1
|
Khan SU, Cervantes-Villagrana RD, Eduardo Del Río-Robles J, Tomás-Morales JA, Torres-Santos Y, Vázquez-Prado J, Reyes-Cruz G. Calcium sensing receptor stimulates breast cancer cell migration and invasion via protein kinase C ζ. Exp Cell Res 2025; 447:114523. [PMID: 40120711 DOI: 10.1016/j.yexcr.2025.114523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Calcium-sensing receptor (CaSR), a G protein-coupled receptor, is overexpressed in certain breast cancer tumors where it drives cell migration and secretion of chemotactic agonists, likely contributing to metastatic dissemination. Since CaSR activates breast cancer cell migration via the Gβγ-PI3K-mTORC2/Rac-1 pathway, we hypothesized that PKCζ and perhaps other protein kinase C (PKC) isoforms, known as mTORC2-regulated effectors, are involved in migratory and invasive signaling elicited by CaSR. We analyzed the effect of PKC inhibitors and siRNAs which pointed to PKCζ as effector of CaSR in cell migration and invasion. In breast cancer phosphoproteomic CPTAC datasets, we identified a group of Luminal A subtype cancer patients having active PKCζ, according to its phosphorylation status at the turn motif. In addition, various phosphorylated RacGEFs, including TRIO, ARHGEF26, DOCK1 and DOCK7, clustered as phosphoproteins with active PKCζ. We therefore introduce atypical PKCζ as an effector component of the CaSR-Gβγ-PI3K-mTORC2 pathway in the activation of the promigratory small GTPase Rac. These results support ongoing initiatives to establish critical elements of the CaSR signaling pathway as potential targets in metastatic breast cancer.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | | | - Jorge Eduardo Del Río-Robles
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Janik Adriana Tomás-Morales
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Yazmin Torres-Santos
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico.
| |
Collapse
|
2
|
Jones GD, Ellisdon AM. Understanding P-Rex regulation: structural breakthroughs and emerging perspectives. Biochem Soc Trans 2024; 52:1849-1860. [PMID: 39023851 PMCID: PMC11668296 DOI: 10.1042/bst20231546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Rho GTPases are a family of highly conserved G proteins that regulate numerous cellular processes, including cytoskeleton organisation, migration, and proliferation. The 20 canonical Rho GTPases are regulated by ∼85 guanine nucleotide exchange factors (GEFs), with the largest family being the 71 Diffuse B-cell Lymphoma (Dbl) GEFs. Dbl GEFs promote GTPase activity through the highly conserved Dbl homology domain. The specificity of GEF activity, and consequently GTPase activity, lies in the regulation and structures of the GEFs themselves. Dbl GEFs contain various accessory domains that regulate GEF activity by controlling subcellular localisation, protein interactions, and often autoinhibition. This review focuses on the two phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3)-dependent Rac exchangers (P-Rex), particularly the structural basis of P-Rex1 autoinhibition and synergistic activation. First, we discuss structures that highlight the conservation of P-Rex catalytic and phosphoinositide binding activities. We then explore recent breakthroughs in uncovering the structural basis for P-Rex1 autoinhibition and detail the proposed minimal two-step model of how PI(3,4,5)P3 and Gβγ synergistically activate P-Rex1 at the membrane. Additionally, we discuss the further layers of P-Rex regulation provided by phosphorylation and P-Rex2-PTEN coinhibitory complex formation, although these mechanisms remain incompletely understood. Finally, we leverage the available data to infer how cancer-associated mutations in P-Rex2 destabilise autoinhibition and evade PTEN coinhibitory complex formation, leading to increased P-Rex2 GEF activity and driving cancer progression and metastasis.
