1
|
Nunes LGA, Ma C, Pitts MW, Hoffmann PR. Insights from selenoprotein I mouse models for understanding biological roles of this enzyme. Arch Biochem Biophys 2025; 768:110394. [PMID: 40107406 PMCID: PMC11994276 DOI: 10.1016/j.abb.2025.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Selenoprotein I (selenoi) is a metabolic enzyme expressed in a wide variety of tissues that catalyzes the transfer of the ethanolamine phosphate group from CDP-ethanolamine to lipid acceptors to generate ethanolamine phospholipids. It is a member of the selenoprotein family, a class of proteins that mostly play fundamental roles in redox homeostasis and are defined by the co-translational incorporation of selenium in the form of selenocysteine. Loss-of-function mutations in the human SELENOI gene have been found in rare cases leading to a complex form of hereditary spastic paraplegia. Understanding the roles of this selenoprotein and its phospholipid products in different cell types has benefited from the development of mouse models. In particular, global and conditional knockout (KO) of the Selenoi gene in mice has enabled a more complete picture to emerge of how this important selenoprotein is integrated into metabolic pathways. These data have revealed how Selenoi loss-of-function affects embryogenesis, neurodevelopment, the immune system and liver physiology. This review summarizes the insights gained through mouse model experiments and the current understanding the different physiological roles played by this selenoprotein.
Collapse
Affiliation(s)
- Lance G A Nunes
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
2
|
Vanherle S, Loix M, Miron VE, Hendriks JJA, Bogie JFJ. Lipid metabolism, remodelling and intercellular transfer in the CNS. Nat Rev Neurosci 2025; 26:214-231. [PMID: 39972160 DOI: 10.1038/s41583-025-00908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 02/21/2025]
Abstract
Lipid metabolism encompasses the catabolism and anabolism of lipids, and is fundamental for the maintenance of cellular homeostasis, particularly within the lipid-rich CNS. Increasing evidence further underscores the importance of lipid remodelling and transfer within and between glial cells and neurons as key orchestrators of CNS lipid homeostasis. In this Review, we summarize and discuss the complex landscape of processes involved in lipid metabolism, remodelling and intercellular transfer in the CNS. Highlighted are key pathways, including those mediating lipid (and lipid droplet) biogenesis and breakdown, lipid oxidation and phospholipid metabolism, as well as cell-cell lipid transfer mediated via lipoproteins, extracellular vesicles and tunnelling nanotubes. We further explore how the dysregulation of these pathways contributes to the onset and progression of neurodegenerative diseases, and examine the homeostatic and pathogenic impacts of environment, diet and lifestyle on CNS lipid metabolism.
Collapse
Affiliation(s)
- Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Veronique E Miron
- Keenan Research Centre for Biomedical Science and Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
- University MS Centre, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
3
|
Sarwar S, Randall G. HCV NS3/4A protease relocalizes CCTα to viral replication sites, enhancing phosphatidylcholine synthesis and viral replication. Proc Natl Acad Sci U S A 2025; 122:e2419632122. [PMID: 40042907 PMCID: PMC11912369 DOI: 10.1073/pnas.2419632122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
Positive-sense single-stranded RNA [(+)RNA] viruses constitute more than one-third of all virus genera, including numerous pathogens of clinical significance. All (+)RNA viruses reorganize cellular membranes from organelles to establish replication compartments (RCs). These RCs are thought to form a platform for membrane-associated replicases, in addition to protecting the viral RNAs from cytosolic innate immune signaling and RNA-degradation machinery. Previous work demonstrated that three families of (+)RNA viruses, namely Bromoviridae, Picornaviridae, and Flaviviridae, commonly induce the accumulation of phosphatidylcholine (PC) at their RCs. This phenomenon suggests a potential avenue for a broad-spectrum antiviral strategy targeting PC metabolism. Our study elucidates three key observations: i) hepatitis C virus (HCV) infection prompts the relocalization of CCTα, the rate-limiting enzyme in PC synthesis, to the RCs; ii) the enhancement of PC synthesis is contingent upon the protease activity of the NS3/4A protein; and iii) utilizing click chemistry, we demonstrate that HCV infection stimulates de novo PC synthesis at the viral replication site through the Kennedy pathway. These findings provide significant insights into the manipulation of lipid metabolism by HCV during RC formation, a mechanism likely conserved across various (+)RNA virus families.
