1
|
Gu J, He Y, He C, Zhang Q, Huang Q, Bai S, Wang R, You Q, Wang L. Advances in the structures, mechanisms and targeting of molecular chaperones. Signal Transduct Target Ther 2025; 10:84. [PMID: 40069202 PMCID: PMC11897415 DOI: 10.1038/s41392-025-02166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Molecular chaperones, a class of complex client regulatory systems, play significant roles in the prevention of protein misfolding and abnormal aggregation, the modulation of protein homeostasis, and the protection of cells from damage under constantly changing environmental conditions. As the understanding of the biological mechanisms of molecular chaperones has increased, their link with the occurrence and progression of disease has suggested that these proteins are promising targets for therapeutic intervention, drawing intensive interest. Here, we review recent advances in determining the structures of molecular chaperones and heat shock protein 90 (HSP90) chaperone system complexes. We also describe the features of molecular chaperones and shed light on the complicated regulatory mechanism that operates through interactions with various co-chaperones in molecular chaperone cycles. In addition, how molecular chaperones affect diseases by regulating pathogenic proteins has been thoroughly analyzed. Furthermore, we focus on molecular chaperones to systematically discuss recent clinical advances and various drug design strategies in the preclinical stage. Recent studies have identified a variety of novel regulatory strategies targeting molecular chaperone systems with compounds that act through different mechanisms from those of traditional inhibitors. Therefore, as more novel design strategies are developed, targeting molecular chaperones will significantly contribute to the discovery of new potential drugs.
Collapse
Affiliation(s)
- Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chenxi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qifei Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shangjun Bai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial TCM Engineering Technology Research Center of Highly Efficient Drug Delivery Systems (DDSs), Nanjing, China.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Ciesielski SJ, Young C, Ciesielska EJ, Ciesielski GL. The Hsp70 and JDP proteins: Structure-function perspective on molecular chaperone activity. Enzymes 2023; 54:221-245. [PMID: 37945173 DOI: 10.1016/bs.enz.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Proteins are the most structurally diverse cellular biomolecules that act as molecular machines driving essential activities of all living organisms. To be functional, most of the proteins need to fold into a specific three-dimensional structure, which on one hand should be stable enough to oppose disruptive conditions and on the other hand flexible enough to allow conformational dynamics necessary for their biological functions. This compromise between stability and dynamics makes proteins susceptible to stress-induced misfolding and aggregation. Moreover, the folding process itself is intrinsically prone to conformational errors. Molecular chaperones are proteins that mitigate folding defects and maintain the structural integrity of the cellular proteome. Promiscuous Hsp70 chaperones are central to these processes and their activity depends on the interaction with obligatory J-domain protein (JDP) partners. In this review, we discuss structural aspects of Hsp70s, JDPs, and their interaction in the context of biological activities.
Collapse
Affiliation(s)
- Szymon J Ciesielski
- Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL, United States.
| | - Cameron Young
- Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL, United States
| | - Elena J Ciesielska
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States; Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Grzegorz L Ciesielski
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States; Department of Biology, University of North Florida, Jacksonville, FL, United States
| |
Collapse
|
3
|
Hino C, Chan G, Jordaan G, Chang SS, Saunders JT, Bashir MT, Hansen JE, Gera J, Weisbart RH, Nishimura RN. Cellular protection from H 2O 2 toxicity by Fv-Hsp70: protection via catalase and gamma-glutamyl-cysteine synthase. Cell Stress Chaperones 2023; 28:429-439. [PMID: 37171750 PMCID: PMC10352194 DOI: 10.1007/s12192-023-01349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023] Open
Abstract
Heat shock proteins (HSPs), especially Hsp70 (HSPA1), have been associated with cellular protection from various cellular stresses including heat, hypoxia-ischemia, neurodegeneration, toxins, and trauma. Endogenous HSPs are often synthesized in direct response to these stresses but in many situations are inadequate in protecting cells. The present study addresses the transduction of Hsp70 into cells providing protection from acute oxidative stress by H2O2. The recombinant Fv-Hsp70 protein and two mutant Fv-Hsp70 proteins minus the ATPase domain and minus the ATPase and terminal lid domains were tested at 0.5 and 1.0 μM concentrations after two different concentrations of H2O2 treatment. All three recombinant proteins protected SH-SY5Y cells from acute H2O2 toxicity. This data indicated that the protein binding domain was responsible for cellular protection. In addition, experiments pretreating cells with inhibitors of antioxidant proteins catalase and gamma-glutamylcysteine synthase (GGCS) before H2O2 resulted in cell death despite treatment with Fv-Hsp70, implying that both enzymes were protected from acute oxidative stress after treatment with Fv-Hsp70. This study demonstrates that Fv-Hsp70 is protective in our experiments primarily by the protein-binding domain. The Hsp70 terminal lid domain was also not necessary for protection.