Collapse
Affiliation(s)
- Gareth D. Jones
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Andrew M. Ellisdon
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
3
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
4
|
Svec KV, Howe AK. Protein Kinase A in cellular migration-Niche signaling of a ubiquitous kinase. Front Mol Biosci 2022; 9:953093. [PMID: 35959460 PMCID: PMC9361040 DOI: 10.3389/fmolb.2022.953093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 12/28/2022] Open
Abstract
Cell migration requires establishment and maintenance of directional polarity, which in turn requires spatial heterogeneity in the regulation of protrusion, retraction, and adhesion. Thus, the signaling proteins that regulate these various structural processes must also be distinctly regulated in subcellular space. Protein Kinase A (PKA) is a ubiquitous serine/threonine kinase involved in innumerable cellular processes. In the context of cell migration, it has a paradoxical role in that global inhibition or activation of PKA inhibits migration. It follows, then, that the subcellular regulation of PKA is key to bringing its proper permissive and restrictive functions to the correct parts of the cell. Proper subcellular regulation of PKA controls not only when and where it is active but also specifies the targets for that activity, allowing the cell to use a single, promiscuous kinase to exert distinct functions within different subcellular niches to facilitate cell movement. In this way, understanding PKA signaling in migration is a study in context and in the elegant coordination of distinct functions of a single protein in a complex cellular process.
Collapse
Affiliation(s)
- Kathryn V. Svec
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
| | - Alan K. Howe
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, V T, United States
- University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| |
Collapse
|
5
|
Beltrán-Navarro YM, Reyes-Cruz G, Vázquez-Prado J. P-Rex1 Signaling Hub in Lower Grade Glioma Patients, Found by In Silico Data Mining, Correlates With Reduced Survival and Augmented Immune Tumor Microenvironment. Front Oncol 2022; 12:922025. [PMID: 35875157 PMCID: PMC9300953 DOI: 10.3389/fonc.2022.922025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Systematic analysis of tumor transcriptomes, combined with deep genome sequencing and detailed clinical assessment of hundreds of patients, constitutes a powerful strategy aimed to identify potential biomarkers and therapeutic targets to guide personalized treatments. Oncogenic signaling cascades are integrated by multidomain effector proteins such as P-Rex1, a guanine nucleotide exchange factor for the Rac GTPase (RacGEF), known to promote metastatic dissemination of cancer cells. We hypothesized that patients with high P-Rex1 expression and reduced survival might be characterized by a particular set of signaling proteins co-expressed with this effector of cell migration as a central component of a putative signaling hub indicative of poor prognosis. High P-Rex1 expression correlated with reduced survival of TCGA Lower Grade Glioma (LGG) patients. Thus, guided by PREX1 expression, we searched for signaling partners of this RacGEF by applying a systematic unbiased in silico data mining strategy. We identified 30 putative signaling partners that also correlated with reduced patient survival. These included GPCRs such as CXCR3, GPR82, FZD6, as well as MAP3K1, MAP2K3, NEK8, DYRK3 and RPS6KA3 kinases, and PTPN2 and PTPN22 phosphatases, among other transcripts of signaling proteins and phospho-substrates. This PREX1 signaling hub signature correlated with increased risk of shorter survival of LGG patients from independent datasets and coincided with immune and endothelial transcriptomic signatures, indicating that myeloid infiltration and tumor angiogenesis might contribute to worsen brain tumor pathology. In conclusion, P-Rex1 and its putative signaling partners in LGG are indicative of a signaling landscape of the tumor microenvironment that correlates with poor prognosis and might guide the characterization of signaling targets leading the eventual development of immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | - José Vázquez-Prado
- Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
- *Correspondence: José Vázquez-Prado,
| |
Collapse
|
6
|
Mendieta I, Rodríguez-Nieto M, Nuñez-Anita RE, Menchaca-Arredondo JL, García-Alcocer G, Berumen LC. Ultrastructural changes associated to the neuroendocrine transdifferentiation of the lung adenocarcinoma cell line A549. Acta Histochem 2021; 123:151797. [PMID: 34688180 DOI: 10.1016/j.acthis.2021.151797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
The neuroendocrine transdifferentiation has been found in many cancer cell types, such as prostate, lung and gastrointestinal cells and is accompanied by a lower patient life expectancy. The transdifferentiation process has been induced in vitro by the exposure to different stimuli in human lung adenocarcinoma. The aim of this work was to identify the morphological characteristics of the neuroendocrine phenotype in a human lung cancer cell line, induced by two cAMP elevating agents (IBMX and FSK). Our results showed two phenotypes, one produced by IBMX with higher volume, cell size and increased number of secondary projections, and the other produced by FSK with higher area, roughness of the membrane, cell neurite percentage, number of outgrowths per cell and increased number of primary projections. In conclusion, we describe some morphological and ultrastructural characteristics of the neuroendocrine phenotype in A549 human lung cancer cell line promoted by IBMX and FSK to contribute to the understanding of the autocrine or paracrine signaling within the tumor microenvironment.
