1
|
Babin K, Kilinc C, Gostynska SE, Dickson A, Pioszak AA. Characterization of the Two-Domain Peptide Binding Mechanism of the Human CGRP Receptor for CGRP and the Ultrahigh Affinity ssCGRP Variant. Biochemistry 2025; 64:1770-1787. [PMID: 40172014 PMCID: PMC12004451 DOI: 10.1021/acs.biochem.4c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide that functions in pain signaling and neuroimmune communication. The CGRP receptor, CGRPR, is a class B GPCR that is a drug target for migraine headache and other disorders. Here, we used nanoBRET receptor binding and cAMP biosensor signaling assays and theoretical modeling to characterize the CGRPR "two-domain" peptide binding mechanism. Single-site extracellular domain (ECD)-binding and two-site ECD/transmembrane domain (TMD)-binding peptides were examined for CGRP and a high-affinity variant "ssCGRP" with modifications in the C-terminal region. Wildtype and ssCGRP(27-37) bound the ECD with affinities of 1 μM and 0.5 nM, and residence times of 5 s and 8 min, respectively. The (8-37) antagonist fragments had affinities of 100 nM for wildtype and 0.5 nM for ss and exhibited behavior consistent with two-site ECD/TMD binding. ssCGRP(8-37) had a residence time of 76 min. CGRP(1-37) agonist had 25-fold higher affinity for the G protein-coupled state of the CGRPR (Ki = 3 nM) than the uncoupled state (Ki = 74 nM), and elicited short-duration cAMP signaling. In contrast, ssCGRP(1-37) had similar strong affinities for both receptor states (Ki = 0.2 to 0.25 nM), and induced long-duration signaling. An equilibrium reaction network mathematical model of CGRPR activation that includes peptide and G protein binding was developed. This captured wildtype CGRP binding experiments well, but the ssCGRP binding properties were not fully reproduced, suggesting that it may exhibit a distinct binding mechanism. Together, these results advance our quantitative understanding of the CGRPR two-domain mechanism and support the ss variants as potential long-acting therapeutics.
Collapse
Affiliation(s)
- Katie
M. Babin
- Department
of Biochemistry and Physiology, University
of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Ceren Kilinc
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Sandra E. Gostynska
- Department
of Biochemistry and Physiology, University
of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Alex Dickson
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
- Department
of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Augen A. Pioszak
- Department
of Biochemistry and Physiology, University
of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
2
|
Ben-Shaanan TL, Knöpper K, Duan L, Liu R, Taglinao H, Xu Y, An J, Plikus MV, Cyster JG. Dermal TRPV1 innervations engage a macrophage- and fibroblast-containing pathway to activate hair growth in mice. Dev Cell 2024; 59:2818-2833.e7. [PMID: 38851191 PMCID: PMC11537826 DOI: 10.1016/j.devcel.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/25/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024]
Abstract
Pain, detected by nociceptors, is an integral part of injury, yet whether and how it can impact tissue physiology and recovery remain understudied. Here, we applied chemogenetics in mice to locally activate dermal TRPV1 innervations in naive skin and found that it triggered new regenerative cycling by dormant hair follicles (HFs). This was preceded by rapid apoptosis of dermal macrophages, mediated by the neuropeptide calcitonin gene-related peptide (CGRP). TRPV1 activation also triggered a macrophage-dependent induction of osteopontin (Spp1)-expressing dermal fibroblasts. The neuropeptide CGRP and the extracellular matrix protein Spp1 were required for the nociceptor-triggered hair growth. Finally, we showed that epidermal abrasion injury induced Spp1-expressing dermal fibroblasts and hair growth via a TRPV1 neuron and CGRP-dependent mechanism. Collectively, these data demonstrated a role for TRPV1 nociceptors in orchestrating a macrophage and fibroblast-supported mechanism to promote hair growth and enabling the efficient restoration of this mechano- and thermo-protective barrier after wounding.
