1
|
Martinez B, Peplow PV. MicroRNAs as potential diagnostic biomarkers for bipolar disorder. Neural Regen Res 2025; 20:1681-1695. [PMID: 39104098 PMCID: PMC11688563 DOI: 10.4103/nrr.nrr-d-23-01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/23/2023] [Indexed: 08/07/2024] Open
Abstract
Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of bipolar disorder. We performed a PubMed search for microRNA biomarkers in bipolar disorder and found 18 original research articles on studies performed with human patients and published from January 2011 to June 2023. These studies included microRNA profiling in blood- and brain-based materials. From the studies that had validated the preliminary findings, potential candidate biomarkers for bipolar disorder in adults could be miR-140-3p, -30d-5p, -330-5p, -378a-5p, -21-3p, -330-3p, -345-5p in whole blood, miR-19b-3p, -1180-3p, -125a-5p, let-7e-5p in blood plasma, and miR-7-5p, -23b-5p, -142-3p, -221-5p, -370-3p in the blood serum. Two of the studies had investigated the changes in microRNA expression of patients with bipolar disorder receiving treatment. One showed a significant increase in plasma miR-134 compared to baseline after 4 weeks of treatment which included typical antipsychotics, atypical antipsychotics, and benzodiazepines. The other study had assessed the effects of prescribed medications which included neurotransmitter receptor-site binders (drug class B) and sedatives, hypnotics, anticonvulsants, and analgesics (drug class C) on microRNA results. The combined effects of the two drug classes increased the significance of the results for miR-219 and -29c with miR-30e-3p and -526b* acquiring significance. MicroRNAs were tested to see if they could serve as biomarkers of bipolar disorder at different clinical states of mania, depression, and euthymia. One study showed that upregulation in whole blood of miR-9-5p, -29a-3p, -106a-5p, -106b-5p, -107, -125a-3p, -125b-5p and of miR-107, -125a-3p occurred in manic and euthymic patients compared to controls, respectively, and that upregulation of miR-106a-5p, -107 was found for manic compared to euthymic patients. In two other studies using blood plasma, downregulation of miR-134 was observed in manic patients compared to controls, and dysregulation of miR-134, -152, -607, -633, -652, -155 occurred in euthymic patients compared to controls. Finally, microRNAs such as miR-34a, -34b, -34c, -137, and -140-3p, -21-3p, -30d-5p, -330-5p, -378a-5p, -134, -19b-3p were shown to have diagnostic potential in distinguishing bipolar disorder patients from schizophrenia or major depressive disorder patients, respectively. Further studies are warranted with adolescents and young adults having bipolar disorder and consideration should be given to using animal models of the disorder to investigate the effects of suppressing or overexpressing specific microRNAs.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology, University of Nevada-Reno, Reno, NV, USA
- Department of Medicine, University of Nevada-Reno, Reno, NV, USA
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Huang JJ, Zhang J, Wang T, Li X, Zhang H, Wang J, Guo Y, Song ZH, Zhai QY. Small non-coding RNA profiles in sperms from depressive-like mice induced by chronic unpredictable mild stimulations. J Affect Disord 2025; 376:376-385. [PMID: 39961446 DOI: 10.1016/j.jad.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Major depressive disorder (MDD) is a complex, common, and moderately heritable illness, and accumulating evidence suggests that psychological stress may affect male fertility. Mounting evidence indicates sncRNAs in sperm are sensitive to environmental changes and mediate the inheritance of paternally acquired metabolic and mental traits. In order to know the impact of psychological stress on reproduction and alterations in sperm sncRNAs, in this study, depressive-like mice induced by chronic unpredictable mild stimulation (CUMS) were used to investigate the impact of psychological stress on reproduction and alterations in sperm sncRNAs. The results showed that CUMS treatments for 4 weeks induced depressive behavior in male mice and significantly affected sperm quality. The results obtained from small RNA sequencing indicated that alterations occurred in the distribution and composition of small non-coding RNAs (sncRNAs), encompassing PIWI-interacting RNAs (piRNAs), rRNA-derived small RNAs (rsRNAs), and tRNA-derived small RNAs (tsRNAs). Furthermore, the offspring of male mice with depressive-like behavior have a significant reduction in survival rate at 21 days after birth, and those that did survive displayed an increased susceptibility to depression. This study provides some theoretical support for understanding the effects of psychological stress on reproduction, as well as information exchange from psychological stimulation to germ cells, and then from germ cells to next generation.
