1
|
Joe H, Seo H, Dolkas J, Jawala M, Hullugundi SK, Chung YH, Patel HH, Chernov AV, Shubayev VI. TIMP-1 associates with myelin membrane and preserves myelin in injured peripheral nerve. Neurobiol Dis 2025; 209:106892. [PMID: 40158735 DOI: 10.1016/j.nbd.2025.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
Myelin enables rapid impulse propagation in axons across long distances. Following peripheral nerve injury, Schwann cells provide trophic, metabolic, and immune support to damaged neurons. To facilitate myelin repair, Schwann cells activate a robust transcriptional program, including the tissue inhibitor of metalloproteinase (TIMP)-1 gene. TIMP-1 is a potent protease inhibitor and neurotrophic factor, traditionally known as a secreted protein. This study presents the first evidence of a myelin/membrane-associated (mm)TIMP-1 protein fraction in the nervous system. Specifically, we identified mmTIMP-1 in the rat sciatic nerve after chronic constriction injury (CCI) using multiple complementary approaches. Dual-immunofluorescence revealed TIMP-1 co-localization with myelin protein in the myelin sheath of CCI nerve. Immunoblotting and mass-spectrometry of sucrose gradient-fractionated nerves further confirmed presence of TIMP-1 in myelin/membrane lipid rafts. Both TIMP-1 and (mm)TIMP-1 levels increased in the nerves during the early phase (day 1) and declined in the late phase (day 28) of CCI. Recombinant (r)TIMP-1 replacement therapy during the late phase CCI, administered by intraneural injection, led to improved myelin neuropathology and accumulation of myelin protein. This study identifies a novel subcellular TIMP-1 fraction associated with the myelin sheath and highlights TIMP-1's reparative activity in peripheral nerve myelin in vivo, opening new avenues for exploring functional activities of TIMP-1 isoforms in the nervous system.
Collapse
Affiliation(s)
- Hanbum Joe
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA; Department of Anesthesiology & Pain Medicine, Ajou University, Suwon, Republic of Korea
| | - Hyungseok Seo
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; Department of Anesthesiology & Pain Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Megh Jawala
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Swathi K Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Yang Hoon Chung
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; Department of Anesthesiology & Pain Medicine, Soonchunhyang University, Bucheon, Republic of Korea
| | - Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Andrei V Chernov
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
2
|
Fiore NT, Willcox KF, Grieco AR, Dayani D, Zuberi YA, Heijnen CJ, Grace PM. Autoreactive IgG levels and Fc receptor γ subunit upregulation drive mechanical allodynia after nerve constriction or crush injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644748. [PMID: 40196481 PMCID: PMC11974762 DOI: 10.1101/2025.03.22.644748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
B cells contribute to the development of pain after sciatic nerve chronic constriction injury (CCI) via binding of immunoglobulin G (IgG) to Fc gamma receptors (FcγRs) in the lumbar dorsal root ganglia (DRG) and spinal cord. Yet the contribution of B cells to pain after different types of peripheral nerve injury is uncertain. Using male and female mice, we demonstrate a divergent role for B cell-IgG-FcγR signaling underlying mechanical allodynia between CCI, nerve crush (NC), spared nerve injury (SNI), and spinal nerve ligation (SNL). Depletion (monoclonal anti-CD20) or genetic deletion (muMT mice) of B cells prevented development of allodynia following NC and CCI, but not SNI or SNL. In apparent contradiction, circulating levels of autoreactive IgG and circulating immune complexes were increased in all models, though more prominent following NC and CCI. Passive transfer of IgG from SNI donor mice induced allodynia in CCI muMT recipient mice, demonstrating that IgG secreted after SNI is pronociceptive. To investigate why pronociceptive IgG did not contribute to mechanical allodynia after SNI, we evaluated levels of the Fc receptor γ subunit. SNI or SNL did not increase γ subunit levels in the DRG and spinal cord, whereas CCI and NC did, in agreement with B cell-dependent allodynia in these models. Together, the results suggest that traumatic peripheral nerve injury drives secretion of autoreactive IgG from B cells. However, levels of cognate FcγRs are increased following sciatic nerve constriction and crush, but not transection, to differentially regulate pain through the B cell-IgG-FcγR axis.
