1
|
Zhang P, Wu D, Zha X, Su S, Zhang Y, Wei Y, Xia L, Fan S, Peng X. Glutamine promotes the proliferation of intestinal stem cells via inhibition of TP53-induced glycolysis and apoptosis regulator promoter methylation in burned mice. BURNS & TRAUMA 2024; 12:tkae045. [PMID: 39328365 PMCID: PMC11427069 DOI: 10.1093/burnst/tkae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/08/2024] [Indexed: 09/28/2024]
Abstract
Background Intestinal stem cells (ISCs) play a pivotal role in maintaining intestinal homeostasis and facilitating the restoration of intestinal mucosal barrier integrity. Glutamine (Gln) is a crucial energy substrate in the intestine, promoting the proliferation of ISCs and mitigating damage to the intestinal mucosal barrier after burn injury. However, the underlying mechanism has not yet been fully elucidated. The objective of this study was to explore the mechanism by which Gln facilitates the proliferation of ISCs. Methods A mouse burn model was established to investigate the impact of Gln on intestinal function. Subsequently, crypts were isolated, and changes in TP53-induced glycolysis and apoptosis regulator (TIGAR) expression were assessed using real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, immunohistochemistry, and immunofluorescence. The effects of TIGAR on cell proliferation were validated through CCK-8, EdU, and clonogenicity assays. Furthermore, the effect of TIGAR on Yes-associated protein (YAP) nuclear translocation and ferroptosis was examined by western blotting and immunofluorescence staining. Finally, dot blot analysis and methylation-specific PCR were performed to evaluate the effect of Gln on TIGAR promoter methylation. Results The mRNA and protein levels of TIGAR decreased after burn injury, and supplementation with Gln increased the expression of TIGAR. TIGAR accelerates the nuclear translocation of YAP, thereby increasing the proliferation of ISCs. Concurrently, TIGAR promotes the synthesis of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione to suppress ferroptosis in ISCs. Subsequent investigations demonstrated that Gln inhibits TIGAR promoter methylation by increasing the expression of the demethylase ten-eleven translocation. This change increased TIGAR transcription, increased NADPH synthesis, and reduced oxidative stress, thereby facilitating the restoration of intestinal mucosal barrier integrity post-burn injury. Conclusions Our data confirmed the inhibitory effect of Gln on TIGAR promoter methylation, which facilitates YAP translocation into the nucleus and suppresses ferroptosis, ultimately promoting the proliferation of ISCs.
Collapse
Affiliation(s)
- Panyang Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Dan Wu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xule Zha
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Sen Su
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yajuan Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yan Wei
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lin Xia
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shijun Fan
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xi Peng
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
2
|
Wang D, Li Y, Yang H, Shen X, Shi X, Li C, Zhang Y, Liu X, Jiang B, Zhu X, Zhang H, Li X, Bai H, Yang Q, Gao W, Bai F, Ji Y, Chen Q, Ben J. Disruption of TIGAR-TAK1 alleviates immunopathology in a murine model of sepsis. Nat Commun 2024; 15:4340. [PMID: 38773142 PMCID: PMC11109194 DOI: 10.1038/s41467-024-48708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/11/2024] [Indexed: 05/23/2024] Open
Abstract
Macrophage-orchestrated inflammation contributes to multiple diseases including sepsis. However, the underlying mechanisms remain to be defined clearly. Here, we show that macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is up-regulated in murine sepsis models. When myeloid Tigar is ablated, sepsis induced by either lipopolysaccharide treatment or cecal ligation puncture in male mice is attenuated via inflammation inhibition. Mechanistic characterizations indicate that TIGAR directly binds to transforming growth factor β-activated kinase (TAK1) and promotes tumor necrosis factor receptor-associated factor 6-mediated ubiquitination and auto-phosphorylation of TAK1, in which residues 152-161 of TIGAR constitute crucial motif independent of its phosphatase activity. Interference with the binding of TIGAR to TAK1 by 5Z-7-oxozeaenol exhibits therapeutic effects in male murine model of sepsis. These findings demonstrate a non-canonical function of macrophage TIGAR in promoting inflammation, and confer a potential therapeutic target for sepsis by disruption of TIGAR-TAK1 interaction.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Yanxia Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Hao Yang
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiaoqi Shen
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaolin Shi
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Chenyu Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yongjing Zhang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Bin Jiang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hui Bai
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Yang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Gao
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Fang Bai
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yong Ji
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Qi Chen
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China.