Collapse
Affiliation(s)
- Tamar L Ben-Shaanan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Konrad Knöpper
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lihui Duan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ruiqi Liu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Hanna Taglinao
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ying Xu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinping An
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
3
|
Gostynska SE, Karim JA, Ford BE, Gordon PH, Babin KM, Inoue A, Lambert NA, Pioszak AA. Amylin receptor subunit interactions are modulated by agonists and determine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617487. [PMID: 39416010 PMCID: PMC11482831 DOI: 10.1101/2024.10.09.617487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Three amylin receptors (AMYRs) mediate the metabolic actions of the peptide hormone amylin and are drug targets for diabetes and obesity. AMY1R, AMY2R, and AMY3R are heterodimers consisting of the G protein-coupled calcitonin receptor (CTR) paired with a RAMP1, -2, or -3 accessory subunit, respectively, which increases amylin potency. Little is known about AMYR subunit interactions and their role in signaling. Here, we show that the AMYRs have distinct basal subunit equilibriums that are modulated by peptide agonists and determine the cAMP signaling phenotype. Using a novel biochemical assay that resolves the AMYR heterodimers and free subunits, we found that the AMY1/2R subunit equilibriums favored free CTR and RAMP1/2, and rat amylin and αCGRP agonists promoted subunit association. A stronger CTR-RAMP3 transmembrane domain interface yielded a more stable AMY3R, and human and salmon calcitonin agonists promoted AMY3R dissociation. Similar changes in subunit association-dissociation were observed in live cell membranes, and G protein coupling and cAMP signaling assays showed how these altered signaling. Our findings reveal regulation of heteromeric GPCR signaling through subunit interaction dynamics.
Collapse
Affiliation(s)
- Sandra E. Gostynska
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Jordan A. Karim
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Bailee E. Ford
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Peyton H. Gordon
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Katie M. Babin
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578. Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501. Japan
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA. 30912. USA
| | - Augen A. Pioszak
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| |
Collapse
|
4
|
Babin KM, Gostynska SE, Karim JA, Pioszak AA. Variable CGRP family peptide signaling durations and the structural determinants thereof. Biochem Pharmacol 2024; 224:116235. [PMID: 38670438 PMCID: PMC11102832 DOI: 10.1016/j.bcp.2024.116235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Calcitonin gene-related peptides alpha and beta (αCGRP, βCGRP), adrenomedullin (AM), and adrenomedullin 2/intermedin (AM2/IMD) function in pain signaling, neuroimmune communication, and regulation of the cardiovascular and lymphatic systems by activating either of two class B GPCRs, CLR and CTR, in complex with a RAMP1, -2, or -3 modulatory subunit. Inspired by our recent discovery that AM2/IMD(1-47) activation of CLR-RAMP3 elicits long duration cAMP signaling, here we used a live-cell cAMP biosensor assay to characterize the signaling kinetics of the two CGRP peptides and several bioactive AM and AM2/IMD fragments with variable N-terminal extensions. Remarkably, AM2/IMD(8-47) and AM2/IMD-53 exhibited even longer duration signaling than the 1-47 fragment. AM2/IMD(8-47) was a striking 8-fold longer acting than AM(13-52) at CLR-RAMP3. In contrast, the N-terminal extension of AM had no effect on signaling duration. AM(1-52) and (13-52) were equally short-acting. Analysis of AM2/IMD-AM mid-region chimeras and AM2/IMD R23 and R33 point mutants showed the importance of these residues for long-duration signaling and identified AM2/IMD peptides that exhibited up to 17-fold diminished signaling duration at CLR-RAMP3, while retaining near wildtype signaling potencies. βCGRP was ∼ 3-fold longer acting than αCGRP at the CGRP (CLR-RAMP1) and the amylin1 (CTR-RAMP1) receptors. Chimeric CGRP peptides showed that the single residue difference near the N-terminus, and the two differences in the mid-region, equally contributed to the longer duration of βCGRP signaling. This work uncovers key temporal differences in cAMP signaling among the CGRP family peptides, elucidates the structural bases thereof, and provides pharmacological tools for studying long-duration AM2/IMD signaling.