Collapse
Affiliation(s)
- Nathan T. Fiore
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Kendal F. Willcox
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Anamaria R. Grieco
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Dorsa Dayani
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Younus A. Zuberi
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Cobi J. Heijnen
- Department of Psychological Sciences, Rice University; Houston, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| |
Collapse
|
3
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
4
|
Lacagnina MJ, Willcox KF, Boukelmoune N, Bavencoffe A, Sankaranarayanan I, Barratt DT, Zuberi YA, Dayani D, Chavez MV, Lu JT, Farinotti AB, Shiers S, Barry AM, Mwirigi JM, Tavares-Ferreira D, Funk GA, Cervantes AM, Svensson CI, Walters ET, Hutchinson MR, Heijnen CJ, Price TJ, Fiore NT, Grace PM. B cells drive neuropathic pain-related behaviors in mice through IgG-Fc gamma receptor signaling. Sci Transl Med 2024; 16:eadj1277. [PMID: 39321269 PMCID: PMC11479571 DOI: 10.1126/scitranslmed.adj1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Neuroimmune interactions are essential for the development of neuropathic pain, yet the contributions of distinct immune cell populations have not been fully unraveled. Here, we demonstrate the critical role of B cells in promoting mechanical hypersensitivity (allodynia) after peripheral nerve injury in male and female mice. Depletion of B cells with a single injection of anti-CD20 monoclonal antibody at the time of injury prevented the development of allodynia. B cell-deficient (muMT) mice were similarly spared from allodynia. Nerve injury was associated with increased immunoglobulin G (IgG) accumulation in ipsilateral lumbar dorsal root ganglia (DRGs) and dorsal spinal cords. IgG was colocalized with sensory neurons and macrophages in DRGs and microglia in spinal cords. IgG also accumulated in DRG samples from human donors with chronic pain, colocalizing with a marker for macrophages and satellite glia. RNA sequencing revealed a B cell population in naive mouse and human DRGs. A B cell transcriptional signature was enriched in DRGs from human donors with neuropathic pain. Passive transfer of IgG from injured mice induced allodynia in injured muMT recipient mice. The pronociceptive effects of IgG are likely mediated through immune complexes interacting with Fc gamma receptors (FcγRs) expressed by sensory neurons, microglia, and macrophages, given that both mechanical allodynia and hyperexcitability of dissociated DRG neurons were abolished in nerve-injured FcγR-deficient mice. Consistently, the pronociceptive effects of IgG passive transfer were lost in FcγR-deficient mice. These data reveal that a B cell-IgG-FcγR axis is required for the development of neuropathic pain in mice.
Collapse
Affiliation(s)
- Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kendal F. Willcox
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nabila Boukelmoune
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Daniel T. Barratt
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Younus A. Zuberi
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dorsa Dayani
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa V. Chavez
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan T. Lu
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Allison M. Barry
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Juliet M. Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Mark R. Hutchinson
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA 5371, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Cobi J. Heijnen
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Nathan T. Fiore
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Mogil JS, Parisien M, Esfahani SJ, Diatchenko L. Sex differences in mechanisms of pain hypersensitivity. Neurosci Biobehav Rev 2024; 163:105749. [PMID: 38838876 DOI: 10.1016/j.neubiorev.2024.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Sahel J Esfahani
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
6
|
Hullugundi SK, Dolkas J, Chernov AV, Yaksh TL, Eddinger KA, Angert M, Catroli GF, Strongin AY, Dougherty PM, Li Y, Quehenberger O, Armando A, Shubayev VI. Cholesterol-dependent LXR transcription factor activity represses pronociceptive effects of estrogen in sensory neurons and pain induced by myelin basic protein fragments. Brain Behav Immun Health 2024; 38:100757. [PMID: 38590761 PMCID: PMC10999831 DOI: 10.1016/j.bbih.2024.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024] Open
Abstract
Background A bioactive myelin basic protein (MBP) fragment, comprising MBP84-104, is released in sciatic nerve after chronic constriction injury (CCI). Intraneural injection (IN) of MBP84-104 in an intact sciatic nerve is sufficient to induce persistent neuropathic pain-like behavior via robust transcriptional remodeling at the injection site and ipsilateral dorsal root ganglia (DRG) and spinal cord. The sex (female)-specific pronociceptive activity of MBP84-104 associates with sex-specific changes in cholesterol metabolism and activation of estrogen receptor (ESR)1 signaling. Methods In male and female normal and post-CCI rat sciatic nerves, we assessed: (i) cholesterol precursor and metabolite levels by lipidomics; (ii) MBP84-104 interactors by mass spectrometry of MBP84-104 pull-down; and (iii) liver X receptor (LXR)α protein expression by immunoblotting. To test the effect of LXRα stimulation on IN MBP84-104-induced mechanical hypersensitivity, the LXRα expression was confirmed along the segmental neuraxis, in DRG and spinal cord, followed by von Frey testing of the effect of intrathecally administered synthetic LXR agonist, GW3965. In cultured male and female