Collapse
Affiliation(s)
- Shamila Sarwar
- Department of Microbiology, The University of Chicago, Chicago, IL60637
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, IL60637
| |
Collapse
|
4
|
Park S, Jin Y, Chisholm AD. Context-specific interaction of the lipid regulator DIP-2 with phospholipid synthesis in axon regeneration and maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636954. [PMID: 39974891 PMCID: PMC11839101 DOI: 10.1101/2025.02.06.636954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neurons maintain their morphology over prolonged periods of adult life with limited regeneration after injury. C. elegans DIP-2 is a conserved regulator of lipid metabolism that affects axon maintenance and regeneration after injury. Here, we investigated genetic interactions of dip-2 with mutants in genes involved in lipid biosynthesis and identified roles of phospholipids in axon regrowth and maintenance. CEPT-2 and EPT-1 are enzymes catalyzing the final steps in the de novo phospholipid synthesis (Kennedy) pathway. Loss of function mutants of cept-2 or ept-1 show reduced axon regrowth and failure to maintain axon morphology. We demonstrate that CEPT-2 is cell-autonomously required to prevent age-related axonal defects. Interestingly, loss of function in dip-2 led to suppression of the axon regrowth phenotype observed in either cept-2 or ept-2 mutants, suggesting that DIP-2 acts to counterbalance phospholipid synthesis. Our findings reveal the genetic regulation of lipid metabolism to be critical for axon maintenance under injury and during aging. Article Summary Little is known about how adult neurons live long with limited regenerative capacity. This study investigates the role of lipid metabolism in sustaining neuronal health in C. elegans. Mutating phospholipid synthetic genes impairs axon regrowth after injury. Lack of DIP-2, a lipid regulator, restores regrowth, suggesting DIP-2 counterbalances phospholipid synthesis. Moreover, neuronal phospholipid synthesis is essential for preventing age-dependent axonal defects. These findings reveal phospholipid biosynthesis is key to axon integrity during aging and injury. As lipid metabolism is implicated in neurological disorders, this study serves as an entry point into investigating neuronal lipid biology under various conditions.
Collapse
|
5
|
Nobre I, Guerra IMS, Pinho M, Martins AD, Goracci L, Bonciarelli S, Melo T, Domingues P, Paiva A, Oliveira PF, Domingues MR. Unmasking the lipid landscape: carbamazepine induces alterations in Leydig cell lipidome. Mol Omics 2025. [PMID: 39903100 DOI: 10.1039/d4mo00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Leydig cells rely on lipids and fatty acids (FA) for essential functions like maintaining structural integrity, energy metabolism, and steroid hormone synthesis, including testosterone production. Carbamazepine (CBZ), a common anticonvulsant medication, can influence lipid metabolism and profiles, potentially impacting Leydig cell function and testosterone levels. Understanding this interplay is crucial to optimize treatment strategies for individuals requiring CBZ therapy while mitigating any adverse effects on male reproductive health. This study focuses on evaluating the effects of selected CBZ concentrations on the lipid homeostasis of BLTK-1 murine Leydig cells. By employing liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS), we aimed to uncover the specific changes in lipid profiles induced by CBZ exposure (25 and 200 μM). FA analysis demonstrated a significant decrease in FA 22:6 n-3 with increasing CBZ concentration and an increase in the n-6/n-3 ratio. Furthermore, changes in the lipidome, particularly in lipid species belonging to phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylglycerol (PG), and sphingomyelin (SM) classes were observed. PE and PC lipid species were significantly elevated in Leydig cells exposed to 200 μM CBZ, whereas PG and SM species were downregulated. CBZ treatment significantly altered the Leydig cell phospholipidome, suggesting specific phospholipids such as PG 40:4, PG 34:1, PC O-32:1, PC 32:2, and PE P-38:6, which exhibited the lowest p-values, as potential biomarkers for clinical assessment of CBZ's impact on Leydig cells. These findings underscore the intricate relationship between CBZ exposure and alterations in lipid profiles, offering potential insights for monitoring and mitigating the drug's effects on male reproductive health.
