1
|
Devarkar S, Budding C, Pathirage C, Kavoor A, Herbert C, Limbach P, Musier-Forsyth K, Xiong Y. Structural basis for aminoacylation of cellular modified tRNALys3 by human lysyl-tRNA synthetase. Nucleic Acids Res 2025; 53:gkaf114. [PMID: 40036503 PMCID: PMC11878792 DOI: 10.1093/nar/gkaf114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
The average eukaryotic transfer ribonucleic acid (tRNA) contains 13 post-transcriptional modifications; however, their functional impact is largely unknown. Our understanding of the complex tRNA aminoacylation machinery in metazoans also remains limited. Herein, using a series of high-resolution cryo-electron microscopy (cryo-EM) structures, we provide the mechanistic basis for recognition and aminoacylation of fully modified cellular tRNALys3 by human lysyl-tRNA synthetase (h-LysRS). The tRNALys3 anticodon loop modifications S34 (mcm5s2U) and R37 (ms2t6A) play an integral role in recognition by h-LysRS. Modifications in the T-, variable-, and D-loops of tRNALys3 are critical for ordering the metazoan-specific N-terminal domain of LysRS. The two catalytic steps of tRNALys3 aminoacylation are structurally ordered; docking of the 3'-CCA end in the active site cannot proceed until the lysyl-adenylate intermediate is formed and the pyrophosphate byproduct is released. Association of the h-LysRS-tRNALys3 complex with a multi-tRNA synthetase complex-derived peptide shifts the equilibrium toward the 3'-CCA end "docked" conformation and allosterically increases h-LysRS catalytic efficiency. The insights presented here have broad implications for understanding the role of tRNA modifications in protein synthesis, the human aminoacylation machinery, and the growing catalog of metabolic and neurological diseases linked to it.
Collapse
Affiliation(s)
- Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, United States
| | - Christina R Budding
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, United States
| | - Chathuri Pathirage
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, United States
| | - Arundhati Kavoor
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, United States
| | - Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, United States
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
2
|
King EM, Panfil AR. Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology. Viruses 2025; 17:124. [PMID: 39861913 PMCID: PMC11769288 DOI: 10.3390/v17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished. The ability to study RNA epigenetic modifications and splice variants has become more feasible with the recent development of third-generation sequencing technologies, such as Oxford nanopore sequencing. This review will highlight the dynamic roles of known RNA and post-transcriptional RNA epigenetic modifications within HTLV-1 biology, including viral hbz, long noncoding RNAs, microRNAs (miRNAs), transfer RNAs (tRNAs), R-loops, N6-methyladenosine (m6A) modifications, and RNA-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Emily M. King
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, Comprehensive Cancer Center, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Devarkar SC, Budding CR, Pathirage C, Kavoor A, Herbert C, Limbach PA, Musier-Forsyth K, Xiong Y. Structural basis for aminoacylation of cellular modified tRNA Lys3 by human lysyl-tRNA synthetase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.07.627298. [PMID: 39677689 PMCID: PMC11643047 DOI: 10.1101/2024.12.07.627298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The average eukaryotic tRNA contains 13 posttranscriptional modifications; however, their functional impact is largely unknown. Our understanding of the complex tRNA aminoacylation machinery in metazoans also remains limited. Herein, using a series of high-resolution cryo-electron microscopy (cryo-EM) structures, we provide the mechanistic basis for recognition and aminoacylation of fully-modified cellular tRNALys3 by human lysyl-tRNA synthetase (h-LysRS). The tRNALys3 anticodon loop modifications S34 (mcm5s2U) and R37 (ms2t6A) play an integral role in recognition by h-LysRS. Modifications in the T-, variable-, and D-loops of tRNALys3 are critical for ordering the metazoan-specific N-terminal domain of LysRS. The two catalytic steps of tRNALys3 aminoacylation are structurally ordered; docking of the 3'-CCA end in the active site cannot proceed until the lysyl-adenylate intermediate is formed and the pyrophosphate byproduct is released. Association of the h-LysRS-tRNALys3 complex with a multi-tRNA synthetase complex-derived peptide shifts the equilibrium towards the 3'-CCA end 'docked' conformation and allosterically enhances h-LysRS catalytic efficiency. The insights presented here have broad implications for understanding the role of tRNA modifications in protein synthesis, the human aminoacylation machinery, and the growing catalog of metabolic and neurological diseases linked to it.
Collapse
Affiliation(s)
- Swapnil C. Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT, 06511, USA
| | - Christina R. Budding
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus OH, 43210, USA
| | - Chathuri Pathirage
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus OH, 43210, USA
| | - Arundhati Kavoor
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus OH, 43210, USA
| | - Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati OH, 45221, USA
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati OH, 45221, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, Ohio State University, Columbus OH, 43210, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT, 06511, USA
| |
Collapse
|
4
|
Li Y, Yu Z, Jiang W, Lyu X, Guo A, Sun X, Yang Y, Zhang Y. tRNA and tsRNA: From Heterogeneity to Multifaceted Regulators. Biomolecules 2024; 14:1340. [PMID: 39456272 PMCID: PMC11506809 DOI: 10.3390/biom14101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
As the most ancient RNA, transfer RNAs (tRNAs) play a more complex role than their constitutive function as amino acid transporters in the protein synthesis process. The transcription and maturation of tRNA in cells are subject to stringent regulation, resulting in the formation of tissue- and cell-specific tRNA pools with variations in tRNA overall abundance, composition, modification, and charging levels. The heterogeneity of tRNA pools contributes to facilitating the formation of histocyte-specific protein expression patterns and is involved in diverse biological processes. Moreover, tRNAs can be recognized by various RNase under physiological and pathological conditions to generate tRNA-derived small RNAs (tsRNAs) and serve as small regulatory RNAs in various biological processes. Here, we summarize these recent insights into the heterogeneity of tRNA and highlight the advances in the regulation of tRNA function and tsRNA biogenesis by tRNA modifications. We synthesize diverse mechanisms of tRNA and tsRNA in embryonic development, cell fate determination, and epigenetic inheritance regulation. We also discuss the potential clinical applications based on the new knowledge of tRNA and tsRNA as diagnostic and prognostic biomarkers and new therapeutic strategies for multiple diseases.