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Qin C, Xie T, Yeh WW, Savas AC, Feng P. Metabolic Enzymes in Viral Infection and Host Innate Immunity. Viruses 2023; 16:35. [PMID: 38257735 PMCID: PMC10820379 DOI: 10.3390/v16010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic enzymes are central players for cell metabolism and cell proliferation. These enzymes perform distinct functions in various cellular processes, such as cell metabolism and immune defense. Because viral infections inevitably trigger host immune activation, viruses have evolved diverse strategies to blunt or exploit the host immune response to enable viral replication. Meanwhile, viruses hijack key cellular metabolic enzymes to reprogram metabolism, which generates the necessary biomolecules for viral replication. An emerging theme arising from the metabolic studies of viral infection is that metabolic enzymes are key players of immune response and, conversely, immune components regulate cellular metabolism, revealing unexpected communication between these two fundamental processes that are otherwise disjointed. This review aims to summarize our present comprehension of the involvement of metabolic enzymes in viral infections and host immunity and to provide insights for potential antiviral therapy targeting metabolic enzymes.
Collapse
Affiliation(s)
- Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
4
|
Roche ME, Ko YH, Domingo-Vidal M, Lin Z, Whitaker-Menezes D, Birbe RC, Tuluc M, Győrffy B, Caro J, Philp NJ, Bartrons R, Martinez-Outschoorn U. TP53 Induced Glycolysis and Apoptosis Regulator and Monocarboxylate Transporter 4 drive metabolic reprogramming with c-MYC and NFkB activation in breast cancer. Int J Cancer 2023; 153:1671-1683. [PMID: 37497753 PMCID: PMC11532994 DOI: 10.1002/ijc.34660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
Breast cancer is composed of metabolically coupled cellular compartments with upregulation of TP53 Induced Glycolysis and Apoptosis Regulator (TIGAR) in carcinoma cells and loss of caveolin 1 (CAV1) with upregulation of monocarboxylate transporter 4 (MCT4) in fibroblasts. The mechanisms that drive metabolic coupling are poorly characterized. The effects of TIGAR on fibroblast CAV1 and MCT4 expression and breast cancer aggressiveness was studied using coculture and conditioned media systems and in-vivo. Also, the role of cytokines in promoting tumor metabolic coupling via MCT4 on cancer aggressiveness was studied. TIGAR downregulation in breast carcinoma cells reduces tumor growth. TIGAR overexpression in carcinoma cells drives MCT4 expression and NFkB activation in fibroblasts. IL6 and TGFB drive TIGAR upregulation in carcinoma cells, reduce CAV1 and increase MCT4 expression in fibroblasts. Tumor growth is abrogated in the presence of MCT4 knockout fibroblasts and environment. We discovered coregulation of c-MYC and TIGAR in carcinoma cells driven by lactate. Metabolic coupling primes the tumor microenvironment allowing for production, uptake and utilization of lactate. In sum, aggressive breast cancer is dependent on metabolic coupling.
Collapse
Affiliation(s)
- Megan E. Roche
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ying-Hui Ko
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Marina Domingo-Vidal
- Immunology, Microenvironment & Metastasis Program, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Zhao Lin
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ruth C. Birbe
- Department of Pathology, Cooper University Hospital, Camden, New Jersey, USA
| | - Madalina Tuluc
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
- Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | - Jaime Caro
- Department of Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nancy J. Philp
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ramon Bartrons
- Department of Physiological Sciences, University of Barcelona, Barcelona, Spain
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Gao L, Zhang W, Shi XH, Chang X, Han Y, Liu C, Jiang Z, Yang X. The mechanism of linear ubiquitination in regulating cell death and correlative diseases. Cell Death Dis 2023; 14:659. [PMID: 37813853 PMCID: PMC10562472 DOI: 10.1038/s41419-023-06183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Linear ubiquitination is a specific post-translational modification in which ubiquitin is linked through M1 residue to form multiple types of polyubiquitin chains on substrates in order to regulate cellular processes. LUBAC comprised by HOIP, HOIL-1L, and SHARPIN as a sole E3 ligase catalyzes the generation of linear ubiquitin chains, and it is simultaneously adjusted by deubiquitinases such as OTULIN and CYLD. Several studies have shown that gene mutation of linear ubiquitination in mice accompanied by different modalities of cell death would develop relative diseases. Cell death is a fundamental physiological process and responsible for embryonic development, organ maintenance, and immunity response. Therefore, it is worth speculating that linear ubiquitin mediated signaling pathway would participate in different diseases. The relative literature search was done from core collection of electronic databases such as Web of Science, PubMed, and Google Scholar using keywords about main regulators of linear ubiquitination pathway. Here, we summarize the regulatory mechanism of linear ubiquitination on cellular signaling pathway in cells with apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis. Intervening generation of linear ubiquitin chains in relative signaling pathway to regulate cell death might provide novel therapeutic insights for various human diseases.