Collapse
Affiliation(s)
- Katie M Babin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Sandra E Gostynska
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Jordan A Karim
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| |
Collapse
|
5
|
Babin KM, Karim JA, Gordon PH, Lennon J, Dickson A, Pioszak AA. Adrenomedullin 2/intermedin is a slow off-rate, long-acting endogenous agonist of the adrenomedullin 2 G protein-coupled receptor. J Biol Chem 2023:104785. [PMID: 37146967 DOI: 10.1016/j.jbc.2023.104785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
Adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and calcitonin gene-related peptide (CGRP) have signaling functions in the cardiovascular, lymphatic, and nervous systems by activating three heterodimeric receptors comprised of the class B GPCR CLR and a RAMP1, -2, or -3 modulatory subunit. CGRP and AM prefer the RAMP1 and RAMP2/3 complexes, respectively, whereas AM2/IMD is thought to be relatively non-selective. Accordingly, AM2/IMD exhibits overlapping actions with CGRP and AM, so the rationale for this third agonist for the CLR-RAMP complexes is unclear. Here, we report that AM2/IMD is kinetically selective for CLR-RAMP3, known as the AM2R, and we define the structural basis for its distinct kinetics. In live cell biosensor assays, AM2/IMD-AM2R elicited substantially longer duration cAMP signaling than the eight other peptide-receptor combinations. AM2/IMD and AM bound the AM2R with similar equilibrium affinities, but AM2/IMD had a much slower off-rate and longer receptor residence time, thus explaining its prolonged signaling capacity. Peptide and receptor chimeras and mutagenesis were used to map the regions responsible for the distinct binding and signaling kinetics to the AM2/IMD mid-region and the RAMP3 extracellular domain (ECD). Molecular dynamics simulations revealed how the former forms stable interactions at the CLR ECD-transmembrane domain interface and how the latter augments the CLR ECD binding pocket to anchor the AM2/IMD C-terminus. These two strong binding components only combine in the AM2R. Our findings uncover AM2/IMD-AM2R as a cognate pair with unique temporal features, reveal how AM2/IMD and RAMP3 collaborate to shape CLR signaling, and have significant implications for AM2/IMD biology.
Collapse
Affiliation(s)
- Katie M Babin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jordan A Karim
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Peyton H Gordon
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - James Lennon
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Alex Dickson
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824.
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
6
|
Bálint L, Nelson-Maney N, Tian Y, Serafin DS, Caron KM. Clinical Potential of Adrenomedullin Signaling in the Cardiovascular System. Circ Res 2023; 132:1185-1202. [PMID: 37104556 PMCID: PMC10155262 DOI: 10.1161/circresaha.123.321673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023]
Abstract
Numerous clinical studies have revealed the utility of circulating AM (adrenomedullin) or MR-proAM (mid-regional proAM 45-92) as an effective prognostic and diagnostic biomarker for a variety of cardiovascular-related pathophysiologies. Thus, there is strong supporting evidence encouraging the exploration of the AM-CLR (calcitonin receptor-like receptor) signaling pathway as a therapeutic target. This is further bolstered because several drugs targeting the shared CGRP (calcitonin gene-related peptide)-CLR pathway are already Food and Drug Administration-approved and on the market for the treatment of migraine. In this review, we summarize the AM-CLR signaling pathway and its modulatory mechanisms and provide an overview of the current understanding of the physiological and pathological roles of AM-CLR signaling and the yet untapped potentials of AM as a biomarker or therapeutic target in cardiac and vascular diseases and provide an outlook on the recently emerged strategies that may provide further boost to the possible clinical applications of AM signaling.
Collapse
Affiliation(s)
- László Bálint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Nathan Nelson-Maney
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Yanna Tian
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - D. Stephen Serafin
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| |
Collapse
|
7
|
Babin KM, Karim JA, Gordon PH, Lennon J, Dickson A, Pioszak AA. Adrenomedullin 2/intermedin is a slow off-rate, long-acting endogenous agonist of the adrenomedullin 2 G protein-coupled receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523955. [PMID: 36711519 PMCID: PMC9882245 DOI: 10.1101/2023.01.13.523955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The signaling peptides adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and CGRP have overlapping and distinct functions in the cardiovascular, lymphatic, and nervous systems by activating three shared receptors comprised of the class B GPCR CLR in complex with a RAMP1, -2, or -3 modulatory subunit. Here, we report that AM2/IMD, which is thought to be a non-selective agonist, is kinetically selective for CLR-RAMP3, known as the AM 2 R. AM2/IMD-AM 2 R elicited substantially longer duration cAMP signaling than the eight other peptide-receptor combinations due to AM2/IMD slow off-rate binding kinetics. The regions responsible for the slow off-rate were mapped to the AM2/IMD mid-region and the RAMP3 extracellular domain. MD simulations revealed how these bestow enhanced stability to the complex. Our results uncover AM2/IMD-AM 2 R as a cognate pair with unique temporal features, define the mechanism of kinetic selectivity, and explain how AM2/IMD and RAMP3 collaborate to shape the signaling output of a clinically important GPCR.
