1
|
Wang T, Zheng G, Chen Z, Wang Y, Zhao C, Li Y, Yuan Y, Duan H, Zhu H, Yang X, Li W, Du W, Li Y, Li D. Drug repurposing screens identify Tubercidin as a potent antiviral agent against porcine nidovirus infections. Virus Res 2024; 339:199275. [PMID: 38008220 PMCID: PMC10730850 DOI: 10.1016/j.virusres.2023.199275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
The emergence of new coronaviruses poses a significant threat to animal husbandry and human health. Porcine epidemic diarrhea virus (PEDV) is considered a re-emerging porcine enteric coronavirus, which causes fatal watery diarrhea in piglets. Currently, there are no effective drugs to combat PEDV. Drug repurposing screens have emerged as an attractive strategy to accelerate antiviral drug discovery and development. Here, we screened 206 natural products for antiviral activity using live PEDV infection in Vero cells and identified ten candidate antiviral agents. Among them, Tubercidin, a nucleoside analog derived from Streptomyces tubercidicus, showed promising antiviral activity against PEDV infection. Furthermore, we demonstrated that Tubercidin exhibited significant antiviral activity against both classical and variant PEDV. Time of addition assay showed that Tubercidin displayed a significant inhibitory effect on viral post-entry events but not during other periods. Molecular docking analysis indicated that Tubercidin had better docking efficiency and formed hydrophobic interactions with the active pocket of RNA-dependent RNA polymerase (RdRp) of PEDV and other nidoviruses. Additionally, Tubercidin can effectively suppress other porcine nidoviruses, such as SADS-CoV and PRRSV, demonstrating its broad-spectrum antiviral properties. In summary, our findings provide valuable evidence for the antiviral activity of Tubercidin and offer insights into the development of new strategies for the prevention and treatment of coronavirus infections.
Collapse
Affiliation(s)
- Tianliang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guanmin Zheng
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zilu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yue Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yaqin Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yixin Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Agricultural University, Zhengzhou, Henan 450046, China
| | - Hongsen Zhu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Agricultural University, Zhengzhou, Henan 450046, China
| | - Wentao Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenjuan Du
- Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584CL, the Netherlands
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Agricultural University, Zhengzhou, Henan 450046, China.
| | - Dongliang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
2
|
Chen C, Wu J, Hicks C, Lan MS. Repurposing a plant alkaloid homoharringtonine targets insulinoma associated-1 in N-Myc-activated neuroblastoma. Cell Signal 2023; 109:110753. [PMID: 37301315 PMCID: PMC10527743 DOI: 10.1016/j.cellsig.2023.110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
High-risk neuroblastoma (NB) is a heterogeneous and malignant childhood cancer that is frequently characterized by MYCN proto-oncogene amplification or elevated N-Myc protein (N-Myc) expression. An N-Myc downstream target gene, insulinoma associated-1 (INSM1) has emerged as a biomarker that plays a critical role in facilitating NB tumor cell growth and transformation. N-Myc activates endogenous INSM1 gene expression through binding to the E2-box of the INSM1 proximal promoter in NB. We identified a plant alkaloid, homoharringtonine (HHT), from a chemical library screening showing potent inhibition of INSM1 promoter activity. This positive-hit plant alkaloid exemplifies an effective screening approach for repurposed compound targeting INSM1 expression in NB cancer therapy. The elevated N-Myc and INSM1 expression in NB constitutes a positive-loop through INSM1 activation that promotes N-Myc stability. In the present study, the biological effects and anti-tumor properties of HHT against NB were examined. HHT either down regulates and/or interferes with the binding of N-Myc to the E2-box of the INSM1 promoter and the inhibition of PI3K/AKT-mediated N-Myc stability could lead to the NB cell apoptosis. HHT inhibition of NB cell proliferation is consistent with the INSM1 expression as higher level of INSM1 exhibits a more sensitive IC50 value. The combination treatment of HHT and A674563 provides a better option of increasing potency and reducing cellular cytotoxicity than HHT or A674563 treatment alone. Taken together, the suppression of the INSM1-associated signaling pathway axis promotes the inhibition of NB tumor cell growth. This study developed a feasible approach for repurposing an effective anti-NB drug.