rat DRGs exposed to MBP84-104 and/or estrogen treatments, transcriptional effect of LXR stimulation by GW3965 was assessed on downstream cholesterol transporter Abc, interleukin (IL)-6, and pronociceptive Cacna2d1 gene expression. Results CCI regulated LXRα ligand and receptor levels in nerves of both sexes, with cholesterol precursors, desmosterol and 7-DHC, and oxysterol elevated in females relative to males. MBP84-104 interacted with nuclear receptor coactivator (Ncoa)1, known to activate LXRα, injury-specific in nerves of both sexes. LXR stimulation suppressed ESR1-induced IL-6 and Cacna2d1 expression in cultured DRGs of both sexes and attenuated MBP84-104-induced pain in females. Conclusion The injury-released bioactive MBP fragments induce pronociceptive changes by selective inactivation of nuclear transcription factors, including LXRα. By Ncoa1 sequestration, bioactive MBP fragments render LXRα function to counteract pronociceptive activity of estrogen/ESR1 in sensory neurons. This effect of MBP fragments is prevalent in females due to high circulating estrogen levels in females relative to males. Restoring LXR activity presents a promising therapeutic strategy in management of neuropathic pain induced by bioactive MBP.
Collapse
Affiliation(s)
- Swathi K. Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Andrei V. Chernov
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Kelly A. Eddinger
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Mila Angert
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Glaucilene Ferreira Catroli
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Alex Y. Strongin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Patrick M. Dougherty
- Department of Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Li
- Department of Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Aaron Armando
- Lipidomics Core, University of California, San Diego, La Jolla, CA, USA
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|
7
|
Tiwari N, Qiao LY. Sex Differences in Visceral Pain and Comorbidities: Clinical Outcomes, Preclinical Models, and Cellular and Molecular Mechanisms. Cells 2024; 13:834. [PMID: 38786056 PMCID: PMC11119472 DOI: 10.3390/cells13100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Sexual dimorphism of visceral pain has been documented in clinics and experimental animal models. Aside from hormones, emerging evidence suggests the sex-differential intrinsic neural regulation of pain generation and maintenance. According to the International Association for the Study of Pain (IASP) and the American College of Gastroenterology (ACG), up to 25% of the population have visceral pain at any one time, and in the United States 10-15 percent of adults suffer from irritable bowel syndrome (IBS). Here we examine the preclinical and clinical evidence of sex differences in visceral pain focusing on IBS, other forms of bowel dysfunction and IBS-associated comorbidities. We summarize preclinical animal models that provide a means to investigate the underlying molecular mechanisms in the sexual dimorphism of visceral pain. Neurons and nonneuronal cells (glia and immune cells) in the peripheral and central nervous systems, and the communication of gut microbiota and neural systems all contribute to sex-dependent nociception and nociplasticity in visceral painful signal processing. Emotion is another factor in pain perception and appears to have sexual dimorphism.
Collapse
Affiliation(s)
- Namrata Tiwari
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Liya Y. Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
8
|
Yamamoto S, Duong A, Kim A, Hu C, Wiemers B, Wang J, Chung JM, La JH. Intraoperative Spinal Cord Stimulation Mitigates Central Sensitization After Spine Surgery in Mice. Spine (Phila Pa 1976) 2023; 48:E169-E176. [PMID: 36940259 PMCID: PMC10175162 DOI: 10.1097/brs.0000000000004631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/08/2023] [Indexed: 03/22/2023]
Abstract
STUDY DESIGN Double-blinded, prospective laboratory animal study. OBJECTIVE To examine whether intraoperative spinal cord stimulation (SCS) inhibits the development of spine surgery-induced hypersensitivity. SUMMARY OF BACKGROUND DATA Managing postoperative pain after spine surgery is challenging, and as many as 40% of patients may develop failed back surgery syndrome. Although SCS has been shown to effectively reduce chronic pain symptoms, it is unknown whether intraoperative SCS can mitigate the development of central sensitization that causes postoperative pain hypersensitivity and potentially leads to failed back surgery syndrome after spine surgery. MATERIALS AND METHODS Mice were randomly stratified into three experimental groups: (1) sham surgery, (2) laminectomy alone, and (3) laminectomy plus SCS. Secondary mechanical hypersensitivity was measured in hind paws using von Frey assay one day before and at predetermined times after surgery. In addition, we also performed a conflict avoidance test to capture the affective-motivational domain of pain at selected time points postlaminectomy. RESULTS Mice that underwent unilateral T13 laminectomy developed mechanical hypersensitivity in both hind paws. Intraoperative SCS applied to the exposed side of the dorsal spinal cord significantly inhibited the development of hind paw mechanical hypersensitivity on the SCS-applied side. Sham surgery did not produce any obvious secondary mechanical hypersensitivity in the hind paws. CONCLUSIONS These results demonstrate that spine surgery for unilateral laminectomy induces central sensitization that results in postoperative pain hypersensitivity. Intraoperative SCS after laminectomy may be able to mitigate the development of this hypersensitivity in appropriately selected cases.
