1
|
Vasincu A, Rusu RN, Ababei DC, Neamțu M, Arcan OD, Macadan I, Beșchea Chiriac S, Bild W, Bild V. Exploring the Therapeutic Potential of Cannabinoid Receptor Antagonists in Inflammation, Diabetes Mellitus, and Obesity. Biomedicines 2023; 11:1667. [PMID: 37371762 DOI: 10.3390/biomedicines11061667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Recently, research has greatly expanded the knowledge of the endocannabinoid system (ECS) and its involvement in several therapeutic applications. Cannabinoid receptors (CBRs) are present in nearly every mammalian tissue, performing a vital role in different physiological processes (neuronal development, immune modulation, energy homeostasis). The ECS has an essential role in metabolic control and lipid signaling, making it a potential target for managing conditions such as obesity and diabetes. Its malfunction is closely linked to these pathological conditions. Additionally, the immunomodulatory function of the ECS presents a promising avenue for developing new treatments for various types of acute and chronic inflammatory conditions. Preclinical investigations using peripherally restricted CBR antagonists that do not cross the BBB have shown promise for the treatment of obesity and metabolic diseases, highlighting the importance of continuing efforts to discover novel molecules with superior safety profiles. The purpose of this review is to examine the roles of CB1R and CB2Rs, as well as their antagonists, in relation to the above-mentioned disorders.
Collapse
Affiliation(s)
- Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Sorin Beșchea Chiriac
- Department of Toxicology, "Ion Ionescu de la Brad" University of Life Sciences, 8 M. Sadoveanu Alley, 700489 Iasi, Romania
| | - Walther Bild
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
2
|
Miranda K, Becker W, Busbee PB, Dopkins N, Abdulla OA, Zhong Y, Zhang J, Nagarkatti M, Nagarkatti PS. Yin and yang of cannabinoid CB1 receptor: CB1 deletion in immune cells causes exacerbation while deletion in non-immune cells attenuates obesity. iScience 2022; 25:104994. [PMID: 36093055 PMCID: PMC9460165 DOI: 10.1016/j.isci.2022.104994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/26/2022] [Accepted: 08/18/2022] [Indexed: 12/21/2022] Open
Abstract
While blockade of cannabinoid receptor 1 (CB1) has been shown to attenuate diet-induced obesity (DIO), its relative role in different cell types has not been tested. The current study investigated the role of CB1 in immune vs non-immune cells during DIO by generating radiation-induced bone marrow chimeric mice that expressed functional CB1 in all cells except the immune cells or expressed CB1 only in immune cells. CB1−/− recipient hosts were resistant to DIO, indicating that CB1 in non-immune cells is necessary for induction of DIO. Interestingly, chimeras with CB1−/− in immune cells showed exacerbation in DIO combined with infiltration of bone-marrow-derived macrophages to the brain and visceral adipose tissue, elevated food intake, and increased glucose intolerance. These results demonstrate the opposing role of CB1 in hematopoietic versus non-hematopoietic cells during DIO and suggests that targeting immune CB1 receptors provides a new pathway to ameliorate obesity and related metabolic disorders. Cannabinoid Receptor 1 (CB1), and not CB2, regulates diet-induced obesity (DIO) CB1 deficiency in non-immune cell types promotes DIO resistance CB1 deficiency in immune cells exacerbates DIO disease phenotype CB1 activation in immune cells is a potential therapeutic target for DIO attenuation
Collapse
|
3
|
Dalle S, Schouten M, Meeus G, Slagmolen L, Koppo K. Molecular networks underlying cannabinoid signaling in skeletal muscle plasticity. J Cell Physiol 2022; 237:3517-3540. [PMID: 35862111 DOI: 10.1002/jcp.30837] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