Collapse
Affiliation(s)
- Chiachen Chen
- Department of Genetics, Louisiana State University Health Sciences Center, 533 Bolivar St. CSRB, New Orleans, LA 70112, USA
| | - Jiande Wu
- Department of Genetics, Louisiana State University Health Sciences Center, 533 Bolivar St. CSRB, New Orleans, LA 70112, USA; Bioinformatics and Genomics Program, 533 Bolivar St. CSRB, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center, 533 Bolivar St. CSRB, New Orleans, LA 70112, USA; Bioinformatics and Genomics Program, 533 Bolivar St. CSRB, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michael S Lan
- Department of Genetics, Louisiana State University Health Sciences Center, 533 Bolivar St. CSRB, New Orleans, LA 70112, USA.
| |
Collapse
|
3
|
Lan MS, Chen C. Small Molecules Targeting INSM1 for the Treatment of High-Risk Neuroblastoma. BIOLOGY 2023; 12:1134. [PMID: 37627018 PMCID: PMC10452524 DOI: 10.3390/biology12081134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023]
Abstract
Human neuroblastoma (NB) is the most common childhood extracranial tumor arising from the sympathetic nervous system. It is also a clinically heterogeneous disease that ranges from spontaneous regression to high-risk stage 4 disease. The cause of this disease remains elusive. However, the amplification of NMYC oncogene occurred in roughly 30% of NB patients, which strongly correlated with the advanced stage of disease subtype and the worse prognosis status. We discovered that N-Myc oncoprotein binds and activates INSM1, a zinc-finger transcription factor of neuroendocrine tumors. We also found that INSM1 modulates N-Myc stability mediated through PI3K/AKT/GSK3β signaling pathway. Therefore, INSM1 emerges as a critical co-player with N-Myc in facilitating NB tumor cell growth and sustaining the advanced stage of malignancy. Using an INSM1-promoter driven luciferase screening-platform, we have recently identified fifteen small molecules that negatively regulate INSM1 expression. Interestingly, the identified small molecules can be divided into four large groups of compounds such as cell signaling inhibitor, DNA/RNA inhibitor, HDAC inhibitor, and cardiac glycoside. These findings support the presence of a unique mechanism associated with INSM1 and N-Myc interplay, which is critical in regulating NB tumor cell growth. We discuss the feasibility of identifying novel or repurposing small molecules targeting INSM1 as a potential treatment option for high-risk NB.
Collapse
Affiliation(s)
- Michael S. Lan
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | | |
Collapse
|
4
|
Guan Y, Sun Y, Liu Z, Zhang Y, Cao M, Wang W, Tao J, Yao Y. INSM1 promotes breast carcinogenesis by regulating C-MYC. Am J Cancer Res 2023; 13:3500-3516. [PMID: 37693125 PMCID: PMC10492136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/28/2023] [Indexed: 09/12/2023] Open
Abstract
Insulinoma-associated protein-1 (INSM1), which is highly expressed in various neuroendocrine tumors, functions as a zinc finger transcription factor capable of regulating the biological behavior of tumor cells. However, its specific role in breast cancer remains unclear. This study aims to investigate the role and mechanism of INSM1 in breast cancer. A total of 158 cohorts were recruited to examine the expression of INSM1 in breast cancer tissues and their corresponding adjacent normal tissues using immunohistochemistry. Follow-up data, along with clinical and pathological information, were collected to analyze the correlation between INSM1 expression and survival outcomes in breast cancer patients. Additionally, we investigated the impact of INSM1 on breast cancer cell proliferation, migration, and aggregation. To further explore the regulatory effect of INSM1 knockdown on breast cancer tumor growth, we utilized a xenograft mouse model. The results revealed that INSM1 was significantly overexpressed in breast cancer patients and correlated with prognosis. Knockdown of INSM1 notably impaired the malignant biological effects of breast cancer cells and inhibited the growth of xenograft tumors in nude mice. Importantly, our data also suggests an interaction between INSM1 and S-phase kinase-associated protein 2 (SKP2), which in turn regulates C-MYC, thereby affecting the p-ERK pathway. Our study provides the first evidence demonstrating the contribution of INSM1 to tumor formation and growth in breast cancer. Furthermore, we found that INSM1 positively regulates C-MYC and the p-ERK pathway by interacting with SKP2 during breast cancer development. Collectively, these findings highlight INSM1 as a promising target for breast cancer treatment.