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexander Duong
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alex Kim
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chengrui Hu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Blaine Wiemers
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jigong Wang
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jin Mo Chung
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jun-Ho La
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
9
|
Abstract
Interactions between the immune and nervous systems are of central importance in neuropathic pain, a common and debilitating form of chronic pain caused by a lesion or disease affecting the somatosensory system. Our understanding of neuroimmune interactions in pain research has advanced considerably. Initially considered as passive bystanders, then as culprits in the pathogenesis of neuropathic pain, immune responses in the nervous system are now established to underpin not only the initiation and progression of pain but also its resolution. Indeed, immune cells and their mediators are well-established promoters of neuroinflammation at each level of the neural pain pathway that contributes to pain hypersensitivity. However, emerging evidence indicates that specific subtypes of immune cells (including antinociceptive macrophages, pain-resolving microglia and T regulatory cells) as well as immunoresolvent molecules and modulators of the gut microbiota-immune system axis can reduce the pain experience and contribute to the resolution of neuropathic pain. This Review provides an overview of the immune mechanisms responsible for the resolution of neuropathic pain, including those involved in innate, adaptive and meningeal immunity as well as interactions with the gut microbiome. Specialized pro-resolving mediators and therapeutic approaches that target these neuroimmune mechanisms are also discussed.
Collapse
|
10
|
Lopez JA, Yamamoto A, Vecchi JT, Hagen J, Lee K, Sonka M, Hansen MR, Lee A. Caldendrin represses neurite regeneration and growth in dorsal root ganglion neurons. Sci Rep 2023; 13:2608. [PMID: 36788334 PMCID: PMC9929226 DOI: 10.1038/s41598-023-29622-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Caldendrin is a Ca2+ binding protein that interacts with multiple effectors, such as the Cav1 L-type Ca2+ channel, which play a prominent role in regulating the outgrowth of dendrites and axons (i.e., neurites) during development and in response to injury. Here, we investigated the role of caldendrin in Cav1-dependent pathways that impinge upon neurite growth in dorsal root ganglion neurons (DRGNs). By immunofluorescence, caldendrin was localized in medium- and large- diameter DRGNs. Compared to DRGNs cultured from WT mice, DRGNs of caldendrin knockout (KO) mice exhibited enhanced neurite regeneration and outgrowth. Strong depolarization, which normally represses neurite growth through activation of Cav1 channels, had no effect on neurite growth in DRGN cultures from female caldendrin KO mice. Remarkably, DRGNs from caldendrin KO males were no different from those of WT males in terms of depolarization-dependent neurite growth repression. We conclude that caldendrin opposes neurite regeneration and growth, and this involves coupling of Cav1 channels to growth-inhibitory pathways in DRGNs of females but not males.
Collapse
Affiliation(s)
- Josue A Lopez
- Department of Neuroscience, University of Texas-Austin, 100 E. 24th St., Austin, TX, 78712, USA
| | - Annamarie Yamamoto
- Department of Neuroscience, University of Texas-Austin, 100 E. 24th St., Austin, TX, 78712, USA
| | - Joseph T Vecchi
- Department of Molecular Physiology and Biophysics and Otolaryngology Head-Neck Surgery, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Jussara Hagen
- Department of Molecular Physiology and Biophysics and Otolaryngology Head-Neck Surgery, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Kyungmoo Lee
- Electrical and Computer Engineering, Iowa Institute for Biomedical Imaging, University of Iowa, 51 Newton Rd. Iowa City, Iowa, 52242, USA
| | - Milan Sonka
- Electrical and Computer Engineering, Iowa Institute for Biomedical Imaging, University of Iowa, 51 Newton Rd. Iowa City, Iowa, 52242, USA
| | - Marlan R Hansen
- Department of Molecular Physiology and Biophysics and Otolaryngology Head-Neck Surgery, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Amy Lee
- Department of Neuroscience, University of Texas-Austin, 100 E. 24th St., Austin, TX, 78712, USA.