Collapse
Affiliation(s)
- Liyuan Gao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Wei Zhang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xiao Hui Shi
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xiaoyan Chang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yi Han
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Chundi Liu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Zhitao Jiang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Xiang Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| |
Collapse
|
6
|
Selvaraj C, Ramalingam KR, Velmurugan D, Singh SK. Transcriptional regulatory mechanisms and signaling networks in cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:1-20. [PMID: 36858731 DOI: 10.1016/bs.apcsb.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is a general term that refers to a wide range of illnesses that are characterized by the development of aberrant cells that have the capacity to divide uncontrollably, invade, and harm healthy tissue. It is caused by both genetic and epigenetic changes that suppress abnormal proliferation and prevent cells from surviving outside of their normal niches. Complex protein networks are responsible for the development of a suitable environment via multiple cells signaling pathways. The study of these pathways is essential for analysing network context and developing novel cancer therapies. Transcription factors (TFs) are actively involved in gene expression and maintain the combinatorial on-and-off states of the gene. In addition, the TFs regulate cell identity and state; these TFs cooperate to establish cell-type-specific gene expression. In this chapter, we describe the number of transcription factors and their role in the progression of cancer. The knowledge of transcriptional factors and their network is crucial for emphasizing the specific transcriptional addiction and for designing new anticancer therapies.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
| | - Karthik Raja Ramalingam
- Department of Biotechnology, Division of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Devadasan Velmurugan
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
7
|
Inhibition of TIGAR Increases Exogenous p53 and Cisplatin Combination Sensitivity in Lung Cancer Cells by Regulating Glycolytic Flux. Int J Mol Sci 2022; 23:ijms232416034. [PMID: 36555672 PMCID: PMC9786130 DOI: 10.3390/ijms232416034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The metabolism and apoptosis of tumor cells are important factors that increase their sensitivity to chemotherapeutic drugs. p53 and cisplatin not only induce tumor cell apoptosis, but also regulate the tumor cell metabolism. The TP53-induced glycolysis and apoptosis regulator (TIGAR) can inhibit glycolysis and promote more glucose metabolism in the pentose phosphate pathway. We speculate that the regulation of the TIGAR by the combination therapy of p53 and cisplatin plays an important role in increasing the sensitivity of tumor cells to cisplatin. In this study, we found that the combined treatment of p53 and cisplatin was able to inhibit the mitochondrial function, promote mitochondrial pathway-induced apoptosis, and increase the sensitivity. Furthermore, the expression of the TIGAR was inhibited after a combined p53 and cisplatin treatment, the features of the TIGAR that regulate the pentose phosphate pathway were inhibited, the glucose flux shifted towards glycolysis, and the localization of the complex of the TIGAR and Hexokinase 2 (HK2) on the mitochondria was also reduced. Therefore, the combined treatment of p53 and cisplatin may modulate a glycolytic flux through the TIGAR, altering the cellular metabolic patterns while increasing apoptosis. Taken together, our findings reveal that the TIGAR may serve as a potential therapeutic target to increase the sensitivity of lung cancer A549 cells to cisplatin.
Collapse
|
8
|
Huang B, Lang X, Li X. The role of TIGAR in nervous system diseases. Front Aging Neurosci 2022; 14:1023161. [DOI: 10.3389/fnagi.2022.1023161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) mainly regulates pentose phosphate pathway by inhibiting glycolysis, so as to synthesize ribose required by DNA, promote DNA damage repair and cell proliferation, maintain cell homeostasis and avoid body injury. Its physiological functions include anti-oxidative stress, reducing inflammation, maintaining mitochondrial function, inhibiting apoptosis, reducing autophagy etc. This paper reviews the research of TIGAR in neurological diseases, including stroke, Parkinson’s disease (PD), Alzheimer’s disease (AD), seizures and brain tumors, aiming to provide reference for the development of new therapeutic targets.