Collapse
Affiliation(s)
- Yun Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Zongyu Yu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Wenlin Jiang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Xinyi Lyu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Ailian Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Xiaorui Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Yiting Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
- NHC Key Laboratory of Reproduction Regulation, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| |
Collapse
|
5
|
Syu YC, Hatterschide J, Budding CR, Tang Y, Musier-Forsyth K. Human T-cell leukemia virus type 1 uses a specific tRNA Pro isodecoder to prime reverse transcription. RNA (NEW YORK, N.Y.) 2024; 30:967-976. [PMID: 38684316 PMCID: PMC11251516 DOI: 10.1261/rna.080006.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the only oncogenic human retrovirus discovered to date. All retroviruses are believed to use a host cell tRNA to prime reverse transcription (RT). In HTLV-1, the primer-binding site (PBS) in the genomic RNA is complementary to the 3' 18 nucleotides (nt) of human tRNAPro The human genome encodes 20 cytoplasmic tRNAPro genes representing seven isodecoders, all of which share the same 3' 18 nt sequence but vary elsewhere. Whether all tRNAPro isodecoders are used to prime RT in cells is unknown. A previous study showed that a 3' 18 nt tRNAPro-derived fragment (tRFPro) is packaged into HTLV-1 particles and can serve as an RT primer in vitro. The role of this tRNA fragment in the viral life cycle is unclear. In retroviruses, N1-methylation of the tRNA primer at position A58 (m1A) is essential for successful plus-strand transfer. Using primer-extension assays performed in chronically HTLV-1-infected cells, we found that A58 of tRNAPro is m1A-modified, implying that full-length tRNAPro is capable of facilitating successful plus-strand transfer. Analysis of HTLV-1 RT primer extension products indicated that full-length tRNAPro is likely to be the primer. To determine which tRNAPro isodecoder is used as the RT primer, we sequenced the minus-strand strong-stop RT product containing the intact tRNA primer and established that HTLV-1 primes RT using a specific tRNAPro UGG isodecoder. Further studies are required to understand how this primer is annealed to the highly structured HTLV-1 PBS and to investigate the role of tRFPro in the viral life cycle.
Collapse
Affiliation(s)
- Yu-Ci Syu
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | - Joshua Hatterschide
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | - Christina R Budding
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yingke Tang
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
6
|
Tian H, Gao S, Xu M, Yang M, Shen M, Liu J, Li G, Zhuang D, Hu Z, Wang C. tiRNA-Gly-GCC-001 in major depressive disorder: Promising diagnostic and therapeutic biomarker. Br J Pharmacol 2024; 181:1952-1972. [PMID: 38439581 DOI: 10.1111/bph.16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND AND PURPOSE In major depressive disorder (MDD), exploration of biomarkers will be helpful in diagnosing the disorder as well as in choosing a treatment and predicting the treatment response. Currently, tRNA-derived small ribonucleic acids (tsRNAs) have been established as promising non-invasive biomarker candidates that may enable a more reliable diagnosis or monitoring of various diseases. Herein, we aimed to explore tsRNA expression together with functional activities in MDD development. EXPERIMENTAL APPROACH Serum samples were obtained from patients with MDD and healthy controls, and small RNA sequencing (RNA-Seq) was used to profile tsRNA expression. Dysregulated tsRNAs in MDD were validated by quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic utility of specific tsRNAs and the expression of these tsRNAs after antidepressant treatment were analysed. KEY RESULTS In total, 38 tsRNAs were significantly differentially expressed in MDD samples relative to healthy individuals (34 up-regulated and 4 down-regulated). qRT-PCR was used to validate the expression of six tsRNAs that were up-regulated in MDD (tiRNA-1:20-chrM.Ser-GCT, tiRNA-1:33-Gly-GCC-1, tRF-1:22-chrM.Ser-GCT, tRF-1:31-Ala-AGC-4-M6, tRF-1:31-Pro-TGG-2 and tRF-1:32-chrM.Gln-TTG). Interestingly, serum tiRNA-Gly-GCC-001 levels exhibited an area under the ROC curve of 0.844. Moreover, tiRNA-Gly-GCC-001 is predicted to suppress brain-derived neurotrophic factor (BDNF) expression. Furthermore, significant tiRNA-Gly-GCC-001 down-regulation was evident following an 8-week treatment course and served as a promising baseline predictor of patient response to antidepressant therapy. CONCLUSION AND IMPLICATIONS Our current work reports for the first time that tiRNA-Gly-GCC-001 is a promising MDD biomarker candidate that can predict patient responses to antidepressant therapy.
Collapse
Affiliation(s)
- Haihua Tian
- Zhejiang Key Laboratory of Pathophysiology, Health Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Shugui Gao
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Miaomiao Xu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Mei Yang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Mengyuan Shen
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jimeng Liu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Guangxue Li
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Dingding Zhuang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Zhenyu Hu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Chuang Wang
- Zhejiang Key Laboratory of Pathophysiology, Health Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, Cobb J, Munger J, Fu D. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. eLife 2024; 12:RP90316. [PMID: 38814682 PMCID: PMC11139479 DOI: 10.7554/elife.90316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wild-type human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de MontpellierMontpellierFrance
| | - Jessica H Ciesla
- Department of Biochemistry and Biophysics, University of Rochester Medical CenterRochesterUnited States
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de MontpellierMontpellierFrance
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Justin Cobb
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical CenterRochesterUnited States
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| |
Collapse
|
8
|
Sumner C, Ono A. The "basics" of HIV-1 assembly. PLoS Pathog 2024; 20:e1011937. [PMID: 38300900 PMCID: PMC10833515 DOI: 10.1371/journal.ppat.1011937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Affiliation(s)
- Christopher Sumner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
9
|
Zhang J. Recognition of the tRNA structure: Everything everywhere but not all at once. Cell Chem Biol 2024; 31:36-52. [PMID: 38159570 PMCID: PMC10843564 DOI: 10.1016/j.chembiol.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
tRNAs are among the most abundant and essential biomolecules in cells. These spontaneously folding, extensively structured yet conformationally flexible anionic polymers literally bridge the worlds of RNAs and proteins, and serve as Rosetta stones that decipher and interpret the genetic code. Their ubiquitous presence, functional irreplaceability, and privileged access to cellular compartments and ribosomes render them prime targets for both endogenous regulation and exogenous manipulation. There is essentially no part of the tRNA that is not touched by another interaction partner, either as programmed or imposed by an external adversary. Recent progresses in genetic, biochemical, and structural analyses of the tRNA interactome produced a wealth of new knowledge into their interaction networks, regulatory functions, and molecular interfaces. In this review, I describe and illustrate the general principles of tRNA recognition by proteins and other RNAs, and discuss the underlying molecular mechanisms that deliver affinity, specificity, and functional competency.