Collapse
Affiliation(s)
- Inês Nobre
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Serviço Patologia Clínica, ULS Coimbra, 3004-561 Coimbra, Portugal
| | - Inês M S Guerra
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Marisa Pinho
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Ana D Martins
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | | - Tânia Melo
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), 3004-561 Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-370 Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, ESTESC - Coimbra Health School, Instituto Politécnico de Coimbra, 3046-854 Coimbra, Portugal
| | - Pedro F Oliveira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Rosário Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Kenny TC, Scharenberg S, Abu-Remaileh M, Birsoy K. Cellular and organismal function of choline metabolism. Nat Metab 2025; 7:35-52. [PMID: 39779890 PMCID: PMC11990872 DOI: 10.1038/s42255-024-01203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation. Consistent with its pleiotropic role in cellular physiology, choline metabolism contributes to numerous developmental and physiological processes in the brain, liver, kidney, lung and immune system, and both choline deficiency and excess are implicated in human disease. Mutations in the genes encoding choline metabolism proteins lead to inborn errors of metabolism, which manifest in diverse clinical pathologies. While the identities of many enzymes involved in choline metabolism were identified decades ago, only recently has the field begun to understand the diverse mechanisms by which choline availability is regulated and fuelled via metabolite transport/recycling and nutrient acquisition. This review provides a comprehensive overview of choline metabolism, emphasizing emerging concepts and their implications for human health and disease.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Samantha Scharenberg
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University, Stanford, CA, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
7
|
Khan TJ, Semenkovich CF, Zayed MA. De novo lipid synthesis in cardiovascular tissue and disease. Atherosclerosis 2025; 400:119066. [PMID: 39616863 DOI: 10.1016/j.atherosclerosis.2024.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Most tissues have the capacity for endogenous lipid synthesis. A crucial foundational pathway for lipid synthesis is de novo lipid synthesis (DNL), a ubiquitous and complex metabolic process that occurs at high levels in the liver, adipose and brain tissue. Under normal physiological conditions, DNL is vital in converting excess carbohydrates into fatty acids. DNL is linked to other pathways, including the endogenous synthesis of phospholipids and sphingolipids. However, abnormal lipid synthesis can contribute to various pathologies and clinical conditions. Experimental studies involving dietary restriction and in vivo genetic modifications provide compelling evidence demonstrating the significance of lipid synthesis in maintaining normal cardiovascular tissue function. Similarly, clinical investigations suggest altered lipid synthesis can harm cardiac and arterial tissues, thereby influencing cardiovascular disease (CVD) development and progression. Consequently, there is increased interest in exploring pharmacological interventions that target lipid synthesis metabolic pathways as potential strategies to alleviate CVD. Here we review the physiological and pathological impact of endogenous lipid synthesis and its implications for CVD. Since lipid synthesis can be targeted pharmacologically, enhancing our understanding of the molecular and biochemical mechanisms underlying lipid generation and cardiovascular function may prompt new insights into CVD and its treatment.
