1
|
Mandal S, Patra D, Mandal S, Das GK, Sahoo P. Insights into colistin-mediated fluorescence labelling of bacterial LPS. RSC Adv 2024; 14:2770-2777. [PMID: 38234867 PMCID: PMC10792355 DOI: 10.1039/d3ra07107c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Gram-negative bacterial infections are becoming untreatable due to their ability to mutate, and the gradual development of their resistance to the available antimicrobials. In recent times colistin, a drug of last resort, started losing its efficacy towards multidrug-resistant bacterial infections. Colistin targets bacterial endotoxin lipopolysaccharides (LPS) and destabilises the cytoplasmic membrane by disrupting the outer LPS membrane. In this study, we have tried to label the bacterial LPS, the main constituent of the cytoplasmic membrane of bacterial cells, to try to understand the interaction mechanism of LPS with colistin. The chemosensor, naphthaldehyde appended furfural (NAF) that selectively recognises colistin can label LPS, by showing its fluorescence signals. The computationally derived three-dimensional structure of LPS has been introduced to speculate on the possible binding mode of colistin with LPS, and this was also thoroughly studied with the help of quantum mechanics and molecular dynamics energy minimisation. Fluorescence microscopy and FE-SEM microscopic studies were also used to observe the change in the structural morphology of colistin-sensitive and resistant Salmonella typhi in different experimental conditions.
Collapse
Affiliation(s)
- Saurodeep Mandal
- Department of Chemistry, Siksha Bhavana, Visva-Bharati Santiniketan 731235 West Bengal India
| | - Dipanwita Patra
- Department of Microbiology, University of Calcutta Kolkata 700019 West Bengal India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta Kolkata 700019 West Bengal India
| | - Gourab Kanti Das
- Department of Chemistry, Siksha Bhavana, Visva-Bharati Santiniketan 731235 West Bengal India
| | - Prithidipa Sahoo
- Department of Chemistry, Siksha Bhavana, Visva-Bharati Santiniketan 731235 West Bengal India
| |
Collapse
|
2
|
Yang HX, Xie ZS, Yi H, Jin J, Geng J, Cui AL, Li ZR. Design, Synthesis, and Bioactivity Investigation of Cyclic Lipopeptide Antibiotics Containing Eight to Nine Amino Acids. J Med Chem 2023; 66:2524-2541. [PMID: 36739537 DOI: 10.1021/acs.jmedchem.2c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The current global issue of antibiotic resistance is serious, and there is an urgent requirement of developing novel antibiotics. Octapeptins have recently regained interest because of their activities against resistant Gram-negative bacteria. We synthesized four natural octapeptins and 33 derivatives with diverse polarity, amphiphilicity, and acid-base properties by solid-phase synthesis and investigated their in vitro antibacterial activity and renal cytotoxicity. We also assessed the structure-activity relationship and structure-toxicity relationship of the cyclic lipopeptide compounds. Some compounds showed increased activity against Gram-negative and/or Gram-positive bacteria, with improved renal cytotoxicity. C-02 showed remarkable in vitro antibacterial activity and low renal cytotoxicity. We found that C-02 showed high antibacterial activity against Escherichia coli in vivo and manifested its effects preliminarily by increasing outer membrane permeability. Therefore, C-02 might be a new antibiotic lead compound with not only high efficacy but also low renal cytotoxicity.
Collapse
Affiliation(s)
- He-Xian Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhuo-Song Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jie Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing Geng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - A-Long Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhuo-Rong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Patil NA, Ma W, Jiang X, He X, Yu HH, Wickremasinghe H, Wang J, Thompson PE, Velkov T, Roberts KD, Li J. Critical Role of Position 10 Residue in the Polymyxin Antimicrobial Activity. J Med Chem 2023; 66:2865-2876. [PMID: 36745479 DOI: 10.1021/acs.jmedchem.2c01915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polymyxins (polymyxin B and colistin) are lipopeptide antibiotics used as a last-line treatment for life-threatening multidrug-resistant (MDR) Gram-negative bacterial infections. Unfortunately, their clinical use has been affected by dose-limiting toxicity and increasing resistance. Structure-activity (SAR) and structure-toxicity (STR) relationships are paramount for the development of safer polymyxins, albeit very little is known about the role of the conserved position 10 threonine (Thr) residue in the polymyxin core scaffold. Here, we synthesized 30 novel analogues of polymyxin B1 modified explicitly at position 10 and examined the antimicrobial activity against Gram-negative bacteria and in vivo toxicity and performed molecular dynamics simulations with bacterial outer membranes. For the first time, this study revealed the stereochemical requirements and role of the β-hydroxy side chain in promoting the correctly folded conformation of the polymyxin that drives outer membrane penetration and antibacterial activity. These findings provide essential information for developing safer and more efficacious new-generation polymyxin antibiotics.