Collapse
Affiliation(s)
- Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, Cobb J, Munger J, Fu D. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.10.527147. [PMID: 37502865 PMCID: PMC10370084 DOI: 10.1101/2023.02.10.527147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wildtype human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jessica H. Ciesla
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Justin Cobb
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
11
|
Wu Q, Fang L, Wang Y, Yang P. Unraveling the role of ZNF506 as a human PBS-pro-targeting protein for ERVP repression. Nucleic Acids Res 2023; 51:10309-10325. [PMID: 37697430 PMCID: PMC10602909 DOI: 10.1093/nar/gkad731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
Krüppel-associated box zinc finger proteins (KZFPs) function as a defense mechanism to maintain the genome stability of higher vertebrates by regulating the transcriptional activities of transposable elements (TEs). While previous studies have characterized ZFP809 as responsible for binding and repressing ERVs containing a proline tRNA primer-binding site (PBS-Pro) in mice, comparable KZFPs have not been identified in humans yet. Here, we identified ZNF506 as a PBS-Pro-binding protein in humans, which functions as a transcriptional repressor of PBS-Pro-utilizing retroviruses by recruiting heterochromatic modifications. Although they have similar functions, the low protein similarities between ZNF506, ZFP809 and KZFPs of other species suggest their independent evolution against the invasion of PBS-Pro-utilizing retroviruses into their respective ancestor genomes after species divergence. We also explored the link between ZNF506 and leukemia. Our findings suggest that ZNF506 is a unique human KZFP that can bind to PBS-Pro, highlighting the diverse evolution of KZFPs in defending against retroviral invasions. Additionally, our study provides insights into the potential role of ZNF506 in leukemia, contributing to the expanding knowledge of KZFPs' crucial function in disease and genome stability.
Collapse
Affiliation(s)
- Qian Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lu Fang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yixuan Wang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Peng Yang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
12
|
Jin D, Zhu Y, Schubert HL, Goff SP, Musier-Forsyth K. HIV-1 Gag Binds the Multi-Aminoacyl-tRNA Synthetase Complex via the EPRS Subunit. Viruses 2023; 15:474. [PMID: 36851687 PMCID: PMC9967848 DOI: 10.3390/v15020474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Host factor tRNAs facilitate the replication of retroviruses such as human immunodeficiency virus type 1 (HIV-1). HIV-1 uses human tRNALys3 as the primer for reverse transcription, and the assembly of HIV-1 structural protein Gag at the plasma membrane (PM) is regulated by matrix (MA) domain-tRNA interactions. A large, dynamic multi-aminoacyl-tRNA synthetase complex (MSC) exists in the cytosol and consists of eight aminoacyl-tRNA synthetases (ARSs) and three other cellular proteins. Proteomic studies to identify HIV-host interactions have identified the MSC as part of the HIV-1 Gag and MA interactomes. Here, we confirmed that the MA domain of HIV-1 Gag forms a stable complex with the MSC, mapped the primary interaction site to the linker domain of bi-functional human glutamyl-prolyl-tRNA synthetase (EPRS), and showed that the MA-EPRS interaction was RNA dependent. MA mutations that significantly reduced the EPRS interaction reduced viral infectivity and mapped to MA residues that also interact with phosphatidylinositol-(4,5)-bisphosphate. Overexpression of EPRS or EPRS fragments did not affect susceptibility to HIV-1 infection, and knockdown of EPRS reduced both a control reporter gene and HIV-1 protein translation. EPRS knockdown resulted in decreased progeny virion production, but the decrease could not be attributed to selective effects on virus gene expression, and the specific infectivity of the virions remained unchanged. While the precise function of the Gag-EPRS interaction remains uncertain, we discuss possible effects of the interaction on either virus or host activities.