Collapse
|
9
|
Campana S, Riesgo A, Jongepier E, Fuss J, Muyzer G, de Goeij JM. Meta-transcriptomic comparison of two sponge holobionts feeding on coral- and macroalgal-dissolved organic matter. BMC Genomics 2022; 23:674. [PMID: 36175840 PMCID: PMC9520939 DOI: 10.1186/s12864-022-08893-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sponge holobionts (i.e., the host and its associated microbiota) play a key role in the cycling of dissolved organic matter (DOM) in marine ecosystems. On coral reefs, an ecological shift from coral-dominated to algal-dominated ecosystems is currently occurring. Given that benthic corals and macroalgae release different types of DOM, in different abundances and with different bioavailability to sponge holobionts, it is important to understand how the metabolic activity of the host and associated microbiota change in response to the exposure to both DOM sources. Here, we look at the differential gene expression of two sponge holobionts 6 hours after feeding on naturally sourced coral- and macroalgal-DOM using RNA sequencing and meta-transcriptomic analysis. Results We found a slight, but significant differential gene expression in the comparison between the coral- and macroalgal-DOM treatments in both the high microbial abundance sponge Plakortis angulospiculatus and the low microbial abundance sponge Haliclona vansoesti. In the hosts, processes that regulate immune response, signal transduction, and metabolic pathways related to cell proliferation were elicited. In the associated microbiota carbohydrate metabolism was upregulated in both treatments, but coral-DOM induced further lipid and amino acids biosynthesis, while macroalgal-DOM caused a stress response. These differences could be driven by the presence of distinct organic macronutrients in the two DOM sources and of small pathogens or bacterial virulence factors in the macroalgal-DOM. Conclusions This work provides two new sponge meta-transcriptomes and a database of putative genes and genetic pathways that are involved in the differential processing of coral- versus macroalgal-DOM as food source to sponges with high and low abundances of associated microbes. These pathways include carbohydrate metabolism, signaling pathways, and immune responses. However, the differences in the meta-transcriptomic responses of the sponge holobionts after 6 hours of feeding on the two DOM sources were small. Longer-term responses to both DOM sources should be assessed to evaluate how the metabolism and the ecological function of sponges will be affected when reefs shift from coral towards algal dominance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08893-y.
Collapse
Affiliation(s)
- Sara Campana
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands.
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Evelien Jongepier
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands
| | - Janina Fuss
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94240, 1090, Amsterdam, GE, Netherlands.,CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao
| |
Collapse
|
10
|
Capece D, Verzella D, Flati I, Arboretto P, Cornice J, Franzoso G. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol 2022; 43:757-775. [PMID: 35965153 DOI: 10.1016/j.it.2022.07.004] [Citation(s) in RCA: 256] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
The procurement and management of nutrients and ability to fight infections are fundamental requirements for survival. These defense responses are bioenergetically costly, requiring the immune system to balance protection against pathogens with the need to maintain metabolic homeostasis. NF-κB transcription factors are central regulators of immunity and inflammation. Over the last two decades, these factors have emerged as a pivotal node coordinating the immune and metabolic systems in physiology and the etiopathogenesis of major threats to human health, including cancer, autoimmunity, chronic inflammation, and others. In this review, we discuss recent advances in understanding how NF-κB-dependent metabolic programs control inflammation, metabolism, and immunity and how improved knowledge of them may lead to better diagnostics and therapeutics for widespread human diseases.
Collapse
Affiliation(s)
- Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
11
|
He X, Zeng H, Cantrell AC, Williams QA, Chen JX. Knockout of TIGAR enhances myocardial phosphofructokinase activity and preserves diastolic function in heart failure. J Cell Physiol 2022; 237:3317-3327. [PMID: 35621078 PMCID: PMC9378637 DOI: 10.1002/jcp.30790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/11/2022] [Indexed: 11/06/2022]
Abstract
Hypertension is an important risk factor in the pathogenesis of diastolic dysfunction. Growing evidence indicates that glucose metabolism plays an essential role in diastolic dysfunction. TP53-induced glycolysis and apoptosis regulator (TIGAR) has been shown to regulate glucose metabolism and heart failure (HF). In the present study, we investigated the role of TIGAR in diastolic function and cardiac fibrosis during pressure overload (PO)-induced HF. WT mice subjected to transverse aortic constriction (TAC), a commonly used method to induce diastolic dysfunction, exhibited diastolic dysfunction as evidenced by increased E/A ratio and E/E' ratio when compared to its sham controls. This was accompanied by increased cardiac interstitial fibrosis. In contrast, the knockout of TIGAR attenuated PO-induced diastolic dysfunction and interstitial fibrosis. Mechanistically, the levels of glucose transporter Glut-1, Glut-4, and key glycolytic enzyme phosphofructokinase 1 (PFK-1) were significantly elevated in TIGAR KO subjected to TAC as compared to that of WT mice. Knockout of TIGAR significantly increased fructose 2,6-bisphosphate levels and phosphofructokinase activity in mouse hearts. In addition, PO resulted in a significant increase in perivascular fibrosis and endothelial activation in the WT mice, but not in the TIGAR KO mice. Our present study suggests a necessary role of TIGAR-mediated glucose metabolism in PO-induced cardiac fibrosis and diastolic dysfunction.