The cannabinoid system is ubiquitously present and is classically considered to engage in neural and immunity processes. Yet, the role of the cannabinoid system in the whole body and tissue metabolism via central and peripheral mechanisms is increasingly recognized. The present review provides insights in (i) how cannabinoid signaling is regulated via receptor-independent and -dependent mechanisms and (ii) how these signaling cascades (might) affect skeletal muscle plasticity and physiology. Receptor-independent mechanisms include endocannabinoid metabolism to eicosanoids and the regulation of ion channels. Alternatively, endocannabinoids can act as ligands for different classic (cannabinoid receptor 1 [CB1 ], CB2 ) and/or alternative (e.g., TRPV1, GPR55) cannabinoid receptors with a unique affinity, specificity, and intracellular signaling cascade (often tissue-specific). Antagonism of CB1 might hold clues to improve oxidative (mitochondrial) metabolism, insulin sensitivity, satellite cell growth, and muscle anabolism, whereas CB2 agonism might be a promising way to stimulate muscle metabolism and muscle cell growth. Besides, CB2 ameliorates muscle regeneration via macrophage polarization toward an anti-inflammatory phenotype, induction of MyoD and myogenin expression and antifibrotic mechanisms. Also TRPV1 and GPR55 contribute to the regulation of muscle growth and metabolism. Future studies should reveal how the cannabinoid system can be targeted to improve muscle quantity and/or quality in conditions such as ageing, disease, disuse, and metabolic dysregulation, taking into account challenges that are inherent to modulation of the cannabinoid system, such as central and peripheral side effects.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Moniek Schouten
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Gitte Meeus
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Lotte Slagmolen
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Abstract
The endocannabinoid system is found in most, if not all, mammalian organs and is involved in a variety of physiological functions, ranging from the control of synaptic plasticity in the brain to the modulation of smooth muscle motility in the gastrointestinal tract. This signaling complex consists of G protein-coupled cannabinoid receptors, endogenous ligands for those receptors (endocannabinoids) and enzymes/transporters responsible for the formation and deactivation of these ligands. There are two subtypes of cannabinoid receptors, CB1 and CB2, and two major endocannabinoids, arachidonoylethanolamide (anandamide) and 2-arachidonoyl-sn-glycerol (2-AG), which are produced upon demand through cleavage of distinct phospholipid precursors. All molecular components of the endocannabinoid system are represented in the adipose organ, where endocannabinoid signals are thought to regulate critical homeostatic processes, including adipogenesis, lipogenesis and thermogenesis. Importantly, obesity was found to be associated with excess endocannabinoid activity in visceral fat depots, and the therapeutic potential of normalizing such activity by blocking CB1 receptors has been the focus of substantial preclinical and clinical research. Results have been mixed thus far, mostly owing to the emergence of psychiatric side effects rooted in the protective functions served by brain endocannabinoids in mood and affect regulation. Further studies about the roles played by the endocannabinoid system in the adipose organ will offer new insights into the pathogenesis of obesity and might help identify new ways to leverage this signaling complex for therapeutic benefit.
Collapse
Affiliation(s)
- Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA.
- Department of Pharmacology, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Han JH, Kim W. Peripheral CB1R as a modulator of metabolic inflammation. FASEB J 2021; 35:e21232. [PMID: 33715173 DOI: 10.1096/fj.202001960r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Obesity is associated with chronic inflammation in insulin-sensitive tissues, including liver and adipose tissue, and causes hormonal/metabolic complications, such as insulin resistance. There is growing evidence that peripheral cannabinoid-type 1 receptor (CB1R) is a crucial participant in obesity-induced pro-inflammatory responses in insulin-target tissues, and its selective targeting could be a novel therapeutic strategy to break the link between insulin resistance and metabolic inflammation. In this review, we introduce the role of peripheral CB1R in metabolic inflammation and as a mediator of hormonal/metabolic complications that underlie metabolic syndrome, including fatty liver, insulin resistance, and dyslipidemia. We also discuss the therapeutic potential of second- and third-generation peripherally restricted CB1R antagonists for treating obesity-induced metabolic inflammation without eliciting central CB1R-mediated neurobehavioral effects, predictive of neuropsychiatric side effects, in humans.
