1
|
Jézéquel G, Fargier J, Bigay J, Polidori J, Geslin J, Hue N, El Kalamouni C, Desrat S, Roussi F. Analogues of Natural Macarangin B Display Potent Antiviral Activity and Better Metabolic Stability. ChemMedChem 2025; 20:e202400978. [PMID: 39936924 DOI: 10.1002/cmdc.202400978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
The development of innovative antiviral strategies is critical to address the global health threats posed by RNA viruses, including the Zika virus (ZIKV), which can cause severe neurological complications. The lipid transporter Oxysterol Binding Protein (OSBP), essential for cholesterol and phosphatidylinositol 4-phosphate trafficking, is exploited by many positive-strand RNA viruses, making it an attractive novel antiviral target. This study investigates simplified analogues of macarangin B, a natural compound with potent OSBP-targeted antiviral activity against ZIKV, but limited stability due to its flavonol moiety. A series of analogues was synthesized, replacing the flavonol with a flavone core while retaining the essential hexahydroxanthene (HHX) motif. These compounds demonstrated improved stability (t1/2=16 hours), high OSBP binding affinity (4 - 69 nM), and low cytotoxicity (>20 μM). The most active compounds exhibited antiviral activity comparable to established OSBP inhibitors and were stable in physiologic media, highlighting their potential as leads for therapeutic development. This work advances the structure-activity relationship (SAR) understanding of macarangin B analogues and provides a foundation for designing effective antivirals targeting in ZIKV infections.
Collapse
Affiliation(s)
- Gwenaëlle Jézéquel
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - Jules Fargier
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Inserm, CNRS, 06560, Valbonne, France
| | - Joël Polidori
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Inserm, CNRS, 06560, Valbonne, France
| | - Justine Geslin
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, Inserm, CNRS, IRD, 94791, Sainte Clotilde, France
| | - Nathalie Hue
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, Inserm, CNRS, IRD, 94791, Sainte Clotilde, France
| | - Sandy Desrat
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
- Present address: Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, 91400, Orsay, France
| |
Collapse
|
2
|
Schelle B, Fargier J, Grisel C, Askenatzis L, Gallard JF, Desrat S, Bignon J, Roussi F, Norsikian S. Fast and effective preparation of highly cytotoxic hybrid molecules of schweinfurthin E and OSW-1. Org Biomol Chem 2025; 23:2380-2385. [PMID: 39916448 DOI: 10.1039/d5ob00059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Herein, we present the first synthesis of hybrid molecules combining the pharmacophores of two natural compounds, schweinfurthin E (SW-E) and the glycosidic moiety of OSW-1. These hybrids were designed leveraging the complementary binding of SW-E and OSW-1 to their biological target. The synthetic process highlights, in particular, one-pot functionalization and glycosylation of an L-arabinose unit using a D-xyloside donor and a CuAAC click reaction involving a polyfunctionalized prenylated stilbene derived from SW-E. The cytotoxicity of the four SW-E and OSW1 hybrids is also reported, two of them being much more cytotoxic than SW-E on a glioblastoma cancer cell line. Finally, a molecular modeling study is conducted to rationalize the biological results obtained.
Collapse
Affiliation(s)
- Baptiste Schelle
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 1, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| | - Jules Fargier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 1, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| | - Clément Grisel
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 1, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| | - Laurie Askenatzis
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 1, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| | - Jean-François Gallard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 1, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| | - Sandy Desrat
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 1, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| | - Jérome Bignon
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 1, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| | - Fanny Roussi
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 1, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| | - Stéphanie Norsikian
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 1, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
3
|
He N, Depta L, Rossetti C, Caramelle L, Cigler M, Bryce-Rogers HP, Michon M, Rafn Dan O, Hoock J, Barbier J, Gillet D, Forrester A, Winter GE, Laraia L. Inhibition of OSBP blocks retrograde trafficking by inducing partial Golgi degradation. Nat Chem Biol 2025; 21:203-214. [PMID: 38907112 DOI: 10.1038/s41589-024-01653-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Sterol-binding proteins are important regulators of lipid homeostasis and membrane integrity; however, the discovery of selective modulators can be challenging due to structural similarities in the sterol-binding domains. We report the discovery of potent and selective inhibitors of oxysterol-binding protein (OSBP), which we term oxybipins. Sterol-containing chemical chimeras aimed at identifying new sterol-binding proteins by targeted degradation, led to a significant reduction in levels of Golgi-associated proteins. The degradation occurred in lysosomes, concomitant with changes in protein glycosylation, indicating that the degradation of Golgi proteins was a downstream effect. By establishing a sterol transport protein biophysical assay panel, we discovered that the oxybipins potently inhibited OSBP, resulting in blockage of retrograde trafficking and attenuating Shiga toxin toxicity. As the oxybipins do not target other sterol transporters and only stabilized OSBP in intact cells, we advocate their use as tools to study OSBP function and therapeutic relevance.
