1
|
Reddi Sree R, Kalyan M, Anand N, Mani S, Gorantla VR, Sakharkar MK, Song BJ, Chidambaram SB. Newer Therapeutic Approaches in Treating Alzheimer's Disease: A Comprehensive Review. ACS OMEGA 2025; 10:5148-5171. [PMID: 39989768 PMCID: PMC11840625 DOI: 10.1021/acsomega.4c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease (AD) is an aging-related irreversible neurodegenerative disease affecting mostly the elderly population. The main pathological features of AD are the extracellular Aβ plaques generated by APP cleavage through the amyloidogenic pathway, the intracellular neurofibrillary tangles (NFT) resulting from the hyperphosphorylated tau proteins, and cholinergic neurodegeneration. However, the actual causes of AD are unknown, but several studies suggest hereditary mutations in PSEN1 and -2, APOE4, APP, and the TAU genes are the major perpetrators. In order to understand the etiology and pathogenesis of AD, various hypotheses are proposed. These include the following hypotheses: amyloid accumulation, tauopathy, inflammation, oxidative stress, mitochondrial dysfunction, glutamate/excitotoxicity, cholinergic deficiency, and gut dysbiosis. Currently approved therapeutic interventions are donepezil, galantamine, and rivastigmine, which are cholinesterase inhibitors (ChEIs), and memantine, which is an N-methyl-d-aspartate (NMDA) antagonist. These treatment strategies focus on only symptomatic management of AD by attenuating symptoms but not regeneration of neurons or clearance of Aβ plaques and hyperphosphorylated Tau. This review focuses on the pathophysiology, novel therapeutic targets, and disease-altering treatments such as α-secretase modulators, active immunotherapy, passive immunotherapy, natural antioxidant products, nanomaterials, antiamyloid therapy, tau aggregation inhibitors, transplantation of fecal microbiota or stem cells, and microtubule stabilizers that are in clinical trials or still under investigation.
Collapse
Affiliation(s)
- Radhakrishna Reddi Sree
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Manjunath Kalyan
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre
for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department
of Pharmacology, American University of
Antigua College of Medicine, University Park, Jabberwock Beach Road, Coolidge, Antigua, Barbuda
| | - Sangeetha Mani
- Department
of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and
Research, Porur, Chennai 600116, India
| | - Vasavi Rakesh Gorantla
- Department
of Anatomical Sciences, St. George’s University School of Medicine, St. George’s University, Saint George, Grenada
| | - Meena Kishore Sakharkar
- College
of
Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Byoung-Joon Song
- Section
of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry
and Biophysics, National Institute on Alcohol
Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Saravana Babu Chidambaram
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre
for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
2
|
Montecinos F, Eren E, Watts NR, Sackett DL, Wingfield PT. Structure of blood cell-specific tubulin and demonstration of dimer spacing compaction in a single protofilament. J Biol Chem 2025; 301:108132. [PMID: 39725029 PMCID: PMC11791314 DOI: 10.1016/j.jbc.2024.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Microtubule (MT) function plasticity originates from its composition of α- and β-tubulin isotypes and the posttranslational modifications of both subunits. Aspects such as MT assembly dynamics, structure, and anticancer drug binding can be modulated by αβ-tubulin heterogeneity. However, the exact molecular mechanism regulating these aspects is only partially understood. A recent insight is the discovery of expansion and compaction of the MT lattice, which can occur via fine modulation of dimer longitudinal spacing mediated by GTP hydrolysis, taxol binding, protein binding, or isotype composition. Here, we report the first structure of the blood cell-specific α1/β1-tubulin isolated from the marginal band of chicken erythrocytes (ChET) determined to a resolution of 3.2 Å by cryo-EM. We show that ChET rings induced with cryptophycin-52 (Cp-52) are smaller in diameter than HeLa cell line tubulin (HeLaT) rings induced with Cp-52 and composed of the same number of heterodimers. We observe compacted interdimer and intradimer curved protofilament interfaces, characterized by shorter distances between ChET subunits and accompanied by conformational changes in the β-tubulin subunit. The compacted ChET interdimer interface brings more residues near the Cp-52 binding site. We measured the Cp-52 apparent binding affinities of ChET and HeLaT by mass photometry, observing small differences, and detected the intermediates of the ring assembly reaction. These findings demonstrate that compaction/expansion of dimer spacing can occur in a single protofilament context and that the subtle structural differences between tubulin isotypes can modulate tubulin small molecule binding.