Collapse
Affiliation(s)
- Irasema Mendieta
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas 76010, Querétaro, Mexico
| | - Maricela Rodríguez-Nieto
- Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Michoacán, Mexico
| | - Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás Hidalgo, Tarímbaro Municipio de Morelia 58920, Michoacán, Mexico
| | - Jorge Luis Menchaca-Arredondo
- Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Centro de Investigación en Ciencias Físico Matemáticas, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Guadalupe García-Alcocer
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas 76010, Querétaro, Mexico
| | - Laura Cristina Berumen
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas 76010, Querétaro, Mexico.
| |
Collapse
|
7
|
García-Jiménez I, Cervantes-Villagrana RD, Del-Río-Robles JE, Castillo-Kauil A, Beltrán-Navarro YM, García-Román J, Reyes-Cruz G, Vázquez-Prado J. Gβγ mediates activation of Rho guanine nucleotide exchange factor ARHGEF17 that promotes metastatic lung cancer progression. J Biol Chem 2021; 298:101440. [PMID: 34808208 PMCID: PMC8703085 DOI: 10.1016/j.jbc.2021.101440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic lung cancer is a major cause of death worldwide. Dissemination of cancer cells can be facilitated by various agonists within the tumor microenvironment, including by lysophosphatidic acid (LPA). We postulate that Rho guanine nucleotide exchange factors (RhoGEFs), which integrate signaling cues driving cell migration, are critical effectors in metastatic cancer. Specifically, we addressed the hypothetical role of ARHGEF17, a RhoGEF, as a potential effector of Gβγ in metastatic lung cancer cells responding to LPA. Here, we show that ARHGEF17, originally identified as a tumor endothelial marker, is involved in tumor growth and metastatic dissemination of lung cancer cells in an immunocompetent murine model. Gene expression–based analysis of lung cancer datasets showed that increased levels of ARHGEF17 correlated with reduced survival of patients with advanced-stage tumors. Cellular assays also revealed that this RhoGEF participates in the invasive and migratory responses elicited by Gi protein–coupled LPA receptors via the Gβγ subunit complex. We demonstrate that this signaling heterodimer promoted ARHGEF17 recruitment to the cell periphery and actin fibers. Moreover, Gβγ allosterically activates ARHGEF17 by the removal of inhibitory intramolecular restrictions. Taken together, our results indicate that ARHGEF17 may be a valid potential target in the treatment of metastatic lung cancer.