Collapse
Affiliation(s)
- Nianzhe He
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Laura Depta
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Cecilia Rossetti
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Lucie Caramelle
- Unit of Research of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), Université de Namur ASBL, Namur, Belgium
| | - Marko Cigler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Marine Michon
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Oliver Rafn Dan
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Joseph Hoock
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Julien Barbier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Alison Forrester
- Unit of Research of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), Université de Namur ASBL, Namur, Belgium
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
4
|
Jézéquel G, Grimanelli Z, Guimard C, Bigay J, Haddad J, Bignon J, Apel C, Steinmetz V, Askenatzis L, Levaïque H, Pradelli C, Pham VC, Huong DTM, Litaudon M, Gautier R, El Kalamouni C, Antonny B, Desrat S, Mesmin B, Roussi F. Minimalist Natural ORPphilin Macarangin B Delineates OSBP Biological Function. J Med Chem 2025; 68:196-211. [PMID: 39704626 DOI: 10.1021/acs.jmedchem.4c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
OSBP ligands from the ORPphilin family are chemically complex natural products with promising anticancer properties. Here, we describe macarangin B, a natural racemic flavonoid selective for OSBP, which stands out from other ORPphilins due to its structural simplicity and distinct biological activity. Using a bioinspired strategy, we synthesized both (R,R,R) and (S,S,S)-macarangin B enantiomers, enabling us to study their interaction with OSBP based on their unique optical properties. Experimental and computational analyzes revealed that (R,R,R)-macarangin B has the highest affinity for OSBP. Importantly, both enantiomers showed significantly decreased cytotoxicity compared to other ORPphilins, suggesting OSBP is not the primary target in ORPphilin-induced cell death. Yet, OSBP is an attractive antiviral target, as it is hijacked by many positive-strand RNA viruses. Remarkably, (R,R,R)-macarangin B significantly inhibited Zika virus replication in human cells, highlighting its potential as a lead compound for antiviral drug development.
Collapse
Affiliation(s)
- Gwenaëlle Jézéquel
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Zoé Grimanelli
- Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne 06560, France
| | - Carole Guimard
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Joëlle Bigay
- Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne 06560, France
| | - Juliano Haddad
- Inserm U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, Sainte Clotilde 94791, France
| | - Jérôme Bignon
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Cécile Apel
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Vincent Steinmetz
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Laurie Askenatzis
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Hélène Levaïque
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Clara Pradelli
- Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne 06560, France
| | - Van Cuong Pham
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi 10000, Vietnam
| | - Doan T M Huong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi 10000, Vietnam
| | - Marc Litaudon
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Romain Gautier
- Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne 06560, France
| | - Chaker El Kalamouni
- Inserm U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, Sainte Clotilde 94791, France
| | - Bruno Antonny
- Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne 06560, France
| | - Sandy Desrat
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Bruno Mesmin
- Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne 06560, France
| | - Fanny Roussi
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| |
Collapse
|
5
|
Khine MN, Isogai N, Takeshita T, Sakurai K. Effect of Linker Length on the Function of Biotinylated OSW-1 Probes. Chembiochem 2025; 26:e202400923. [PMID: 39665192 DOI: 10.1002/cbic.202400923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
The biotinylated probes based on anticancer saponin OSW-1 with varied linker lengths were synthesized and their cell growth inhibitory activity and affinity pulldown efficiency were evaluated. All probes demonstrated comparable cytotoxicity to the parent natural product, highlighting that the linker moiety had a minimal impact on cell uptake or target engagement. In contrast, when evaluated against the known target proteins, OSBP and ORP4, the biotinylated probe 3 with PEG5 linker enabled most effective enrichment of target proteins in the affinity pulldown assay, suggesting that the cytotoxicity and pulldown efficiency did not correlate among the probes studied. Our data provided the first evidence that OSW-1 specifically binds to endogenously expressed OSBP and ORP4. The selectivity of affinity pulldown using probe 3 was also validated by facile identification of the enriched protein by silver staining and LC/MS analysis. Therefore, probe 3 with PEG5 linker comprising of 25 atoms (28 Å) was found as an optimal biotinylated probe for isolating OSW-1 binding proteins from cell lysate.
Collapse
Affiliation(s)
- Myat Nyein Khine
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, JAPAN
| | - Naho Isogai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, JAPAN
| | - Tomoya Takeshita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, JAPAN
| | - Kaori Sakurai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, JAPAN
| |
Collapse
|
6
|
Kathad U, Biyani N, Peru y Colón De Portugal RL, Zhou J, Kochat H, Bhatia K. Expanding the repertoire of Antibody Drug Conjugate (ADC) targets with improved tumor selectivity and range of potent payloads through in-silico analysis. PLoS One 2024; 19:e0308604. [PMID: 39186767 PMCID: PMC11346940 DOI: 10.1371/journal.pone.0308604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/28/2024] [Indexed: 08/28/2024] Open
Abstract
Antibody-Drug Conjugates (ADCs) have emerged as a promising class of targeted cancer therapeutics. Further refinements are essential to unlock their full potential, which is currently limited by a lack of validated targets and payloads. Essential aspects of developing effective ADCs involve the identification of surface antigens, ideally distinguishing target tumor cells from healthy types, uniformly expressed, accompanied by a high potency payload capable of selective targeting. In this study, we integrated transcriptomics, proteomics, immunohistochemistry and cell surface membrane datasets from Human Protein Atlas, Xenabrowser and Gene Expression Omnibus utilizing Lantern Pharma's proprietary AI platform Response Algorithm for Drug positioning and Rescue (RADR®). We used this in combination with evidence based filtering to identify ADC targets with improved tumor selectivity. Our analysis identified a set of 82 targets and a total of 290 target indication combinations for effective tumor targeting. We evaluated the impact of tumor mutations on target expression levels by querying 416 genes in the TCGA mutation database against 22 tumor subtypes. Additionally, we assembled a catalog of compounds to identify potential payloads using the NCI-Developmental Therapeutics Program. Our payload mining strategy classified 729 compounds into three subclasses based on GI50 values spanning from pM to 10 nM range, in combination with sensitivity patterns across 9 different cancer indications. Our results identified a diverse range of both targets and payloads, that can serve to facilitate multiple choices for precise ADC targeting. We propose an initial approach to identify suitable target-indication-payload combinations, serving as a valuable starting point for development of future ADC candidates.