Collapse
Affiliation(s)
- Nitin A Patil
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Wendong Ma
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Xukai Jiang
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.,National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xiaoji He
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Heidi H Yu
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Hasini Wickremasinghe
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jiping Wang
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Tony Velkov
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Kade D Roberts
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Zhao Y, Xie X, Li J, Shi Y, Chai A, Fan T, Li B, Li L. Comparative Genomics Insights into a Novel Biocontrol Agent Paenibacillus peoriae Strain ZF390 against Bacterial Soft Rot. BIOLOGY 2022; 11:1172. [PMID: 36009799 PMCID: PMC9404902 DOI: 10.3390/biology11081172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
Bacterial soft rot, caused by Pectobacterium brasiliense, can infect several economically important horticultural crops. However, the management strategies available to control this disease are limited. Plant-growth-promoting rhizobacteria (PGPR) have been considered to be promising biocontrol agents. With the aim of obtaining a strain suitable for agricultural applications, 161 strains were isolated from the rhizosphere soil of healthy cucumber plants and screened through plate bioassays and greenhouse tests. Paenibacillus peoriae ZF390 exhibited an eminent control effect against soft rot disease and a broad antagonistic activity spectrum in vitro. Moreover, ZF390 showed good activities of cellulase, protease, and phosphatase and a tolerance of heavy metal. Whole-genome sequencing was performed and annotated to explore the underlying biocontrol mechanisms. Strain ZF390 consists of one 6,193,667 bp circular chromosome and three plasmids. Comparative genome analysis revealed that ZF390 involves ten gene clusters responsible for secondary metabolite antibiotic synthesis, matching its excellent biocontrol activity. Plenty of genes related to plant growth promotion, biofilm formation, and induced systemic resistance were mined to reveal the biocontrol mechanisms that might consist in strain ZF390. Overall, these findings suggest that strain ZF390 could be a potential biocontrol agent in bacterial-soft-rot management, as well as a source of antimicrobial mechanisms for further exploitation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Jiang X, Han M, Tran K, Patil NA, Ma W, Roberts KD, Xiao M, Sommer B, Schreiber F, Wang L, Velkov T, Li J. An Intelligent Strategy with All-Atom Molecular Dynamics Simulations for the Design of Lipopeptides against Multidrug-Resistant Pseudomonas aeruginosa. J Med Chem 2022; 65:10001-10013. [PMID: 35786900 DOI: 10.1021/acs.jmedchem.2c00657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multidrug-resistant Gram-negative bacteria seriously threaten modern medicine due to the lack of efficacious therapeutic options. Their outer membrane (OM) is an essential protective fortress to exclude many antibiotics. Unfortunately, current structural biology methods are not able to resolve the membrane structure and it is difficult to examine the specific interaction between the OM and small molecules. These limitations hinder mechanistic understanding of antibiotic penetration through the OM and antibiotic discovery. Here, we developed biologically relevant OM models by quantitatively determining membrane lipidomics of Pseudomonas aeruginosa and elucidated how lipopolysaccharide modifications and OM vesicles mediated resistance to polymyxins. Supported by chemical biology and pharmacological assays, our multiscale molecular dynamics simulations provide an intelligent platform to quantify the membrane-penetrating thermodynamics of peptides and predict their antimicrobial activity. Through experimental validations with our in-house polymyxin analogue library, our computational strategy may have significant potential in accelerating the discovery of lipopeptides against bacterial "superbugs".