Collapse
|
8
|
P-Rex1 Controls Sphingosine 1-Phosphate Receptor Signalling, Morphology, and Cell-Cycle Progression in Neuronal Cells. Cells 2021; 10:cells10092474. [PMID: 34572121 PMCID: PMC8469755 DOI: 10.3390/cells10092474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates Rac-type small G proteins in response to the stimulation of a range of receptors, particularly G protein-coupled receptors (GPCRs), to control cytoskeletal dynamics and other Rac-dependent cell responses. P-Rex1 is mainly expressed in leukocytes and neurons. Whereas its roles in leukocytes have been studied extensively, relatively little is known about its functions in neurons. Here, we used CRISPR/Cas9-mediated P-Rex1 deficiency in neuronal PC12 cells that stably overexpress the GPCR S1PR1, a receptor for sphingosine 1-phosphate (S1P), to investigate the role of P-Rex1 in neuronal GPCR signalling and cell responses. We show that P-Rex1 is required for the S1P-stimulated activation of Rac1 and Akt, basal Rac3 activity, and constitutive cAMP production in PC12-S1PR1 cells. The constitutive cAMP production was not due to increased expression levels of major neuronal adenylyl cyclases, suggesting that P-Rex1 may regulate adenylyl cyclase activity. P-Rex1 was required for maintenance of neurite protrusions and spreading in S1P-stimulated PC12-S1PR1 cells, as well as for cell-cycle progression and proliferation. In summary, we identified novel functional roles of P-Rex1 in neuronal Rac, Akt and cAMP signalling, as well as in neuronal cell-cycle progression and proliferation.
Collapse
|
9
|
Stožer A, Paradiž Leitgeb E, Pohorec V, Dolenšek J, Križančić Bombek L, Gosak M, Skelin Klemen M. The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling. Cells 2021; 10:1658. [PMID: 34359828 PMCID: PMC8304079 DOI: 10.3390/cells10071658] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic beta cells secrete insulin in response to stimulation with glucose and other nutrients, and impaired insulin secretion plays a central role in development of diabetes mellitus. Pharmacological management of diabetes includes various antidiabetic drugs, including incretins. The incretin hormones, glucagon-like peptide-1 and gastric inhibitory polypeptide, potentiate glucose-stimulated insulin secretion by binding to G protein-coupled receptors, resulting in stimulation of adenylate cyclase and production of the secondary messenger cAMP, which exerts its intracellular effects through activation of protein kinase A or the guanine nucleotide exchange protein 2A. The molecular mechanisms behind these two downstream signaling arms are still not fully elucidated and involve many steps in the stimulus-secretion coupling cascade, ranging from the proximal regulation of ion channel activity to the central Ca2+ signal and the most distal exocytosis. In addition to modifying intracellular coupling, the effect of cAMP on insulin secretion could also be at least partly explained by the impact on intercellular coupling. In this review, we systematically describe the possible roles of cAMP at these intra- and inter-cellular signaling nodes, keeping in mind the relevance for the whole organism and translation to humans.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Lidija Križančić Bombek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| |
Collapse
|
10
|
Beavo JA, Golkowski M, Shimizu-Albergine M, Beltejar MC, Bornfeldt KE, Ong SE. Phosphoproteomic Analysis as an Approach for Understanding Molecular Mechanisms of cAMP-Dependent Actions. Mol Pharmacol 2021; 99:342-357. [PMID: 33574048 PMCID: PMC8058506 DOI: 10.1124/molpharm.120.000197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, highly sensitive mass spectrometry-based phosphoproteomic analysis is beginning to be applied to identification of protein kinase substrates altered downstream of increased cAMP. Such studies identify a very large number of phosphorylation sites regulated in response to increased cAMP. Therefore, we now are tasked with the challenge of determining how many of these altered phosphorylation sites are relevant to regulation of function in the cell. This minireview describes the use of phosphoproteomic analysis to monitor the effects of cyclic nucleotide phosphodiesterase (PDE) inhibitors on cAMP-dependent phosphorylation events. More specifically, it describes two examples of this approach carried out in the authors' laboratories using the selective PDE inhibitor approach. After a short discussion of several likely conclusions suggested by these analyses of cAMP function in steroid hormone-producing cells and also in T-cells, it expands into a discussion about some newer and more speculative interpretations of the data. These include the idea that multiple phosphorylation sites and not a single rate-limiting step likely regulate these and, by analogy, many other cAMP-dependent pathways. In addition, the idea that meaningful regulation requires a high stoichiometry of phosphorylation to be important is discussed and suggested to be untrue in many instances. These new interpretations have important implications for drug design, especially for targeting pathway agonists. SIGNIFICANCE STATEMENT: Phosphoproteomic analyses identify thousands of altered phosphorylation sites upon drug treatment, providing many possible regulatory targets but also highlighting questions about which phosphosites are functionally important. These data imply that multistep processes are regulated by phosphorylation at not one but rather many sites. Most previous studies assumed a single step or very few rate-limiting steps were changed by phosphorylation. This concept should be changed. Previous interpretations also assumed substoichiometric phosphorylation was not of regulatory importance. This assumption also should be changed.