Collapse
Affiliation(s)
- Tariq J Khan
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Clay F Semenkovich
- Washington University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, St. Louis, MO, USA; Washington University School of Medicine, Department of Cell Biology and Physiology, St. Louis, MO, USA
| | - Mohamed A Zayed
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA; Washington University School of Medicine, Department of Surgery, Division of Surgical Sciences, St. Louis, MO, USA; Washington University School of Medicine, Department of Radiology, St. Louis, MO, USA; Washington University School of Medicine, Division of Molecular Cell Biology, St. Louis, MO, USA; Washington University, McKelvey School of Engineering, Department of Biomedical Engineering, St. Louis, MO, USA; Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
| |
Collapse
|
8
|
Li YC, Cheng ML. Carvedilol Confers Ferroptosis Resistance in HL-1 Cells by Upregulating GPX4, FTH1, and FTL1 and Inducing Metabolic Remodeling Under Hypoxia/Reoxygenation. Antioxidants (Basel) 2024; 14:7. [PMID: 39857341 PMCID: PMC11762394 DOI: 10.3390/antiox14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Hypoxia/reoxygenation (HR) often occurs under cardiac pathological conditions, and HR-induced oxidative stress usually leads to cardiomyocyte damage. Carvedilol, a non-selective β-blocker, is used clinically to treat cardiac ischemia diseases. Moreover, Carvedilol has also been reported to have an antioxidant ability by reducing lipid peroxidation. However, the mechanism of Carvedilol to inhibit lipid peroxidation is still elusive. To explore the protective mechanism of Carvedilol to resist lipid peroxidation on cardiomyocytes, HL-1 cells were cultured under normoxia, hypoxia, and HR and treated with Carvedilol to investigate the alteration on metabolism, protein expression, and mRNA level to explain its oxidative mechanism. The study found that Carvedilol upregulated glutathione peroxidase 4 (GPX4) protein expression to resist HR-induced lipid peroxidation by metabolic remodeling under HR. Also, Carvedilol promoted ferroptosis-related genes, ferritin heavy chain 1 (FTH1) and ferritin light chain 1 (FTL1) mRNA levels, to reduce lipid peroxidation under both hypoxia and HR. In conclusion, our study explores a mechanism by which Carvedilol inhibits ferroptosis by upregulating GPX4, FTH1, and FTL1 levels to downregulate lipid peroxidation under HR. The study provides a potential strategy for using Carvedilol in clinical applications, inspiring further research and development in the area of heart diseases.
Collapse
Affiliation(s)
- Yi-Chin Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Mei-Ling Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
9
|
Su YT, Chang WC, Chen L, Yu YC, Lin WJ, Lin JY, Cheng WC, Yang JC, Hung YC, Ma WL. Ether-Linked Glycerophospholipids Are Potential Chemo-Desensitisers and Are Associated With Overall Survival in Carcinoma Patients. J Cell Mol Med 2024; 28:e70277. [PMID: 39700026 DOI: 10.1111/jcmm.70277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/03/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Lipid reprogramming in carcinoma is reported to have a role in carcinogenesis, prognosis and therapy response. The lipid reprogramming could be contributed by either autonomous or nonautonomous resources. Since the nonautonomous lipid resources contributed by lipoproteins and their receptors have been reported in epithelial ovarian cancer (EOC), the impact of autonomous lipid metabolites was unknown. This report revealed a unique lipid class, ether-linked phosphatidyl-ethanolamine (PE O-), which enhances chemo-insensitivity and progression in EOC and potentially cross carcinomas. Analysis of CCLEC/GDSCC database and in-house cell line lipidomes identified PE O- as the major lipid associated with cisplatin/paclitaxel sensitivity. In the testing of PE O- effect on cancer phenotypes, it enhanced cell growth, migratory activities and promoted cisplatin/paclitaxel insensitivity. In addition, treating AGPS inhibitor-sensitised chemo-cytotoxic upon cisplatin/paclitaxel treatments. Treating PE O- could reverse AGPS inhibitor chemosensitisation effect on EOC cells. At last, using TCGA-EOC transcriptome database, the PE O- related gene expressions were positive correlated with patient prognosis in general, or in whom were treated with platin- or taxel-based chemotherapies. The expressions of genes for the synthesis of PE O- aggravates therapy response in EOC patients. PE O- facilitates human carcinoma cell line growth, mobility and chemo-insensitivity.