Collapse
Affiliation(s)
- Umesh Kathad
- Lantern Pharma Inc., Dallas, TX, United States of America
| | - Neha Biyani
- Lantern Pharma Inc., Dallas, TX, United States of America
| | | | - Jianli Zhou
- Lantern Pharma Inc., Dallas, TX, United States of America
| | - Harry Kochat
- The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Kishor Bhatia
- Lantern Pharma Inc., Dallas, TX, United States of America
| |
Collapse
|
7
|
Kovács D, Gay AS, Debayle D, Abélanet S, Patel A, Mesmin B, Luton F, Antonny B. Lipid exchange at ER-trans-Golgi contact sites governs polarized cargo sorting. J Cell Biol 2024; 223:e202307051. [PMID: 37991810 PMCID: PMC10664280 DOI: 10.1083/jcb.202307051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
Oxysterol binding protein (OSBP) extracts cholesterol from the ER to deliver it to the TGN via counter exchange and subsequent hydrolysis of the phosphoinositide PI(4)P. Here, we show that this pathway is essential in polarized epithelial cells where it contributes not only to the proper subcellular distribution of cholesterol but also to the trans-Golgi sorting and trafficking of numerous plasma membrane cargo proteins with apical or basolateral localization. Reducing the expression of OSBP, blocking its activity, or inhibiting a PI4Kinase that fuels OSBP with PI(4)P abolishes the epithelial phenotype. Waves of cargo enrichment in the TGN in phase with OSBP and PI(4)P dynamics suggest that OSBP promotes the formation of lipid gradients along the TGN, which helps cargo sorting. During their transient passage through the trans-Golgi, polarized plasma membrane proteins get close to OSBP but fail to be sorted when OSBP is silenced. Thus, OSBP lipid exchange activity is decisive for polarized cargo sorting and distribution in epithelial cells.
Collapse
Affiliation(s)
- Dávid Kovács
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Anne-Sophie Gay
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Delphine Debayle
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Sophie Abélanet
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Amanda Patel
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Bruno Mesmin
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Frédéric Luton
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Bruno Antonny
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
8
|
Ebner M, Puchkov D, López-Ortega O, Muthukottiappan P, Su Y, Schmied C, Zillmann S, Nikonenko I, Koddebusch J, Dornan GL, Lucht MT, Koka V, Jang W, Koch PA, Wallroth A, Lehmann M, Brügger B, Pende M, Winter D, Haucke V. Nutrient-regulated control of lysosome function by signaling lipid conversion. Cell 2023; 186:5328-5346.e26. [PMID: 37883971 DOI: 10.1016/j.cell.2023.09.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.
Collapse
Affiliation(s)
- Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Pathma Muthukottiappan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany
| | - Yanwei Su
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Silke Zillmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Iryna Nikonenko
- Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jochen Koddebusch
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Gillian L Dornan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Max T Lucht
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Vonda Koka
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Wonyul Jang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | | | - Alexander Wallroth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mario Pende
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
9
|
Jézéquel G, Rampal C, Guimard C, Kovacs D, Polidori J, Bigay J, Bignon J, Askenatzis L, Litaudon M, Pham VC, Huong DTM, Nguyen AL, Pruvost A, Virolle T, Mesmin B, Desrat S, Antonny B, Roussi F. Structure-Based Design of a Lead Compound Derived from Natural Schweinfurthins with Antitumor Properties That Target Oxysterol-Binding Protein. J Med Chem 2023; 66:14208-14220. [PMID: 37795600 DOI: 10.1021/acs.jmedchem.3c01298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Schweinfurthins (SWs) are naturally occurring prenylated stilbenes with promising anticancer properties. They act through a novel mechanism of action similar to that of other families of natural compounds. Their known target, oxysterol-binding protein (OSBP), plays a crucial role in controlling the intracellular distribution of cholesterol. We synthesized 15 analogues of SWs and demonstrated for the first time that their cytotoxicity as well as that of natural derivatives correlates with their affinity for OSBP. Through this extensive SAR study, we selected one synthetic analogue obtained in one step from SW-G. Using its fluorescence properties, we showed that this compound recapitulates the effect of natural SW-G in cells and confirmed that it leads to cell death via the same mechanism. Finally, after pilot PK experiments, we provided the first evidence of its in vivo efficacy in combination with temozolomide in a patient-derived glioblastoma xenograft model.