Collapse
Affiliation(s)
- Ji Hye Han
- Department of Molecular Science & Technology, Ajou University, Suwon, South Korea
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
6
|
Bhatt HK, Song D, Musgrave G, Rao PSS. Cannabinoid-induced changes in the immune system: The role of microRNAs. Int Immunopharmacol 2021; 98:107832. [PMID: 34107381 DOI: 10.1016/j.intimp.2021.107832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Naturally occurring cannabinoids have been used by humans for their medicinal benefits for over several millennia. While the use of cannabinoids has been strictly regulated in the past century, easing of state regulations has been associated with an increase in use of cannabinoids in the United States. The potential therapeutic applications of cannabinoids have been explored and the anti-inflammatory effect of cannabis-derived cannabinoids has been well-documented. The pharmacological effects of cannabinoids are governed by the modulation of cannabinoid receptors, CB1 and CB2, expressed in the central and peripheral tissues. Moreover, growing scientific evidence suggests that the cannabinoid-mediated changes in the immune system involves change in expression of microRNAs (miRNAs). MiRNAs are short non-coding, single-stranded RNA which have the ability to affect post-translational regulation of gene expression. Studies over the past decade have investigated the changes in expression of miRNAs following treatment of various components of the immune system with different chemical modulators of the cannabinoid receptors. Such studies have highlighted the key role played by various miRNAs in driving the observed immunomodulatory effects of cannabinoids. The aim of this review article, therefore, is to summarize the role of miRNAs behind the observed effects of cannabinoids on the overall immune system, rather than focusing on a single disease state.
Collapse
Affiliation(s)
- Hirva K Bhatt
- College of Pharmacy, The University of Findlay, Findlay, OH 45840, United States
| | - Dana Song
- College of Pharmacy, The University of Findlay, Findlay, OH 45840, United States
| | - Gyen Musgrave
- Greenleaf Apothecaries, LLC, 15335 Madison Road, Middlefield, OH 44062, United States
| | - P S S Rao
- College of Pharmacy, The University of Findlay, Findlay, OH 45840, United States.
| |
Collapse
|
7
|
Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021; 10:cells10061279. [PMID: 34064024 PMCID: PMC8224009 DOI: 10.3390/cells10061279] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system is involved in a wide range of processes including the control of energy acquisition and expenditure. Endocannabinoids and their receptors are present in the central nervous system but also in peripheral tissues, notably the adipose tissues. The endocannabinoid system interacts with two main hormones regulating appetite, namely leptin and ghrelin. The inhibitory effect of the cannabinoid receptor 1 (CB1) antagonist rimonabant on fat mass suggested that the endocannabinoid system can also have a peripheral action in addition to its effect on appetite reduction. Thus, several investigations have focused on the peripheral role of the endocannabinoid system in the regulation of metabolism. The white adipose tissue stores energy as triglycerides while the brown adipose tissue helps to dissipate energy as heat. The endocannabinoid system regulates several functions of the adipose tissues to favor energy accumulation. In this review we will describe the presence of the endocannabinoid system in the adipose tissue. We will survey the role of the endocannabinoid system in the regulation of white and brown adipose tissue metabolism and how the eCB system participates in obesity and metabolic diseases.
Collapse
|
8
|
Briand‐Mésange F, Trudel S, Salles J, Ausseil J, Salles J, Chap H. Possible Role of Adipose Tissue and the Endocannabinoid System in Coronavirus Disease 2019 Pathogenesis: Can Rimonabant Return? Obesity (Silver Spring) 2020; 28:1580-1581. [PMID: 32463562 PMCID: PMC7283662 DOI: 10.1002/oby.22916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Fabienne Briand‐Mésange
- Centre de Physiopathologie de Toulouse PurpanU5282Centre National de la Recherche ScientifiqueU1043Institut National de la Santé et de la Recherche MédicaleUniversité de Toulouse–Université Paul SabatierToulouseFrance
| | - Stéphanie Trudel
- Centre de Physiopathologie de Toulouse PurpanU5282Centre National de la Recherche ScientifiqueU1043Institut National de la Santé et de la Recherche MédicaleUniversité de Toulouse–Université Paul SabatierToulouseFrance
| | - Juliette Salles
- Centre de Physiopathologie de Toulouse PurpanU5282Centre National de la Recherche ScientifiqueU1043Institut National de la Santé et de la Recherche MédicaleUniversité de Toulouse–Université Paul SabatierToulouseFrance
| | - Jérôme Ausseil
- Centre de Physiopathologie de Toulouse PurpanU5282Centre National de la Recherche ScientifiqueU1043Institut National de la Santé et de la Recherche MédicaleUniversité de Toulouse–Université Paul SabatierToulouseFrance