Collapse
Affiliation(s)
- Joseph A Beavo
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Martin Golkowski
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Masami Shimizu-Albergine
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Michael-Claude Beltejar
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Karin E Bornfeldt
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Shao-En Ong
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Cervantes-Villagrana RD, Beltrán-Navarro YM, García-Jiménez I, Adame-García SR, Olguín-Olguín A, Reyes-Cruz G, Vázquez-Prado J. Gβγ recruits and activates P-Rex1 via two independent binding interfaces. Biochem Biophys Res Commun 2021; 539:20-27. [PMID: 33412417 DOI: 10.1016/j.bbrc.2020.12.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Gβγ marks the inner side of the plasma membrane where chemotactic GPCRs activate Rac to lead the assembly of actin filaments that push the cell to move forward. Upon dissociation from heterotrimeric Gi, Gβγ recruits and activates P-Rex1, a Rac guanine nucleotide exchange factor (RacGEF). This cytosolic chemotactic effector is kept inactive by intramolecular interactions. The mechanism by which Gβγ stimulates P-Rex1 has been debated. We hypothesized that Gβγ activates P-Rex1 by a two-step mechanism based on independent interaction interfaces to recruit and unroll this RacGEF. Using pulldown assays, we found that Gβγ binds P-Rex1-DH/PH as well as PDZ-PDZ domains. These domains and the DEP-DEP tandem interact among them and dissociate upon binding with Gβγ, arguing for a stimulatory allosteric effect. In addition, P-Rex1 catalytic activity is inhibited by its C-terminal domain. To discern P-Rex1 recruitment from activation, we studied Q-Rhox, a synthetic RhoGEF having the PDZ-RhoGEF catalytic DH/PH module, insensitive to Gβγ, swapped into P-Rex1. Gβγ recruited Q-Rhox to the plasma membrane, indicating that Gβγ/PDZ-PDZ interaction interface plays a role on P-Rex1 recruitment. In conclusion, we reconcile previous findings and propose a mechanistic model of P-Rex1 activation; accordingly, Gβγ recruits P-Rex1 via the Gβγ/PDZ-PDZ interface followed by a second contact involving the Gβγ/DH/PH interface to unleash P-Rex1 RacGEF activity at the plasma membrane.