Collapse
Affiliation(s)
- Gwenaëlle Jézéquel
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Céline Rampal
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Carole Guimard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - David Kovacs
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Joël Polidori
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 06560 Valbonne, France
| | - Joëlle Bigay
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 06560 Valbonne, France
| | - Jérôme Bignon
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Laurie Askenatzis
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Marc Litaudon
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Van-Cuong Pham
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, 10000 Hanoi, Vietnam
| | - Doan T M Huong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, 10000 Hanoi, Vietnam
| | - Anvi Laetitia Nguyen
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France
| | - Alain Pruvost
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, SPI, 91191 Gif-sur-Yvette, France
| | - Thierry Virolle
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, U1091, UMR7277, Parc Valrose, 06000 Nice,France
| | - Bruno Mesmin
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 06560 Valbonne, France
| | - Sandy Desrat
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Bruno Antonny
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 06560 Valbonne, France
| | - Fanny Roussi
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Koh DHZ, Naito T, Na M, Yeap YJ, Rozario P, Zhong FL, Lim KL, Saheki Y. Visualization of accessible cholesterol using a GRAM domain-based biosensor. Nat Commun 2023; 14:6773. [PMID: 37880244 PMCID: PMC10600248 DOI: 10.1038/s41467-023-42498-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Cholesterol is important for membrane integrity and cell signaling, and dysregulation of the distribution of cellular cholesterol is associated with numerous diseases, including neurodegenerative disorders. While regulated transport of a specific pool of cholesterol, known as "accessible cholesterol", contributes to the maintenance of cellular cholesterol distribution and homeostasis, tools to monitor accessible cholesterol in live cells remain limited. Here, we engineer a highly sensitive accessible cholesterol biosensor by taking advantage of the cholesterol-sensing element (the GRAM domain) of an evolutionarily conserved lipid transfer protein, GRAMD1b. Using this cholesterol biosensor, which we call GRAM-W, we successfully visualize in real time the distribution of accessible cholesterol in many different cell types, including human keratinocytes and iPSC-derived neurons, and show differential dependencies on cholesterol biosynthesis and uptake for maintaining levels of accessible cholesterol. Furthermore, we combine GRAM-W with a dimerization-dependent fluorescent protein (ddFP) and establish a strategy for the ultrasensitive detection of accessible plasma membrane cholesterol. These tools will allow us to obtain important insights into the molecular mechanisms by which the distribution of cellular cholesterol is regulated.
Collapse
Affiliation(s)
- Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Minyoung Na
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Pritisha Rozario
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Franklin L Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Skin Research Institute of Singapore (SRIS), Singapore, 308232, Singapore
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, 308433, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
11
|
Naito T, Yang H, Koh DHZ, Mahajan D, Lu L, Saheki Y. Regulation of cellular cholesterol distribution via non-vesicular lipid transport at ER-Golgi contact sites. Nat Commun 2023; 14:5867. [PMID: 37735529 PMCID: PMC10514280 DOI: 10.1038/s41467-023-41213-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Abnormal distribution of cellular cholesterol is associated with numerous diseases, including cardiovascular and neurodegenerative diseases. Regulated transport of cholesterol is critical for maintaining its proper distribution in the cell, yet the underlying mechanisms remain unclear. Here, we show that lipid transfer proteins, namely ORP9, OSBP, and GRAMD1s/Asters (GRAMD1a/GRAMD1b/GRAMD1c), control non-vesicular cholesterol transport at points of contact between the ER and the trans-Golgi network (TGN), thereby maintaining cellular cholesterol distribution. ORP9 localizes to the TGN via interaction between its tandem α-helices and ORP10/ORP11. ORP9 extracts PI4P from the TGN to prevent its overaccumulation and suppresses OSBP-mediated PI4P-driven cholesterol transport to the Golgi. By contrast, GRAMD1s transport excess cholesterol from the Golgi to the ER, thereby preventing its build-up. Cells lacking ORP9 exhibit accumulation of cholesterol at the Golgi, which is further enhanced by additional depletion of GRAMD1s with major accumulation in the plasma membrane. This is accompanied by chronic activation of the SREBP-2 signalling pathway. Our findings reveal the importance of regulated lipid transport at ER-Golgi contacts for maintaining cellular cholesterol distribution and homeostasis.
Collapse
Affiliation(s)
- Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Haoning Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
12
|
Subra M, Antonny B, Mesmin B. New insights into the OSBP‒VAP cycle. Curr Opin Cell Biol 2023; 82:102172. [PMID: 37245352 DOI: 10.1016/j.ceb.2023.102172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023]
Abstract
VAP-A is a major endoplasmic reticulum (ER) receptor that allows this organelle to engage numerous membrane contact sites with other organelles. One highly studied example is the formation of contact sites through VAP-A interaction with Oxysterol-binding protein (OSBP). This lipid transfer protein transports cholesterol from the ER to the trans-Golgi network owing to the counter-exchange of the phosphoinositide PI(4)P. In this review, we highlight recent studies that advance our understanding of the OSBP cycle and extend the model of lipid exchange to other cellular contexts and other physiological and pathological conditions.
