1
|
Jo Y, Sim HI, Yun B, Park Y, Jin HS. Revisiting T-cell adhesion molecules as potential targets for cancer immunotherapy: CD226 and CD2. Exp Mol Med 2024; 56:2113-2126. [PMID: 39349829 PMCID: PMC11541569 DOI: 10.1038/s12276-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Cancer immunotherapy aims to initiate or amplify immune responses that eliminate cancer cells and create immune memory to prevent relapse. Immune checkpoint inhibitors (ICIs), which target coinhibitory receptors on immune effector cells, such as CTLA-4 and PD-(L)1, have made significant strides in cancer treatment. However, they still face challenges in achieving widespread and durable responses. The effectiveness of anticancer immunity, which is determined by the interplay of coinhibitory and costimulatory signals in tumor-infiltrating immune cells, highlights the potential of costimulatory receptors as key targets for immunotherapy. This review explores our current understanding of the functions of CD2 and CD226, placing a special emphasis on their potential as novel agonist targets for cancer immunotherapy. CD2 and CD226, which are present mainly on T and NK cells, serve important functions in cell adhesion and recognition. These molecules are now recognized for their costimulatory benefits, particularly in the context of overcoming T-cell exhaustion and boosting antitumor responses. The importance of CD226, especially in anti-TIGIT therapy, along with the CD2‒CD58 axis in overcoming resistance to ICI or chimeric antigen receptor (CAR) T-cell therapies provides valuable insights into advancing beyond the current barriers of cancer immunotherapy, underscoring their promise as targets for novel agonist therapy.
Collapse
Affiliation(s)
- Yunju Jo
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Hye-In Sim
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Bohwan Yun
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yoon Park
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Wu JW, Liu Y, Dai XJ, Liu HM, Zheng YC, Liu HM. CD155 as an emerging target in tumor immunotherapy. Int Immunopharmacol 2024; 131:111896. [PMID: 38518596 DOI: 10.1016/j.intimp.2024.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
CD155 is an immunoglobulin-like protein overexpressed in almost all the tumor cells, which not only promotes proliferation, adhesion, invasion, and migration of tumor cells, but also regulates immune responses by interacting with TIGIT, CD226 or CD96 receptors expressed on several immune cells, thereby modulating the functionality of these cellular subsets. As a novel immune checkpoint, the inhibition of CD155/TIGIT, either as a standalone treatment or in conjunction with other immune checkpoint inhibitors, has demonstrated efficacy in managing advanced solid malignancies. In this review, we summarize the intricate relationship between on tumor surface CD155 and its receptors, with further discussion on how they regulate the occurrence of tumor immune escape. In addition, novel therapeutic strategies and clinical trials targeting CD155 and its receptors are summarized, providing a strong rationale and way forward for the development of next-generation immunotherapies.
Collapse
Affiliation(s)
- Jiang-Wan Wu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Xing-Jie Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Hui-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
3
|
Fang L, Zhao Y, Guo P, Fang Y, Wu J. MD Simulation Reveals Regulation of Mechanical Force and Extracellular Domain 2 on Binding of DNAM-1 to CD155. Molecules 2023; 28:molecules28062847. [PMID: 36985819 PMCID: PMC10053669 DOI: 10.3390/molecules28062847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Two extracellular domains of the adhesive receptor DNAM-1 are involved in various cellular biological processes through binding to ligand CD155, usually under a mechano-microenvironment. The first extracellular domain (D1) plays a key role in recognition, but the function of the second extracellular domain (D2) and effects of force on the interaction of DNAM-1 with CD155 remain unclear. We herein studied the interaction of DNAM-1 with CD155 by performing steered molecular dynamics (MD) simulations, and observed the roles of tensile force and D2 on the affinity of DNAM-1 to CD155. The results showed that D2 improved DNAM-1 affinity to CD155; the DNAM-1/CD155 complex had a high mechanical strength and a better mechanical stability for its conformational conservation either at pulling with constant velocity or under constant tensile force (≤100 pN); the catch-slip bond transition governed CD155 dissociation from DNAM-1; and, together with the newly assigned key residues in the binding site, force-induced conformation changes should be responsible for the mechanical regulation of DNAM-1's affinity to CD155. This work provided a novel insight in understanding the mechanical regulation mechanism and D2 function in the interaction of DNAM-1 with CD155, as well as their molecular basis, relevant transmembrane signaling, and cellular immune responses under a mechano-microenvironment.