Collapse
|
12
|
Castillo-Kauil A, García-Jiménez I, Cervantes-Villagrana RD, Adame-García SR, Beltrán-Navarro YM, Gutkind JS, Reyes-Cruz G, Vázquez-Prado J. Gα s directly drives PDZ-RhoGEF signaling to Cdc42. J Biol Chem 2020; 295:16920-16928. [PMID: 33023908 PMCID: PMC7863908 DOI: 10.1074/jbc.ac120.015204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Gα proteins promote dynamic adjustments of cell shape directed by actin-cytoskeleton reorganization via their respective RhoGEF effectors. For example, Gα13 binding to the RGS-homology (RH) domains of several RH-RhoGEFs allosterically activates these proteins, causing them to expose their catalytic Dbl-homology (DH)/pleckstrin-homology (PH) regions, which triggers downstream signals. However, whether additional Gα proteins might directly regulate the RH-RhoGEFs was not known. To explore this question, we first examined the morphological effects of expressing shortened RH-RhoGEF DH/PH constructs of p115RhoGEF/ARHGEF1, PDZ-RhoGEF (PRG)/ARHGEF11, and LARG/ARHGEF12. As expected, the three constructs promoted cell contraction and activated RhoA, known to be downstream of Gα13 Intriguingly, PRG DH/PH also induced filopodia-like cell protrusions and activated Cdc42. This pathway was stimulated by constitutively active Gαs (GαsQ227L), which enabled endogenous PRG to gain affinity for Cdc42. A chemogenetic approach revealed that signaling by Gs-coupled receptors, but not by those coupled to Gi or Gq, enabled PRG to bind Cdc42. This receptor-dependent effect, as well as CREB phosphorylation, was blocked by a construct derived from the PRG:Gαs-binding region, PRG-linker. Active Gαs interacted with isolated PRG DH and PH domains and their linker. In addition, this construct interfered with GαsQ227L's ability to guide PRG's interaction with Cdc42. Endogenous Gs-coupled prostaglandin receptors stimulated PRG binding to membrane fractions and activated signaling to PKA, and this canonical endogenous pathway was attenuated by PRG-linker. Altogether, our results demonstrate that active Gαs can recognize PRG as a novel effector directing its DH/PH catalytic module to gain affinity for Cdc42.
Collapse
Affiliation(s)
- Alejandro Castillo-Kauil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Irving García-Jiménez
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Sendi Rafael Adame-García
- Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Yarely Mabell Beltrán-Navarro
- Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - J Silvio Gutkind
- Moores Cancer Center and Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
13
|
Ravala SK, Hopkins JB, Plescia CB, Allgood SR, Kane MA, Cash JN, Stahelin RV, Tesmer JJG. The first DEP domain of the RhoGEF P-Rex1 autoinhibits activity and contributes to membrane binding. J Biol Chem 2020; 295:12635-12647. [PMID: 32661198 DOI: 10.1074/jbc.ra120.014534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/08/2020] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger 1 (P-Rex1) catalyzes the exchange of GDP for GTP on Rac GTPases, thereby triggering changes in the actin cytoskeleton and in transcription. Its overexpression is highly correlated with the metastasis of certain cancers. P-Rex1 recruitment to the plasma membrane and its activity are regulated via interactions with heterotrimeric Gβγ subunits, PIP3, and protein kinase A (PKA). Deletion analysis has further shown that domains C-terminal to its catalytic Dbl homology (DH) domain confer autoinhibition. Among these, the first dishevelled, Egl-10, and pleckstrin domain (DEP1) remains to be structurally characterized. DEP1 also harbors the primary PKA phosphorylation site, suggesting that an improved understanding of this region could substantially increase our knowledge of P-Rex1 signaling and open the door to new selective chemotherapeutics. Here we show that the DEP1 domain alone can autoinhibit activity in context of the DH/PH-DEP1 fragment of P-Rex1 and interacts with the DH/PH domains in solution. The 3.1 Å crystal structure of DEP1 features a domain swap, similar to that observed previously in the Dvl2 DEP domain, involving an exposed basic loop that contains the PKA site. Using purified proteins, we show that although DEP1 phosphorylation has no effect on the activity or solution conformation of the DH/PH-DEP1 fragment, it inhibits binding of the DEP1 domain to liposomes containing phosphatidic acid. Thus, we propose that PKA phosphorylation of the DEP1 domain hampers P-Rex1 binding to negatively charged membranes in cells, freeing the DEP1 domain to associate with and inhibit the DH/PH module.