Collapse
Affiliation(s)
- Mélody Subra
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, 06560, Valbonne, France
| | - Bruno Antonny
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, 06560, Valbonne, France.
| | - Bruno Mesmin
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, 06560, Valbonne, France.
| |
Collapse
|
13
|
Khine MN, Sakurai K. Golgi-Targeting Anticancer Natural Products. Cancers (Basel) 2023; 15:cancers15072086. [PMID: 37046746 PMCID: PMC10093635 DOI: 10.3390/cancers15072086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/03/2023] Open
Abstract
The Golgi apparatus plays an important role in maintaining cell homeostasis by serving as a biosynthetic center for glycans, lipids and post-translationally modified proteins and as a sorting center for vesicular transport of proteins to specific destinations. Moreover, it provides a signaling hub that facilitates not only membrane trafficking processes but also cellular response pathways to various types of stresses. Altered signaling at the Golgi apparatus has emerged as a key regulator of tumor growth and survival. Among the small molecules that can specifically perturb or modulate Golgi proteins and organization, natural products with anticancer property have been identified as powerful chemical probes in deciphering Golgi-related pathways and, in particular, recently described Golgi stress response pathways. In this review, we highlight a set of Golgi-targeting natural products that enabled the characterization of the Golgi-mediated signaling events leading to cancer cell death and discuss the potential for selectively exploiting these pathways for the development of novel chemotherapeutic agents.
Collapse
|
14
|
Subra M, Dezi M, Bigay J, Lacas-Gervais S, Di Cicco A, Araújo ARD, Abélanet S, Fleuriot L, Debayle D, Gautier R, Patel A, Roussi F, Antonny B, Lévy D, Mesmin B. VAP-A intrinsically disordered regions enable versatile tethering at membrane contact sites. Dev Cell 2023; 58:121-138.e9. [PMID: 36693319 DOI: 10.1016/j.devcel.2022.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023]
Abstract
Membrane contact sites (MCSs) are heterogeneous in shape, composition, and dynamics. Despite this diversity, VAP proteins act as receptors for multiple FFAT motif-containing proteins and drive the formation of most MCSs that involve the endoplasmic reticulum (ER). Although the VAP-FFAT interaction is well characterized, no model explains how VAP adapts to its partners in various MCSs. We report that VAP-A localization to different MCSs depends on its intrinsically disordered regions (IDRs) in human cells. VAP-A interaction with PTPIP51 and VPS13A at ER-mitochondria MCS conditions mitochondria fusion by promoting lipid transfer and cardiolipin buildup. VAP-A also enables lipid exchange at ER-Golgi MCS by interacting with oxysterol-binding protein (OSBP) and CERT. However, removing IDRs from VAP-A restricts its distribution and function to ER-mitochondria MCS. Our data suggest that IDRs do not modulate VAP-A preference toward specific partners but do adjust their geometry to MCS organization and lifetime constraints. Thus, IDR-mediated VAP-A conformational flexibility ensures membrane tethering plasticity and efficiency.
Collapse
Affiliation(s)
- Mélody Subra
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Manuela Dezi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Joëlle Bigay
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Sandra Lacas-Gervais
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, Parc Valrose, 06000 Nice, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Ana Rita Dias Araújo
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Sophie Abélanet
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Lucile Fleuriot
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Delphine Debayle
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Romain Gautier
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Amanda Patel
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Bruno Antonny
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Daniel Lévy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Bruno Mesmin
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France.
| |
Collapse
|
15
|
Balla T, Gulyas G, Mandal A, Alvarez-Prats A, Niu Y, Kim YJ, Pemberton J. Roles of Phosphatidylinositol 4-Phosphorylation in Non-vesicular Cholesterol Trafficking. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:327-352. [PMID: 36988887 PMCID: PMC11135459 DOI: 10.1007/978-3-031-21547-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cholesterol (Chol) is an essential component of all eukaryotic cell membranes that affects the function of numerous peripheral as well as integral membrane proteins. Chol is synthesized in the ER, but it is selectively enriched within the plasma membrane (PM) and other endomembranes, which requires Chol to cross the aqueous phase of the cytoplasm. In addition to the classical vesicular trafficking pathways that are known to facilitate the bulk transport of membrane intermediates, Chol is also transported via non-vesicular lipid transfer proteins that work primarily within specialized membrane contact sites. Some of these transport pathways work against established concentration gradients and hence require energy. Recent studies highlight the unique role of phosphoinositides (PPIns), and phosphatidylinositol 4-phosphate (PI4P) in particular, for the control of non-vesicular Chol transport. In this chapter, we will review the emerging connection between Chol, PPIns, and lipid transfer proteins that include the important family of oxysterol-binding protein related proteins, or ORPs.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA.