Collapse
Affiliation(s)
- Jiao-Jiao Huang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinmei Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Tianyi Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, Shandong, China
| | - Xue Li
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, Shandong, China
| | - Hao Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, Shandong, China
| | - Junjie Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266021, Shandong Province, China
| | - Zhen-Hua Song
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, Shandong, China.
| | - Qiu-Yue Zhai
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
3
|
Chen X, Gan Y, Zhang K, Wu Y, Li Y, Lan T, Zhuang X, Chen S, Yu S. MicroRNA-204-5p Deficiency within the vmPFC Region Contributes to Neuroinflammation and Behavioral Disorders via the JAK2/STAT3 Signaling Pathway in Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403080. [PMID: 39792918 PMCID: PMC11905084 DOI: 10.1002/advs.202403080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/17/2024] [Indexed: 01/12/2025]
Abstract
Major depressive disorder (MDD) is usually considered associate with immune inflammation and synaptic injury within specific brain regions. However, the molecular mechanisms underlying the neural deterioration resulting in depression remain unclear. Here, it is found that miR-204-5p is markedly downregulated in the ventromedial prefrontal cortex (vmPFC) in a chronic unpredictable mild stress (CUMS) induce rat model of depression. Knockdown of miR-204-5p in the vmPFC of normal rats results in depression and anxiety-like behaviors accompanied with the activation of microglia, elevated levels of pro-inflammatory cytokines, and increased numbers of neural apoptotic cells, effects which appear to be mediated by activation of the JAK2/STAT3 signaling pathway. Electrophysiological recordings further demonstrate that knockdown of miR-204-5p induces abnormal excitability of pyramidal neurons. In contrast, upregulation of miR-204-5p in the vmPFC of CUMS rats significantly causes inhibition of JAK2/STAT3 signaling pathway, improvements in neuronal impairments, and an abolition of the depression and anxiety-like behaviors. Moreover, pharmacological blocking of the JAK2/STAT3 signaling pathway significantly ameliorates abnormal behaviors resulting from miR-204-5p deficiency within the vmPFC. Collectively, these results provide robust evidence that the miR-204-5p/JAK2/STAT3 pathway may critically involve in the pathogenesis of depression, which may serve as potentially critical therapeutic target in the treatment of MDD.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yeting Gan
- Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Kaiqi Zhang
- Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yuhan Wu
- Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Ye Li
- Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Tian Lan
- Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Xianghua Zhuang
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Shihong Chen
- Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Shuyan Yu
- Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- Department of Medical Psychology and Ethics, School of Basic Medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
4
|
Mert A, Yucens B, Karagur ER, Akca H, Tumkaya S, Atesci FC. miRNAs in Major Depression: Possible Association of miR-17 and miR-92 with Childhood Traumas. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2025; 23:133-143. [PMID: 39820119 PMCID: PMC11747731 DOI: 10.9758/cpn.24.1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 01/19/2025]
Abstract
Objective Psychosocial and genetic factors are considered to play roles in the etiological mechanisms of major depressive disorder (MDD). The involvement of miRNAs in the etiopathogenesis of depression and childhood traumas is still unclear. This study aims to reveal potential differences in miRNA levels between patients with depression and healthy individuals and assess their connection to childhood traumas. Methods This study included fifty patients with MDD and 33 healthy controls. The targeting of the 3'UTR regions of the BDNF, SLC6A4/SERT/5-HTT, HTR1a, and HTR2a genes by 8 miRNAs was analyzed to explore their potential involvement in depression and childhood traumas. The Hamilton Depression Rating Scale, the Hamilton Anxiety Rating Scale, and the Childhood Trauma Questionnaire-28 were administered to the participants. Results Patients with MDD exhibited significantly lower expression levels of miR-335 and miR-4775, as well as significantly higher expression levels of miR-15, miR-16, miR-17, miR-92, miR-182, and miR-206, when compared to healthy controls using the 2-(ΔΔCt) method. Only miR-17 and miR-92 were associated with childhood traumas in the patients with depression. Conclusion Our research reveals a possible involvement of miRNAs in the pathophysiology of depression and highlights a potential relationship between childhood traumas and specific miRNAs in depressed patients.