Collapse
Affiliation(s)
- Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Meiling Han
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Kevin Tran
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Nitin A Patil
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Wendong Ma
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Kade D Roberts
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Min Xiao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Bjorn Sommer
- Department of Computer and Information Science, University of Konstanz, Konstanz 78457, Germany
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Konstanz 78457, Germany
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne 3010, Australia
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia
| |
Collapse
|
6
|
Sun Y, Deng Z, Jiang X, Yuan B, Yang K. Interactions between polymyxin B and various bacterial membrane mimics: A molecular dynamics study. Colloids Surf B Biointerfaces 2021; 211:112288. [PMID: 34942463 DOI: 10.1016/j.colsurfb.2021.112288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/21/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022]
Abstract
Polymyxin B (PMB) is clinically used as a last-line therapy against life-threatening Gram-negative "superbugs". However, thorough understanding of the membrane actions of PMB at a molecular level is still lacking. In this work, a variety of bacterial membrane mimics with varying lipid compositions were built, and their interactions with PMB were systematically investigated using coarse-grained molecular dynamics simulation. PMB demonstrated characteristic preference to specific lipid species during its interaction with different membrane systems, such as the rough mutant lipipolysacchrides (Re LPS) preference in an outer membrane (OM) or the cardiolipin and POPG affinity in an inner membrane (IM). As a result of the lipid-specific actions, complicated membrane interaction states of PMB were observed, including adsorption on the OM surface. In contrast, for the IM or a mutative OM containing "impurity lipids" like POPE, POPG or lipid A, it could insert into the membrane via its acyl chain. Such actions of PMB influence the structure and lipid mobility of the membrane. In particular, the OM-bound PMB breaks the synchronous movement of Re LPS molecules in the outer leaflet and makes them diffuse more randomly, while its insertion into IM blocks the phospholipid diffusion and makes the membrane more homogeneous in the trajectory space. Our results provide insight into the action mechanism of PMB at a membrane level and a foundation for developing novel and safer polymyxin strategies for better clinical use.
Collapse
Affiliation(s)
- Yuliang Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhixiong Deng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
7
|
Weerakoon D, Petrov K, Pedebos C, Khalid S. Polymyxin B1 within the E. coli cell envelope: insights from molecular dynamics simulations. Biophys Rev 2021; 13:1061-1070. [PMID: 35047090 PMCID: PMC8724489 DOI: 10.1007/s12551-021-00869-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
Polymyxins are used as last-resort antibiotics, where other treatments have been ineffectual due to antibiotic resistance. However, resistance to polymyxins has also been now reported, therefore it is instructive to characterise at the molecular level, the mechanisms of action of polymyxins. Here we review insights into these mechanisms from molecular dynamics simulations and discuss the utility of simulations as a complementary technique to experimental methodologies.
Collapse
Affiliation(s)
| | - Kamen Petrov
- Hertford College, University of Oxford, Oxford, OX1 3BW UK
| | - Conrado Pedebos
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| |
Collapse
|
8
|
Jiang X, Sun Y, Yang K, Yuan B, Velkov T, Wang L, Li J. Coarse-grained simulations uncover Gram-negative bacterial defense against polymyxins by the outer membrane. Comput Struct Biotechnol J 2021; 19:3885-3891. [PMID: 34584634 PMCID: PMC8441625 DOI: 10.1016/j.csbj.2021.06.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/12/2023] Open
Abstract
A structural model of bacterial outer membrane (OM) was developed with Ra LPS. Free energy landscape was revealed for polymyxin interactions with the OM. LPS core sugars and calcium ions confer intrinsic resistance to antibiotics.