| | | | - Amrita Mandal
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | | | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Zhang R, Neighbors J, Schell T, Hohl R. Schweinfurthin induces ICD without ER stress and caspase activation. Oncoimmunology 2022; 11:2104551. [PMID: 35936984 PMCID: PMC9354771 DOI: 10.1080/2162402x.2022.2104551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Our previous study showed that one of the schweinfurthin compounds, 5’-methoxyschweinfurthin G (MeSG), not only enhances the anti-tumor effect of anti-PD1 antibody in the B16F10 murine melanoma model, but also provokes durable, protective anti-tumor immunity. Here we further investigated the mechanisms by which MeSG treatment induces immunogenic cell death (ICD). MeSG induced significant cell surface calreticulin (CRT) exposure in a time and concentration dependent manner as well as increased phagocytosis of tumor cells by dendritic cells in vitro. Interestingly, this CRT exposure differs from the canonical pathway in several aspects. MeSG does not cause ER stress and does not require PERK to induce CRT exposure. Caspase inhibitors partially rescue cells from MeSG-induced apoptosis, but fail to reduce CRT exposure. MeSG does not cause ERp57 exposure and the absence of ERp57 expression does not reduce CRT exposure. Finally, an intact ER to Golgi transport system is required for this phenomenon. These results lend support to the development of the schweinfurthin family as drugs to enhance clinical response to immunotherapy and highlight the need for additional research on the mechanisms of ICD induction.
Collapse
Affiliation(s)
| | - J.D. Neighbors
- Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Hershey, PA, USA
| | - T.D. Schell
- Penn State Cancer Institute, Hershey, PA, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - R.J. Hohl
- Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Hershey, PA, USA
| |
Collapse
|
17
|
Taskinen JH, Ruhanen H, Matysik S, Käkelä R, Olkkonen VM. Global effects of pharmacologic inhibition of OSBP in human umbilical vein endothelial cells. Steroids 2022; 185:109053. [PMID: 35623602 DOI: 10.1016/j.steroids.2022.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/14/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
Abstract
Oxysterol-binding protein (OSBP) is a cholesterol/PI4P exchanger at contacts of the endoplasmic reticulum (ER) with trans-Golgi network (TGN) and endosomes. Several central endothelial cell (EC) functions depend on adequate cholesterol distribution in cellular membranes. Here we elucidated the effects of pharmacologic OSBP inhibition on the lipidome and transcriptome of human umbilical vein endothelial cells (HUVECs). OSBP was inhibited for 24 h with 25 nM Schweinfurthin G (SWG) or Orsaponin (OSW-1), followed by analyses of cellular cholesterol, 27-hydroxy-cholesterol, and triacylglycerol concentration, phosphatidylserine synthesis rate, the lipidome, as well as lipid droplet staining and western analysis of OSBP protein. Next-generation RNA sequencing of the SWG-treated and control HUVECs and angiogenesis assays were performed. Protein-normalized lipidomes of the inhibitor-treated cells revealed decreases in glycerophospholipids, the most pronounced effect being on phosphatidylserines and the rate of their synthesis, as well as increases in cholesteryl esters, triacylglycerols and lipid droplet number. Transcriptome analysis of SWG-treated cells suggested ER stress responses apparently caused by disturbed cholesterol exit from the ER, as indicated by suppression of cholesterol biosynthetic genes. OSBP was associated with the TGN in the absence of inhibitors and disappeared therefrom in inhibitor-treated cells in a time-dependent manner, coinciding with OSBP reduction on western blots. Prolonged treatment with SWG or OSW-1 inhibited angiogenesis in vitro. To conclude, inhibition of OSBP in primary endothelial cells induced multiple effects on the lipidome, transcriptome changes suggesting ER stress, and disruption of in vitro angiogenic capacity. Thus, OSBP is a crucial regulator of EC lipid homeostasis and angiogenic capacity.
Collapse
Affiliation(s)
- Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland.
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Molecular and Integrative Biosciences Research Programme, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland.
| | - Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany.
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Molecular and Integrative Biosciences Research Programme, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland.
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
18
|
Depta L, Whitmarsh-Everiss T, Laraia L. Structure, function and small molecule modulation of intracellular sterol transport proteins. Bioorg Med Chem 2022; 68:116856. [PMID: 35716590 DOI: 10.1016/j.bmc.2022.116856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
Intracellular sterol transport proteins (STPs) are crucial for maintaining cellular lipid homeostasis by regulating local sterol pools. Despite structural similarities in their sterol binding domains, STPs have different substrate specificities, intracellular localisation and biological functions. In this review, we highlight recent advances in the determination of STP structures and how this regulates their lipid specificities. Furthermore, we cover the important discoveries relating to the intracellular localisation of STPs, and the organelles between which lipid transport is carried out, giving rise to specific functions in health and disease. Finally, serendipitous and targeted efforts to identify small molecule modulators of STPs, as well as their ability to act as tool compounds and potential therapeutics, will be discussed.
Collapse
Affiliation(s)
- Laura Depta
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Thomas Whitmarsh-Everiss
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
19
|
Kobayashi J, Arita M, Sakai S, Kojima H, Senda M, Senda T, Hanada K, Kato R. Ligand Recognition by the Lipid Transfer Domain of Human OSBP Is Important for Enterovirus Replication. ACS Infect Dis 2022; 8:1161-1170. [PMID: 35613096 DOI: 10.1021/acsinfecdis.2c00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxysterol-binding protein (OSBP), which transports cholesterol and phosphatidylinositol 4-monophosphate (PtdIns[4]P) between different organelles, serves as a conserved host factor for the replication of various viruses, and OSBP inhibitors exhibit antiviral effects. Here, we determined the crystal structure of the lipid transfer domain of human OSBP in complex with endogenous cholesterol. The hydrocarbon tail and tetracyclic ring of cholesterol interact with the hydrophobic tunnel of OSBP, and the hydroxyl group of cholesterol forms a hydrogen bond network at the bottom of the tunnel. Systematic mutagenesis of the ligand-binding region revealed that M446W and L590W substitutions confer functional tolerance to an OSBP inhibitor, T-00127-HEV2. Employing the M446W variant as a functional replacement for the endogenous OSBP in the presence of T-00127-HEV2, we have identified previously unappreciated amino acid residues required for viral replication. The combined use of the inhibitor and the OSBP variant will be useful in elucidating the enigmatic in vivo functions of OSBP.