Collapse
Affiliation(s)
- Xiaochen He
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Aubrey C Cantrell
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Quinesha A Williams
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
12
|
Tang Y, Zong H, Kwon H, Qiu Y, Pessin JB, Wu L, Buddo KA, Boykov I, Schmidt CA, Lin CT, Neufer PD, Schwartz GJ, Kurland IJ, Pessin J. TIGAR deficiency enhances skeletal muscle thermogenesis by increasing neuromuscular junction cholinergic signaling. eLife 2022; 11:73360. [PMID: 35254259 PMCID: PMC8947760 DOI: 10.7554/elife.73360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Cholinergic and sympathetic counter-regulatory networks control numerous physiological functions, including learning/memory/cognition, stress responsiveness, blood pressure, heart rate, and energy balance. As neurons primarily utilize glucose as their primary metabolic energy source, we generated mice with increased glycolysis in cholinergic neurons by specific deletion of the fructose-2,6-phosphatase protein TIGAR. Steady-state and stable isotope flux analyses demonstrated increased rates of glycolysis, acetyl-CoA production, acetylcholine levels, and density of neuromuscular synaptic junction clusters with enhanced acetylcholine release. The increase in cholinergic signaling reduced blood pressure and heart rate with a remarkable resistance to cold-induced hypothermia. These data directly demonstrate that increased cholinergic signaling through the modulation of glycolysis has several metabolic benefits particularly to increase energy expenditure and heat production upon cold exposure.
Collapse
Affiliation(s)
- Yan Tang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Haihong Zong
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Hyokjoon Kwon
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Yunping Qiu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Jacob B Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Licheng Wu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Katherine A Buddo
- Department of Physiology, East Carolina University, Greenville, United States
| | - Ilya Boykov
- Department of Physiology, East Carolina University, Greenville, United States
| | - Cameron A Schmidt
- Department of Physiology, East Carolina University, Greenville, United States
| | - Chien-Te Lin
- Department of Physiology, East Carolina University, Greenville, United States
| | - P Darrell Neufer
- Department of Physiology, East Carolina University, Greenville, United States
| | - Gary J Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Irwin J Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| | - Jeffrey Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
13
|
Structure, regulation, and biological functions of TIGAR and its role in diseases. Acta Pharmacol Sin 2021; 42:1547-1555. [PMID: 33510458 PMCID: PMC8463536 DOI: 10.1038/s41401-020-00588-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/22/2020] [Indexed: 02/02/2023]
Abstract
TIGAR (TP53-induced glycolysis and apoptosis regulator) is the downstream target gene of p53, contains a functional sequence similar to 6-phosphofructose kinase/fructose-2, 6-bisphosphatase (PFKFB) bisphosphatase domain. TIGAR is mainly located in the cytoplasm; in response to stress, TIGAR is translocated to nucleus and organelles, including mitochondria and endoplasmic reticulum to regulate cell function. P53 family members (p53, p63, and p73), some transcription factors (SP1 and CREB), and noncoding miRNAs (miR-144, miR-885-5p, and miR-101) regulate the transcription of TIGAR. TIGAR mainly functions as fructose-2,6-bisphosphatase to hydrolyze fructose-1,6-diphosphate and fructose-2,6-diphosphate to inhibit glycolysis. TIGAR in turn facilitates pentose phosphate pathway flux to produce nicotinamide adenine dinucleotide phosphate (NADPH) and ribose, thereby promoting DNA repair, and reducing intracellular reactive oxygen species. TIGAR thus maintains energy metabolism balance, regulates autophagy and stem cell differentiation, and promotes cell survival. Meanwhile, TIGAR also has a nonenzymatic function and can interact with retinoblastoma protein, protein kinase B, nuclear factor-kappa B, hexokinase 2, and ATP5A1 to mediate cell cycle arrest, inflammatory response, and mitochondrial protection. TIGAR might be a potential target for the prevention and treatment of cardiovascular and neurological diseases, as well as cancers.