Collapse
Affiliation(s)
- Katie M. Babin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jordan A. Karim
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Peyton H. Gordon
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - James Lennon
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Alex Dickson
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Augen A. Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Lead contact
| |
Collapse
|
8
|
Maudsley S, Leysen H, van Gastel J, Martin B. Systems Pharmacology: Enabling Multidimensional Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022:725-769. [DOI: 10.1016/b978-0-12-820472-6.00017-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Roehrkasse AM, Karim JA, Pioszak AA. A Native PAGE Assay for the Biochemical Characterization of G Protein Coupling to GPCRs. Bio Protoc 2021; 11:e4266. [PMID: 35087925 PMCID: PMC8720520 DOI: 10.21769/bioprotoc.4266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 09/16/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of membrane-embedded receptors that have diverse roles in physiology and are major drug targets. GPCRs transduce an agonist binding signal across the membrane to activate intracellular heterotrimeric G proteins. The dynamic nature of the receptors and the complexity of their interactions with agonists and G proteins present significant challenges for biochemical studies. Most biochemical/biophysical methods that have been employed to study GPCR-G protein coupling require purified receptors and are technically difficult. Here, we provide a protocol for a relatively simple and time- and cost-effective membrane protein native PAGE assay, to visualize and biochemically characterize agonist-dependent coupling of detergent-solubilized GPCRs to purified G protein surrogate "mini-G" proteins, which stabilize the receptor in an active state. The assay was developed for our studies of the calcitonin receptor-like receptor, a class B GPCR that mediates the actions of calcitonin gene-related peptide and adrenomedullin peptide agonists. It does not require a purified receptor and it can be used in a screening format with transiently-transfected adherent mammalian cell cultures, to quickly identify detergent-stable complexes amenable to study, or in a quantitative format with membrane preparations, to determine apparent affinities of agonists for the mini-G-coupled receptor and apparent affinities of mini-G proteins for the agonist-occupied receptor. The latter provides a partial measure of agonist efficacy. The method should be applicable to other GPCRs, and has the potential to be adapted to the study of other challenging membrane proteins and their complexes with binding partners. Graphic abstract: Visualizing agonist-dependent mini-G protein coupling and determining apparent binding affinities using the native PAGE assay quantitative formats.
Collapse
Affiliation(s)
- Amanda M. Roehrkasse
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Jordan A. Karim
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Augen A. Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| |
Collapse
|
10
|
Clark AJ, Mullooly N, Safitri D, Harris M, de Vries T, MaassenVanDenBrink A, Poyner DR, Gianni D, Wigglesworth M, Ladds G. CGRP, adrenomedullin and adrenomedullin 2 display endogenous GPCR agonist bias in primary human cardiovascular cells. Commun Biol 2021; 4:776. [PMID: 34163006 PMCID: PMC8222276 DOI: 10.1038/s42003-021-02293-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Agonist bias occurs when different ligands produce distinct signalling outputs when acting at the same receptor. However, its physiological relevance is not always clear. Using primary human cells and gene editing techniques, we demonstrate endogenous agonist bias with physiological consequences for the calcitonin receptor-like receptor, CLR. By switching the receptor-activity modifying protein (RAMP) associated with CLR we can “re-route” the physiological pathways activated by endogenous agonists calcitonin gene-related peptide (CGRP), adrenomedullin (AM) and adrenomedullin 2 (AM2). AM2 promotes calcium-mediated nitric oxide signalling whereas CGRP and AM show pro-proliferative effects in cardiovascular cells, thus providing a rationale for the expression of the three peptides. CLR-based agonist bias occurs naturally in human cells and has a fundamental purpose for its existence. We anticipate this will be a starting point for more studies into RAMP function in native environments and their importance in endogenous GPCR signalling. Clark et al. explore the ability of ligands to activate the calcitonin-like receptor (CLR) in primary endothelial cells, and the influence of co-expressed receptor-activity modifying proteins (RAMPs). Their study reveals that GPCR agonist bias occurs naturally in human cells and plays a fundamental role in providing unique functions to endogenous agonists.
Collapse
Affiliation(s)
- Ashley J Clark
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Niamh Mullooly
- Functional Genomics, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Dewi Safitri
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,Pharmacology and Clinical Pharmacy Research Group, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Tessa de Vries
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Centre, Rotterdam, Rotterdam, Netherlands
| | | | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Davide Gianni
- Functional Genomics, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Mark Wigglesworth
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|