Collapse
Affiliation(s)
- Chris Hino
- Dept. of Internal Medicine, Loma Linda School of Medicine, Loma Linda, CA, 92350, USA
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Grace Chan
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Gwen Jordaan
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Sophia S Chang
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Jacquelyn T Saunders
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
| | - Mohammad T Bashir
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
- Dept. of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - James E Hansen
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
- Dept. of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Joseph Gera
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
- Dept. of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Richard H Weisbart
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA
- Dept. of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Robert N Nishimura
- VA Greater Los Angeles Healthcare System, North Hills, Los Angeles, CA, 91343, USA.
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Amankwah YS, Collins P, Fleifil Y, Unruh E, Ruiz Márquez KJ, Vitou K, Kravats AN. Grp94 works upstream of BiP in protein remodeling under heat stress. J Mol Biol 2022; 434:167762. [PMID: 35905823 DOI: 10.1016/j.jmb.2022.167762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Hsp90 and Hsp70 are highly conserved molecular chaperones that promote the proper folding and activation of substrate proteins that are often referred to as clients. The two chaperones functionally collaborate to fold specific clients in an ATP-dependent manner. In eukaryotic cytosol, initial client folding is done by Hsp70 and its co-chaperones, followed by a direct transfer of client refolding intermediates to Hsp90 for final client processing. However, the mechanistic details of collaboration of organelle specific Hsp70 and Hsp90 are lacking. This work investigates the collaboration of the endoplasmic reticulum (ER) Hsp70 and Hsp90, BiP and Grp94 respectively, in protein remodeling using in vitro refolding assays. We show that under milder denaturation conditions, BiP collaborates with its co-chaperones to refold misfolded proteins in an ATP-dependent manner. Grp94 does not play a major role in this refolding reaction. However, under stronger denaturation conditions that favor aggregation, Grp94 works in an ATP-independent manner to bind and hold misfolded clients in a folding competent state for subsequent remodeling by the BiP system. We also show that the collaboration of Grp94 and BiP is not simply a reversal of the eukaryotic refolding mechanism since a direct interaction of Grp94 and BiP is not required for client transfer. Instead, ATP binding but not hydrolysis by Grp94 facilitates the release of the bound client, which is then picked up by the BiP system for subsequent refolding in a Grp94-independent manner.
Collapse
Affiliation(s)
- Yaa S Amankwah
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Preston Collins
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Yasmeen Fleifil
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Erin Unruh
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | | | - Katherine Vitou
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Andrea N Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056.
| |
Collapse
|
5
|
ThhspA1 is involved in lacA transcriptional regulation of Trametes hirsuta AH28-2 exposed to o-toluidine. Fungal Genet Biol 2022; 161:103716. [PMID: 35691497 DOI: 10.1016/j.fgb.2022.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
Abstract
White rot fungi, especially Trametes spp., respond to a wide range of aromatic compounds and dramatically enhance laccase activity, while the activation mechanisms remain to be elucidated. Here, we show that an Hsp70 homolog named ThhspA1 regulates the transcription of laccase LacA in Trametes hirsuta AH28-2 when confronted with o-toluidine. ThhspA1 is pulled down by lacA promoter sequence from the nuclear mixture extracted from T. hirsuta AH28-2 induced by 2 mM o-toluidine. Silencing of ThhspA1 results in a sharp decrease in lacA transcripts and laccase activity in vivo. By comparison, ThhspA1 overexpression does not affect lacA transcription, and laccase activity shows slight enhancement or remains unchanged upon induction with o-toluidine. Electrophoretic mobility shift assays suggest a direct interaction between ThhspA1 and the lacA promoter region. Further investigation shows that the integrity of ThhspA1 is critical since its substrate binding domain (SBD) and nucleotide-binding domain (NBD) are both necessary for DNA binding, with a higher affinity of SBD than NBD based on fluorescence polarization assay. Our results demonstrate that ThhspA1 functions as an aromatic-stress-related DNA binding transcriptional factor required for LacA expression.