| |
Collapse
|
11
|
Ghazisaeidi S, Muley MM, Salter MW. Neuropathic Pain: Mechanisms, Sex Differences, and Potential Therapies for a Global Problem. Annu Rev Pharmacol Toxicol 2023; 63:565-583. [PMID: 36662582 DOI: 10.1146/annurev-pharmtox-051421-112259] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The study of chronic pain continues to generate ever-increasing numbers of publications, but safe and efficacious treatments for chronic pain remain elusive. Recognition of sex-specific mechanisms underlying chronic pain has resulted in a surge of studies that include both sexes. A predominant focus has been on identifying sex differences, yet many newly identified cellular mechanisms and alterations in gene expression are conserved between the sexes. Here we review sex differences and similarities in cellular and molecular signals that drive the generation and resolution of neuropathic pain. The mix of differences and similarities reflects degeneracy in peripheral and central signaling processes by which neurons, immune cells, and glia codependently drive pain hypersensitivity. Recent findings identifying critical signaling nodes foreshadow the development of rationally designed, broadly applicable analgesic strategies. However, the paucity of effective, safe pain treatments compels targeted therapies as well to increase therapeutic options that help reduce the global burden of suffering.
Collapse
Affiliation(s)
- Shahrzad Ghazisaeidi
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Milind M Muley
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Piñero G, Vence M, Aranda ML, Cercato MC, Soto PA, Usach V, Setton-Avruj PC. All the PNS is a Stage: Transplanted Bone Marrow Cells Play an Immunomodulatory Role in Peripheral Nerve Regeneration. ASN Neuro 2023; 15:17590914231167281. [PMID: 37654230 PMCID: PMC10475269 DOI: 10.1177/17590914231167281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 09/02/2023] Open
Abstract
SUMMARY STATEMENT Bone marrow cell transplant has proven to be an effective therapeutic approach to treat peripheral nervous system injuries as it not only promoted regeneration and remyelination of the injured nerve but also had a potent effect on neuropathic pain.
Collapse
Affiliation(s)
- Gonzalo Piñero
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
- Department of Pathology, Mount Sinai Hospital, New York, NY, USA
| | - Marianela Vence
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcos L. Aranda
- Universidad de Buenos Aires-CONICET, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Ciudad Autónoma de Buenos Aires, Argentina
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Magalí C. Cercato
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula A. Soto
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanina Usach
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia C. Setton-Avruj
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
13
|
Chernov AV, Shubayev VI. Sexual dimorphism of early transcriptional reprogramming in degenerating peripheral nerves. Front Mol Neurosci 2022; 15:1029278. [DOI: 10.3389/fnmol.2022.1029278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphism is a powerful yet understudied factor that influences the timing and efficiency of gene regulation in axonal injury and repair processes in the peripheral nervous system. Here, we identified common and distinct biological processes in female and male degenerating (distal) nerve stumps based on a snapshot of transcriptional reprogramming 24 h after axotomy reflecting the onset of early phase Wallerian degeneration (WD). Females exhibited transcriptional downregulation of a larger number of genes than males. RhoGDI, ERBB, and ERK5 signaling pathways increased activity in both sexes. Males upregulated genes and canonical pathways that exhibited robust baseline expression in females in both axotomized and sham nerves, including signaling pathways controlled by neuregulin and nerve growth factors. Cholesterol biosynthesis, reelin signaling, and synaptogenesis signaling pathways were downregulated in females. Signaling by Rho Family GTPases, cAMP-mediated signaling, and sulfated glycosaminoglycan biosynthesis were downregulated in both sexes. Estrogens potentially influenced sex-dependent injury response due to distinct regulation of estrogen receptor expression. A crosstalk of cytokines and growth hormones could promote sexually dimorphic transcriptional responses. We highlighted prospective regulatory activities due to protein phosphorylation, extracellular proteolysis, sex chromosome-specific expression, major urinary proteins (MUPs), and genes involved in thyroid hormone metabolism. Combined with our earlier findings in the corresponding dorsal root ganglia (DRG) and regenerating (proximal) nerve stumps, sex-specific and universal early phase molecular triggers of WD enrich our knowledge of transcriptional regulation in peripheral nerve injury and repair.