Collapse
Affiliation(s)
- Liping Fang
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yang Zhao
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Pei Guo
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Fang
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Wu
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Hermans D, van Beers L, Broux B. Nectin Family Ligands Trigger Immune Effector Functions in Health and Autoimmunity. BIOLOGY 2023; 12:452. [PMID: 36979144 PMCID: PMC10045777 DOI: 10.3390/biology12030452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The superfamily of immunoglobulin cell-adhesion molecules (IgCAMs) is a well-known family of cell-adhesion molecules used for immune-cell extravasation and cell-cell interaction. Amongst others, this family includes DNAX accessory molecule 1 (DNAM-1/CD226), class-I-restricted T-cell-associated molecule (CRTAM/CD355), T-cell-activated increased late expression (Tactile/CD96), T-cell immunoreceptor with Ig and ITIM domains (TIGIT), Nectins and Nectin-like molecules (Necls). Besides using these molecules to migrate towards inflammatory sites, their interactions within the immune system can support the immunological synapse with antigen-presenting cells or target cells for cytotoxicity, and trigger diverse effector functions. Although their role is generally described in oncoimmunity, this review emphasizes recent advances in the (dys)function of Nectin-family ligands in health, chronic inflammatory conditions and autoimmune diseases. In addition, this review provides a detailed overview on the expression pattern of Nectins and Necls and their ligands on different immune-cell types by focusing on human cell systems.
Collapse
Affiliation(s)
- Doryssa Hermans
- University MS Center, Campus Diepenbeek, 3590 Diepenbeek, Belgium; (D.H.); (L.v.B.)
- Department of Immunology and Infection, Biomedical Research Institute, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Lisa van Beers
- University MS Center, Campus Diepenbeek, 3590 Diepenbeek, Belgium; (D.H.); (L.v.B.)
- Department of Immunology and Infection, Biomedical Research Institute, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Bieke Broux
- University MS Center, Campus Diepenbeek, 3590 Diepenbeek, Belgium; (D.H.); (L.v.B.)
- Department of Immunology and Infection, Biomedical Research Institute, University of Hasselt, 3590 Diepenbeek, Belgium
| |
Collapse
|
5
|
CD155 in tumor progression and targeted therapy. Cancer Lett 2022; 545:215830. [PMID: 35870689 DOI: 10.1016/j.canlet.2022.215830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
Abstract
CD155, also known as the poliovirus receptor (PVR), has received considerable attention in recent years because of its intrinsic and extrinsic roles in tumor progression. Although barely expressed in host cells, CD155 is upregulated in tumor-infiltrating myeloid cells. High expression of CD155 in tumor cells across multiple cancer types is common and associated with poor patient outcomes. The intrinsic functions of CD155 in tumor cells promote tumor progression and metastasis, whereas its extrinsic immunoregulatory functions in the tumor microenvironment (TME) involve interaction with the upregulated inhibitory immune cell receptor and checkpoint TIGIT, suggesting that CD155 and CD155 pathways are promising tumor immunotherapy targets. Preclinical studies demonstrate that targeting CD155 and its receptor (anti-TIGIT) using a single treatment or in combination with anti-PD-1 can improve immune-mediated tumor control. However, there is still a limited understanding of CD155 and its associated targeting strategies, especially antibody and immune cell editing-related strategies of CD155 in cancer. Here, we review the role of CD155 in host and tumor cells in controlling tumor progression and discuss the potential of targeting CD155 for tumor therapy.