Collapse
Affiliation(s)
- Yu-Ting Su
- Graduate Institute of Biomedical Sciences, Program for MD/PhD, Research Center for Cancer Biology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chun Chang
- Graduate Institute of Biomedical Sciences, Program for MD/PhD, Research Center for Cancer Biology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Lumin Chen
- Department of Obstetrics and Gynecology, China Medical University Hospital Hsinchu Branch, Hsinchu County, Taiwan
| | - Ying-Chun Yu
- Graduate Institute of Biomedical Sciences, Program for MD/PhD, Research Center for Cancer Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Jen Lin
- Graduate Institute of Biomedical Sciences, Program for MD/PhD, Research Center for Cancer Biology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jheng-You Lin
- Graduate Institute of Biomedical Sciences, Program for MD/PhD, Research Center for Cancer Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, Program for MD/PhD, Research Center for Cancer Biology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Juan-Cheng Yang
- Department of Obstetrics and Gynecology, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yao-Ching Hung
- Department of Obstetrics and Gynecology, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung, Taiwan
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, Program for MD/PhD, Research Center for Cancer Biology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Jiang X, Hong X, Wang Z, Liu J, Zhong H, Ren J, Zhou B. Phospholipid biosynthesis regulation for improving pigment production by Monascus in response to ammonium chloride stress. Appl Environ Microbiol 2024; 90:e0114624. [PMID: 39287399 PMCID: PMC11497785 DOI: 10.1128/aem.01146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
In the actual industrial production process, the efficient biosynthesis and secretion of Monascus pigments (MPs) tend to take place under abiotic stresses, which often result in an imbalance of cell homeostasis. The present study aimed to thoroughly describe the changes in lipid profiles in Monascus purpureus by absolute quantitative lipidomics and tandem mass tag-based quantitative proteomics. The results showed that ammonium chloride stress (15 g/L) increased MP production while inhibiting ergosterol biosynthesis, leading to an imbalance in membrane lipid homeostasis in Monascus. In response to the imbalance of lipid homeostasis, the regulation mechanism of phospholipids in Monascus was implemented, including the inhibition of lysophospholipids production, maintenance of the ratio of PC/PE, and improvement of the biosynthesis of phosphatidylglycerol, phosphatidylserine, and cardiolipin with high saturated and long carbon chain fatty acids through the CDP-DG pathway rather than the Kennedy pathway. The inhibition of lysophospholipid biosynthesis was attributed to the upregulated expression of protein and its gene related to lysophospholipase NTE1, while maintenance of the PC/PE ratio was achieved by the upregulated expression of protein and its gene related to CTP: phosphoethanolamine cytidylyltransferase and phosphatidylethanolamine N-methyltransferase in the Kennedy pathway. These findings provide insights into the regulation mechanism of MP biosynthesis from new perspectives.IMPORTANCEMonascus is important in food microbiology as it produces natural colorants known as Monascus pigments (MPs). The industrial production of MPs has been achieved by liquid fermentation, in which the nitrogen source (especially ammonium chloride) is a key nutritional parameter. Previous studies have investigated the regulatory mechanisms of substance and energy metabolism, as well as the cross-protective mechanisms in Monascus in response to ammonium chloride stress. Our research in this work demonstrated that ammonium chloride stress also caused an imbalance of membrane lipid homeostasis in Monascus due to the inhibition of ergosterol biosynthesis. We found that the regulation mechanism of phospholipids in Monascus was implemented, including inhibition of lysophospholipids production, maintenance of the ratio of PC/PE, and improvement of biosynthesis of phosphatidylglycerol, phosphatidylserine, and cardiolipin with high saturated and long carbon chain fatty acids through the CDP-DG pathway. These findings further refine the regulatory mechanisms of MP production and secretion.