Collapse
|
14
|
Chernov AV, Shubayev VI. Sexually dimorphic transcriptional programs of early-phase response in regenerating peripheral nerves. Front Mol Neurosci 2022; 15:958568. [PMID: 35983069 PMCID: PMC9378824 DOI: 10.3389/fnmol.2022.958568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The convergence of transcriptional and epigenetic changes in the peripheral nervous system (PNS) reshapes the spatiotemporal gene expression landscape in response to nerve transection. The control of these molecular programs exhibits sexually dimorphic characteristics that remain not sufficiently characterized. In the present study, we recorded genome-wide and sex-dependent early-phase transcriptional changes in regenerating (proximal) sciatic nerve 24 h after axotomy. Male nerves exhibited more extensive transcriptional changes with male-dominant upregulation of cytoskeletal binding and structural protein genes. Regulation of mRNAs encoding ion and ionotropic neurotransmitter channels displayed prominent sexual dimorphism consistent with sex-specific mRNA axonal transport in an early-phase regenerative response. Protein kinases and axonal transport genes showed sexually dimorphic regulation. Genes encoding components of synaptic vesicles were at high baseline expression in females and showed post-injury induction selectively in males. Predictive bioinformatic analyses established patterns of sexually dimorphic regulation of neurotrophic and immune genes, including activation of glial cell line-derived neurotrophic factor Gfra1 receptor and immune checkpoint cyclin D1 (Ccnd1) potentially linked to X-chromosome encoded tissue inhibitor of matrix metallo proteinases 1 (Timp1). Regulatory networks involving Olig1, Pou3f3/Oct6, Myrf, and Myt1l transcription factors were linked to sex-dependent reprogramming in regenerating nerves. Differential expression patterns of non-coding RNAs motivate a model of sexually dimorphic nerve regenerative responses to injury determined by epigenetic factors. Combined with our findings in the corresponding dorsal root ganglia (DRG), unique early-phase sex-specific molecular triggers could enrich the mechanistic understanding of peripheral neuropathies.
Collapse
Affiliation(s)
- Andrei V. Chernov
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
- *Correspondence: Andrei V. Chernov,
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
15
|
Shubayev VI, Dolkas J, Catroli GF, Chernov AV. A human coronavirus OC43-derived polypeptide causes neuropathic pain. EMBO Rep 2022; 23:e54069. [PMID: 35466531 PMCID: PMC9115284 DOI: 10.15252/embr.202154069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
Human coronaviruses have been recently implicated in neurological sequelae by insufficiently understood mechanisms. We here identify an amino acid sequence within the HCoV-OC43 p65-like protein homologous to the evolutionarily conserved motif of myelin basic protein (MBP). Because MBP-derived peptide exposure in the sciatic nerve produces pronociceptive activity in female rodents, we examined whether a synthetic peptide derived from the homologous region of HCoV-OC43 (OC43p) acts by molecular mimicry to promote neuropathic pain. OC43p, but not scrambled peptides, induces mechanical hypersensitivity in rats following intrasciatic injections. Transcriptome analyses of the corresponding spinal cords reveal upregulation of genes and signaling pathways with known nociception-, immune-, and cellular energy-related activities. Affinity capture shows the association of OC43p with an Na+ /K+ -transporting ATPase, providing a potential direct target and mechanistic insight into virus-induced effects on energy homeostasis and the sensory neuraxis. We propose that HCoV-OC43 polypeptides released during infection dysregulate normal nervous system functions through molecular mimicry of MBP, leading to mechanical hypersensitivity. Our findings might provide a new paradigm for virus-induced neuropathic pain.