Collapse
Affiliation(s)
- Sandeep K Ravala
- Departments of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.,The Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Jesse B Hopkins
- Biophysics Collaborative Access Team, Illinois Institute of Technology, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, USA
| | - Caroline B Plescia
- The Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Samantha R Allgood
- Departments of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Madison A Kane
- College of Engineering, California State University, Long Beach, California, USA
| | - Jennifer N Cash
- Department of Biological Chemistry & Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert V Stahelin
- The Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - John J G Tesmer
- Departments of Biological Sciences, Purdue University, West Lafayette, Indiana, USA .,The Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
14
|
Color-Aparicio VM, Cervantes-Villagrana RD, García-Jiménez I, Beltrán-Navarro YM, Castillo-Kauil A, Escobar-Islas E, Reyes-Cruz G, Vázquez-Prado J. Endothelial cell sprouting driven by RhoJ directly activated by a membrane-anchored Intersectin 1 (ITSN1) RhoGEF module. Biochem Biophys Res Commun 2020; 524:109-116. [PMID: 31980169 DOI: 10.1016/j.bbrc.2020.01.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/11/2020] [Indexed: 10/25/2022]
Abstract
Endothelial cell sprouting is a critical event in tumor-induced angiogenesis. In melanoma and lung cancer murine models, targeting RhoJ prevents endothelial sprouting, tumor growth and metastasis and enhances the effects of conventional anti-neoplastic therapy. Aiming to understand how RhoJ is activated, we used a gain of function approach to identify constitutively active Rho guanine nucleotide exchange factors (RhoGEFs) able to promote RhoJ-dependent actin-driven membrane protrusions. We demonstrate that a membrane-anchored Intersectin 1 (ITSN1) DH-PH construct promotes endothelial cell sprouting via RhoJ. Mechanistically, this is controlled by direct interaction between the catalytic ITSN1 DH-PH module and RhoJ, it is sensitive to phosphorylation by focal adhesion kinase (FAK) and to endosomal trapping of the ITSN1 construct by dominant negative RhoJ. This ITSN1/RhoJ signaling axis is independent of Cdc42, a previously characterized ITSN1 target and a RhoJ close homologue. In conclusion, our results elucidate an ITSN1/RhoJ molecular link able to promote endothelial cell sprouting and set the basis to explore this signaling pathway in the context of tumor-induced angiogenesis.
Collapse
|
15
|
The Rho guanine nucleotide exchange factor P-Rex1 as a potential drug target for cancer metastasis and inflammatory diseases. Pharmacol Res 2020; 153:104676. [PMID: 32006571 DOI: 10.1016/j.phrs.2020.104676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/12/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 1 (P-Rex1) is a guanine nucleotide exchange factor (GEF) for Rac small GTPases and the Rac-related GTPase RhoG. P-Rex1 plays an important role in cell migration and relays intracellular signals generated through activation of G protein-coupled receptors and receptor tyrosine kinases. Studies of mouse models have found that P-Rex1 expression and activation is associated with tumor cell migration, brain development and pathological changes such as lung edema. Since its initial discovery, P-Rex1 has been known for its large size and multiple activation mechanisms that involve not only PIP3 but also the βγ subunits of heterotrimeric G proteins and a regulatory subunit of cyclic AMP-dependent kinase, PKA RIα. At the core of the GEF activity is the tandem Dbl homology domain and the pleckstrin homology domain (DH/PH domains) that are masked until activation signals unwind the P-Rex1 structure. Understanding the activation mechanisms will help designing therapeutics that target P-Rex1 for cancer and other diseases.
Collapse
|
16
|
Luchowska-Stańska U, Morgan D, Yarwood SJ, Barker G. Selective small-molecule EPAC activators. Biochem Soc Trans 2019; 47:1415-1427. [PMID: 31671184 PMCID: PMC6824682 DOI: 10.1042/bst20190254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
The cellular signalling enzymes, EPAC1 and EPAC2, have emerged as key intracellular sensors of the secondary messenger cyclic 3',5'-adenosine monophosphate (cyclic adenosine monophosphate) alongside protein kinase A. Interest has been galvanised in recent years thanks to the emergence of these species as potential targets for new cardiovascular disease therapies, including vascular inflammation and insulin resistance in vascular endothelial cells. We herein summarise the current state-of-the-art in small-molecule EPAC activity modulators, including cyclic nucleotides, sulphonylureas, and N-acylsulphonamides.