Collapse
Affiliation(s)
- Danni Jin
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Yiping Zhu
- Departments of Biochemistry and Molecular Biophysics, and Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Heidi L. Schubert
- Department of Biochemistry, University of Utah, Salt Lake City, UT 841122, USA
| | - Stephen P. Goff
- Departments of Biochemistry and Molecular Biophysics, and Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Chameettachal A, Mustafa F, Rizvi TA. Understanding Retroviral Life Cycle and its Genomic RNA Packaging. J Mol Biol 2023; 435:167924. [PMID: 36535429 DOI: 10.1016/j.jmb.2022.167924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Members of the family Retroviridae are important animal and human pathogens. Being obligate parasites, their replication involves a series of steps during which the virus hijacks the cellular machinery. Additionally, many of the steps of retrovirus replication are unique among viruses, including reverse transcription, integration, and specific packaging of their genomic RNA (gRNA) as a dimer. Progress in retrovirology has helped identify several molecular mechanisms involved in each of these steps, but many are still unknown or remain controversial. This review summarizes our present understanding of the molecular mechanisms involved in various stages of retrovirus replication. Furthermore, it provides a comprehensive analysis of our current understanding of how different retroviruses package their gRNA into the assembling virions. RNA packaging in retroviruses holds a special interest because of the uniqueness of packaging a dimeric genome. Dimerization and packaging are highly regulated and interlinked events, critical for the virus to decide whether its unspliced RNA will be packaged as a "genome" or translated into proteins. Finally, some of the outstanding areas of exploration in the field of RNA packaging are highlighted, such as the role of epitranscriptomics, heterogeneity of transcript start sites, and the necessity of functional polyA sequences. An in-depth knowledge of mechanisms that interplay between viral and cellular factors during virus replication is critical in understanding not only the virus life cycle, but also its pathogenesis, and development of new antiretroviral compounds, vaccines, as well as retroviral-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates. https://twitter.com/chameettachal
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
14
|
Katanski CD, Alshammary H, Watkins CP, Huang S, Gonzales-Reiche A, Sordillo EM, van Bakel H, Lolans K, Simon V, Pan T. tRNA abundance, modification and fragmentation in nasopharyngeal swabs as biomarkers for COVID-19 severity. Front Cell Dev Biol 2022; 10:999351. [PMID: 36393870 PMCID: PMC9664364 DOI: 10.3389/fcell.2022.999351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023] Open
Abstract
Emerging and re-emerging respiratory viruses can spread rapidly and cause pandemics as demonstrated by the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The early human immune responses to respiratory viruses are in the nasal cavity and nasopharyngeal regions. Defining biomarkers of disease trajectory at the time of a positive diagnostic test would be an important tool to facilitate decisions such as initiation of antiviral treatment. We hypothesize that nasopharyngeal tRNA profiles could be used to predict Coronavirus Disease 19 (COVID-19) severity. We carried out multiplex small RNA sequencing (MSR-seq) on residual nasopharyngeal swabs to measure simultaneously full-length tRNA abundance, tRNA modifications, and tRNA fragmentation for the human tRNA response to SARS-CoV-2 infection. We identified distinct tRNA signatures associated with mild symptoms versus severe COVID-19 manifestations requiring hospitalization. These results highlight the utility of host tRNA properties as biomarkers for the clinical outcome of SARS-CoV-2.
Collapse
Affiliation(s)
- Christopher D. Katanski
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christopher P. Watkins
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Sihao Huang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Ana Gonzales-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Karen Lolans
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
15
|
Cantara WA, Pathirage C, Hatterschide J, Olson ED, Musier-Forsyth K. Phosphomimetic S207D Lysyl-tRNA Synthetase Binds HIV-1 5'UTR in an Open Conformation and Increases RNA Dynamics. Viruses 2022; 14:1556. [PMID: 35891536 PMCID: PMC9315659 DOI: 10.3390/v14071556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023] Open
Abstract
Interactions between lysyl-tRNA synthetase (LysRS) and HIV-1 Gag facilitate selective packaging of the HIV-1 reverse transcription primer, tRNALys3. During HIV-1 infection, LysRS is phosphorylated at S207, released from a multi-aminoacyl-tRNA synthetase complex and packaged into progeny virions. LysRS is critical for proper targeting of tRNALys3 to the primer-binding site (PBS) by specifically binding a PBS-adjacent tRNA-like element (TLE), which promotes release of the tRNA proximal to the PBS. However, whether LysRS phosphorylation plays a role in this process remains unknown. Here, we used a combination of binding assays, RNA chemical probing, and small-angle X-ray scattering to show that both wild-type (WT) and a phosphomimetic S207D LysRS mutant bind similarly to the HIV-1 genomic RNA (gRNA) 5'UTR via direct interactions with the TLE and stem loop 1 (SL1) and have a modest preference for binding dimeric gRNA. Unlike WT, S207D LysRS bound in an open conformation and increased the dynamics of both the PBS region and SL1. A new working model is proposed wherein a dimeric phosphorylated LysRS/tRNA complex binds to a gRNA dimer to facilitate tRNA primer release and placement onto the PBS. Future anti-viral strategies that prevent this host factor-gRNA interaction are envisioned.
Collapse
Affiliation(s)
- William A. Cantara
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Chathuri Pathirage
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua Hatterschide
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Erik D. Olson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (C.P.); (J.H.); (E.D.O.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Meissner ME, Talledge N, Mansky LM. Molecular Biology and Diversification of Human Retroviruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:872599. [PMID: 35783361 PMCID: PMC9242851 DOI: 10.3389/fviro.2022.872599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies of retroviruses have led to many extraordinary discoveries that have advanced our understanding of not only human diseases, but also molecular biology as a whole. The most recognizable human retrovirus, human immunodeficiency virus type 1 (HIV-1), is the causative agent of the global AIDS epidemic and has been extensively studied. Other human retroviruses, such as human immunodeficiency virus type 2 (HIV-2) and human T-cell leukemia virus type 1 (HTLV-1), have received less attention, and many of the assumptions about the replication and biology of these viruses are based on knowledge of HIV-1. Existing comparative studies on human retroviruses, however, have revealed that key differences between these viruses exist that affect evolution, diversification, and potentially pathogenicity. In this review, we examine current insights on disparities in the replication of pathogenic human retroviruses, with a particular focus on the determinants of structural and genetic diversity amongst HIVs and HTLV.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| |
Collapse
|
17
|
Lu L, Li J, Wei R, Guidi I, Cozzuto L, Ponomarenko J, Prats-Ejarque G, Boix E. Selective cleavage of ncRNA and antiviral activity by RNase2/EDN in THP1-induced macrophages. Cell Mol Life Sci 2022; 79:209. [PMID: 35347428 PMCID: PMC8960563 DOI: 10.1007/s00018-022-04229-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
AbstractRNase2 is the member of the RNaseA family most abundant in macrophages. Here, we knocked out RNase2 in THP-1 cells and analysed the response to Respiratory Syncytial Virus (RSV). RSV induced RNase2 expression, which significantly enhanced cell survival. Next, by cP-RNAseq sequencing, which amplifies the cyclic-phosphate endonuclease products, we analysed the ncRNA population. Among the ncRNAs accumulated in WT vs KO cells, we found mostly tRNA-derived fragments (tRFs) and second miRNAs. Differential sequence coverage identified tRFs from only few parental tRNAs, revealing a predominant cleavage at anticodon and d-loops at U/C (B1) and A (B2) sites. Selective tRNA cleavage was confirmed in vitro using the recombinant protein. Likewise, only few miRNAs were significantly more abundant in WT vs RNase2-KO cells. Complementarily, by screening of a tRF & tiRNA array, we identified an enriched population associated to RNase2 expression and RSV exposure. The results confirm the protein antiviral action and provide the first evidence of its cleavage selectivity on ncRNAs.