Collapse
Affiliation(s)
- Felipe Montecinos
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elif Eren
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Norman R Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dan L Sackett
- Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | - Paul T Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
3
|
Espinosa-Ruíz C, Esteban MÁ. Modulation of cell migration and cell tracking of the gilthead seabream (Sparus aurata) SAF-1 cells by probiotics. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109149. [PMID: 37858786 DOI: 10.1016/j.fsi.2023.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/18/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Cell migration is an essential process in immunity and wound healing. The in vitro scratch assay was optimized for the SAF-1 cell line, obtained from gilthead seabream (Sparus aurata) fin. In addition, selected cells from the cell front were tracked for detailed individual cell movement and morphological analysis. Modulation of migration and cell tracking of the SAF-1 cell line by probiotics was evaluated. Cells were cultured and incubated for 24 h with three species of extremophilic yeasts [Yarrowia lipolytica (D1 and N6) and Debaryomyces hansenii (CBS004)] and the bacterium Shewanella putrefaciens (known as SpPdp11) and then scratch and cell tracking assays were performed. The results indicated that the forward velocity was significantly (p < 0.05) increased in SAF-1 cells incubated with CBS004 or SpPdp11. However, cell velocity, cumulative distance and Euclidean distance were only significantly increased in SAF-1 cells incubated with SpPdp11. Furthermore, to increase our understanding of the genes involved in cell movement, the expression profile of ten structural proteins (α-1β tubulin, vinculin, focal adhesion kinase type, alpha-2 integrin, tetraspanin, integrin-linked kinase 1, tensin 3, tensin 4, paxillin, and light chain 2) was studied by real time-PCR. The expression of these genes was modulated as a function of the probiotic tested and the results indicate that CBS004 and SpPdp11 increase the movement of SAF-1 cells.
Collapse
Affiliation(s)
- Cristóbal Espinosa-Ruíz
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Ma Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
4
|
Wethekam LC, Moore JK. Tubulin isotype regulation maintains asymmetric requirement for α-tubulin over β-tubulin. J Cell Biol 2023; 222:e202202102. [PMID: 36719400 PMCID: PMC9930134 DOI: 10.1083/jcb.202202102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/19/2022] [Accepted: 11/14/2022] [Indexed: 02/01/2023] Open
Abstract
How cells regulate α- and β-tubulin to meet the demand for αβ-heterodimers and avoid consequences of monomer imbalance is not understood. We investigate the role of gene copy number and how shifting expression of α- or β-tubulin genes impacts tubulin proteostasis and microtubule function in Saccharomyces cerevisiae. We find that α-tubulin gene copy number is important for maintaining excess α-tubulin protein compared to β-tubulin protein. Excess α-tubulin prevents accumulation of super-stoichiometric β-tubulin, which leads to loss of microtubules, formation of non-microtubule assemblies of tubulin, and disrupts cell proliferation. In contrast, sub-stoichiometric β-tubulin or overexpression of α-tubulin has minor effects. We provide evidence that yeast cells equilibrate α-tubulin protein concentration when α-tubulin isotype expression is increased. We propose an asymmetric relationship between α- and β-tubulins, in which α-tubulins are maintained in excess to supply αβ-heterodimers and limit the accumulation of β-tubulin monomers.
Collapse
Affiliation(s)
- Linnea C. Wethekam
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jeffrey K. Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
5
|
Disruption of tubulin-alpha4a polyglutamylation prevents aggregation of hyper-phosphorylated tau and microglia activation in mice. Nat Commun 2022; 13:4192. [PMID: 35858909 PMCID: PMC9300677 DOI: 10.1038/s41467-022-31776-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
Dissociation of hyper-phosphorylated Tau from neuronal microtubules and its pathological aggregates, are hallmarks in the etiology of tauopathies. The Tau-microtubule interface is subject to polyglutamylation, a reversible posttranslational modification, increasing negative charge at tubulin C-terminal tails. Here, we asked whether tubulin polyglutamylation may contribute to Tau pathology in vivo. Since polyglutamylases modify various proteins other than tubulin, we generated a knock-in mouse carrying gene mutations to abolish Tuba4a polyglutamylation in a substrate-specific manner. We found that Tuba4a lacking C-terminal polyglutamylation prevents the binding of Tau and GSK3 kinase to neuronal microtubules, thereby strongly reducing phospho-Tau levels. Notably, crossbreeding of the Tuba4a knock-in mouse with the hTau tauopathy model, expressing a human Tau transgene, reversed hyper-phosphorylation and oligomerization of Tau and normalized microglia activation in brain. Our data highlight tubulin polyglutamylation as a potential therapeutic strategy in fighting tauopathies. Pathologic oligomerization of hyper-phosphorylated Tau is a hallmark of tauopathies. Here the authors show that the loss of tubulin a4 polyglutamylation reverses tau hyperphosphorylation, oligomerization and microglia activation in a tauopathy mouse.