Collapse
Affiliation(s)
- Veronica I Shubayev
- Department of AnesthesiologyUniversity of California San DiegoLa JollaCAUSA
- VA San Diego Healthcare SystemLa JollaCAUSA
| | - Jennifer Dolkas
- Department of AnesthesiologyUniversity of California San DiegoLa JollaCAUSA
- VA San Diego Healthcare SystemLa JollaCAUSA
| | - Glaucilene Ferreira Catroli
- Department of AnesthesiologyUniversity of California San DiegoLa JollaCAUSA
- VA San Diego Healthcare SystemLa JollaCAUSA
| | - Andrei V Chernov
- Department of AnesthesiologyUniversity of California San DiegoLa JollaCAUSA
- VA San Diego Healthcare SystemLa JollaCAUSA
| |
Collapse
|
16
|
Lee HJ, Remacle AG, Hullugundi SK, Dolkas J, Leung JB, Chernov AV, Yaksh TL, Strongin AY, Shubayev VI. Sex-Specific B Cell and Anti-Myelin Autoantibody Response After Peripheral Nerve Injury. Front Cell Neurosci 2022; 16:835800. [PMID: 35496906 PMCID: PMC9050049 DOI: 10.3389/fncel.2022.835800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Immunotherapy holds promise as a non-addictive treatment of refractory chronic pain states. Increasingly, sex is recognized to impact immune regulation of pain states, including mechanical allodynia (pain from non-painful stimulation) that follows peripheral nerve trauma. This study aims to assess the role of B cells in sex-specific responses to peripheral nerve trauma. Using a rat model of sciatic nerve chronic constriction injury (CCI), we analyzed sex differences in (i) the release of the immunodominant neural epitopes of myelin basic protein (MBP); (ii) the levels of serum immunoglobulin M (IgM)/immunoglobulin G (IgG) autoantibodies against the MBP epitopes; (iii) endoneurial B cell/CD20 levels; and (iv) mechanical sensitivity behavior after B cell/CD20 targeting with intravenous (IV) Rituximab (RTX) and control, IV immunoglobulin (IVIG), therapy. The persistent MBP epitope release in CCI nerves of both sexes was accompanied by the serum anti-MBP IgM autoantibody in female CCI rats alone. IV RTX therapy during CD20-reactive cell infiltration of nerves of both sexes reduced mechanical allodynia in females but not in males. IVIG and vehicle treatments had no effect in either sex. These findings provide strong evidence for sexual dimorphism in B-cell function after peripheral nervous system (PNS) trauma and autoimmune pathogenesis of neuropathic pain, potentially amenable to immunotherapeutic intervention, particularly in females. A myelin-targeted serum autoantibody may serve as a biomarker of such painful states. This insight into the biological basis of sex-specific response to neuraxial injury will help personalize regenerative and analgesic therapies.
Collapse
Affiliation(s)
- Hee Jong Lee
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
- Department of Anesthesiology & Pain Medicine, Hanyang University, Seoul, South Korea
| | - Albert G. Remacle
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Swathi K. Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
| | - Jake B. Leung
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Andrei V. Chernov
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Alex Y. Strongin
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
- *Correspondence: Veronica I. Shubayev,
| |
Collapse
|
17
|
Presto P, Mazzitelli M, Junell R, Griffin Z, Neugebauer V. Sex differences in pain along the neuraxis. Neuropharmacology 2022; 210:109030. [DOI: 10.1016/j.neuropharm.2022.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 12/30/2022]
|
18
|
Chernov AV, Shubayev VI. Sexual Dimorphism of Early Transcriptional Reprogramming in Dorsal Root Ganglia After Peripheral Nerve Injury. Front Mol Neurosci 2021; 14:779024. [PMID: 34966260 PMCID: PMC8710713 DOI: 10.3389/fnmol.2021.779024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023] Open
Abstract
Peripheral nerve injury induces genome-wide transcriptional reprogramming of first-order neurons and auxiliary cells of dorsal root ganglia (DRG). Accumulating experimental evidence suggests that onset and mechanistic principles of post-nerve injury processes are sexually dimorphic. We examined largely understudied aspects of early transcriptional events in DRG within 24 h after sciatic nerve axotomy in mice of both sexes. Using high-depth RNA sequencing (>50 million reads/sample) to pinpoint sexually dimorphic changes related to regeneration, immune response, bioenergy, and sensory functions, we identified a higher number of transcriptional changes in male relative to female DRG. In males, the decline in ion channel transcripts was accompanied by the induction of innate immune cascades via TLR, chemokine, and Csf1-receptor axis and robust regenerative programs driven by Sox, Twist1/2, and Pax5/9 transcription factors. Females demonstrated nerve injury-specific transcriptional co-activation of the actinin 2 network. The predicted upstream regulators and interactive networks highlighted the role of novel epigenetic factors and genetic linkage to sex chromosomes as hallmarks of gene regulation post-axotomy. We implicated epigenetic X chromosome inactivation in the regulation of immune response activity uniquely in females. Sexually dimorphic regulation of MMP/ADAMTS metalloproteinases and their intrinsic X-linked regulator Timp1 contributes to extracellular matrix remodeling integrated with pro-regenerative and immune functions. Lexis1 non-coding RNA involved in LXR-mediated lipid metabolism was identified as a novel nerve injury marker. Together, our data identified unique early response triggers of sex-specific peripheral nerve injury regulation to gain mechanistic insights into the origin of female- and male-prevalent sensory neuropathies.