Collapse
Affiliation(s)
- Yinan Guan
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
| | - Yulu Sun
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
| | - Zheying Liu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
- Department of Clinical Medicine, Southeast Univeristy SchoolNanjing 210008, Jiangsu, China
| | - Yin Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
| | - Meng Cao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
| | - Wei Wang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
| | - Jinqiu Tao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
| | - Yongzhong Yao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
| |
Collapse
|
5
|
Chen C, Lan MS. Interplay: The Essential Role between INSM1 and N-Myc in Aggressive Neuroblastoma. BIOLOGY 2022; 11:biology11101376. [PMID: 36290282 PMCID: PMC9598261 DOI: 10.3390/biology11101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary Neuroblastoma (NB) is a cancer that starts in certain very early forms of nerve cells of the sympathetic nervous system, most often found in an embryo or fetus. Symptoms may include bone pain, an abdominal mass, frequent urination, limping, anemia, spinal cord weakness, or bruising of the eye area. N-Myc is a key driver of high-risk NB. An elevated expression of N-Myc often predicts a poorer prognosis, in both time to tumor progression and overall survival rate. We discovered a transcription factor, insulinoma-associated-1 (INSM1), as the downstream target gene of N-Myc. INSM1 has emerged as a novel NB biomarker that plays a critical role in facilitating NB tumor cell development. Both N-Myc and INSM1 demonstrate high clinical relevance to NB. Therefore, further understanding the association of INSM1 and N-Myc functions in aggressive NB should be beneficial for future NB treatment. Abstract An aggressive form of neuroblastoma (NB), a malignant childhood cancer derived from granule neuron precursors and sympathoadrenal lineage, frequently comprises MYCN amplification/elevated N-Myc expression, which contributes to the development of neural crest-derived embryonal malignancy. N-Myc is an oncogenic driver in NB. Persistent N-Myc expression during the maturation of SA precursor cells can cause blockage of the apoptosis and induce abnormal proliferation, resulting in NB development. An insulinoma-associated-1 (INSM1) zinc-finger transcription factor has emerged as an NB biomarker that plays a critical role in facilitating tumor cell growth and transformation. INSM1 plays an essential role in sympathoadrenal cell differentiation. N-Myc activates endogenous INSM1 through an E2-box of the INSM1 proximal promoter, whereas INSM1 enhances N-Myc stability via RAC-α-serine/threonine protein kinase (AKT) phosphorylation in NB. The ectopic expression of INSM1 stimulates NB tumor growth in contrast to the knockdown of INSM1 that inhibits NB cell proliferation. The clinical pathological result and bioinformatics analysis show that INSM1 is a strong diagnostic and a prognostic biomarker for the evaluation of NB progression. The INSM1/N-Myc expression shows high clinical relevance in NB. Therefore, targeting the INSM1/N-Myc-associated signaling axis should be a feasible approach to identifying new drugs for the suppression of NB tumor growth.
Collapse
Affiliation(s)
| | - Michael S. Lan
- Correspondence: ; Tel.: +1-504-568-2437; Fax: +1-504-568-8500
| |
Collapse
|
6
|
Insulinoma-Associated Protein 1 (INSM1): Diagnostic, Prognostic, and Therapeutic Use in Small Cell Lung Cancer. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3030013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Small cell lung carcinoma (SCLC) is an aggressive and difficult to treat cancer. Although immunohistochemistry is not mandatory for a SCLC diagnosis, it might be required, especially in small samples. Insulinoma-associated protein 1 (INSM1) is expressed in endocrine and nervous tissues during embryogenesis, generally absent in adults and re-expressed in SCLC and other neuroendocrine neoplasms. Its high specificity propelled its use as diagnostic biomarker and an attractive therapeutic target. Herein, we aim to provide a systematic and critical review on the use of INSM1 for diagnosis, prognostication and the treatment of SCLC. An extensive bibliographic search was conducted in PubMed® focusing on articles published since 2015. According to the literature, INSM1 is a highly sensitive (75–100%) and specific (82–100%) neuroendocrine immunohistochemical marker for SCLC diagnosis. It can be used in histological and cytological samples. Although advantageous, its standalone use is currently not recommended. Studies correlating INSM1 expression and prognosis have disclosed contrasting results, although the expression seemed to entail a worse survival. Targeting INSM1 effectively suppressed SCLC growth either as a suicide gene therapy regulator or as an indirect target of molecular-targeted therapy. INSM1 represents a valuable biomarker for a SCLC diagnosis that additionally offers vast opportunities for the development of new prognostic and therapeutic strategies.