Collapse
Affiliation(s)
- Alper Mert
- Department of Psychiatry, Servergazi State Hospital, Denizli, Türkiye
| | - Bengu Yucens
- Department of Psychiatry, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | - Ege Riza Karagur
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | - Hakan Akca
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | - Selim Tumkaya
- Department of Psychiatry, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | | |
Collapse
|
5
|
Chen B, Zhang Y, Xiao H, Wang L, Li J, Xu Y, Wang JH. Associative memory cells of encoding fear signals and anxiety are recruited by neuroligin-3-mediated synapse formation. Commun Biol 2024; 7:1464. [PMID: 39511365 PMCID: PMC11543854 DOI: 10.1038/s42003-024-07170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Acute severe stress may induce fear memory and anxiety. Their mechanisms are expectedly revealed to explore therapeutic strategies. We have investigated the recruitment of associative memory cells that encode stress signals to cause fear memory and anxiety by multidisciplinary approaches. In addition to fear memory and anxiety, the social stress by the resident/intruder paradigm leads to synapse interconnections between somatosensory S1-Tr and auditory cortical neurons in intruder mice. These S1-Tr cortical neurons become to receive convergent synapse innervations newly from the auditory cortex and innately from the thalamus as well as encode the stress signals including battle sound and somatic pain, i.e., associative memory neurons. Neuroligin-3 mRNA knockdown in the S1-Tr cortex precludes the recruitment of associative memory neurons and the onset of fear memory and anxiety. The stress-induced recruitment of associative memory cells in sensory cortices for stress-relevant fear memory and anxiety is based on neuroligin-3-mediated new synapse formation.
Collapse
Affiliation(s)
- Bingchen Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Zhang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Huajuan Xiao
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayi Li
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Hui Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Chen B, Zhang Y, Xiao H, Wang L, Li J, Xu Y, Wang JH. Associative memory cells of encoding fear signals and anxiety are recruited by neuroligin-3-mediated synapse formation. Commun Biol 2024; 7:1464. [DOI: :10.1038/s42003-024-07170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
|
7
|
Parkins EV, Gross C. Small Differences and Big Changes: The Many Variables of MicroRNA Expression and Function in the Brain. J Neurosci 2024; 44:e0365242024. [PMID: 39111834 PMCID: PMC11308354 DOI: 10.1523/jneurosci.0365-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs are emerging as crucial regulators within the complex, dynamic environment of the synapse, and they offer a promising new avenue for the treatment of neurological disease. These small noncoding RNAs modify gene expression in several ways, including posttranscriptional modulation via binding to complementary and semicomplementary sites on target mRNAs. This rapid, finely tuned regulation of gene expression is essential to meet the dynamic demands of the synapse. Here, we provide a detailed review of the multifaceted world of synaptic microRNA regulation. We discuss the many mechanisms by which microRNAs regulate gene expression at the synapse, particularly in the context of neuronal plasticity. We also describe the various factors, such as age, sex, and neurological disease, that can influence microRNA expression and activity in neurons. In summary, microRNAs play a crucial role in the intricate and quickly changing functional requirements of the synapse, and context is essential in the study of microRNAs and their potential therapeutic applications.