Collapse
|
14
|
Li QQ, Li JY, Zhou M, Qin ZH, Sheng R. Targeting neuroinflammation to treat cerebral ischemia - The role of TIGAR/NADPH axis. Neurochem Int 2021; 148:105081. [PMID: 34082063 DOI: 10.1016/j.neuint.2021.105081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/24/2021] [Accepted: 05/22/2021] [Indexed: 01/30/2023]
Abstract
Cerebral ischemia is a disease of ischemic necrosis of brain tissue caused by intracranial artery stenosis or occlusion and cerebral artery embolization. Neuroinflammation plays an important role in the pathophysiology of cerebral ischemia. Microglia, astrocytes, leukocytes and other cells that release a variety of inflammatory factors involved in neuroinflammation may play a damaging or protective role during the process of cerebral ischemia. TP53-induced glycolysis and apoptotic regulators (TIGAR) may facilitate the production of nicotinamide adenine dinucleotide phosphoric acid (NADPH) via the pentose phosphate pathway (PPP) to inhibit oxidative stress and neuroinflammation. TIGAR can also directly inhibit NF-κB to inhibit neuroinflammation. TIGAR thus protect against cerebral ischemic injury. Exogenous NADPH can inhibit neuroinflammation by inhibiting oxidative stress and regulating a variety of signals. However, since NADPH oxidase (NOX) may use NADPH as a substrate to generate reactive oxygen species (ROS) to mediate neuroinflammation, the combination of NADPH and NOX inhibitors may produce more powerful anti-neuroinflammatory effects. Here, we review the cells and regulatory signals involved in neuroinflammation during cerebral ischemia, and discuss the possible mechanisms of targeting neuroinflammation in the treatment of cerebral ischemia with TIGAR/NADPH axis, so as to provide new ideas for the prevention and treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jia-Ying Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Ming Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Jahan AS, Elbæk CR, Damgaard RB. Met1-linked ubiquitin signalling in health and disease: inflammation, immunity, cancer, and beyond. Cell Death Differ 2021; 28:473-492. [PMID: 33441937 DOI: 10.1038/s41418-020-00676-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
Post-translational modification of proteins with ubiquitin (ubiquitination) provides a rapid and versatile mechanism for regulating cellular signalling systems. Met1-linked (or 'linear') ubiquitin chains have emerged as a key regulatory signal that controls cell death, immune signalling, and other vital cellular functions. The molecular machinery that assembles, senses, and disassembles Met1-linked ubiquitin chains is highly specific. In recent years, the thorough biochemical and genetic characterisation of the enzymes and proteins of the Met1-linked ubiquitin signalling machinery has paved the way for substantial advances in our understanding of how Met1-linked ubiquitin chains control cell signalling and biology. Here, we review current knowledge and recent insights into the role of Met1-linked ubiquitin chains in cell signalling with an emphasis on their role in disease biology. Met1-linked ubiquitin has potent regulatory functions in immune signalling, NF-κB transcription factor activation, and cell death. Importantly, mounting evidence shows that dysregulation of Met1-linked ubiquitin signalling is associated with multiple human diseases, including immune disorders, cancer, and neurodegeneration. We discuss the latest evidence on the cellular function of Met1-linked ubiquitin in the context of its associated diseases and highlight new emerging roles of Met1-linked ubiquitin chains in cell signalling, including regulation of protein quality control and metabolism.
Collapse
Affiliation(s)
- Akhee Sabiha Jahan
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Camilla Reiter Elbæk
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
16
|
Sun J, Xu X, Huang X, Ji S, Bian C, Ji H. Nuclear factor-κB subunit p65 is involved in lipopolysaccharide-induced lipid accumulation via regulating DGAT1b in Ctenopharyngodon idellus kidney cells. FISH & SHELLFISH IMMUNOLOGY 2020; 105:71-77. [PMID: 32585360 DOI: 10.1016/j.fsi.2020.05.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Lipopolysaccharide (LPS) can promote the accumulation of triglycerides (TGs) in CIK (Ctenopharyngodon idellus kidney) cells, but the underlying mechanism is unclear. In this study, two genes involved TG synthesis, DGAT1a and DGAT1b, were isolated and characterized from grass carp Ctenopharyngodon idella, which encode peptides of 498 and 501 amino acids, respectively. Phylogenetic and synteny analyses indicated that DGAT1a and DGAT1b could have originated from the teleost-specific genome duplication event. Analysis of the exon-intron structures clarified that genomic structures of all DGAT1 proteins are conserved in vertebrates. DGAT1a mRNA was highly expressed in gut, adipose tissue and heart, while DGAT1b mRNA was highly expressed in liver and kidney. After LPS treatment, only expression of DGAT1b was up-regulated and knockdown of DGAT1b reduced the content of TG, suggesting that DGAT1b is involved in LPS-induced lipid accumulation. To explore the mechanism underlying the transcriptional regulation of DGAT1b in response to LPS, we cloned DGAT1b promoter sequence. Its promoter sequence consists of IRF7, RelA (p65) and RelB binding elements. Dual luciferase assay and q-PCR suggested that the promoter of DGAT1b can be activated by the overexpression of p65, but cannot be triggered by IRF7 and RelB. Mutational analysis shows that the potential p65 binding sites may locate in the region -111/-100 bp of the DGAT1b promoter. These results indicated that DGAT1b is the target gene of NF-κB p65. Finally, inhibiting p65 effectively decreased LPS-induced lipid accumulation. Taken together, we demonstrate that NF-κB p65 takes part in the lipid accumulation by regulating DGAT1b-induced TG synthesis in LPS signalling in CIK cells. The finding that NF-κB p65 links LPS signalling and TG synthesis adds to our growing appreciation of the interplay between immunity and lipid metabolism in fish.