Collapse
|
7
|
Metovic J, Napoli F, Osella-Abate S, Bertero L, Tampieri C, Orlando G, Bianchi M, Carli D, Fagioli F, Volante M, Papotti M. Overexpression of INSM1, NOTCH1, NEUROD1, and YAP1 genes is associated with adverse clinical outcome in pediatric neuroblastoma. Virchows Arch 2022; 481:925-933. [PMID: 36121500 PMCID: PMC9734219 DOI: 10.1007/s00428-022-03406-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/12/2022] [Accepted: 08/27/2022] [Indexed: 01/22/2023]
Abstract
Pediatric neuroblastoma is responsible for approximately 8-10% of pediatric tumors, and it is one of the leading causes of tumor-related deaths in children. Although significant progress has been made in the characterization of neuroblastoma in recent years, the mechanisms influencing the prognosis of neuroblastoma patients remain largely unknown. Our aim was to investigate if the major neuroendocrine-associated transcriptional drivers, including ASCL1, NEUROD1, DLL3, NOTCH1, INSM1, MYCL1, POU2F3 and YAP1 are correlated with specific clinical and pathological characteristics. We selected a retrospective series of 46 primary pediatric neuroblastoma, composed of 30 treatment-naïve and 16 post-chemotherapy cases. Gene expression levels were explored by means of quantitative real-time PCR. An increased expression of NOTCH1 (p = 0.005), NEUROD1 (p = 0.0059), and YAP1 (p = 0.0008) was found in stage IV tumors, while the highest levels of MYCL1 and ASCL1 were seen in stages IVS and III, respectively (p = 0.0182 and p = 0.0134). A higher level of NOTCH1 (p = 0.0079) and YAP1 (p = 0.0026) was found in cases with differentiating morphology, while high mitosis-karyorrhexis index cases demonstrated significantly lower levels of POU2F3 (p = 0.0277). High expression of NOTCH1 (p = 0.008), NEUROD1 (p = 0.026), INSM1 (p = 0.010), and YAP1 (p = 0.005) together with stage IV (p = 0.043) was associated with shorter disease-free survival. In summary, our data indicate that the assessment of gene expression levels of neuroendocrine-lineage transcription factors might help to identify neuroblastoma patients with the risk of relapse.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - Francesca Napoli
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | | | - Luca Bertero
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giulia Orlando
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - Maurizio Bianchi
- Pediatric Onco-hemathology Unit, "Città della Salute e della Scienza" Hospital, Turin, Italy
| | - Diana Carli
- Pediatric Onco-hemathology Unit, "Città della Salute e della Scienza" Hospital, Turin, Italy
| | - Franca Fagioli
- Department of Sciences of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, Orbassano, Turin, Italy.
| | - Mauro Papotti
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
8
|
Marcelino H, Carvalho TMA, Tomás J, Teles FI, Honório AC, Rosa CB, Costa AR, Costa BM, Santos CRA, Sebastião AM, Cascalheira JF. Adenosine Inhibits Cell Proliferation Differently in Human Astrocytes and in Glioblastoma Cell Lines. Neuroscience 2021; 467:122-133. [PMID: 34033870 DOI: 10.1016/j.neuroscience.2021.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is the most common brain primary tumour. Hypoxic regions in GBM are associated to tumour growth. Adenosine accumulates in hypoxic regions and can affect cell proliferation and survival. However, how proliferating GBM cells respond/adapt to increased adenosine levels compared to human astrocytes (HA) is not clarified and was addressed in the present work. GBM cell lines and HA were treated for 3 days with test drugs. Thirty Adenosine (30 µM) caused a 43% ± 5% (P < 0.05) reduction of cell proliferation/viability in HA, through an adenosine receptor-independent mechanism, but had no effect in GBM cell lines U87MG, U373MG and SNB19. Contrastingly, inhibition of adenosine phosphorylation (using the adenosine kinase (ADK) inhibitor 5-iodotubercidin (ITU) (25 µM)), produced a strong and similar decrease on cell proliferation in both HA and GBM cells. The effect of adenosine on HA proliferation/viability was potentiated by 100 µM-homocysteine. Combined application of 30 µM-adenosine and 100 µM-homocysteine reduced the cell proliferation/viability in all three GBM cell lines, but this reduction was much lower than that observed in HA. Adenosine alone did not induce cell death, assessed by lactate dehydrogenase (LDH) release, both in HA and GBM cells, but potentiated the cytotoxic effect of homocysteine in HA and in U87MG and U373MG cells. Results show a strong attenuation of adenosine anti-proliferative effect in GBM cells compared to HA, probably resulting from increased adenosine elimination by ADK, suggesting a proliferative-prone adaptation of tumour cells to increased adenosine levels.