Collapse
Affiliation(s)
- Jun Kobayashi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Miki Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ryuichi Kato
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
20
|
Weissenrieder JS, Weissenkampen JD, Reed JL, Green MV, Zheng C, Neighbors JD, Liu DJ, Hohl RJ. RNAseq reveals extensive metabolic disruptions in the sensitive SF-295 cell line treated with schweinfurthins. Sci Rep 2022; 12:359. [PMID: 35013404 PMCID: PMC8748991 DOI: 10.1038/s41598-021-04117-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023] Open
Abstract
The schweinfurthin family of natural compounds exhibit a unique and potent differential cytotoxicity against a number of cancer cell lines and may reduce tumor growth in vivo. In some cell lines, such as SF-295 glioma cells, schweinfurthins elicit cytotoxicity at nanomolar concentrations. However, other cell lines, like A549 lung cancer cells, are resistant to schweinfurthin treatment up to micromolar concentrations. At this time, the precise mechanism of action and target for these compounds is unknown. Here, we employ RNA sequencing of cells treated with 50 nM schweinfurthin analog TTI-3066 for 6 and 24 h to elucidate potential mechanisms and pathways which may contribute to schweinfurthin sensitivity and resistance. The data was analyzed via an interaction model to observe differential behaviors between sensitive SF-295 and resistant A549 cell lines. We show that metabolic and stress-response pathways were differentially regulated in the sensitive SF-295 cell line as compared with the resistant A549 cell line. In contrast, A549 cell had significant alterations in response genes involved in translation and protein metabolism. Overall, there was a significant interaction effect for translational proteins, RNA metabolism, protein metabolism, and metabolic genes. Members of the Hedgehog pathway were differentially regulated in the resistant A549 cell line at both early and late time points, suggesting a potential mechanism of resistance. Indeed, when cotreated with the Smoothened inhibitor cyclopamine, A549 cells became more sensitive to schweinfurthin treatment. This study therefore identifies a key interplay with the Hedgehog pathway that modulates sensitivity to the schweinfurthin class of compounds.
Collapse
Affiliation(s)
- J. S. Weissenrieder
- grid.25879.310000 0004 1936 8972Department of Physiology, University of Pennsylvania, Philadelphia, PA USA ,grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Mail Code CH72, Hershey, PA 17033-0850 USA
| | - J. D. Weissenkampen
- grid.240473.60000 0004 0543 9901Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA USA ,grid.25879.310000 0004 1936 8972Department of Genetics, University of Pennsylvania, Philadelphia, PA USA
| | - J. L. Reed
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Mail Code CH72, Hershey, PA 17033-0850 USA
| | - M. V. Green
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Mail Code CH72, Hershey, PA 17033-0850 USA
| | - C. Zheng
- grid.214572.70000 0004 1936 8294Department of Pharmacology, The University of Iowa, Iowa City, IA USA
| | - J. D. Neighbors
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Mail Code CH72, Hershey, PA 17033-0850 USA
| | - D. J. Liu
- grid.240473.60000 0004 0543 9901Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA USA
| | - Raymond J. Hohl
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Mail Code CH72, Hershey, PA 17033-0850 USA
| |
Collapse
|
21
|
Abstract
The natural schweinfurthins are stilbenes with significant antiproliferative activity and an uncertain mechanism of action. To obtain a fluorescent analogue with minimal deviation from the natural structure, a coumarin ring system was annulated to the D-ring, creating a new analogue of schweinfurthin F. This stilbene was prepared through a convergent synthesis, with a Horner-Wadsworth-Emmons condensation employed to form the central stilbene olefin. After preparation of a tricyclic phosphonate via a recent and more efficient modification of the classic Arbuzov reaction, condensation was attempted with an appropriately substituted bicyclic aldehyde but the coumarin system did not survive the reaction conditions. When olefin formation preceded generation of the coumarin, the stilbene formation proceeded smoothly and ultimately allowed access to the targeted coumarin-based schweinfurthin analogue. This analogue displayed the desired fluorescence properties along with significant biological activity in the National Cancer Institute's 60-cell line bioassay, and the pattern of this biological activity mirrored that of the natural product schweinfurthin F. This approach gives facile access to new fluorescent analogues of the natural schweinfurthins and should be applicable to other natural stilbenes as well.