Collapse
Affiliation(s)
- Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xinxin Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaocheng Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shanghong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chenchen Bian
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
17
|
Chandel V, Raj S, Kumar P, Gupta S, Dhasmana A, Kesari KK, Ruokolainen J, Mehra P, Das BC, Kamal MA, Kumar D. Metabolic regulation in HPV associated head and neck squamous cell carcinoma. Life Sci 2020; 258:118236. [PMID: 32795537 DOI: 10.1016/j.lfs.2020.118236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/25/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Cancer cells exhibit distinct energy metabolic pathways due to multiple oncogenic events. In normoxia condition, the anaerobic glycolysis (Warburg effect) is highly observed in head and neck squamous cell carcinoma (HNSCC). HNSCC is associated with smoking, chewing tobacco, consumption of alcohol or Human Papillomavirus (HPV) infection primarily HPV16. In recent years, the correlation of HPV with HNSCC has significantly expanded. Despite the recent advancement in therapeutic approaches, the rate of HPV infected HNSCC has significantly increased in the last few years, specifically, in lower middle-income countries. The oncoproteins of High-risk Human Papillomavirus (HR-HPV), E6 and E7, alter the metabolic phenotype in HNSCC, which is distinct from non-HPV associated HNSCC. These oncoproteins, modulate the cell cycle and metabolic signalling through interacting with tumor suppressor proteins, p53 and pRb. Since, metabolic alteration represents a major hallmark for tumorigenesis, HPV acts as a source of biomarker linked to cancer progression in HNSCC. The dependency of cancer cells to specific nutrients and alteration of various metabolic associated genes may provide a unique opportunity for pharmacological intervention in HPV infected HNSCC. In this review, we have discussed the molecular mechanism (s) and metabolic regulation in HNSCC depending on the HPV status. We have also discussed the possible potential therapeutic approaches for HPV associated HNSCC through targeting metabolic pathways.
Collapse
Affiliation(s)
- Vaishali Chandel
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Sibi Raj
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Prabhat Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Shilpi Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Anupam Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jolly Grant, Doiwala, Dehradun 248016, India; Department of Immunology and Microbiology, School of Medicine, University of Rio Grande Valley, McAllen, TX, USA
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 02150, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo 02150, Finland
| | - Pravesh Mehra
- Department of Oral and Maxillofacial surgery, Lady Hardinge Medical College, New Delhi, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, NSW, Australia
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University UttarPradesh, Sec 125, Noida 201303, India.
| |
Collapse
|
18
|
Kracht M, Müller-Ladner U, Schmitz ML. Mutual regulation of metabolic processes and proinflammatory NF-κB signaling. J Allergy Clin Immunol 2020; 146:694-705. [PMID: 32771559 DOI: 10.1016/j.jaci.2020.07.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022]
Abstract
The nuclear factor kappa B (NF-κB) signaling system, a key regulator of immunologic processes, also affects a plethora of metabolic changes associated with inflammation and the immune response. NF-κB-regulating signaling cascades, in concert with NF-κB-mediated transcriptional events, control the metabolism at several levels. NF-κB modulates apical components of metabolic processes including metabolic hormones such as insulin and glucagon, the cellular master switches 5' AMP-activated protein kinase and mTOR, and also numerous metabolic enzymes and their respective regulators. Vice versa, metabolic enzymes and their products also exert multilevel control of NF-κB activity, thereby creating a highly connected regulatory network. These insights have resulted in the identification of the noncanonical IκB kinase kinases IκB kinase ɛ and TBK1, which are upregulated by overnutrition, and may therefore be suitable potential therapeutic targets for metabolic syndromes. An inhibitor interfering with the activity of both kinases reduces obesity-related metabolic dysfunctions in mouse models and the encouraging results from a recent clinical trial indicate that targeting these NF-κB pathway components improves glucose homeostasis in a subset of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Michael Kracht
- Rudolf Buchheim-Institute of Pharmacology, Justus-Liebig-University, Giessen, Germany
| | - Ulf Müller-Ladner
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University, Campus Kerckhoff, Bad Nauheim, Germany
| | | |
Collapse