Collapse
|
6
|
Du Y, Chen Z, Yan P, Zhang C, Duan X, Chen X, Liu M, Kang L, Yang X, Fan Y, Zhang J, Wang R. Arginine-Arginine-Leucine Peptide Targeting Heat Shock Protein 70 for Cancer Imaging. Mol Pharm 2021; 18:3750-3762. [PMID: 34491767 DOI: 10.1021/acs.molpharmaceut.1c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arg-Arg-Leu (RRL) is a potent tumor-homing tripeptide. However, the binding target is unclear. In this study, we intended to identify the binding target of RRL and evaluate the tumor targeting of 99mTc-MAG3-RRL in vivo. Biotin-RRL, 5-TAMRA-RRL, and 99mTc-MAG3-RRL were designed to trace the binding target and tumor lesion. Immunoprecipitation-mass spectrometry was conducted to identify the candidate proteins and determination of the subcellular localization was also performed. A pull-down assay was performed to demonstrate the immunoprecipitate. Fluorescence colocalization and cell uptake assays were performed to elucidate the correlation between the selected binding protein and RRL, and the internalization mechanism of RRL. Biodistribution and in vivo imaging were performed to evaluate the tumor accumulation and targeting of 99mTc-MAG3-RRL. The target for RRL was screened to be heat shock protein 70 (HSP70). The prominent uptake distribution of RRL was concentrated in the membrane and cytoplasm. A pull-down assay demonstrated the existence of HSP70 in the biotin-RRL captured complex. Regarding fluorescence colocalization and cell uptake assays, RRL may interact with HSP70 at the nucleotide-binding domain (NBD). Clathrin-dependent endocytosis and macropinocytosis could be a vital internalization mechanism of RRL. In vivo imaging and biodistribution both demonstrated that 99mTc-MAG3-RRL can trace tumors with satisfactory accumulation in hepatoma xenograft mice. The radioactive signals accumulated in tumor lesions can be blocked by VER-155008, which can bind to the NBD of HSP70. Our findings revealed that RRL may interact with HSP70 and that 99mTc-MAG3-RRL could be a prospective probe for visualizing overexpressed HSP70 tumor sections.
Collapse
Affiliation(s)
- Yujing Du
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xiaojiang Duan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xueqi Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yan Fan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China.,Department of Nuclear Medicine, Peking University International Hospital, Beijing 102206, China
| |
Collapse
|
7
|
Li H, Hu L, Cuffee CW, Mohamed M, Li Q, Liu Q, Zhou L, Liu Q. Interdomain interactions dictate the function of the Candida albicans Hsp110 protein Msi3. J Biol Chem 2021; 297:101082. [PMID: 34403698 PMCID: PMC8424595 DOI: 10.1016/j.jbc.2021.101082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/29/2021] [Accepted: 08/13/2021] [Indexed: 01/27/2023] Open
Abstract
Heat shock proteins of 110 kDa (Hsp110s), a unique class of molecular chaperones, are essential for maintaining protein homeostasis. Hsp110s exhibit a strong chaperone activity preventing protein aggregation (the "holdase" activity) and also function as the major nucleotide-exchange factor (NEF) for Hsp70 chaperones. Hsp110s contain two functional domains: a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). ATP binding is essential for Hsp110 function and results in close contacts between the NBD and SBD. However, the molecular mechanism of this ATP-induced allosteric coupling remains poorly defined. In this study, we carried out biochemical analysis on Msi3, the sole Hsp110 in Candida albicans, to dissect the unique allosteric coupling of Hsp110s using three mutations affecting the domain-domain interface. All the mutations abolished both the in vivo and in vitro functions of Msi3. While the ATP-bound state was disrupted in all mutants, only mutation of the NBD-SBDβ interfaces showed significant ATPase activity, suggesting that the full-length Hsp110s have an ATPase that is mainly suppressed by NBD-SBDβ contacts. Moreover, the high-affinity ATP-binding unexpectedly appears to require these NBD-SBD contacts. Remarkably, the "holdase" activity was largely intact for all mutants tested while NEF activity was mostly compromised, although both activities strictly depended on the ATP-bound state, indicating different requirements for these two activities. Stable peptide substrate binding to Msi3 led to dissociation of the NBD-SBD contacts and compromised interactions with Hsp70. Taken together, our data demonstrate that the exceptionally strong NBD-SBD contacts in Hsp110s dictate the unique allosteric coupling and biochemical activities.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Liqing Hu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Crist William Cuffee
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mahetab Mohamed
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qingdai Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
8
|
Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 2021; 95:1943-1970. [PMID: 34003342 DOI: 10.1007/s00204-021-03070-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cells respond to protein-damaging (proteotoxic) stress by activation of the Heat Shock Response (HSR). The HSR provides cells with an enhanced ability to endure proteotoxic insults and plays a crucial role in determining subsequent cell death or survival. The HSR is, therefore, a critical factor that influences the toxicity of protein stress. While named for its vital role in the cellular response to heat stress, various components of the HSR system and the molecular chaperone network execute essential physiological functions as well as responses to other diverse toxic insults. The effector molecules of the HSR, the Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs), are also important regulatory targets in the progression of neurodegenerative diseases and cancers. Modulation of the HSR and/or its extended network have, therefore, become attractive treatment strategies for these diseases. Development of effective therapies will, however, require a detailed understanding of the HSR, important features of which continue to be uncovered and are yet to be completely understood. We review recently described and hallmark mechanistic principles of the HSR, the regulation and functions of HSPs, and contexts in which the HSR is activated and influences cell fate in response to various toxic conditions.