Collapse
|
6
|
Montecinos F, Loew M, Chio TI, Bane SL, Sackett DL. Interaction of Colchicine-Site Ligands With the Blood Cell-Specific Isotype of β-Tubulin—Notable Affinity for Benzimidazoles. Front Cell Dev Biol 2022; 10:884287. [PMID: 35712668 PMCID: PMC9194530 DOI: 10.3389/fcell.2022.884287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Tubulin, the main component of microtubules, is an α-β heterodimer that contains one of multiple isotypes of each monomer. Although the isotypes of each monomer are very similar, the beta tubulin isotype found in blood cells is significantly divergent in amino acid sequence compared to other beta tubulins. This isotype, beta class VI, coded by human gene TUBB1, is found in hematologic cells and is recognized as playing a role in platelet biogenesis and function. Tubulin from the erythrocytes of the chicken Gallus gallus contains almost exclusively βVI tubulin. This form of tubulin has been reported to differ from brain tubulin in binding of colchicine-site ligands, previously thought to be a ubiquitous characteristic of tubulin from higher eukaryotes. In this study, we sought to gain a better understanding of the structure-activity relationship of the colchicine site of this divergent isotype, using chicken erythrocyte tubulin (CeTb) as the model. We developed a fluorescence-based assay to detect binding of drugs to the colchicine site and used it to study the interaction of 53 colchicine-site ligands with CeTb. Among the ligands known to bind at this site, most colchicine derivatives had lower affinity for CeTb compared to brain tubulin. Remarkably, many of the benzimidazole class of ligands shows increased affinity for CeTb compared to brain tubulin. Because the colchicine site of human βVI tubulin is very similar to that of chicken βVI tubulin, these results may have relevance to the effect of anti-cancer agents on hematologic tissues in humans.
Collapse
Affiliation(s)
- Felipe Montecinos
- Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Maura Loew
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Tak I. Chio
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Susan L. Bane
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, United States
- *Correspondence: Susan L. Bane, ; Dan L. Sackett,
| | - Dan L. Sackett
- Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Susan L. Bane, ; Dan L. Sackett,
| |
Collapse
|
7
|
Varikoti RA, Fonseka HYY, Kelly MS, Javidi A, Damre M, Mullen S, Nugent JL, Gonzales CM, Stan G, Dima RI. Exploring the Effect of Mechanical Anisotropy of Protein Structures in the Unfoldase Mechanism of AAA+ Molecular Machines. NANOMATERIALS 2022; 12:nano12111849. [PMID: 35683705 PMCID: PMC9182431 DOI: 10.3390/nano12111849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023]
Abstract
Essential cellular processes of microtubule disassembly and protein degradation, which span lengths from tens of μm to nm, are mediated by specialized molecular machines with similar hexameric structure and function. Our molecular simulations at atomistic and coarse-grained scales show that both the microtubule-severing protein spastin and the caseinolytic protease ClpY, accomplish spectacular unfolding of their diverse substrates, a microtubule lattice and dihydrofolate reductase (DHFR), by taking advantage of mechanical anisotropy in these proteins. Unfolding of wild-type DHFR requires disruption of mechanically strong β-sheet interfaces near each terminal, which yields branched pathways associated with unzipping along soft directions and shearing along strong directions. By contrast, unfolding of circular permutant DHFR variants involves single pathways due to softer mechanical interfaces near terminals, but translocation hindrance can arise from mechanical resistance of partially unfolded intermediates stabilized by β-sheets. For spastin, optimal severing action initiated by pulling on a tubulin subunit is achieved through specific orientation of the machine versus the substrate (microtubule lattice). Moreover, changes in the strength of the interactions between spastin and a microtubule filament, which can be driven by the tubulin code, lead to drastically different outcomes for the integrity of the hexameric structure of the machine.
