve the metalloprotease function of ADM-2, nor is proteolytic processing of LRP-1 strongly affected in adm-2 mutants. Our findings suggest a noncanonical role for an ADAM family member in the regulation of a lipoprotein-like receptor and lead us to propose that endocytic trafficking may be important for both the internalization of factors that promote molting as well as the removal of proteins that can inhibit the process. The molecular and cellular features of molting in nematodes share many similarities with cellular and developmental processes that occur in mammals. This includes the degradation and reorganization of extracellular matrix materials that surround cells, as well as the intracellular machineries that allow cells to sample and modify their environments. In the current study, we found an unexpected function for a conserved protein that cleaves other proteins on the external surface of cells. Rather than promoting molting through extracellular matrix reorganization, however, the ADM-2 protease appears to function as a negative regulator of molting. This observation can be explained in part by data showing that ADM-2 negatively regulates a cell surface receptor required for molting. Surprisingly, it appears to do so through a mechanism that does not involve proteolysis. Our data provide insights into the mechanisms controlling molting and link several conserved proteins to show how they function together during development.
Collapse
Affiliation(s)
- Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Phillip T. Edeen
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Sarina Meadows
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Shaonil Binti
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
8
|
Zhang Y, Long J, Ren J, Huang X, Zhong P, Wang B. Potential Molecular Biomarkers of Vestibular Schwannoma Growth: Progress and Prospects. Front Oncol 2021; 11:731441. [PMID: 34646772 PMCID: PMC8503266 DOI: 10.3389/fonc.2021.731441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Vestibular schwannomas (VSs, also known as acoustic neuromas) are relatively rare benign brain tumors stem from the Schwann cells of the eighth cranial nerve. Tumor growth is the paramount factor for neurosurgeons to decide whether to choose aggressive treatment approach or careful follow-up with regular magnetic resonance imaging (MRI), as surgery and radiation can introduce significant trauma and affect neurological function, while tumor enlargement during long-term follow-up will compress the adjacent nerves and tissues, causing progressive hearing loss, tinnitus and vertigo. Recently, with the deepening research of VS biology, some proteins that regulate merlin conformation changes, inflammatory cytokines, miRNAs, tissue proteins and cerebrospinal fluid (CSF) components have been proposed to be closely related to tumor volume increase. In this review, we discuss advances in the study of biomarkers that associated with VS growth, providing a reference for exploring the growth course of VS and determining the optimal treatment strategy for each patient.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfei Long
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Junwei Ren
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Huang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Zhong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Chou CW, Huang YK, Kuo TT, Liu JP, Sher YP. An Overview of ADAM9: Structure, Activation, and Regulation in Human Diseases. Int J Mol Sci 2020; 21:ijms21207790. [PMID: 33096780 PMCID: PMC7590139 DOI: 10.3390/ijms21207790] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
ADAM9 (A disintegrin and a metalloprotease 9) is a membrane-anchored protein that participates in a variety of physiological functions, primarily through the disintegrin domain for adhesion and the metalloprotease domain for ectodomain shedding of a wide variety of cell surface proteins. ADAM9 influences the developmental process, inflammation, and degenerative diseases. Recently, increasing evidence has shown that ADAM9 plays an important role in tumor biology. Overexpression of ADAM9 has been found in several cancer types and is correlated with tumor aggressiveness and poor prognosis. In addition, through either proteolytic or non-proteolytic pathways, ADAM9 promotes tumor progression, therapeutic resistance, and metastasis of cancers. Therefore, comprehensively understanding the mechanism of ADAM9 is crucial for the development of therapeutic anti-cancer strategies. In this review, we summarize the current understanding of ADAM9 in biological function, pathophysiological diseases, and various cancers. Recent advances in therapeutic strategies using ADAM9-related pathways are presented as well.