Collapse
Affiliation(s)
- Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Martin E Guerrero
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), 5500, Mendoza, Argentina
| | - Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cristina Bonorino
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.,Department of Surgery, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Upadhyay T, Potteth US, Karekar VV, Saraogi I. A Stutter in the Coiled-Coil Domain of Escherichia coli Co-chaperone GrpE Connects Structure with Function. Biochemistry 2021; 60:1356-1367. [PMID: 33881310 DOI: 10.1021/acs.biochem.1c00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In bacteria, the co-chaperone GrpE acts as a nucleotide exchange factor and plays an important role in controlling the chaperone cycle of DnaK. The functional form of GrpE is an asymmetric dimer, consisting of a non-ideal coiled coil. Partial unfolding of this region during heat stress results in reduced nucleotide exchange and disrupts protein folding by DnaK. In this study, we elucidate the role of non-ideality in the coiled-coil domain of Escherichia coli GrpE in controlling its co-chaperone activity. The presence of a four-residue stutter introduces nonheptad periodicity in the GrpE coiled coil, resulting in global structural changes in GrpE and regulating its interaction with DnaK. Introduction of hydrophobic residues at the stutter core increased the structural stability of the protein. Using an in vitro FRET assay, we show that the enhanced stability of GrpE resulted in an increased affinity for DnaK. However, these mutants were unable to support bacterial growth at 42°C in a grpE-deleted E. coli strain. This work provides valuable insights into the functional role of a stutter in GrpE in regulating the DnaK-chaperone cycle during heat stress. More generally, our findings illustrate how stutters in a coiled-coil domain regulate structure-function trade-off in proteins.
Collapse
Affiliation(s)
- Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Vaibhav V Karekar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
10
|
Makumire S, Dongola TH, Chakafana G, Tshikonwane L, Chauke CT, Maharaj T, Zininga T, Shonhai A. Mutation of GGMP Repeat Segments of Plasmodium falciparum Hsp70-1 Compromises Chaperone Function and Hop Co-Chaperone Binding. Int J Mol Sci 2021; 22:ijms22042226. [PMID: 33672387 PMCID: PMC7926355 DOI: 10.3390/ijms22042226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Parasitic organisms especially those of the Apicomplexan phylum, harbour a cytosol localised canonical Hsp70 chaperone. One of the defining features of this protein is the presence of GGMP repeat residues sandwiched between α-helical lid and C-terminal EEVD motif. The role of the GGMP repeats of Hsp70s remains unknown. In the current study, we introduced GGMP mutations in the cytosol localised Hsp70-1 of Plasmodium falciparum (PfHsp70-1) and a chimeric protein (KPf), constituted by the ATPase domain of E. coli DnaK fused to the C-terminal substrate binding domain of PfHsp70-1. A complementation assay conducted using E. coli dnaK756 cells demonstrated that the GGMP motif was essential for chaperone function of the chimeric protein, KPf. Interestingly, insertion of GGMP motif of PfHsp70-1 into DnaK led to a lethal phenotype in E. coli dnaK756 cells exposed to elevated growth temperature. Using biochemical and biophysical assays, we established that the GGMP motif accounts for the elevated basal ATPase activity of PfHsp70-1. Furthermore, we demonstrated that this motif is important for interaction of the chaperone with peptide substrate and a co-chaperone, PfHop. Our findings suggest that the GGMP may account for both the specialised chaperone function and reportedly high catalytic efficiency of PfHsp70-1.