Collapse
Affiliation(s)
- Urszula Luchowska-Stańska
- Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - David Morgan
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Stephen J. Yarwood
- Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Graeme Barker
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| |
Collapse
|
17
|
Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol 2019; 432:1347-1366. [PMID: 31446075 DOI: 10.1016/j.jmb.2019.08.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Harnessing the translational potential of the GLP-1/GLP-1R system in pancreatic beta cells has led to the development of established GLP-1R-based therapies for the long-term preservation of beta cell function. In this review, we discuss recent advances in the current research on the GLP-1/GLP-1R system in beta cells, including the regulation of signaling by endocytic trafficking as well as the application of concepts such as signal bias, allosteric modulation, dual agonism, polymorphic receptor variants, spatial compartmentalization of cAMP signaling and new downstream signaling targets involved in the control of beta cell function.
Collapse
Affiliation(s)
- Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colin Leech
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
18
|
Cervantes-Villagrana RD, Color-Aparicio VM, Reyes-Cruz G, Vázquez-Prado J. Protumoral bone marrow-derived cells migrate via Gβγ-dependent signaling pathways and exhibit a complex repertoire of RhoGEFs. J Cell Commun Signal 2019; 13:179-191. [PMID: 30612298 PMCID: PMC6498369 DOI: 10.1007/s12079-018-00502-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Reciprocal communication among cells of the tumor microenvironment contributes to cancer progression. Here, we show that a protumoral population of cultured bone marrow-derived cells (BMDC) containing Tie2+/CD45+/CD11b + cells responded to lung carcinoma cells and reciprocally stimulated them. These cells migrated via heterotrimeric G protein-dependent signaling pathways and strongly activated the PI3K/AKT, ERK and mTOR signaling cascades in response to conditioned media and chemotactic agonists. To get insight into the molecular machinery involved in BMDC migration, we revealed their repertoire of guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) and G proteins in comparison with fresh bone marrow cells, proven that these cell populations had contrasting effects on tumor growth. BMDC exhibited a higher expression of G protein regulated RhoGEFs including P-Rex1, PDZ-RhoGEF, LARG, Trio and some less well characterized RhoGEFs such as ARHGEF5, ARHGEF17 and PLEKHG6. G proteins such as Gα12/13, Gαq, and the small GTPase RhoJ were also highly expressed in BMDC. Our results indicate that Tie2+/CD45+/CD11b + BMDC express a unique variety of chemotactic transducers and effectors potentially linked to their protumoral effect, warranting further studies to their characterization as molecular targets.
Collapse
Affiliation(s)
| | - Víctor Manuel Color-Aparicio
- Department of Pharmacology, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508., Col. San Pedro Zacatenco, 14740, Mexico City, Mexico
| | | | - José Vázquez-Prado
- Department of Pharmacology, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508., Col. San Pedro Zacatenco, 14740, Mexico City, Mexico.
| |
Collapse
|
19
|
Holz GG, Chepurny OG, Leech CA. "A-kinase" regulator runs amok to provide a paradigm shift in cAMP signaling. J Biol Chem 2019; 294:2247-2248. [PMID: 30765510 DOI: 10.1074/jbc.h119.007622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of the archetypal protein kinase A (PKA) is typically thought of in regards to the catalytic subunit, which is inhibited by the regulatory subunits in the absence of cAMP. However, it is now reported that one of the regulatory subunit isoforms (PKA-RIα) takes on a function of its own upon binding to cAMP, acting independently of this canonical cAMP signaling mechanism. PKA-RIα instead binds to and stimulates the catalytic activity of a guanine nucleotide exchange factor (P-REX1) that itself promotes Rac1 GTPase activation. This newly discovered function of PKA-RIα adds an additional layer of complexity to our understanding of cAMP signal transduction.
Collapse
Affiliation(s)
- George G Holz
- From the Departments of Medicine, .,Pharmacology, and
| | | | - Colin A Leech
- Surgery, State University of New York Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|