Collapse
Affiliation(s)
- Emma V Parkins
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, Ohio 45229
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Christina Gross
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, Ohio 45229
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| |
Collapse
|
8
|
Wang W, Yuan M, Xu Y, Yang J, Wang X, Zhou Y, Yu Z, Lu Z, Wang Y, Hu C, Bai Q, Li Z. Prokineticin-2 Participates in Chronic Constriction Injury-Triggered Neuropathic Pain and Anxiety via Regulated by NF-κB in Nucleus Accumbens Shell in Rats. Mol Neurobiol 2024; 61:2764-2783. [PMID: 37934398 DOI: 10.1007/s12035-023-03680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Neuropathic pain (NP) is an intractable pain that results from primary nervous system injury and dysfunction. Herein, we demonstrated in animal models that peripheral nerve injury induced enhanced pain perception and anxiety-like behaviors. According to previous reports, nucleus accumbens (NAc) shell is required for complete expression of neuropathic pain behaviors and mood alternations, we found the elevated mRNA and protein level of Prokineticin-2 (Prok2) in the NAc shell after Chronic Constriction Injury (CCI). Prok2 knockdown in the NAc shell reversed NP and anxiety-like behaviors in rats, indicating that Prok2 might play a fundamental role in NP and anxiety co-morbidity. CCI significantly enhanced Prok2 co-expression with NF-κB P-p65 in comparison with control animals. In addition to reversing the established nociceptive hypersensitivities and anxiety simultaneously, NAc microinjection of NF-κB siRNA or specific inhibitor PDTC reversed Prok2 upregulation. Besides, Prok2 was significantly decreased in vitro when co-transfected with si-NF-κB. Dual-Luciferase assay showed NF-κB directly activated Prok2 gene transcriptional activity. Overall, these findings provide new insights into the neurobiological mechanisms behind NP and comorbid anxiety. The NF-κB/Prok2 pathway could be a potential therapeutic target for NP and anxiety disorders.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China
| | - Meng Yuan
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China
| | - Yaowei Xu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingjie Yang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China
| | - Xiaoling Wang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifan Zhou
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China
| | - Zhixiang Yu
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China
| | - Zhongyuan Lu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Wang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China
| | - Chenge Hu
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qian Bai
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China.
| | - Zhisong Li
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, No.2, Jingba Road, Jinshui District, Zhengzhou, Henan, China.
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Kaurani L. Clinical Insights into MicroRNAs in Depression: Bridging Molecular Discoveries and Therapeutic Potential. Int J Mol Sci 2024; 25:2866. [PMID: 38474112 PMCID: PMC10931847 DOI: 10.3390/ijms25052866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Depression is a major contributor to the overall global burden of disease. The discovery of biomarkers for diagnosis or prediction of treatment responses and as therapeutic agents is a current priority. Previous studies have demonstrated the importance of short RNA molecules in the etiology of depression. The most extensively researched of these are microRNAs, a major component of cellular gene regulation and function. MicroRNAs function in a temporal and tissue-specific manner to regulate and modify the post-transcriptional expression of target mRNAs. They can also be shuttled as cargo of extracellular vesicles between the brain and the blood, thus informing about relevant mechanisms in the CNS through the periphery. In fact, studies have already shown that microRNAs identified peripherally are dysregulated in the pathological phenotypes seen in depression. Our article aims to review the existing evidence on microRNA dysregulation in depression and to summarize and evaluate the growing body of evidence for the use of microRNAs as a target for diagnostics and RNA-based therapies.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
10
|
Dissecting early life stress-induced adolescent depression through epigenomic approach. Mol Psychiatry 2023; 28:141-153. [PMID: 36517640 PMCID: PMC9812796 DOI: 10.1038/s41380-022-01907-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
Early life stress (ELS), such as abuse and neglect during childhood, can lead to psychiatric disorders in later life. Previous studies have suggested that ELS can cause profound changes in gene expression through epigenetic mechanisms, which can lead to psychiatric disorders in adulthood; however, studies on epigenetic modifications associated with ELS and psychiatric disorders in adolescents are limited. Moreover, how these epigenetic modifications can lead to psychiatric disorders in adolescents is not fully understood. Commonly, DNA methylation, histone modification, and the regulation of noncoding RNAs have been attributed to the reprogramming of epigenetic profiling associated with ELS. Although only a few studies have attempted to examine epigenetic modifications in adolescents with ELS, existing evidence suggests that there are commonalities and differences in epigenetic profiling between adolescents and adults. In addition, epigenetic modifications are sex-dependent and are influenced by the type of ELS. In this review, we have critically evaluated the current evidence on epigenetic modifications in adolescents with ELS, particularly DNA methylation and the expression of microRNAs in both preclinical models and humans. We have also clarified the impact of ELS on psychiatric disorders in adolescents to predict the development of neuropsychiatric disorders and to prevent and recover these disorders through personalized medicine.