Graphical abstract
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ranlei Wei
- National Frontier Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Irene Guidi
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Luca Cozzuto
- Bioinformatic Unit, Centre de Regulació Genòmica (CRG), Barcelona, Spain
| | - Julia Ponomarenko
- Bioinformatic Unit, Centre de Regulació Genòmica (CRG), Barcelona, Spain
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
18
|
Yang B, Fang L, Gao Q, Xu C, Xu J, Chen ZX, Wang Y, Yang P. Species-specific KRAB-ZFPs function as repressors of retroviruses by targeting PBS regions. Proc Natl Acad Sci U S A 2022; 119:e2119415119. [PMID: 35259018 PMCID: PMC8931336 DOI: 10.1073/pnas.2119415119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/01/2022] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic genomes harbor sequences derived from the chromosomal integration of ancient viruses, such as endogenous retroviruses (ERVs), which comprise 8% of the human genome. Like exogenous retroviruses, ERVs retain many common functional elements, including the corresponding DNA sequences of transfer RNA (tRNA) primer binding sites (PBSs), which are utilized for reverse transcription initiation by exogenous retroviruses. Here, through a medium-scale analysis of PBS loci positioned within ERVs, coupled with chromatin immunoprecipitation sequencing (ChIP-seq) of Kruppel-associated box zinc finger proteins (KRAB-ZFPs), we identified multiple ZFPs that specifically bind to different PBS loci. Among these, we focused on PBS-Lys, which is utilized by HIV-1, and identified its specific binding proteins to be mouse ZFP961 and human ZNF417/ZNF587. We found that these proteins not only repress ERV transcription but also inhibit retrovirus integration and transcription. Disruption of these ZFPs rendered cells more susceptible to HIV-1 infection. Thus, our research provides a methodology for identifying potential host factors that target retroviruses by ERVs.
Collapse
Affiliation(s)
- Bo Yang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lu Fang
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qianqian Gao
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ce Xu
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Junqin Xu
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhen-Xia Chen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yixuan Wang
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Peng Yang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
19
|
Skeparnias I, Zhang J. Cooperativity and Interdependency between RNA Structure and RNA-RNA Interactions. Noncoding RNA 2021; 7:ncrna7040081. [PMID: 34940761 PMCID: PMC8704770 DOI: 10.3390/ncrna7040081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Complex RNA–RNA interactions are increasingly known to play key roles in numerous biological processes from gene expression control to ribonucleoprotein granule formation. By contrast, the nature of these interactions and characteristics of their interfaces, especially those that involve partially or wholly structured RNAs, remain elusive. Herein, we discuss different modalities of RNA–RNA interactions with an emphasis on those that depend on secondary, tertiary, or quaternary structure. We dissect recently structurally elucidated RNA–RNA complexes including RNA triplexes, riboswitches, ribozymes, and reverse transcription complexes. These analyses highlight a reciprocal relationship that intimately links RNA structure formation with RNA–RNA interactions. The interactions not only shape and sculpt RNA structures but also are enabled and modulated by the structures they create. Understanding this two-way relationship between RNA structure and interactions provides mechanistic insights into the expanding repertoire of noncoding RNA functions, and may inform the design of novel therapeutics that target RNA structures or interactions.
Collapse
|
20
|
Qiu Z, Wang Q, Liu L, Li G, Hao Y, Ning S, Zhang L, Zhang X, Chen Y, Wu J, Wang X, Yang S, Lin Y, Xu S. Riddle of the Sphinx: Emerging Role of Transfer RNAs in Human Cancer. Front Pharmacol 2021; 12:794986. [PMID: 34975491 PMCID: PMC8714751 DOI: 10.3389/fphar.2021.794986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 01/16/2023] Open
Abstract
The dysregulation of transfer RNA (tRNA) expression contributes to the diversity of proteomics, heterogeneity of cell populations, and instability of the genome, which may be related to human cancer susceptibility. However, the relationship between tRNA dysregulation and cancer susceptibility remains elusive because the landscape of cancer-associated tRNAs has not been portrayed yet. Furthermore, the molecular mechanisms of tRNAs involved in tumorigenesis and cancer progression have not been systematically understood. In this review, we detail current knowledge of cancer-related tRNAs and comprehensively summarize the basic characteristics and functions of these tRNAs, with a special focus on their role and involvement in human cancer. This review bridges the gap between tRNAs and cancer and broadens our understanding of their relationship, thus providing new insights and strategies to improve the potential clinical applications of tRNAs for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yi Hao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yihai Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiale Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinheng Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yaoxin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
- *Correspondence: Yaoxin Lin, ; Shouping Xu,
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Yaoxin Lin, ; Shouping Xu,
| |
Collapse
|
21
|
Fukuda H, Chujo T, Wei FY, Shi SL, Hirayama M, Kaitsuka T, Yamamoto T, Oshiumi H, Tomizawa K. Cooperative methylation of human tRNA3Lys at positions A58 and U54 drives the early and late steps of HIV-1 replication. Nucleic Acids Res 2021; 49:11855-11867. [PMID: 34642752 PMCID: PMC8599865 DOI: 10.1093/nar/gkab879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Retroviral infection requires reverse transcription, and the reverse transcriptase (RT) uses cellular tRNA as its primer. In humans, the TRMT6-TRMT61A methyltransferase complex incorporates N1-methyladenosine modification at tRNA position 58 (m1A58); however, the role of m1A58 as an RT-stop site during retroviral infection has remained questionable. Here, we constructed TRMT6 mutant cells to determine the roles of m1A in HIV-1 infection. We confirmed that tRNA3Lys m1A58 was required for in vitro plus-strand strong-stop by RT. Accordingly, infectivity of VSV-G pseudotyped HIV-1 decreased when the virus contained m1A58-deficient tRNA3Lys instead of m1A58-modified tRNA3Lys. In TRMT6 mutant cells, the global protein synthesis rate was equivalent to that of wild-type cells. However, unexpectedly, plasmid-derived HIV-1 expression showed that TRMT6 mutant cells decreased accumulation of HIV-1 capsid, integrase, Tat, Gag, and GagPol proteins without reduction of HIV-1 RNAs in cells, and fewer viruses were produced. Moreover, the importance of 5,2′-O-dimethyluridine at U54 of tRNA3Lys as a second RT-stop site was supported by conservation of retroviral genome-tRNALys sequence-complementarity, and TRMT6 was required for efficient 5-methylation of U54. These findings illuminate the fundamental importance of tRNA m1A58 modification in both the early and late steps of HIV-1 replication, as well as in the cellular tRNA modification network.