The outer membrane (OM) of Gram-negative bacteria is a formidable barrier against antibiotics. Understanding the structure and function of the OM is essential for the discovery of novel membrane-acting agents against multidrug-resistant Gram-negative pathogens. However, it remains challenging to obtain three-dimensional structure of bacterial membranes using crystallographic approaches, which has significantly hindered the elucidation of its interaction with antibiotics. Here, we developed an asymmetric OM model consisting of rough lipopolysaccharide (LPS) and three key types of phospholipids. Using coarse-grained molecular dynamics simulations, we investigated the interaction dynamics of LPS-containing OM with the polymyxins, a last-line class of antibiotics against Gram-negative ‘superbugs’. We discovered that polymyxin molecules spontaneously penetrated the OM core sugar region where most were trapped before entering the lipid A region. Examination of the free energy profile of polymyxin penetration revealed a major free energy barrier at the LPS inner core and lipid A interface. Further analysis revealed calcium ions predominantly distributed in the inner core region and mediated extensive cross-linking interactions between LPS molecules, thereby inhibiting the penetration of polymyxins into the hydrophobic region of the OM. Collectively, our results provide novel mechanistic insights into an intrinsic defense of Gram-negative bacteria to polymyxins and may help identify new antimicrobial targets.
Collapse
Affiliation(s)
- Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,Biomedicine Discovery Institute, Infection & Immunity Program, Department of Microbiology, Monash University, Melbourne, Australia
| | - Yuliang Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian Li
- Biomedicine Discovery Institute, Infection & Immunity Program, Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
9
|
Jiang X, Patil NA, Azad MAK, Wickremasinghe H, Yu H, Zhao J, Zhang X, Li M, Gong B, Wan L, Ma W, Thompson PE, Yang K, Yuan B, Schreiber F, Wang L, Velkov T, Roberts KD, Li J. A novel chemical biology and computational approach to expedite the discovery of new-generation polymyxins against life-threatening Acinetobacter baumannii. Chem Sci 2021; 12:12211-12220. [PMID: 34667587 PMCID: PMC8457388 DOI: 10.1039/d1sc03460j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/12/2021] [Indexed: 01/20/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria represent a major medical challenge worldwide. New antibiotics are desperately required with 'old' polymyxins often being the only available therapeutic option. Here, we systematically investigated the structure-activity relationship (SAR) of polymyxins using a quantitative lipidomics-informed outer membrane (OM) model of Acinetobacter baumannii and a series of chemically synthesized polymyxin analogs. By integrating chemical biology and all-atom molecular dynamics simulations, we deciphered how each residue of the polymyxin molecule modulated its conformational folding and specific interactions with the bacterial OM. Importantly, a novel designed polymyxin analog FADDI-287 with predicted stronger OM penetration showed improved in vitro antibacterial activity. Collectively, our study provides a novel chemical biology and computational strategy to expedite the discovery of new-generation polymyxins against life-threatening Gram-negative 'superbugs'.
Collapse
Affiliation(s)
- Xukai Jiang
- National Glycoengineering Research Center, Shandong University Qingdao China
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Nitin A Patil
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Mohammad A K Azad
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Hasini Wickremasinghe
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Heidi Yu
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Jinxin Zhao
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Xinru Zhang
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Mengyao Li
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Bin Gong
- School of Software, Shandong University Jinan China
| | - Lin Wan
- School of Software, Shandong University Jinan China
| | - Wendong Ma
- Centre for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University Suzhou China
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Science, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Melbourne Australia
| | - Kai Yang
- Centre for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University Suzhou China
| | - Bing Yuan
- Centre for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University Suzhou China
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz Konstanz Germany
- Faculty of Information Technology, Monash University Melbourne Australia
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University Qingdao China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, University of Melbourne Melbourne Australia
| | - Kade D Roberts
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| | - Jian Li
- Biomedicine Discovery Institute, Infection & Immunity Program, Monash University Melbourne Australia +61 3 9905 6450 +61 3 9903 9702
| |
Collapse
|
10
|
Çınaroğlu SS, Biggin PC. Evaluating the Performance of Water Models with Host-Guest Force Fields in Binding Enthalpy Calculations for Cucurbit[7]uril-Guest Systems. J Phys Chem B 2021; 125:1558-1567. [PMID: 33538161 DOI: 10.1021/acs.jpcb.0c11383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Computational prediction of thermodynamic components with computational methods has become increasingly routine in computer-aided drug design. Although there has been significant recent effort and improvements in the calculation of free energy, the prediction of enthalpy (and entropy) remains underexplored. Furthermore, there has been relatively little work reported so far that attempts to comparatively assess how well different force fields and water models perform in conjunction with each other. Here, we report a comprehensive assessment of force fields and water models using host-guest systems that mimic many features of protein-ligand systems. These systems are computationally inexpensive, possibly because of their small size compared to protein-ligand systems. We present absolute enthalpy calculations using the multibox approach on a set of 25 cucurbit[7]uril-guest pairs. Eight water models were considered (TIP3P, TIP4P, TIP4P-Ew, SPC, SPC/E, OPC, TIP5P, Bind3P), along with five force fields commonly used in the literature (GAFFv1, GAFFv2, CGenFF, Parsley, and SwissParam). We observe that host-guest binding enthalpies are strongly sensitive to the selection of force field and water model. In terms of water models, we find that TIP3P and its derivative Bind3P are the best performing models for this particular host-guest system. The performance is generally better for aliphatic compounds than for aromatic ones, suggesting that aromaticity remains a difficult property to include accurately in these simple force fields.