Collapse
|
11
|
Tekdemir R, Selvi Y, Altınbaş K, Koçak N. Decreased miR-15b-5p/miR-155-5p levels and increased miR-134-5p/miR-652-3p levels among BD patients under lithium treatment. J Affect Disord 2022; 317:6-14. [PMID: 36028011 DOI: 10.1016/j.jad.2022.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND There is an increasing interest about the role of miRNAs in the pathogenesis of bipolar disorder (BD). In this study, we aimed to examine the role of miRNAs as potential diagnostic and clinical biomarkers in BD. METHODS Fifteen miRNAs in plasmas obtained from BD patients (n = 66) and from the healthy control group (n = 66) were analyzed by a qPCR test. Clinical variables including lithium treatment response were assessed with various test batteries. The correlation of the miRNA levels with the clinical variables and scale scores was examined. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the DIANA-miRPath v.3.0 software to identify the possible target genes. RESULTS The miR-132, miR-134, miR-152, miR-607, miR-633, and miR-652 levels were significantly increased, whereas the miR-15b and miR-155 levels were found to be significantly decreased in the patient group compared to the controls. The miR-15b-5p and miR-155-5p levels and increases in the miR-134-5p and miR-652-3p levels were calculated to have 83.3 % sensitivity and 78.8 % specificity in determining the risk of BD. miR-155-5p was associated with the disease burden and severity. Fatty acid biosynthesis and metabolism, viral carcinogenesis, the EBV infection, and extracellular matrix and adhesion pathways were highlighted as target pathways. CONCLUSION We can conclude that miRNAs may play a role in the pathophysiology of BD through various biological pathways and that miRNAs may be used as a screening test to distinguish bipolar patients from healthy controls. Our findings will provide a basis for long-term follow-up studies with larger samples.
Collapse
Affiliation(s)
- Rukiye Tekdemir
- Atatürk Sanatorium Training and Research Hospital, Department of Psychiatry, Ankara, Turkey.
| | - Yavuz Selvi
- Selcuk University Faculty of Medicine, Department of Psychiatry, Konya, Turkey
| | - Kürşat Altınbaş
- Selcuk University Faculty of Medicine, Department of Psychiatry, Konya, Turkey
| | - Nadir Koçak
- Selçuk University, Faculty of Medicine, Department of Medical Genetics, Konya, Turkey
| |
Collapse
|
12
|
Gao YN, Zhang YQ, Wang H, Deng YL, Li NM. A New Player in Depression: MiRNAs as Modulators of Altered Synaptic Plasticity. Int J Mol Sci 2022; 23:ijms23094555. [PMID: 35562946 PMCID: PMC9101307 DOI: 10.3390/ijms23094555] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 01/04/2023] Open
Abstract
Depression is a psychiatric disorder that presents with a persistent depressed mood as the main clinical feature and is accompanied by cognitive impairment. Changes in neuroplasticity and neurogenesis greatly affect depression. Without genetic changes, epigenetic mechanisms have been shown to function by regulating gene expression during the body’s adaptation to stress. Studies in recent years have shown that as important regulatory factors in epigenetic mechanisms, microRNAs (miRNAs) play important roles in the development and progression of depression through the regulation of protein expression. Herein, we review the mechanisms of miRNA-mediated neuroplasticity in depression and discus synaptic structural plasticity, synaptic functional plasticity, and neurogenesis. Furthermore, we found that miRNAs regulate neuroplasticity through several signalling pathways to affect cognitive functions. However, these pathways do not work independently. Therefore, we try to identify synergistic correlations between miRNAs and multiple signalling pathways to broaden the potential pathogenesis of depression. In addition, in the future, dual-function miRNAs (protection/injury) are promising candidate biomarkers for the diagnosis of depression, and their regulated genes can potentially be used as target genes for the treatment of depression.