Collapse
Affiliation(s)
- Cheng-Wei Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
- Department of Medicine, Division of Hematology/Medical Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yu-Kai Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
| | - Ting-Ting Kuo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan;
| | - Jing-Pei Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2205-2121
| |
Collapse
|
10
|
Ubels J, Sonneveld P, van Vliet MH, de Ridder J. Gene Networks Constructed Through Simulated Treatment Learning can Predict Proteasome Inhibitor Benefit in Multiple Myeloma. Clin Cancer Res 2020; 26:5952-5961. [PMID: 32913136 DOI: 10.1158/1078-0432.ccr-20-0742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/27/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Proteasome inhibitors are widely used in treating multiple myeloma, but can cause serious side effects and response varies among patients. It is, therefore, important to gain more insight into which patients will benefit from proteasome inhibitors. EXPERIMENTAL DESIGN We introduce simulated treatment learned signatures (STLsig), a machine learning method to identify predictive gene expression signatures. STLsig uses genetically similar patients who have received an alternative treatment to model which patients will benefit more from proteasome inhibitors than from an alternative treatment. STLsig constructs gene networks by linking genes that are synergistic in their ability to predict benefit. RESULTS In a dataset of 910 patients with multiple myeloma, STLsig identified two gene networks that together can predict benefit to the proteasome inhibitor, bortezomib. In class "benefit," we found an HR of 0.47 (P = 0.04) in favor of bortezomib, while in class "no benefit," the HR was 0.91 (P = 0.68). Importantly, we observed a similar performance (HR class benefit, 0.46; P = 0.04) in an independent patient cohort. Moreover, this signature also predicts benefit for the proteasome inhibitor, carfilzomib, indicating it is not specific to bortezomib. No equivalent signature can be found when the genes in the signature are excluded from the analysis, indicating that they are essential. Multiple genes in the signature are linked to working mechanisms of proteasome inhibitors or multiple myeloma disease progression. CONCLUSIONS STLsig can identify gene signatures that could aid in treatment decisions for patients with multiple myeloma and provide insight into the biological mechanism behind treatment benefit.
Collapse
Affiliation(s)
- Joske Ubels
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands.,Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.,SkylineDx, Rotterdam, the Netherlands
| | - Pieter Sonneveld
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | - Jeroen de Ridder
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands. .,Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
11
|
Zhou Q, Huang T, Jiang Z, Ge C, Chen X, Zhang L, Zhao F, Zhu M, Chen T, Cui Y, Li H, Yao M, Li J, Tian H. Upregulation of SNX5 predicts poor prognosis and promotes hepatocellular carcinoma progression by modulating the EGFR-ERK1/2 signaling pathway. Oncogene 2019; 39:2140-2155. [DOI: 10.1038/s41388-019-1131-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
|
12
|
Tanigawa K, Maekawa M, Kiyoi T, Nakayama J, Kitazawa R, Kitazawa S, Semba K, Taguchi T, Akita S, Yoshida M, Ishimaru K, Watanabe Y, Higashiyama S. SNX9 determines the surface levels of integrin β1 in vascular endothelial cells: Implication in poor prognosis of human colorectal cancers overexpressing SNX9. J Cell Physiol 2019; 234:17280-17294. [PMID: 30784076 PMCID: PMC6617759 DOI: 10.1002/jcp.28346] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/17/2022]
Abstract
Angiogenesis, the formation of new blood vessels, is involved in a variety of diseases including the tumor growth. In response to various angiogenic stimulations, a number of proteins on the surface of vascular endothelial cells are activated to coordinate cell proliferation, migration, and spreading processes to form new blood vessels. Plasma membrane localization of these angiogenic proteins, which include vascular endothelial growth factor receptors and integrins, are warranted by intracellular membrane trafficking. Here, by using a siRNA library, we screened for the sorting nexin family that regulates intracellular trafficking and identified sorting nexin 9 (SNX9) as a novel angiogenic factor in human umbilical vein endothelial cells (HUVECs). SNX9 was essential for cell spreading on the Matrigel, and tube formation that mimics in vivo angiogenesis in HUVECs. SNX9 depletion significantly delayed the recycling of integrin β1, an essential adhesion molecule for angiogenesis, and reduced the surface levels of integrin β1 in HUVECs. Clinically, we showed that SNX9 protein was highly expressed in tumor endothelial cells of human colorectal cancer tissues. High-level expression of SNX9 messenger RNA significantly correlated with poor prognosis of the patients with colorectal cancer. These results suggest that SNX9 is an angiogenic factor and provide a novel target for the development of new antiangiogenic drugs.