Collapse
Affiliation(s)
- Rohith Anand Varikoti
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | - Hewafonsekage Yasan Y. Fonseka
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | - Maria S. Kelly
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | - Alex Javidi
- Data Sciences, Janssen Research and Development, Spring House, PA 19477, USA;
| | - Mangesh Damre
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | - Sarah Mullen
- Department of Chemistry, The College of Wooster, Wooster, OH 44691, USA;
| | - Jimmie L. Nugent
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | | | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
- Correspondence: (G.S.); (R.I.D.)
| | - Ruxandra I. Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
- Correspondence: (G.S.); (R.I.D.)
| |
Collapse
|
8
|
Kliuchnikov E, Klyshko E, Kelly MS, Zhmurov A, Dima RI, Marx KA, Barsegov V. Microtubule assembly and disassembly dynamics model: Exploring dynamic instability and identifying features of Microtubules' Growth, Catastrophe, Shortening, and Rescue. Comput Struct Biotechnol J 2022; 20:953-974. [PMID: 35242287 PMCID: PMC8861655 DOI: 10.1016/j.csbj.2022.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Microtubules (MTs), a cellular structure element, exhibit dynamic instability and can switch stochastically from growth to shortening; but the factors that trigger these processes at the molecular level are not understood. We developed a 3D Microtubule Assembly and Disassembly DYnamics (MADDY) model, based upon a bead-per-monomer representation of the αβ-tubulin dimers forming an MT lattice, stabilized by the lateral and longitudinal interactions between tubulin subunits. The model was parameterized against the experimental rates of MT growth and shortening, and pushing forces on the Dam1 protein complex due to protofilaments splaying out. Using the MADDY model, we carried out GPU-accelerated Langevin simulations to access dynamic instability behavior. By applying Machine Learning techniques, we identified the MT characteristics that distinguish simultaneously all four kinetic states: growth, catastrophe, shortening, and rescue. At the cellular 25 μM tubulin concentration, the most important quantities are the MT length L , average longitudinal curvatureκ long , MT tip width w , total energy of longitudinal interactions in MT latticeU long , and the energies of longitudinal and lateral interactions required to complete MT to full cylinderU long add andU lat add . At high 250 μM tubulin concentration, the most important characteristics are L ,κ long , number of hydrolyzed αβ-tubulin dimersn hyd and number of lateral interactions per helical pitchn lat in MT lattice, energy of lateral interactions in MT latticeU lat , and energy of longitudinal interactions in MT tipu long . These results allow greater insights into what brings about kinetic state stability and the transitions between states involved in MT dynamic instability behavior.
Collapse
Affiliation(s)
| | - Eugene Klyshko
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | - Maria S. Kelly
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Artem Zhmurov
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ruxandra I. Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kenneth A. Marx
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| |
Collapse
|
9
|
González M, Alcolea PJ, Álvarez R, Medarde M, Larraga V, Peláez R. New diarylsulfonamide inhibitors of Leishmania infantum amastigotes. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 16:45-64. [PMID: 34015753 PMCID: PMC8142021 DOI: 10.1016/j.ijpddr.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/11/2022]
Abstract
New drugs against visceral leishmaniasis with mechanisms of action differing from existing treatments and with adequate cost, stability, and properties are urgently needed. No antitubulin drug is currently in the clinic against Leishmania infantum, the causative agent of visceral leishmaniasis in the Mediterranean area. We have designed and synthesized a focused library of 350 compounds against the Leishmania tubulin based on the structure-activity relationship (SAR) and sequence differences between host and parasite. The compounds synthesized are accessible, stable, and appropriately soluble in water. We assayed the library against Leishmania promastigotes, axenic, and intracellular amastigotes and found 0, 8, and 16 active compounds, respectively, with a high success rate against intracellular amastigotes of over 10%, not including the cytotoxic compounds. Five compounds have a similar or better potency than the clinically used miltefosine. 14 compounds showed a host-dependent mechanism of action that might be advantageous as it may render them less susceptible to the development of drug resistance. The active compounds cluster in five chemical classes that provide structure-activity relationships for further hit improvement and facilitate series development. Molecular docking is consistent with the proposed mechanism of action, supported by the observed structure-activity relationships, and suggests a potential extension to other Leishmania species due to sequence similarities. A new family of diarylsulfonamides designed against the parasite tubulins is active against Leishmania infantum and represents a new class of potential drugs with favorable cost, stability, and aqueous solubility for the treatment of visceral leishmaniasis (VL). These results could be extended to other clinically relevant species of Leishmania spp.