Collapse
Affiliation(s)
- Andrei V Chernov
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, San Diego, CA, United States
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
19
|
Nelson CA, Bove R, Butte AJ, Baranzini SE. Embedding electronic health records onto a knowledge network recognizes prodromal features of multiple sclerosis and predicts diagnosis. J Am Med Inform Assoc 2021; 29:424-434. [PMID: 34915552 PMCID: PMC8800523 DOI: 10.1093/jamia/ocab270] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/22/2021] [Accepted: 11/26/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Early identification of chronic diseases is a pillar of precision medicine as it can lead to improved outcomes, reduction of disease burden, and lower healthcare costs. Predictions of a patient's health trajectory have been improved through the application of machine learning approaches to electronic health records (EHRs). However, these methods have traditionally relied on "black box" algorithms that can process large amounts of data but are unable to incorporate domain knowledge, thus limiting their predictive and explanatory power. Here, we present a method for incorporating domain knowledge into clinical classifications by embedding individual patient data into a biomedical knowledge graph. MATERIALS AND METHODS A modified version of the Page rank algorithm was implemented to embed millions of deidentified EHRs into a biomedical knowledge graph (SPOKE). This resulted in high-dimensional, knowledge-guided patient health signatures (ie, SPOKEsigs) that were subsequently used as features in a random forest environment to classify patients at risk of developing a chronic disease. RESULTS Our model predicted disease status of 5752 subjects 3 years before being diagnosed with multiple sclerosis (MS) (AUC = 0.83). SPOKEsigs outperformed predictions using EHRs alone, and the biological drivers of the classifiers provided insight into the underpinnings of prodromal MS. CONCLUSION Using data from EHR as input, SPOKEsigs describe patients at both the clinical and biological levels. We provide a clinical use case for detecting MS up to 5 years prior to their documented diagnosis in the clinic and illustrate the biological features that distinguish the prodromal MS state.
Collapse
Affiliation(s)
- Charlotte A Nelson
- Integrated Program in Quantitative Biology, University of California San Francisco, San Francisco, California, USA,Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, USA
| | - Riley Bove
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, USA,Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Sergio E Baranzini
- Corresponding Author: Sergio E. Baranzini, PhD, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94143, USA;
| |
Collapse
|
20
|
Gregus AM, Levine IS, Eddinger KA, Yaksh TL, Buczynski MW. Sex differences in neuroimmune and glial mechanisms of pain. Pain 2021; 162:2186-2200. [PMID: 34256379 PMCID: PMC8277970 DOI: 10.1097/j.pain.0000000000002215] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pain is the primary motivation for seeking medical care. Although pain may subside as inflammation resolves or an injury heals, it is increasingly evident that persistency of the pain state can occur with significant regularity. Chronic pain requires aggressive management to minimize its physiological consequences and diminish its impact on quality of life. Although opioids commonly are prescribed for intractable pain, concerns regarding reduced efficacy, as well as risks of tolerance and dependence, misuse, diversion, and overdose mortality rates limit their utility. Advances in development of nonopioid interventions hinge on our appreciation of underlying mechanisms of pain hypersensitivity. For instance, the contributory role of immunity and the associated presence of autoimmune syndromes has become of particular interest. Males and females exhibit fundamental differences in innate and adaptive immune responses, some of which are present throughout life, whereas others manifest with reproductive maturation. In general, the incidence of chronic pain conditions, particularly those with likely autoimmune covariates, is significantly higher in women. Accordingly, evidence is now accruing in support of neuroimmune interactions driving sex differences in the development and maintenance of pain hypersensitivity and chronicity. This review highlights known sexual dimorphisms of neuroimmune signaling in pain states modeled in rodents, which may yield potential high-value sex-specific targets to inform future analgesic drug discovery efforts.
Collapse
Affiliation(s)
- Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Ian S. Levine
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Kelly A. Eddinger
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
| | - Tony L. Yaksh
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
- Dept. of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0601
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| |
Collapse
|
21
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|