Collapse
Affiliation(s)
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
11
|
Chakraborty A, Kobzev E, Chan J, de Zoysa GH, Sarojini V, Piggot TJ, Allison JR. Molecular Dynamics Simulation of the Interaction of Two Linear Battacin Analogs with Model Gram-Positive and Gram-Negative Bacterial Cell Membranes. ACS OMEGA 2021; 6:388-400. [PMID: 33458490 PMCID: PMC7807746 DOI: 10.1021/acsomega.0c04752] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Antimicrobial peptides (AMPs) are a potential solution to the increasing threat of antibiotic resistance, but successful design of active but nontoxic AMPs requires understanding their mechanism of action. Molecular dynamics (MD) simulations can provide atomic-level information regarding how AMPs interact with the cell membrane. Here, we have used MD simulations to study two linear analogs of battacin, a naturally occurring cyclic, lipidated, nonribosomal AMP. Like battacin, these analogs are active against Gram-negative multidrug resistant and Gram-positive bacteria, but they are less toxic than battacin. Our simulations show that this activity depends upon a combination of positively charged and hydrophobic moieties. Favorable interactions with negatively charged membrane lipid head groups drive association with the membrane and insertion of hydrophobic residues, and the N-terminal lipid anchors the peptides to the membrane surface. Both effects are required for stable membrane binding.
Collapse
Affiliation(s)
- Aparajita Chakraborty
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
- School
of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre
for Theoretical Chemistry and Physics, Massey
University Auckland, Auckland 0632, New Zealand
| | - Elisey Kobzev
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
- Centre
for Theoretical Chemistry and Physics, Massey
University Auckland, Auckland 0632, New Zealand
- School
of Computational and Natural Sciences, Massey
University Auckland, Auckland 0632, New Zealand
| | - Jonathan Chan
- School
of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Department
of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, United
Kingdom
| | | | - Vijayalekshmi Sarojini
- School of
Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Thomas J. Piggot
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Chemical
Biological and Radiological Sciences, Defence
Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | - Jane R Allison
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
- School
of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre
for Theoretical Chemistry and Physics, Massey
University Auckland, Auckland 0632, New Zealand
- Biomolecular
Interaction Centre, University of Canterbury, Christchurch 8041, New Zealand
- Digital
Life Institute, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
12
|
Benfield AH, Henriques ST. Mode-of-Action of Antimicrobial Peptides: Membrane Disruption vs. Intracellular Mechanisms. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:610997. [PMID: 35047892 PMCID: PMC8757789 DOI: 10.3389/fmedt.2020.610997] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022] Open
Abstract
Antimicrobial peptides are an attractive alternative to traditional antibiotics, due to their physicochemical properties, activity toward a broad spectrum of bacteria, and mode-of-actions distinct from those used by current antibiotics. In general, antimicrobial peptides kill bacteria by either disrupting their membrane, or by entering inside bacterial cells to interact with intracellular components. Characterization of their mode-of-action is essential to improve their activity, avoid resistance in bacterial pathogens, and accelerate their use as therapeutics. Here we review experimental biophysical tools that can be employed with model membranes and bacterial cells to characterize the mode-of-action of antimicrobial peptides.
Collapse
|