Collapse
Affiliation(s)
- Chloe M Schroeder
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Patrick N Dey
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - John A Beutler
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702, United States
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| |
Collapse
|
22
|
Kutchukian C, Vivas O, Casas M, Jones JG, Tiscione SA, Simó S, Ory DS, Dixon RE, Dickson EJ. NPC1 regulates the distribution of phosphatidylinositol 4-kinases at Golgi and lysosomal membranes. EMBO J 2021; 40:e105990. [PMID: 34019311 PMCID: PMC8246069 DOI: 10.15252/embj.2020105990] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cholesterol and phosphoinositides (PI) are two critically important lipids that are found in cellular membranes and dysregulated in many disorders. Therefore, uncovering molecular pathways connecting these essential lipids may offer new therapeutic insights. We report that loss of function of lysosomal Niemann-Pick Type C1 (NPC1) cholesterol transporter, which leads to neurodegenerative NPC disease, initiates a signaling cascade that alters the cholesterol/phosphatidylinositol 4-phosphate (PtdIns4P) countertransport cycle between Golgi-endoplasmic reticulum (ER), as well as lysosome-ER membrane contact sites (MCS). Central to these disruptions is increased recruitment of phosphatidylinositol 4-kinases-PI4KIIα and PI4KIIIβ-which boosts PtdIns4P metabolism at Golgi and lysosomal membranes. Aberrantly increased PtdIns4P levels elevate constitutive anterograde secretion from the Golgi complex, and mTORC1 recruitment to lysosomes. NPC1 disease mutations phenocopy the transporter loss of function and can be rescued by inhibition or knockdown of either key phosphoinositide enzymes or their recruiting partners. In summary, we show that the lysosomal NPC1 cholesterol transporter tunes the molecular content of Golgi and lysosome MCS to regulate intracellular trafficking and growth signaling in health and disease.
Collapse
Affiliation(s)
- Candice Kutchukian
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCAUSA
| | - Oscar Vivas
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCAUSA
- Present address:
Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Maria Casas
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCAUSA
| | - Julia G Jones
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCAUSA
| | - Scott A Tiscione
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCAUSA
| | - Sergi Simó
- Department of Cell Biology & Human AnatomyUniversity of CaliforniaDavisCAUSA
| | - Daniel S Ory
- Department of Internal MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Rose E Dixon
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCAUSA
| | - Eamonn J Dickson
- Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
23
|
Nakatsu F, Kawasaki A. Functions of Oxysterol-Binding Proteins at Membrane Contact Sites and Their Control by Phosphoinositide Metabolism. Front Cell Dev Biol 2021; 9:664788. [PMID: 34249917 PMCID: PMC8264513 DOI: 10.3389/fcell.2021.664788] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023] Open
Abstract
Lipids must be correctly transported within the cell to the right place at the right time in order to be fully functional. Non-vesicular lipid transport is mediated by so-called lipid transfer proteins (LTPs), which contain a hydrophobic cavity that sequesters lipid molecules. Oxysterol-binding protein (OSBP)-related proteins (ORPs) are a family of LTPs known to harbor lipid ligands, such as cholesterol and phospholipids. ORPs act as a sensor or transporter of those lipid ligands at membrane contact sites (MCSs) where two different cellular membranes are closely apposed. In particular, a characteristic functional property of ORPs is their role as a lipid exchanger. ORPs mediate counter-directional transport of two different lipid ligands at MCSs. Several, but not all, ORPs transport their lipid ligand from the endoplasmic reticulum (ER) in exchange for phosphatidylinositol 4-phosphate (PI4P), the other ligand, on apposed membranes. This ORP-mediated lipid “countertransport” is driven by the concentration gradient of PI4P between membranes, which is generated by its kinases and phosphatases. In this review, we will discuss how ORP function is tightly coupled to metabolism of phosphoinositides such as PI4P. Recent progress on the role of ORP-mediated lipid transport/countertransport at multiple MCSs in cellular functions will be also discussed.
Collapse
Affiliation(s)
- Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| |
Collapse
|
24
|
Affiliation(s)
- Dominika Roos
- Eberhard Karls Universität Tübingen Institut für Organische Chemie Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Martin E. Maier
- Eberhard Karls Universität Tübingen Institut für Organische Chemie Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
25
|
Delfosse V, Bourguet W, Drin G. Structural and Functional Specialization of OSBP-Related Proteins. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420946627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipids are precisely distributed in the eukaryotic cell where they help to define organelle identity and function, in addition to their structural role. Once synthesized, many lipids must be delivered to other compartments by non-vesicular routes, a process that is undertaken by proteins called Lipid Transfer Proteins (LTPs). OSBP and the closely-related ORP and Osh proteins constitute a major, evolutionarily conserved family of LTPs in eukaryotes. Most of these target one or more subcellular regions, and membrane contact sites in particular, where two organelle membranes are in close proximity. It was initially thought that such proteins were strictly dedicated to sterol sensing or transport. However, over the last decade, numerous studies have revealed that these proteins have many more functions, and we have expanded our understanding of their mechanisms. In particular, many of them are lipid exchangers that exploit PI(4)P or possibly other phosphoinositide gradients to directionally transfer sterol or PS between two compartments. Importantly, these transfer activities are tightly coupled to processes such as lipid metabolism, cellular signalling and vesicular trafficking. This review describes the molecular architecture of OSBP/ORP/Osh proteins, showing how their specific structural features and internal configurations impart unique cellular functions.
Collapse
Affiliation(s)
- Vanessa Delfosse
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Guillaume Drin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| |
Collapse
|