Collapse
Affiliation(s)
- Hiroyuki Fukuda
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan.,Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Sheng-Lan Shi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Mayumi Hirayama
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan.,School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka 831-8501, Japan
| | - Takahiro Yamamoto
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| |
Collapse
|
22
|
Interplay between Host tRNAs and HIV-1: A Structural Perspective. Viruses 2021; 13:v13091819. [PMID: 34578400 PMCID: PMC8473020 DOI: 10.3390/v13091819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022] Open
Abstract
The cellular metabolism of host tRNAs and life cycle of HIV-1 cross paths at several key virus-host interfaces. Emerging data suggest a multi-faceted interplay between host tRNAs and HIV-1 that plays essential roles, both structural and regulatory, in viral genome replication, genome packaging, and virion biogenesis. HIV-1 not only hijacks host tRNAs and transforms them into obligatory reverse transcription primers but further commandeers tRNAs to regulate the localization of its major structural protein, Gag, via a specific interface. This review highlights recent advances in understanding tRNA-HIV-1 interactions, primarily from a structural perspective, which start to elucidate their underlying molecular mechanisms, intrinsic specificities, and biological significances. Such understanding may provide new avenues toward developing HIV/AIDS treatments and therapeutics including small molecules and RNA biologics that target these host-virus interfaces.
Collapse
|
23
|
Chameettachal A, Vivet-Boudou V, Pitchai F, Pillai V, Ali L, Krishnan A, Bernacchi S, Mustafa F, Marquet R, Rizvi T. A purine loop and the primer binding site are critical for the selective encapsidation of mouse mammary tumor virus genomic RNA by Pr77Gag. Nucleic Acids Res 2021; 49:4668-4688. [PMID: 33836091 PMCID: PMC8096270 DOI: 10.1093/nar/gkab223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
Retroviral RNA genome (gRNA) harbors cis-acting sequences that facilitate its specific packaging from a pool of other viral and cellular RNAs by binding with high-affinity to the viral Gag protein during virus assembly. However, the molecular intricacies involved during selective gRNA packaging are poorly understood. Binding and footprinting assays on mouse mammary tumor virus (MMTV) gRNA with purified Pr77Gag along with in cell gRNA packaging study identified two Pr77Gag binding sites constituting critical, non-redundant packaging signals. These included: a purine loop in a bifurcated stem-loop containing the gRNA dimerization initiation site, and the primer binding site (PBS). Despite these sites being present on both unspliced and spliced RNAs, Pr77Gag specifically bound to unspliced RNA, since only that could adopt the native bifurcated stem-loop structure containing looped purines. These results map minimum structural elements required to initiate MMTV gRNA packaging, distinguishing features that are conserved amongst divergent retroviruses from those perhaps unique to MMTV. Unlike purine-rich motifs frequently associated with packaging signals, direct involvement of PBS in gRNA packaging has not been documented in retroviruses. These results enhance our understanding of retroviral gRNA packaging/assembly, making it not only a target for novel therapeutic interventions, but also development of safer gene therapy vectors.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Strasbourg, France
| | - Fathima Nuzra Nagoor Pitchai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Anjana Krishnan
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Strasbourg, France
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Strasbourg, France
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates
| |
Collapse
|
24
|
The "missing heritability"-Problem in psychiatry: Is the interaction of genetics, epigenetics and transposable elements a potential solution? Neurosci Biobehav Rev 2021; 126:23-42. [PMID: 33757815 DOI: 10.1016/j.neubiorev.2021.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders exhibit an enormous burden on the health care systems worldwide accounting for around one-third of years lost due to disability among adults. Their etiology is largely unknown and diagnostic classification is based on symptomatology and course of illness and not on objective biomarkers. Most psychiatric disorders are moderately to highly heritable. However, it is still unknown what mechanisms may explain the discrepancy between heritability estimates and the present data from genetic analysis. In addition to genetic differences also epigenetic modifications are considered as potentially relevant in the transfer of susceptibility to psychiatric diseases. Though, whether or not epigenetic alterations can be inherited for many generations is highly controversial. In the present article, we will critically summarize both the genetic findings and the results from epigenetic analyses, including also those of noncoding RNAs. We will argue that one possible solution to the "missing heritability" problem in psychiatry is a potential role of retrotransposons, the exploration of which is presently only in its beginnings.