Collapse
Affiliation(s)
- Myriam González
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | - Pedro José Alcolea
- Laboratorio de Parasitología Molecular, Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | - Manuel Medarde
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | - Vicente Larraga
- Laboratorio de Parasitología Molecular, Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain; Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
10
|
Abstract
The association of leishmaniasis and malignancies in human and animal models has been highlighted in recent years. The misdiagnosis of coexistence of leishmaniasis and cancer and the use of common drugs in the treatment of such diseases prompt us to further survey the molecular biology of Leishmania parasites and cancer cells. The information regarding common expressed proteins, as possible therapeutic targets, in Leishmania parasites and cancer cells is scarce. Therefore, the current study reviews proteins, and investigates the regulation and functions of several key proteins in Leishmania parasites and cancer cells. The up- and down-regulations of such proteins were mostly related to survival, development, pathogenicity, metabolic pathways and vital signalling in Leishmania parasites and cancer cells. The presence of common expressed proteins in Leishmania parasites and cancer cells reveals valuable information regarding the possible shared mechanisms of pathogenicity and opportunities for therapeutic targeting in leishmaniasis and cancers in the future.
Collapse
|
11
|
Fineberg A, Surrey T, Kukura P. Quantifying the Monomer-Dimer Equilibrium of Tubulin with Mass Photometry. J Mol Biol 2020; 432:6168-6172. [PMID: 33068635 PMCID: PMC7763485 DOI: 10.1016/j.jmb.2020.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
The αβ-tubulin heterodimer is the fundamental building block of microtubules, making it central to several cellular processes. Despite the apparent simplicity of heterodimerisation, the associated energetics and kinetics remain disputed, largely due to experimental challenges associated with quantifying affinities in the <µM range. We use mass photometry to observe tubulin monomers and heterodimers in solution simultaneously, thereby quantifying the αβ-tubulin dissociation constant (8.48 ± 1.22 nM) and its tightening in the presence of GTP (3.69 ± 0.65 nM), at a dissociation rate >10-2 s-1. Our results demonstrate the capabilities of mass photometry for quantifying protein-protein interactions and clarify the energetics and kinetics of tubulin heterodimerisation.
Collapse
Affiliation(s)
- Adam Fineberg
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Thomas Surrey
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Passeig de Lluis Companys 23, 08010 Barcelona, Spain
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK.
| |
Collapse
|
12
|
Hausrat TJ, Radwitz J, Lombino FL, Breiden P, Kneussel M. Alpha- and beta-tubulin isotypes are differentially expressed during brain development. Dev Neurobiol 2020; 81:333-350. [PMID: 32293117 DOI: 10.1002/dneu.22745] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
Alpha- and beta-tubulin dimers polymerize into protofilaments that associate laterally to constitute a hollow tube, the microtubule. A dynamic network of interlinking filaments forms the microtubule cytoskeleton, which maintains the structure of cells and is key to various cellular processes including cell division, cell migration, and intracellular transport. Individual microtubules have an identity that depends on the differential integration of specific alpha- and beta-tubulin isotypes and is further specified by a variety of posttranslational modifications (PTMs). It is barely understood to which extent neighboring microtubules differ in their tubulin composition or whether specific tubulin isotypes cluster along the polymer. Furthermore, our knowledge about the spatio-temporal expression patterns of tubulin isotypes is limited, not at least due to the lack of antibodies or antibody cross-reactivities. Here, we asked which alpha- and beta-tubulin mRNAs and proteins are expressed in developing hippocampal neuron cultures and ex vivo brain tissue lysates. Using heterologous expression of GFP-tubulin fusion proteins, we systematically tested antibody-specificities against various tubulin isotypes. Our data provide quantitative information about tubulin expression levels in the mouse brain and classify tubulin isotypes during pre- and postnatal development.
Collapse
Affiliation(s)
- Torben J Hausrat
- Department of Molecular Neurogenetics, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Radwitz
- Department of Molecular Neurogenetics, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franco L Lombino
- Department of Molecular Neurogenetics, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Breiden
- Department of Molecular Neurogenetics, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|