Collapse
|
6
|
Conner M, Hance KW, Yadavilli S, Smothers J, Waight JD. Emergence of the CD226 Axis in Cancer Immunotherapy. Front Immunol 2022; 13:914406. [PMID: 35812451 PMCID: PMC9263721 DOI: 10.3389/fimmu.2022.914406] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 01/31/2023] Open
Abstract
In recent years, a set of immune receptors that interact with members of the nectin/nectin-like (necl) family has garnered significant attention as possible points of manipulation in cancer. Central to this axis, CD226, TIGIT, and CD96 represent ligand (CD155)-competitive co-stimulatory/inhibitory receptors, analogous to the CTLA-4/B7/CD28 tripartite. The identification of PVRIG (CD112R) and CD112 has introduced complexity and enabled additional nodes of therapeutic intervention. By virtue of the clinical progression of TIGIT antagonists and emergence of novel CD96- and PVRIG-based approaches, our overall understanding of the 'CD226 axis' in cancer immunotherapy is starting to take shape. However, several questions remain regarding the unique characteristics of, and mechanistic interplay between, each receptor-ligand pair. This review provides an overview of the CD226 axis in the context of cancer, with a focus on the status of immunotherapeutic strategies (TIGIT, CD96, and PVRIG) and their underlying biology (i.e., cis/trans interactions). We also integrate our emerging knowledge of the immune populations involved, key considerations for Fc gamma (γ) receptor biology in therapeutic activity, and a snapshot of the rapidly evolving clinical landscape.
Collapse
|
7
|
Shibuya A, Shibuya K. DNAM-1 versus TIGIT: competitive roles in tumor immunity and inflammatory responses. Int Immunol 2021; 33:687-692. [PMID: 34694361 DOI: 10.1093/intimm/dxab085] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
The co-stimulatory and co-inhibitory immunoreceptors DNAX accessory molecule-1 (DNAM-1) and T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) are paired activating and inhibitory receptors on T cells and natural killer (NK) cells. They share the ligands poliovirus receptor (PVR, CD155) and its family member nectin-2 (CD112), which are highly expressed on antigen-presenting cells (APCs), tumors and virus-infected cells. Upon ligation with the ligands, DNAM-1 and TIGIT show reciprocal functions; whereas DNAM-1 promotes activation, proliferation, cytokine production and cytotoxic activity in effector lymphocytes, including CD4 + T-helper cells, CD8 + cytotoxic T lymphocytes and NK cells, TIGIT inhibits these DNAM-1 functions. On the other hand, DNAM-1 competes with TIGIT on regulatory T (Treg) cells in binding to CD155 and therefore regulates TIGIT signaling to down-regulate Treg cell function. Thus, whereas DNAM-1 enhances anti-tumor immunity and inflammatory responses by augmenting effector lymphocyte function and suppressing Treg cell function, TIGIT reciprocally suppresses these immune responses by suppressing effector lymphocyte function and augmenting Treg cell function. Thus, blockade of DNAM-1 and TIGIT function would be potential therapeutic approaches for patients with inflammatory diseases and those with cancers and virus infection, respectively.
Collapse
Affiliation(s)
- Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazuko Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
8
|
Lee PS, Chau B, Barman I, Bee C, Jashnani A, Hogan JM, Aguilar B, Dollinger G, Rajpal A, Strop P. Antibody blockade of CD96 by distinct molecular mechanisms. MAbs 2021; 13:1979800. [PMID: 34595996 PMCID: PMC8489928 DOI: 10.1080/19420862.2021.1979800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The molecular interactions of mouse CD96 to CD155 ligand and to two surrogate antibodies have been investigated. Biophysical and structural studies demonstrate that CD96 forms a homodimer but assembles as 1:1 heterodimeric complexes with CD155 or with one of the surrogate antibodies, which compete for the same binding interface. In comparison, the other surrogate antibody binds across the mouse CD96 dimer and recognizes a quaternary epitope spanning both protomers to block exposure of the ligand-binding site. This study reveals different blocking mechanisms and modalities of these two antibodies and may provide insight into the functional effects of antibodies against CD96.
Collapse
Affiliation(s)
- Peter S Lee
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Bryant Chau
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Ishita Barman
- Therapeutic Discovery, 3T Biosciences, South San Francisco, Ca, USA
| | - Christine Bee
- Discovery Biology, Frontier Medicines, South San Francisco, CA, USA
| | - Aarti Jashnani
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Jason M Hogan
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Barbara Aguilar
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Gavin Dollinger
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Arvind Rajpal
- Large Molecule Drug Discovery, Genentech Research and Early Development, South San Francisco, Ca, USA
| | - Pavel Strop
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| |
Collapse
|
9
|
Johnston RJ, Lee PS, Strop P, Smyth MJ. Cancer Immunotherapy and the Nectin Family. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021. [DOI: 10.1146/annurev-cancerbio-060920-084910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is increasingly clear that the nectin family and its immunoreceptors shape the immune response to cancer through several pathways. Yet, even as antibodies against TIGIT, CD96, and CD112R advance into clinical development, biological and therapeutic questions remain unanswered. Here, we review recent progress, prospects, and challenges to understanding and tapping this family in cancer immunotherapy.