Collapse
Affiliation(s)
- Ya-Nan Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.-N.G.); (H.W.)
| | - Yong-Qian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.-Q.Z.); (Y.-L.D.)
| | - Hao Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.-N.G.); (H.W.)
| | - Yu-Lin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.-Q.Z.); (Y.-L.D.)
| | - Nuo-Min Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.-N.G.); (H.W.)
- Correspondence:
| |
Collapse
|
13
|
CircDYM ameliorates CUMS mice depressive-like behavior and inhibits hippocampal neurons injury via miR-497a-5p/NR3C1 axis. Brain Res 2022; 1787:147911. [DOI: 10.1016/j.brainres.2022.147911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
|
14
|
Emerging role of microRNAs as novel targets of antidepressants. Asian J Psychiatr 2021; 66:102906. [PMID: 34740127 DOI: 10.1016/j.ajp.2021.102906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022]
|
15
|
Serafini G, Trabucco A, Corsini G, Escelsior A, Amerio A, Aguglia A, Nasrallah H, Amore M. The potential of microRNAs as putative biomarkers in major depressive disorder and suicidal behavior. Biomark Neuropsychiatry 2021. [DOI: 10.1016/j.bionps.2021.100035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
16
|
MicroRNA Sequencing Analysis in Obstructive Sleep Apnea and Depression: Anti-Oxidant and MAOA-Inhibiting Effects of miR-15b-5p and miR-92b-3p through Targeting PTGS1-NF-κB-SP1 Signaling. Antioxidants (Basel) 2021; 10:antiox10111854. [PMID: 34829725 PMCID: PMC8614792 DOI: 10.3390/antiox10111854] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to identify novel microRNAs related to obstructive sleep apnea (OSA) characterized by intermittent hypoxia with re-oxygenation (IHR) injury. Illumina MiSeq was used to identify OSA-associated microRNAs, which were validated in an independent cohort. The interaction between candidate microRNA and target genes was detected in the human THP-1, HUVEC, and SH-SY5Y cell lines. Next-generation sequencing analysis identified 22 differentially expressed miRs (12 up-regulated and 10 down-regulated) in OSA patients. Enriched predicted target pathways included senescence, adherens junction, and AGE-RAGE/TNF-α/HIF-1α signaling. In the validation cohort, miR-92b-3p and miR-15b-5p gene expressions were decreased in OSA patients, and negatively correlated with an apnea hypopnea index. PTGS1 (COX1) gene expression was increased in OSA patients, especially in those with depression. Transfection with miR-15b-5p/miR-92b-3p mimic in vitro reversed IHR-induced early apoptosis, reactive oxygen species production, MAOA hyperactivity, and up-regulations of their predicted target genes, including PTGS1, ADRB1, GABRB2, GARG1, LEP, TNFSF13B, VEGFA, and CXCL5. The luciferase assay revealed the suppressed PTGS1 expression by miR-92b-3p. Down-regulated miR-15b-5p/miR-92b-3p in OSA patients could contribute to IHR-induced oxidative stress and MAOA hyperactivity through the eicosanoid inflammatory pathway via directly targeting PTGS1-NF-κB-SP1 signaling. Over-expression of the miR-15b-5p/miR-92b-3p may be a new therapeutic strategy for OSA-related depression.