Collapse
|
25
|
Dicker K, Järvelin AI, Garcia-Moreno M, Castello A. The importance of virion-incorporated cellular RNA-Binding Proteins in viral particle assembly and infectivity. Semin Cell Dev Biol 2021; 111:108-118. [PMID: 32921578 PMCID: PMC7482619 DOI: 10.1016/j.semcdb.2020.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
RNA is a central molecule in RNA virus biology due to its dual function as messenger and genome. However, the small number of proteins encoded by viral genomes is insufficient to enable virus infection. Hence, viruses hijack cellular RNA-binding proteins (RBPs) to aid replication and spread. In this review we discuss the 'knowns' and 'unknowns' regarding the contribution of host RBPs to the formation of viral particles and the initial steps of infection in the newly infected cell. Through comparison of the virion proteomes of ten different human RNA viruses, we confirm that a pool of cellular RBPs are typically incorporated into viral particles. We describe here illustrative examples supporting the important functions of these RBPs in viral particle formation and infectivity and we propose that the role of host RBPs in these steps can be broader than previously anticipated. Understanding how cellular RBPs regulate virus infection can lead to the discovery of novel therapeutic targets against viruses.
Collapse
Affiliation(s)
- Kate Dicker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK; MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
26
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
27
|
Knoener R, Evans E, Becker JT, Scalf M, Benner B, Sherer NM, Smith LM. Identification of host proteins differentially associated with HIV-1 RNA splice variants. eLife 2021; 10:e62470. [PMID: 33629952 PMCID: PMC7906601 DOI: 10.7554/elife.62470] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
HIV-1 generates unspliced (US), partially spliced (PS), and completely spliced (CS) classes of RNAs, each playing distinct roles in viral replication. Elucidating their host protein 'interactomes' is crucial to understanding virus-host interplay. Here, we present HyPR-MSSV for isolation of US, PS, and CS transcripts from a single population of infected CD4+ T-cells and mass spectrometric identification of their in vivo protein interactomes. Analysis revealed 212 proteins differentially associated with the unique RNA classes, including preferential association of regulators of RNA stability with US and PS transcripts and, unexpectedly, mitochondria-linked proteins with US transcripts. Remarkably, >80 of these factors screened by siRNA knockdown impacted HIV-1 gene expression. Fluorescence microscopy confirmed several to co-localize with HIV-1 US RNA and exhibit changes in abundance and/or localization over the course of infection. This study validates HyPR-MSSV for discovery of viral splice variant protein interactomes and provides an unprecedented resource of factors and pathways likely important to HIV-1 replication.
Collapse
Affiliation(s)
- Rachel Knoener
- Department of Chemistry, University of WisconsinMadisonUnited States
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Edward Evans
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Jordan T Becker
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Mark Scalf
- Department of Chemistry, University of WisconsinMadisonUnited States
| | - Bayleigh Benner
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Lloyd M Smith
- Department of Chemistry, University of WisconsinMadisonUnited States
| |
Collapse
|
28
|
Shen Y, Yu X, Ruan Y, Li Z, Xie Y, Yan Z, Guo J. Global profile of tRNA-derived small RNAs in gastric cancer patient plasma and identification of tRF-33-P4R8YP9LON4VDP as a new tumor suppressor. Int J Med Sci 2021; 18:1570-1579. [PMID: 33746573 PMCID: PMC7976566 DOI: 10.7150/ijms.53220] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/17/2021] [Indexed: 12/14/2022] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) have been found to play important roles in the occurrence and development of cancers. However, the tsRNA profile in gastric cancer is unknown. In this study, we aimed to identify the global tsRNA profile in plasma from gastric cancer patients and elucidate the role of tRF-33-P4R8YP9LON4VDP in gastric cancer. Differentially expressed tsRNAs in the plasma of gastric cancer patients and healthy controls were investigated using RNA sequencing. The expression levels of tRF-33-P4R8YP9LON4VDP in the plasma of gastric cancer patients, healthy controls and gastric cancer cell lines were first detected by quantitative reverse transcription-polymerase chain reaction. The effects of tRF-33-P4R8YP9LON4VDP overexpression or downregulation in gastric cancer cells on proliferation, migration, apoptosis, and cell cycle were analyzed using the Cell Counting Kit-8, scratch assay, Transwell assay, and flow cytometry, respectively. There were 21 upregulated and 46 downregulated tsRNAs found in plasma from gastric cancer patients. The significantly upregulated tsRNAs included tRF-18-S3M83004, tRF-31-PNR8YP9LON4VD, tRF-19-3L7L73JD, tRF-33-P4R8YP9LON4VDP, tRF-31-PER8YP9LON4VD, tRF-18-MBQ4NKDJ, and tRF-31-PIR8YP9LON4VD. The significantly downregulated tsRNAs included tRF-41-YDLBRY73W0K5KKOVD, tRF-18-07QSNHD2, tRF-28-86J8WPMN1E0J, tRF-29-86V8WPMN1EJ3, tRF-31-6978WPRLXN4VE, tRF-30-MIF91SS2P46I, tRF-26-MI7O3B1NR8E, tRF-30-RRJ89O9NF5W8, tRF-26-XIP2801MK8E, and tRF-35-V0J8O9YEKPRS93, In vitro studies showed that tRF-33-P4R8YP9LON4VDP inhibited proliferation of gastric cancer cells. In conclusion, tsRNAs such as tRF-33-P4R8YP9LON4VDP could serve as a novel diagnostic biomarker and target for gastric cancer therapeutics.