|
19
|
Norden E, Heiss EH. Urolithin A gains in antiproliferative capacity by reducing the glycolytic potential via the p53/TIGAR axis in colon cancer cells. Carcinogenesis 2019; 40:93-101. [PMID: 30418550 PMCID: PMC6412115 DOI: 10.1093/carcin/bgy158] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/16/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022] Open
Abstract
Polyphenols have shown promising bioactivity in experimental in vitro and in vivo models for cancer chemoprevention. However, consumed orally, they are often transformed by gut microbes into new active principles with so far incompletely deciphered molecular mechanisms. Here, enterolacton, S-equol and urolithin A as representatives of metabolites of lignans, isoflavones and ellagitannins, respectively, were examined for their impact on HCT116 colon cancer cell growth, cooperativity with oxaliplatin and p53 dependency in vitro. Whereas enterolacton and S-equol (≤60 µM) did not elicit growth inhibition or positive cooperativity with oxaliplatin, urolithin A showed an IC50 value of 19 µM (72 h) and synergism with oxaliplatin. Urolithin A induced p53 stabilization and p53 target gene expression, and absence of p53 significantly dampened the antiproliferative effect of urolithin A (IC50(p53-/-) = 38 µM). P53 was dispensable for the G2/M arrest in HCT116 cells but required for induction of a senescence-like phenotype upon long-term exposure and for the observed synergism with oxaliplatin. Moreover, extracellular flux analyses and knockdown approaches uncovered a reduced glycolytic potential via the p53/TIGAR axis which was linked to the higher susceptibility of wildtype cells to urolithin A. Overall, the p53 status turned out to be an important determinant for the potential benefit of dietary ellagitannins in cancer chemoprevention or use in adjuvant therapy.
Collapse
Affiliation(s)
- Elisabeth Norden
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Bartrons R, Simon-Molas H, Rodríguez-García A, Castaño E, Navarro-Sabaté À, Manzano A, Martinez-Outschoorn UE. Fructose 2,6-Bisphosphate in Cancer Cell Metabolism. Front Oncol 2018; 8:331. [PMID: 30234009 PMCID: PMC6131595 DOI: 10.3389/fonc.2018.00331] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/01/2018] [Indexed: 01/28/2023] Open
Abstract
For a long time, pioneers in the field of cancer cell metabolism, such as Otto Warburg, have focused on the idea that tumor cells maintain high glycolytic rates even with adequate oxygen supply, in what is known as aerobic glycolysis or the Warburg effect. Recent studies have reported a more complex situation, where the tumor ecosystem plays a more critical role in cancer progression. Cancer cells display extraordinary plasticity in adapting to changes in their tumor microenvironment, developing strategies to survive and proliferate. The proliferation of cancer cells needs a high rate of energy and metabolic substrates for biosynthesis of biomolecules. These requirements are met by the metabolic reprogramming of cancer cells and others present in the tumor microenvironment, which is essential for tumor survival and spread. Metabolic reprogramming involves a complex interplay between oncogenes, tumor suppressors, growth factors and local factors in the tumor microenvironment. These factors can induce overexpression and increased activity of glycolytic isoenzymes and proteins in stromal and cancer cells which are different from those expressed in normal cells. The fructose-6-phosphate/fructose-1,6-bisphosphate cycle, catalyzed by 6-phosphofructo-1-kinase/fructose 1,6-bisphosphatase (PFK1/FBPase1) isoenzymes, plays a key role in controlling glycolytic rates. PFK1/FBpase1 activities are allosterically regulated by fructose-2,6-bisphosphate, the product of the enzymatic activity of the dual kinase/phosphatase family of enzymes: 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFKFB1-4) and TP53-induced glycolysis and apoptosis regulator (TIGAR), which show increased expression in a significant number of tumor types. In this review, the function of these isoenzymes in the regulation of metabolism, as well as the regulatory factors modulating their expression and activity in the tumor ecosystem are discussed. Targeting these isoenzymes, either directly or by inhibiting their activating factors, could be a promising approach for treating cancers.
Collapse
Affiliation(s)
- Ramon Bartrons
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Helga Simon-Molas
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Ana Rodríguez-García
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Esther Castaño
- Centres Científics i Tecnològics, Universitat de Barcelona, Catalunya, Spain
| | - Àurea Navarro-Sabaté
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | - Anna Manzano
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Universitat de Barcelona, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalunya, Spain
| | | |
Collapse
|