Collapse
Affiliation(s)
- Robert J. Johnston
- Oncology Discovery, Bristol Myers Squibb, Redwood City, California 94063, USA
| | - Peter S. Lee
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, USA;,
| | - Pavel Strop
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, California 94063, USA;,
| | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| |
Collapse
|
10
|
Aguilar OA, Tanaka M, Balaji GR, Berry R, Rossjohn J, Lanier LL, Carlyle JR. Tetramer Immunization and Selection Followed by CELLISA Screening to Generate Monoclonal Antibodies against the Mouse Cytomegalovirus m12 Immunoevasin. THE JOURNAL OF IMMUNOLOGY 2020; 205:1709-1717. [PMID: 32817368 DOI: 10.4049/jimmunol.2000687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/19/2020] [Indexed: 12/19/2022]
Abstract
The generation of reliable mAb of unique and desired specificities serves as a valuable technology to study protein expression and function. However, standard approaches to mAb generation usually involve large-scale protein purification and intensive screening. In this study, we describe an optimized high-throughput proof-of-principle method for the expanded generation, enrichment, and screening of mouse hybridomas secreting mAb specific for a protein of interest. Briefly, we demonstrate that small amounts of a biotinylated protein of interest can be used to generate tetramers for use as prime-boost immunogens, followed by selective enrichment of Ag-specific B cells by magnetic sorting using the same tetramers prior to hybridoma generation. This serves two purposes: 1) to effectively expand both low- and high-affinity B cells specific for the antigenic bait during immunization and 2) to minimize subsequent laborious hybridoma efforts by positive selection of Ag-specific, Ab-secreting cells prior to hybridoma fusion and validation screening. Finally, we employ a rapid and inexpensive screening technology, CELLISA, a high-throughput validation method that uses a chimeric Ag fused to the CD3ζ signaling domain expressed on enzyme-generating reporter cells; these reporters can detect specific mAb in hybridoma supernatants via plate-bound Ab-capture arrays, thereby easing screening. Using this strategy, we generated and characterized novel mouse mAb specific for a viral immunoevasin, the mouse CMV m12 protein, and suggest that these mAb may protect mice from CMV infection via passive immunity.
Collapse
Affiliation(s)
- Oscar A Aguilar
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; .,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143
| | - Miho Tanaka
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| | - Gautham R Balaji
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and
| | - Richard Berry
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143
| | - James R Carlyle
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;
| |
Collapse
|
11
|
Li J, Zheng J, Wang M, Zhang Y, Jiang Y, Zhang X, Guo P. [Inhibition of CD96 enhances interferon-γ secretion by natural killer cells to alleviate lung injury in mice with pulmonary Chlamydia muridarum infection]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:930-935. [PMID: 32895152 DOI: 10.12122/j.issn.1673-4254.2020.07.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To assess the effect of neutralizing CD96 on natural killer (NK) cell functions in mice with pulmonary Chlamydia muridarum infection and explore the possible mechanism. METHODS Male BALB/c mice were randomly divided into infection group (Cm group), anti-CD96 treatment group (anti-CD96 group) and control group (n=5). In the former two groups, C. muridarum was inoculated via intranasal administration to establish mouse models of pulmonary C. muridarum infection, and the mice in the control group received intranasal administration of the inhalation buffer. In anti-CD96 group, the mice were injected with anti-CD96 antibody intraperitoneally at the dose of 250 μg every 3 days after the infection; the mice in Cm group received intraperitoneal injections of saline. The body weight of the mice was recorded daily. The mice were sacrificed 5 days after C. muridarum infection, and CD96 expression was detected by quantitative real-time PCR and Western blotting. HE staining and pathological scores were used to evaluate pneumonia of the mice. The inclusion body forming units (IFUs) were detected in the lung tissue homogenates to assess lung tissue chlamydia load. Flow cytometry and ELISA were used to assess the capacity of the lung NK cells to produce interferon-γ (IFN-γ) and regulate macrophages and Th1 cells. RESULTS C. muridarum infection inhibited CD96 expression in NK cells of the mice. Compared with those in Cm group, the mice in antiCD96 mice showed significantly milder lung inflammation (P < 0.05) and reduced chlamydia load in the lung tissue (P < 0.05). Neutralizing CD96 with anti-CD96 significantly enhanced IFN-γ secretion by the NK cells (P < 0.05) and augmented the immunoregulatory effect of the NK cells shown by enhanced responses of the lung macrophages (P < 0.05) and Th1 cells (P < 0.05). CONCLUSIONS Inhibition of CD96 alleviates pneumonia in C. muridarum-infected mice possibly by enhancing IFN-γ secretion by NK cells and augmenting the immunoregulatory effect of the NK cells on innate and adaptive immunity.