Collapse
Affiliation(s)
- Helena Marcelino
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Chemistry, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joana Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Francisca I Teles
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana C Honório
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carolina B Rosa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal; Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - José F Cascalheira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Chemistry, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
9
|
A promoter-driven assay for INSM1-associated signaling pathway in neuroblastoma. Cell Signal 2020; 76:109785. [PMID: 32966884 DOI: 10.1016/j.cellsig.2020.109785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Aggressive form of neuroblastoma (NB) is a malignant childhood cancer derived from granule neuron precursors and sympatho-adrenal lineage with N-MYC amplification. An insulinoma associated-1 (INSM1) transcription factor has emerged as a NB biomarker that plays critical role in facilitating tumor cell growth and transformation. N-myc activates INSM1 in NB was discovered. In order to elucidate the signaling pathways associated with INSM1 expression and NB tumor cell growth, we developed an INSM1 promoter-driven luciferase assay for new drug discovery. Promoter-driven luciferase assay demonstrated high Z' factor (>0.7). Performance measures using signal-to-noise ratio, signal window, and Z' factor confirmed this assay is a robust screening method. A panel of FDA-approved oncology drugs set (147 compounds) was subjected to the INSM1 promoter-driven luciferase assay. The positive-hit compounds were validated for effects on cell viability and INSM1 expression. Screening a FDA-approved oncology drugs set revealed multiple inhibitors against various signaling pathways via suppression of INSM1 promoter activity. The positive-hit compounds consist of 9 signaling pathway inhibitors negatively regulates INSM1 expression and cell viability in NB. These inhibitors target DNA/RNA/protein synthesis, tubulin assembly, and histone deacetylase signaling pathways. The outcome of this assay indicates that the newly identified pathways could be critical for NB growth and transformation. This technology and the positive-hits of multiple pathways represent a promising option of identifying re-purposed FDA-approved drugs valuable for NB treatment in the context of a NB-specific marker, INSM1.
Collapse
|
10
|
Identification of candidate aberrantly methylated and differentially expressed genes in Esophageal squamous cell carcinoma. Sci Rep 2020; 10:9735. [PMID: 32546690 PMCID: PMC7297810 DOI: 10.1038/s41598-020-66847-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Aberrant methylated genes (DMGs) play an important role in the etiology and pathogenesis of esophageal squamous cell carcinoma (ESCC). In this study, we aimed to integrate three cohorts profile datasets to ascertain aberrant methylated-differentially expressed genes and pathways associated with ESCC by comprehensive bioinformatics analysis. We downloaded data of gene expression microarrays (GSE20347, GSE38129) and gene methylation microarrays (GSE52826) from the Gene Expression Omnibus (GEO) database. Aberrantly differentially expressed genes (DEGs) were obtained by GEO2R tool. The David database was then used to perform Gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome pathway enrichment analyses on selected genes. STRING and Cytoscape software were used to construct a protein-protein interaction (PPI) network, then the modules in the PPI networks were analyzed with MCODE and the hub genes chose from the PPI networks were verified by Oncomine and TCGA database. In total, 291 hypomethylation-high expression genes and 168 hypermethylation-low expression genes were identified at the screening step, and finally found six mostly changed hub genes including KIF14, CDK1, AURKA, LCN2, TGM1, and DSG1. Pathway analysis indicated that aberrantly methylated DEGs mainly associated with the P13K-AKT signaling, cAMP signaling and cell cycle process. After validation in multiple databases, most hub genes remained significant. Patients with high expression of AURKA were associated with shorter overall survival. To summarize, we have identified six feasible aberrant methylated-differentially expressed genes and pathways in ESCC by bioinformatics analysis, potentially providing valuable information for the molecular mechanisms of ESCC. Our data combined the analysis of gene expression profiling microarrays and gene methylation profiling microarrays, simultaneously, and in this way, it can shed a light for screening and diagnosis of ESCC in future.