Collapse
Affiliation(s)
- Kazufumi Tanigawa
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masashi Maekawa
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University
| | - Takeshi Kiyoi
- Division of Analytical Bio-medicine, Advanced Research Support Center, Ehime University
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University
| | - Riko Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine.,Division of Diagnostic Pathology, Ehime University Hospital
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University
| | - Satoshi Akita
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine
| | - Motohira Yoshida
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine
| | - Kei Ishimaru
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine
| | - Yuji Watanabe
- Department of Gastrointestinal Surgery and Surgical Oncology, Ehime University Graduate School of Medicine
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University
| |
Collapse
|
13
|
Oria VO, Lopatta P, Schmitz T, Preca BT, Nyström A, Conrad C, Bartsch JW, Kulemann B, Hoeppner J, Maurer J, Bronsert P, Schilling O. ADAM9 contributes to vascular invasion in pancreatic ductal adenocarcinoma. Mol Oncol 2019; 13:456-479. [PMID: 30556643 PMCID: PMC6360373 DOI: 10.1002/1878-0261.12426] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
A disintegrin and a metalloprotease (ADAM)‐9 is a metzincin cell‐surface protease with strongly elevated expression in solid tumors, including pancreatic ductal adenocarcinoma (PDAC). In this study, we performed immunohistochemistry (IHC) of a tissue microarray (TMA) to examine the expression of ADAM9 in a cohort of >100 clinically annotated PDAC cases. We report that ADAM9 is prominently expressed by PDAC tumor cells, and increased ADAM9 expression levels correlate with poor tumor grading (P = 0.027) and the presence of vasculature invasion (P = 0.017). We employed gene expression silencing to generate a loss‐of‐function system for ADAM9 in two established PDAC cell lines. In vitro analysis showed that loss of ADAM9 does not impede cellular proliferation and invasiveness in basement membrane. However, ADAM9 plays a crucial role in mediating cell migration and adhesion to extracellular matrix substrates such as fibronectin, tenascin, and vitronectin. This effect appears to depend on its catalytic activity. In addition, ADAM9 facilitates anchorage‐independent growth. In AsPC1 cells, but not in MiaPaCa‐2 cells, we noted a pronounced yet heterogeneous impact of ADAM9 on the abundance of various integrins, a process that we characterized as post‐translational regulation. Sprout formation of human umbilical vein endothelial cells (HUVECs) is promoted by ADAM9, as examined by transfer of cancer cell conditioned medium; this finding further supports a pro‐angiogenic role of ADAM9 expressed by PDAC cancer cells. Immunoblotting analysis of cancer cell conditioned medium highlighted that ADAM9 regulates the levels of angiogenic factors, including shed heparin‐binding EGF‐like growth factor (HB‐EGF). Finally, we carried out orthotopic seeding of either wild‐type AsPC‐1 cells or AsPC‐1 cells with silenced ADAM9 expression into murine pancreas. In this in vivo setting, ADAM9 was also found to foster angiogenesis without an impact on tumor cell proliferation. In summary, our results characterize ADAM9 as an important regulator in PDAC tumor biology with a strong pro‐angiogenic impact.
Collapse
Affiliation(s)
- Victor O Oria
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany
| | - Paul Lopatta
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany
| | - Tatjana Schmitz
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany
| | | | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Germany
| | - Catharina Conrad
- Department of Neurosurgery, Philipps University Marburg, Germany.,Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Birte Kulemann
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany
| | - Jens Hoeppner
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Germany
| | - Jochen Maurer
- Department of Gynecology, University Clinic RWTH, Aachen, Germany
| | - Peter Bronsert
- Faculty of Medicine, University of Freiburg, Germany.,Institute of Surgical Pathology, Medical Center - University of Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany.,Tumorbank Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Germany
| | - Oliver Schilling
- Faculty of Medicine, University of Freiburg, Germany.,Institute of Surgical Pathology, Medical Center - University of Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany.,Centre for Biological Signaling Studies BIOSS, University of Freiburg, Germany
| |
Collapse
|