Collapse
Affiliation(s)
- Yijing Shen
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.,Ningbo No. 1 Hospital Affiliated to Ningbo University School of Medicine
| | - Yao Ruan
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Zhe Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Zhilong Yan
- Ningbo No. 1 Hospital Affiliated to Ningbo University School of Medicine
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
29
|
Abstract
As one of the most abundant and conserved RNA species, transfer RNAs (tRNAs) are well known for their role in reading the codons on messenger RNAs and translating them into proteins. In this review, we discuss the noncanonical functions of tRNAs. These include tRNAs as precursors to novel small RNA molecules derived from tRNAs, also called tRNA-derived fragments, that are abundant across species and have diverse functions in different biological processes, including regulating protein translation, Argonaute-dependent gene silencing, and more. Furthermore, the role of tRNAs in biosynthesis and other regulatory pathways, including nutrient sensing, splicing, transcription, retroelement regulation, immune response, and apoptosis, is reviewed. Genome organization and sequence variation of tRNA genes are also discussed in light of their noncanonical functions. Lastly, we discuss the recent applications of tRNAs in genome editing and microbiome sequencing.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| |
Collapse
|
30
|
Liu S, Refaei M, Liu S, Decker A, Hinerman JM, Herr AB, Howell M, Musier-Forsyth K, Tsang P. Hairpin RNA-induced conformational change of a eukaryotic-specific lysyl-tRNA synthetase extension and role of adjacent anticodon-binding domain. J Biol Chem 2020; 295:12071-12085. [PMID: 32611767 PMCID: PMC7443506 DOI: 10.1074/jbc.ra120.013852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/26/2020] [Indexed: 11/06/2022] Open
Abstract
Human lysyl-tRNA synthetase (hLysRS) is essential for aminoacylation of tRNALys Higher eukaryotic LysRSs possess an N-terminal extension (Nterm) previously shown to facilitate high-affinity tRNA binding and aminoacylation. This eukaryote-specific appended domain also plays a critical role in hLysRS nuclear localization, thus facilitating noncanonical functions of hLysRS. The structure is intrinsically disordered and therefore remains poorly characterized. Findings of previous studies are consistent with the Nterm domain undergoing a conformational transition to an ordered structure upon nucleic acid binding. In this study, we used NMR to investigate how the type of RNA, as well as the presence of the adjacent anticodon-binding domain (ACB), influences the Nterm conformation. To explore the latter, we used sortase A ligation to produce a segmentally labeled tandem-domain protein, Nterm-ACB. In the absence of RNA, Nterm remained disordered regardless of ACB attachment. Both alone and when attached to ACB, Nterm structure remained unaffected by titration with single-stranded RNAs. The central region of the Nterm domain adopted α-helical structure upon titration of Nterm and Nterm-ACB with RNA hairpins containing double-stranded regions. Nterm binding to the RNA hairpins resulted in CD spectral shifts consistent with an induced helical structure. NMR and fluorescence anisotropy revealed that Nterm binding to hairpin RNAs is weak but that the binding affinity increases significantly upon covalent attachment to ACB. We conclude that the ACB domain facilitates induced-fit conformational changes and confers high-affinity RNA hairpin binding, which may be advantageous for functional interactions of LysRS with a variety of different binding partners.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Maryanne Refaei
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shuohui Liu
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Aaron Decker
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jennifer M. Hinerman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrew B. Herr
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mike Howell
- Protein Express, Inc., Cincinnati, Ohio, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Pearl Tsang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
31
|
Cullen H, Schorn AJ. Endogenous Retroviruses Walk a Fine Line between Priming and Silencing. Viruses 2020; 12:v12080792. [PMID: 32718022 PMCID: PMC7472051 DOI: 10.3390/v12080792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
Endogenous retroviruses (ERVs) in mammals are closely related to infectious retroviruses and utilize host tRNAs as a primer for reverse transcription and replication, a hallmark of long terminal repeat (LTR) retroelements. Their dependency on tRNA makes these elements vulnerable to targeting by small RNAs derived from the 3′-end of mature tRNAs (3′-tRFs), which are highly expressed during epigenetic reprogramming and potentially protect many tissues in eukaryotes. Here, we review some key functions of ERV reprogramming during mouse and human development and discuss how small RNA-mediated silencing maintains genome stability when ERVs are temporarily released from heterochromatin repression. In particular, we take a closer look at the tRNA primer binding sites (PBS) of two highly active ERV families in mice and their sequence variation that is shaped by the conflict of successful tRNA priming for replication versus evasion of silencing by 3′-tRFs.
Collapse
|
32
|
Nunes A, Ribeiro DR, Marques M, Santos MAS, Ribeiro D, Soares AR. Emerging Roles of tRNAs in RNA Virus Infections. Trends Biochem Sci 2020; 45:794-805. [PMID: 32505636 DOI: 10.1016/j.tibs.2020.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Viruses rely on the host cell translation machinery for efficient synthesis of their own proteins. Emerging evidence highlights different roles for host transfer RNAs (tRNAs) in the process of virus replication. For instance, different RNA viruses manipulate host tRNA pools to favor viral protein translation. Interestingly, specific host tRNAs are used as reverse transcription primers and are packaged into retroviral virions. Recent data also demonstrate the formation of tRNA-derived fragments (tRFs) upon infection to facilitate viral replication. Here, we comprehensively discuss how RNA viruses exploit distinct aspects of the host tRNA biology for their benefit. In light of the recent advances in the field, we propose that host tRNA-related pathways and mechanisms represent promising cellular targets for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Alexandre Nunes
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Diana Roberta Ribeiro
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mariana Marques
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Manuel A S Santos
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Ana Raquel Soares
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
33
|
Musier-Forsyth K. Aminoacyl-tRNA synthetases and tRNAs in human disease: an introduction to the JBC Reviews thematic series. J Biol Chem 2019; 294:5292-5293. [PMID: 30799306 DOI: 10.1074/jbc.rev119.007721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to cognate tRNAs for use in protein synthesis. This historical function of ARSs and tRNAs is fairly well understood. However, ARSs and tRNAs also perform noncanonical functions that are continuing to be unveiled at a rapid pace. The expanded functions of these essential molecules of life range from roles in retroviral replication to stimulation of mammalian target of rapamycin (mTOR) activity; DNA repair, splicing, and transcriptional and translational regulation; and other aspects of cellular homeostasis. Furthermore, mutations in tRNAs and synthetases are known to drive human maladies, such as the neurodegenerative disorder Charcot-Marie-Tooth disease along with other central nervous system dysfunctions and cancer. This series of reviews focuses on the diseases that result from natural variations in human cytoplasmic tRNAs, as well as from mutations in mitochondrial tRNAs and ARSs. Ultimately, the exciting work in this rapidly emerging area may lead to new therapies for microbial and parasitic infections, cancer, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Karin Musier-Forsyth
- From the Department of Chemistry and Biochemistry, Center for RNA Biology, and Center for Retroviral Research, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|