Collapse
|
17
|
Early Life Irradiation-Induced Hypoplasia and Impairment of Neurogenesis in the Dentate Gyrus and Adult Depression Are Mediated by MicroRNA- 34a-5p/T-Cell Intracytoplasmic Antigen-1 Pathway. Cells 2021; 10:cells10092476. [PMID: 34572124 PMCID: PMC8466295 DOI: 10.3390/cells10092476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023] Open
Abstract
Early life radiation exposure causes abnormal brain development, leading to adult depression. However, few studies have been conducted to explore pre- or post-natal irradiation-induced depression-related neuropathological changes. Relevant molecular mechanisms are also poorly understood. We induced adult depression by irradiation of mice at postnatal day 3 (P3) to reveal hippocampal neuropathological changes and investigate their molecular mechanism, focusing on MicroRNA (miR) and its target mRNA and protein. P3 mice were irradiated by γ-rays with 5Gy, and euthanized at 1, 7 and 120 days after irradiation. A behavioral test was conducted before the animals were euthanized at 120 days after irradiation. The animal brains were used for different studies including immunohistochemistry, CAP-miRSeq, Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) and western blotting. The interaction of miR-34a-5p and its target T-cell intracytoplasmic antigen-1 (Tia1) was confirmed by luciferase reporter assay. Overexpression of Tia1 in a neural stem cell (NSC) model was used to further validate findings from the mouse model. Irradiation with 5 Gy at P3 induced depression in adult mice. Animal hippocampal pathological changes included hypoplasia of the infrapyramidal blade of the stratum granulosum, aberrant and impaired cell division, and neurogenesis in the dentate gyrus. At the molecular level, upregulation of miR-34a-5p and downregulation of Tia1 mRNA were observed in both animal and neural stem cell models. The luciferase reporter assay and gene transfection studies further confirmed a direct interaction between miR-43a-5p and Tia1. Our results indicate that the early life γ-radiation-activated miR-43a-5p/Tia1 pathway is involved in the pathogenesis of adult depression. This novel finding may provide a new therapeutic target by inhibiting the miR-43a-5p/Tia1 pathway to prevent radiation-induced pathogenesis of depression.
Collapse
|
18
|
Li LD, Naveed M, Du ZW, Ding H, Gu K, Wei LL, Zhou YP, Meng F, Wang C, Han F, Zhou QG, Zhang J. Abnormal expression profile of plasma-derived exosomal microRNAs in patients with treatment-resistant depression. Hum Genomics 2021; 15:55. [PMID: 34419170 PMCID: PMC8379796 DOI: 10.1186/s40246-021-00354-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Whether microRNAs (miRNAs) from plasma exosomes might be dysregulated in patients with depression, especially treatment-resistant depression (TRD), remains unclear, based on study of which novel biomarkers and therapeutic targets could be discovered. To this end, a small sample study was performed by isolation of plasma exosomes from patients with TRD diagnosed by Hamilton scale. In this study, 4 peripheral plasma samples from patients with TRD and 4 healthy controls were collected for extraction of plasma exosomes. Exosomal miRNAs were analyzed by miRNA sequencing, followed by image collection, expression difference analysis, target gene GO enrichment analysis, and KEGG pathway enrichment analysis. Compared with the healthy controls, 2 miRNAs in the plasma exosomes of patients with TRD showed significant differences in expression, among which has-miR-335-5p were significantly upregulated and has-miR-1292-3p were significantly downregulated. Go and KEGG analysis showed that dysregulated miRNAs affect postsynaptic density and axonogenesis as well as the signaling pathway of axon formation and cell growths. The identification of these miRNAs and their target genes may provide novel biomarkers for improving diagnosis accuracy and treatment effectiveness of TRD.
Collapse
Affiliation(s)
- Lian-Di Li
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Zi-Wei Du
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Huachen Ding
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Kai Gu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211167, Jiangsu Province, China
| | - Lu-Lu Wei
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Ya-Ping Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Fan Meng
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Feng Han
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China. .,Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211167, Jiangsu Province, China.
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
19
|
McKibben LA, Dwivedi Y. Early-life stress induces genome-wide sex-dependent miRNA expression and correlation across limbic brain areas in rats. Epigenomics 2021; 13:1031-1056. [PMID: 34008410 PMCID: PMC8244583 DOI: 10.2217/epi-2021-0037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aims: The aim of this study was to assess regional- and sex-dependent changes in miRNA expression resulting from early-life stress (ELS). Materials and methods: Small RNA sequencing was used to determine sex-dependent changes in miRNAs after maternal separation, a rodent model of ELS, across the prefrontal cortex, amygdala and hippocampus. Results: Maternal separation induced anhedonia and altered miRNA expression in a sex-dependent manner, particularly in the prefrontal cortex and hippocampus. Gene ontology revealed that these miRNAs target genes with brain-specific biological functions. Conclusion: Using a network approach to explore miRNA signaling across the brain after ELS, regional differences were highlighted as key to studying the brain’s stress response, which indicates that sex is critical for understanding miRNA-mediated ELS-induced behavior.