Collapse
Affiliation(s)
- Stanley Makumire
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Tendamudzimu Harmfree Dongola
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
| | - Graham Chakafana
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Department of Medicine, University of Cape Town, Faculty of Health Sciences, Observatory, Cape Town 7925, South Africa
| | - Lufuno Tshikonwane
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
| | - Cecilia Tshikani Chauke
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
| | - Tarushai Maharaj
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Tawanda Zininga
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Correspondence: ; Tel.: +27-15962-8723
| |
Collapse
|
11
|
Chilukoti N, Sil TB, Sahoo B, Deepa S, Cherakara S, Maddheshiya M, Garai K. Hsp70 Inhibits Aggregation of IAPP by Binding to the Heterogeneous Prenucleation Oligomers. Biophys J 2021; 120:476-488. [PMID: 33417920 PMCID: PMC7895988 DOI: 10.1016/j.bpj.2020.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Molecular chaperone Hsp70 plays important roles in the pathology of amyloid diseases by inhibiting aberrant aggregation of proteins. However, the biophysical mechanism of the interaction of Hsp70 with the intrinsically disordered proteins (IDPs) is unclear. Here, we report that Hsp70 inhibits aggregation of islet amyloid polypeptide (IAPP) at substoichiometric concentrations under diverse solution conditions, including in the absence of ATP. The inhibitory effect is strongest if Hsp70 is added in the beginning of aggregation but progressively less if added later, indicating a role for Hsp70 in preventing nucleation of IAPP. However, ensemble measurement of the binding affinity suggests poor interactions between Hsp70 and IAPP. Therefore, we hypothesize that the interaction must involve a rare species (e.g., the oligomeric intermediates of IAPP). Size exclusion chromatography and field flow fractionation are then used to fractionate the constituent species. Multiangle light scattering and fluorescence correlation spectroscopy measurements indicate that the dominant fraction in size exclusion chromatography contains a few nanomolar Hsp70-IAPP complexes amid several μmoles of free Hsp70. Using single-particle two-color coincidence detection measurements, we detected a minor fraction that exhibits fluorescence bursts arising from heterogeneous oligomeric complexes of IAPP and Hsp70. Taken together, our results indicate that Hsp70 interacts poorly with the monomers but strongly with oligomers of IAPP. This is likely a generic feature of the interactions of Hsp70 chaperones with the amyloidogenic IDPs. Whereas high-affinity interactions with the oligomers prevent aberrant aggregation, poor interaction with the monomers averts interference with the physiological functions of the IDPs.
Collapse
Affiliation(s)
- Neeraja Chilukoti
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India
| | - Timir Baran Sil
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India
| | - Bankanidhi Sahoo
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India
| | - S Deepa
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India
| | | | - Mithun Maddheshiya
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India
| | - Kanchan Garai
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India.
| |
Collapse
|
12
|
Chakafana G, Shonhai A. The Role of Non-Canonical Hsp70s (Hsp110/Grp170) in Cancer. Cells 2021; 10:254. [PMID: 33525518 PMCID: PMC7911927 DOI: 10.3390/cells10020254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Although cancers account for over 16% of all global deaths annually, at present, no reliable therapies exist for most types of the disease. As protein folding facilitators, heat shock proteins (Hsps) play an important role in cancer development. Not surprisingly, Hsps are among leading anticancer drug targets. Generally, Hsp70s are divided into two main subtypes: canonical Hsp70 (Escherichia coli Hsp70/DnaK homologues) and the non-canonical (Hsp110 and Grp170) members. These two main Hsp70 groups are delineated from each other by distinct structural and functional specifications. Non-canonical Hsp70s are considered as holdase chaperones, while canonical Hsp70s are refoldases. This unique characteristic feature is mirrored by the distinct structural features of these two groups of chaperones. Hsp110/Grp170 members are larger as they possess an extended acidic insertion in their substrate binding domains. While the role of canonical Hsp70s in cancer has received a fair share of attention, the roles of non-canonical Hsp70s in cancer development has received less attention in comparison. In the current review, we discuss the structure-function features of non-canonical Hsp70s members and how these features impact their role in cancer development. We further mapped out their interactome and discussed the prospects of targeting these proteins in cancer therapy.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa
| |
Collapse
|