| | - Jean‐Pierre Salles
- Centre de Physiopathologie de Toulouse PurpanU5282Centre National de la Recherche ScientifiqueU1043Institut National de la Santé et de la Recherche MédicaleUniversité de Toulouse–Université Paul SabatierToulouseFrance
| | - Hugues Chap
- Centre de Physiopathologie de Toulouse PurpanU5282Centre National de la Recherche ScientifiqueU1043Institut National de la Santé et de la Recherche MédicaleUniversité de Toulouse–Université Paul SabatierToulouseFrance
| |
Collapse
|
9
|
Gou X, Wu J, Huang M, Weng Y, Yang T, Chen T, Li G, Fang K. microRNA-128 mediates CB1 expression and regulates NF-KB/p-JNK axis to influence the occurrence of diabetic bladder disease. J Transl Med 2020; 18:284. [PMID: 32678046 PMCID: PMC7367232 DOI: 10.1186/s12967-020-02406-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/05/2020] [Indexed: 12/03/2022] Open
Abstract
Background Diabetic bladder disease is common complications of diabetes, its symptoms are diverse, can be due to different stages. In this study we investigate the mechanism of miR-128 targeting CB1 expression to mediate the occurrence of diabetic bladder disease. Methods Bioinformatics analysis predicts related regulatory factors of miR-128 in diabetic bladder disease. Models of diabetic bladder lesions were constructed in male SD rats by intraperitoneal injection of streptozotocin at 65 mg/kg body weight. The expression of miR-128 and CB1 mRNA in bladder tissues of each group was detected by RT-qPCR, and CB1, NF-KB, p-JNK and Bcl2 protein expression was detected by Western Blotting. We tested the function of the bladder by urodynamics, detected the pathological characteristics of the bladder tissue by HE staining, and verified the targeting relationship between miR-128 and CB1 through the prediction of the biological website, dual luciferase reporter gene assay and RIP. Results miR-128 was highly expressed in the bladder tissue of diabetic rats. Inhibition of miR-128 could improve the occurrence of diabetic bladder lesions in rats. miR-128 could target the inhibition of CB1 expression, and high expression of CB1 could antagonize miR-128 against diabetic bladder. In the diabetic bladder, miR-128 can regulate the expression of NF-KB and p-JNK through CB1 and affect the level of apoptosis. miR-128 regulates NF-KB/p-JNK through CB1, thus affecting the occurrence of diabetic bladder disease. Conclusion The high expression of miR-128 can down-regulate the expression of CB1, promote the activation of NF-KB and p-JNK, increase the level of apoptosis and promote the occurrence of diabetic bladder disease.
Collapse
Affiliation(s)
- Xin Gou
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Jing Wu
- Department of Biochemistry and Molecular Biology, The Primary Medicine School of Kunming Medical University, Kunming, 650101, People's Republic of China
| | - Mingqing Huang
- Department of Urology, The 2nd Hospital of Kunming Medical University, Kunming, 650101, People's Republic of China
| | - Yuting Weng
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Tongxin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Tao Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Guiqing Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Kewei Fang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China.
| |
Collapse
|
10
|
Li Y, Yun K, Mu R. A review on the biology and properties of adipose tissue macrophages involved in adipose tissue physiological and pathophysiological processes. Lipids Health Dis 2020; 19:164. [PMID: 32646451 PMCID: PMC7350193 DOI: 10.1186/s12944-020-01342-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity exhibits a correlation with metabolic inflammation and endoplasmic reticulum stress, promoting the progression of metabolic disease such as diabetes, hyperlipidemia, hyperuricemia and so on. Adipose tissue macrophages (ATMs) are central players in obesity-associated inflammation and metabolic diseases. Macrophages are involved in lipid and energy metabolism and mitochondrial function in adipocytes. Macrophage polarization is accompanied by metabolic shifting between glycolysis and mitochondrial oxidative phosphorylation. Here, this review focuses on macrophage metabolism linked to functional phenotypes with an emphasis on macrophage polarization in adipose tissue physiological and pathophysiological processes. In particular, the interplay between ATMs and adipocytes in energy metabolism, glycolysis, OXPHOS, iron handing and even interactions with the nervous system have been reviewed. Overall, the understanding of protective and pathogenic roles of ATMs in adipose tissue can potentially provide strategies to prevent and treat obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Yunjia Li
- The First Clinical Medicine Faculty, China Medical University, Shenyang, 110001, China
| | - Ke Yun
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Runqing Mu
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
11
|