Collapse
Affiliation(s)
- Lauren A McKibben
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Yogesh Dwivedi
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
20
|
Bortolozzi A, Manashirov S, Chen A, Artigas F. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease. Pharmacol Ther 2021; 227:107873. [PMID: 33915178 DOI: 10.1016/j.pharmthera.2021.107873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| | - Sharon Manashirov
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; miCure Therapeutics LTD., Tel-Aviv, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
21
|
Miao C, Chang J. The important roles of microRNAs in depression: new research progress and future prospects. J Mol Med (Berl) 2021; 99:619-636. [PMID: 33641067 DOI: 10.1007/s00109-021-02052-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-encoding, single-stranded RNA molecules of about 22 nucleotides in length encoded by endogenous genes involved in posttranscriptional gene expression regulation. Studies have shown that miRNAs participate in a series of important pathophysiological processes, including the pathogenesis of depression. This article systematically summarized the research results published in the field of miRNAs and depression, which mainly involved three topics: circulating miRNAs as markers for diagnosis and prognosis of depression, the regulatory roles of miRNAs in the pathogenesis of depression, and the roles of miRNAs in the mechanisms of depression treatment. By summarizing and analyzing the research literature in recent years, we found that some circulating miRNAs can be potential biomarkers for the diagnosis and prognostic evaluation of depression. miRNAs that disorderly expressed during the disease play important roles in the depression pathogenesis, and miRNAs also play roles in the mechanisms of psychotherapy and drug therapy for depression. Elucidating the important roles of miRNAs in depression will bring people's understanding of the pathogenesis of depression to a new level. In addition, these miRNAs may be developed as new biomarkers for diagnosing depression, or as drug targets, or these molecules may be used as new drugs, which may provide new means for the treatment of depression. KEY MESSAGES: • The research results of miRNAs and depression are reviewed. • Circulating miRNAs can be potential biomarkers for depression. • MiRNAs play important roles in the depression pathogenesis. • MiRNAs play important roles in drug therapy for depression.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China. .,Anhui Provincial Key Laboratory of Chinese Medicine Compound, Anhui University of Chinese Medicine, Hefei, 230012, China. .,Institute of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, 233100, China.
| | - Jun Chang
- Fourth Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
22
|
Wu R, Cui S, Wang JH. miRNA-324/-133a essential for recruiting new synapse innervations and associative memory cells in coactivated sensory cortices. Neurobiol Learn Mem 2020; 172:107246. [PMID: 32387677 DOI: 10.1016/j.nlm.2020.107246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/28/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
After the integrative storage of associated signals, a signal induces the recollection of its associated signal, or the other way around. This associative memory is essential to associative thinking, logical reasoning, imagination and computation. In terms of cellular mechanisms underlying associative memory, new mutual synapse innervations are formed among those coactivated neurons, so that they are recruited to be associative memory cells or associative memory neurons. These associative memory cells receive new synapse innervations alongside innate synapse inputs and encode signals carried by these inputs. We proposed to examine microRNAs as initiative factors for recruiting new synapse innervations and associative memory cells. In a mouse model of associative memory characterized as the reciprocal retrieval of associated whisker and odor signals, barrel and piriform cortical neurons gain their ability to encode whisker and odorant signals based on the newly formed synapse innervations between these coactivated cortices besides innate synapse inputs. miRNA-324 and miRNA-133a are required for recruiting these new synapse innervations and associative memory cells as well as sufficient for facilitating their recruitments, but not for innate synapse inputs. Therefore, the coactivation of sensory cortices through microRNA as initiative factor to recruit new mutual synapse innervations and associative memory cells for associative memory.
Collapse
Affiliation(s)
- Ruixiang Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|