Collapse
Affiliation(s)
- Jing Li
- Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Jing Zheng
- Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Minda Wang
- Anhui Provincial Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233030, China
| | - Yan Zhang
- Anhui Provincial Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233030, China
| | - Yifan Jiang
- Anhui Provincial Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233030, China
| | - Xiaofeng Zhang
- Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Pu Guo
- Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
12
|
Kundapura SV, Ramagopal UA. The CC' loop of IgV domains of the immune checkpoint receptors, plays a key role in receptor:ligand affinity modulation. Sci Rep 2019; 9:19191. [PMID: 31844079 PMCID: PMC6914781 DOI: 10.1038/s41598-019-54623-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies targeting negative regulators of immune checkpoints have shown unprecedented and durable response against variety of malignancies. While the concept of blocking the negative regulators of the immune checkpoints using mAbs appears to be an outstanding approach, their limited effect and several drawbacks, calls for the rational design of next generation of therapeutics. Soluble isoforms of the negative regulators of immune checkpoint pathways are expressed naturally and regulate immune responses. This suggests, affinity-modified versions of these self-molecules could be effective lead molecules for immunotherapy. To obtain better insights on the hotspot regions for modification, we have analysed structures of 18 immune receptor:ligand complexes containing the IgV domain. Interestingly, this analysis reveals that the CC' loop of IgV domain, a loop which is distinct from CDRs of antibodies, plays a pivotal role in affinity modulation, which was previously not highlighted. It is noteworthy that a ~5-residue long CC' loop in a ~120 residue protein makes significant number of hydrophobic and polar interactions with its cognate ligand. The post-interaction movement of CC' loop to accommodate the incoming ligands, seems to provide additional affinity to the interactions. In silico replacement of the CC' loop of TIGIT with that of Nectin-2 and PVR followed by protein docking trials suggests a key role of the CC' loop in affinity modulation in the TIGIT/Nectin pathway. The CC' loop appears to be a hotspot for the affinity modification without affecting the specificity to their cognate receptors.
Collapse
Affiliation(s)
- Shankar V Kundapura
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, #4, 16th Cross, Sadashivnagar, Bangalore, 560080, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Udupi A Ramagopal
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, #4, 16th Cross, Sadashivnagar, Bangalore, 560080, India.
| |
Collapse
|
13
|
Berry R, Watson GM, Jonjic S, Degli-Esposti MA, Rossjohn J. Modulation of innate and adaptive immunity by cytomegaloviruses. Nat Rev Immunol 2019; 20:113-127. [PMID: 31666730 DOI: 10.1038/s41577-019-0225-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
The coordinated activities of innate and adaptive immunity are critical for effective protection against viruses. To counter this, some viruses have evolved sophisticated strategies to circumvent immune cell recognition. In particular, cytomegaloviruses encode large arsenals of molecules that seek to subvert T cell and natural killer cell function via a remarkable array of mechanisms. Consequently, these 'immunoevasins' play a fundamental role in shaping the nature of the immune system by driving the evolution of new immune receptors and recognition mechanisms. Here, we review the diverse strategies adopted by cytomegaloviruses to target immune pathways and outline the host's response.
Collapse
Affiliation(s)
- Richard Berry
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.
| | - Gabrielle M Watson
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|