Mohammed A, Alghetaa H, Sultan M, Singh NP, Nagarkatti P, Nagarkatti M. Administration of Δ9-Tetrahydrocannabinol (THC) Post-Staphylococcal Enterotoxin B Exposure Protects Mice From Acute Respiratory Distress Syndrome and Toxicity. Front Pharmacol 2020; 11:893. [PMID: 32612530 PMCID: PMC7308536 DOI: 10.3389/fphar.2020.00893] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a life-threatening complication that can ensue following Staphylococcus aureus infection. The enterotoxin produced by these bacteria (SEB) acts as a superantigen thereby activating a large proportion of T cells leading to cytokine storm and severe lung injury. Δ9Tetrahydrocannabinol (THC), a psychoactive ingredient found in Cannabis sativa, has been shown to act as a potent anti-inflammatory agent. In the current study, we investigated the effect of THC treatment on SEB-induced ARDS in mice. While exposure to SEB resulted in acute mortality, treatment with THC led to 100% survival of mice. THC treatment significantly suppressed the inflammatory cytokines, IFN-γ and TNF-α. Additionally, THC elevated the induction of regulatory T cells (Tregs) and their associated cytokines, IL-10 and TGF-β. Moreover, THC caused induction of Myeloid-Derived Suppressor Cells (MDSCs). THC acted through CB2 receptor as pharmacological inhibitor of CB2 receptors blocked the anti-inflammatory effects. THC-treated mice showed significant alterations in the expression of miRNA (miRs) in the lung-infiltrated mononuclear cells (MNCs). Specifically, THC caused downregulation of let7a-5p which targeted SOCS1 and downregulation of miR-34-5p which caused increased expression of FoxP3, NOS1, and CSF1R. Together, these data suggested that THC-mediated alterations in miR expression in the lungs may play a critical role in the induction of immunosuppressive Tregs and MDSCs as well as suppression of cytokine storm leading to attenuation of SEB-mediated lung injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
12
|
Murphy T, Le Foll B. Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs. Biomolecules 2020; 10:biom10060855. [PMID: 32512776 PMCID: PMC7356944 DOI: 10.3390/biom10060855] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity rates are increasing worldwide and there is a need for novel therapeutic treatment options. The endocannabinoid system has been linked to homeostatic processes, including metabolism, food intake, and the regulation of body weight. Rimonabant, an inverse agonist for the cannabinoid CB1 receptor, was effective at producing weight loss in obese subjects. However, due to adverse psychiatric side effects, rimonabant was removed from the market. More recently, we reported an inverse relationship between cannabis use and BMI, which has now been duplicated by several groups. As those results may appear contradictory, we review here preclinical and clinical studies that have studied the impact on body weight of various cannabinoid CB1 drugs. Notably, we will review the impact of CB1 inverse agonists, agonists, partial agonists, and neutral antagonists. Those findings clearly point out the cannabinoid CB1 as a potential effective target for the treatment of obesity. Recent preclinical studies suggest that ligands targeting the CB1 may retain the therapeutic potential of rimonabant without the negative side effect profile. Such approaches should be tested in clinical trials for validation.
Collapse
Affiliation(s)
- Thomas Murphy
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +1-416-535-8501
| |
Collapse
|
13
|
The Epigenetics of the Endocannabinoid System. Int J Mol Sci 2020; 21:ijms21031113. [PMID: 32046164 PMCID: PMC7037698 DOI: 10.3390/ijms21031113] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoid system (ES) is a cell-signalling system widely distributed in biological tissues that includes endogenous ligands, receptors, and biosynthetic and hydrolysing machineries. The impairment of the ES has been associated to several pathological conditions like behavioural, neurological, or metabolic disorders and infertility, suggesting that the modulation of this system may be critical for the maintenance of health status and disease treatment. Lifestyle and environmental factors can exert long-term effects on gene expression without any change in the nucleotide sequence of DNA, affecting health maintenance and influencing both disease load and resistance. This potentially reversible "epigenetic" modulation of gene expression occurs through the chemical modification of DNA and histone protein tails or the specific production of regulatory non-coding RNA (ncRNA). Recent findings demonstrate the epigenetic modulation of the ES in biological tissues; in the same way, endocannabinoids, phytocannabinoids, and cannabinoid receptor agonists and antagonists induce widespread or gene-specific epigenetic changes with the possibility of trans-generational epigenetic inheritance in the offspring explained by the transmission of deregulated epigenetic marks in the gametes. Therefore, this review provides an update on the epigenetics of the ES, with particular attention on the emerging role in reproduction and fertility.
Collapse
|