1
|
Ogino N, Leite MF, Guerra MT, Kruglov E, Asashima H, Hafler DA, Ito T, Pereira JP, Peiffer BJ, Sun Z, Ehrlich BE, Nathanson MH. Neutrophils insert elastase into hepatocytes to regulate calcium signaling in alcohol-associated hepatitis. J Clin Invest 2024; 134:e171691. [PMID: 38916955 PMCID: PMC11324315 DOI: 10.1172/jci171691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Neutrophil infiltration occurs in a variety of liver diseases, but it is unclear how neutrophils and hepatocytes interact. Neutrophils generally use granule proteases to digest phagocytosed bacteria and foreign substances or neutralize them in neutrophil extracellular traps. In certain pathological states, granule proteases play a destructive role against the host as well. More recently, nondestructive actions of neutrophil granule proteins have been reported, such as modulation of tissue remodeling and metabolism. Here, we report a completely different mechanism by which neutrophils act nondestructively, by inserting granules directly into hepatocytes. Specifically, elastase-containing granules were transferred to hepatocytes where elastase selectively degraded intracellular calcium channels to reduce cell proliferation without cytotoxicity. In response, hepatocytes increased expression of Serpin E2 and A3, which inhibited elastase activity. Elastase insertion was seen in patient specimens of alcohol-associated hepatitis, and the relationship between elastase-mediated ITPR2 degradation and reduced cell proliferation was confirmed in mouse models. Moreover, neutrophils from patients with alcohol-associated hepatitis were more prone to degranulation and more potent in reducing calcium channel expression than neutrophils from healthy individuals. This nondestructive and reversible action on hepatocytes defines a previously unrecognized role for neutrophils in the transient regulation of epithelial calcium signaling mechanisms.
Collapse
Affiliation(s)
- Noriyoshi Ogino
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - M. Fatima Leite
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- INCT - NanoBiofar – Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mateus T. Guerra
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emma Kruglov
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | - Takeshi Ito
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - João P. Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brandon J. Peiffer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barbara E. Ehrlich
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Michael H. Nathanson
- Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Song Y, Uchida H, Sharipol A, Piraino L, Mereness JA, Ingalls MH, Rebhahn J, Newlands SD, DeLouise LA, Ovitt CE, Benoit DSW. Development of a functional salivary gland tissue chip with potential for high-content drug screening. Commun Biol 2021; 4:361. [PMID: 33742114 PMCID: PMC7979686 DOI: 10.1038/s42003-021-01876-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Radiation therapy for head and neck cancers causes salivary gland dysfunction leading to permanent xerostomia. Limited progress in the discovery of new therapeutic strategies is attributed to the lack of in vitro models that mimic salivary gland function and allow high-throughput drug screening. We address this limitation by combining engineered extracellular matrices with microbubble (MB) array technology to develop functional tissue mimetics for mouse and human salivary glands. We demonstrate that mouse and human salivary tissues encapsulated within matrix metalloproteinase-degradable poly(ethylene glycol) hydrogels formed in MB arrays are viable, express key salivary gland markers, and exhibit polarized localization of functional proteins. The salivary gland mimetics (SGm) respond to calcium signaling agonists and secrete salivary proteins. SGm were then used to evaluate radiosensitivity and mitigation of radiation damage using a radioprotective compound. Altogether, SGm exhibit phenotypic and functional parameters of salivary glands, and provide an enabling technology for high-content/throughput drug testing.
Collapse
Affiliation(s)
- Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Hitoshi Uchida
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Azmeer Sharipol
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jared A Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew H Ingalls
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Jonathan Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Shawn D Newlands
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
| | - Catherine E Ovitt
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Materials Science Program, University of Rochester, Rochester, NY, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
5
|
New Insights in the IP 3 Receptor and Its Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:243-270. [PMID: 31646513 DOI: 10.1007/978-3-030-12457-1_10] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a Ca2+-release channel mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms are responsible for the generation of intracellular Ca2+ signals that may spread across the entire cell or occur locally in so-called microdomains. Because of their ubiquitous expression, these channels are involved in the regulation of a plethora of cellular processes, including cell survival and cell death. To exert their proper function a fine regulation of their activity is of paramount importance. In this review, we will highlight the recent advances in the structural analysis of the IP3R and try to link these data with the newest information concerning IP3R activation and regulation. A special focus of this review will be directed towards the regulation of the IP3R by protein-protein interaction. Especially the protein family formed by calmodulin and related Ca2+-binding proteins and the pro- and anti-apoptotic/autophagic Bcl-2-family members will be highlighted. Finally, recently identified and novel IP3R regulatory proteins will be discussed. A number of these interactions are involved in cancer development, illustrating the potential importance of modulating IP3R-mediated Ca2+ signaling in cancer treatment.
Collapse
|
6
|
Wang L, Yule DI. Differential regulation of ion channels function by proteolysis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1698-1706. [PMID: 30009861 DOI: 10.1016/j.bbamcr.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022]
Abstract
Ion channels are pore-forming protein complexes in membranes that play essential roles in a diverse array of biological activities. Ion channel activity is strictly regulated at multiple levels and by numerous cellular events to selectively activate downstream effectors involved in specific biological activities. For example, ions, binding proteins, nucleotides, phosphorylation, the redox state, channel subunit composition have all been shown to regulate channel activity and subsequently allow channels to participate in distinct cellular events. While these forms of modulation are well documented and have been extensively reviewed, in this article, we will first review and summarize channel proteolysis as a novel and quite widespread mechanism for altering channel activity. We will then highlight the recent findings demonstrating that proteolysis profoundly alters Inositol 1,4,5 trisphosphate receptor activity, and then discuss its potential functional ramifications in various developmental and pathological conditions.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, United States of America
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, United States of America.
| |
Collapse
|