Collapse
|
11
|
Insulinoma-associated protein 1 (INSM1): a potential biomarker and therapeutic target for neuroendocrine tumors. Cell Oncol (Dordr) 2020; 43:367-376. [PMID: 32219703 DOI: 10.1007/s13402-020-00505-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Insulinoma-associated protein 1 (INSM1), a transcriptional regulator with a zinc-finger DNA-binding domain, has been validated as a cytoplasmic marker for neuroendocrine differentiation of tumor cells. Next to its abundant expression in the fetal pancreas, it is expressed in brain tumors, pheochromocytomas, medullary thyroid carcinomas, insulinomas and pituitary and small-cell lung carcinomas. INSM1 is not expressed in normal adult tissues and/or most non-neuroendocrine tumors. It regulates various downstream signaling pathways, including the Sonic Hedgehog, PI3K/AKT, MEK/ERK1/2, ADK, p53, Wnt, histone acetylation, LSD1, cyclin D1, Ascl1 and N-Myc pathways. Although INSM1 appears to be a subtle and specific biomarker for neuroendocrine tumors, its role in tumor development has remained unclear. CONCLUSIONS Here, we highlight INSMI expression, as well as its diagnostic significance and use as a therapeutic target in various neuroendocrine tumors. Targeting signaling pathways or gene expression alterations associated with INSM1 expression may be instrumental for the design of novel therapeutic strategies for neuroendocrine tumors.
Collapse
|
12
|
Chen C, Notkins AL, Lan MS. Insulinoma-Associated-1: From Neuroendocrine Tumor Marker to Cancer Therapeutics. Mol Cancer Res 2019; 17:1597-1604. [PMID: 31113827 DOI: 10.1158/1541-7786.mcr-19-0286] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 01/21/2023]
Abstract
Insulinoma-associated-1 (IA-1 or INSM1) encodes a zinc-finger transcription factor, which was isolated from a human insulinoma subtraction library, with specific expression patterns, predominantly in developing neuroendocrine tissues and tumors. INSM1 is key in early pancreatic endocrine, sympatho-adrenal lineage, and pan-neurogenic precursor development. Insm1 gene ablation results in impairment of pancreatic β cells, catecholamine biosynthesis, and basal progenitor development during mammalian neocortex maturation. Recently, INSM1 has emerged as a superior, sensitive, and specific biomarker for neuroendocrine tumors. INSM1 regulates downstream target genes and exhibits extranuclear activities associated with multiple signaling pathways, including Sonic Hedgehog, PI3K/AKT, MEK/ERK1/2, ADK, p53, Wnt, histone acetylation, LSD1, cyclin D1, Ascl1, and N-myc. Novel strategies targeting INSM1-associated signaling pathways facilitate the suppression of neuroendocrine tumor growth. In addition, INSM1 promoter-driven reporter assay and/or suicide gene therapy are promising effective therapeutic approaches for targeted specific neuroendocrine tumor therapy. In this review, the current knowledge of the biological role of INSM1 as a neuroendocrine tumor biomarker is summarized, and novel strategies targeting multiple signaling pathways in the context of INSM1 expression in neuroendocrine tumors are further explored. IMPLICATIONS: Neuroendocrine transcription factor (INSM1) may serve as a neuroendocrine biomarker for the development of novel cancer therapeutics against neuroendocrine tumors.
Collapse
Affiliation(s)
- Chiachen Chen
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Abner L Notkins
- Experimental Medicine Section, National Institute of Dental & Craniofacial Research, NIH, Bethesda, Maryland
| | - Michael S Lan
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana. .,Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|