Collapse
Affiliation(s)
- Xiaofei Jiang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xiya Hong
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhulin Wang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jun Liu
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Haiyan Zhong
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Bo Zhou
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Changsha, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
11
|
Meyer C, Hertig D, Arnold J, Urzi C, Kurth S, Mayr JA, Schaller A, Vermathen P, Nuoffer JM. Complex I, V, and MDH2 deficient human skin fibroblasts reveal distinct metabolic signatures by 1 H HR-MAS NMR. J Inherit Metab Dis 2024; 47:270-279. [PMID: 38084664 DOI: 10.1002/jimd.12696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023]
Abstract
In this study, we investigated the metabolic signatures of different mitochondrial defects (two different complex I and complex V, and the one MDH2 defect) in human skin fibroblasts (HSF). We hypothesized that using a selective culture medium would cause defect specific adaptation of the metabolome and further our understanding of the biochemical implications for the studied defects. All cells were cultivated under galactose stress condition and compared to glucose-based cell culture condition. We investigated the bioenergetic profile using Seahorse XFe96 cell analyzer and assessed the extracellular metabolic footprints and the intracellular metabolic fingerprints using NMR. The galactose-based culture condition forced a bioenergetic switch from a glycolytic to an oxidative state in all cell lines which improved overall separation of controls from the different defect groups. The extracellular metabolome was discriminative for separating controls from defects but not the specific defects, whereas the intracellular metabolome suggests CI and CV changes and revealed clear MDH2 defect-specific changes in metabolites associated with the TCA cycle, malate aspartate shuttle, and the choline metabolism, which are pronounced under galactose condition.
Collapse
Affiliation(s)
- Christoph Meyer
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Institute of Clinical Chemistry, University Hospital Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Damian Hertig
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Institute of Clinical Chemistry, University Hospital Bern, Bern, Switzerland
| | - Janine Arnold
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Institute of Clinical Chemistry, University Hospital Bern, Bern, Switzerland
| | - Christian Urzi
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Institute of Clinical Chemistry, University Hospital Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sandra Kurth
- Institute of Clinical Chemistry, University Hospital Bern, Bern, Switzerland
| | - Johannes A Mayr
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - André Schaller
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Peter Vermathen
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Jean-Marc Nuoffer
- Institute of Clinical Chemistry, University Hospital Bern, Bern, Switzerland
- Department of Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Zhao J, He C, Fan X, Wang L, Zhao L, Liu H, Shen W, Jiang S, Pei K, Gao J, Qi Y, Liu Y, Zhao J, Zhang R, Lu C, Tong J, Huai J. Tripeptidyl peptidase II coordinates the homeostasis of calcium and lipids in the central nervous system and its depletion causes presenile dementia in female mice through calcium/lipid dyshomeostasis-induced autophagic degradation of CYP19A1. Theranostics 2024; 14:1390-1429. [PMID: 38389851 PMCID: PMC10879859 DOI: 10.7150/thno.92571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Tripeptidyl peptidase II (TPP2) has been proven to be related to human immune and neurological diseases. It is generally considered as a cytosolic protein which forms the largest known protease complex in eukaryotic cells to operate mostly downstream of proteasomes for degradation of longer peptides. However, this canonical function of TPP2 cannot explain its role in a wide variety of biological and pathogenic processes. The mechanistic interrelationships and hierarchical order of these processes have yet to be clarified. Methods: Animals, cells, plasmids, and viruses established and/or used in this study include: TPP2 knockout mouse line, TPP2 conditional knockout mouse lines (different neural cell type oriented), TRE-TPP2 knockin mouse line on the C57BL/6 background; 293T cells with depletion of TPP2, ATF6, IRE1, PERK, SYVN1, UCHL1, ATG5, CEPT1, or CCTα, respectively; 293T cells stably expressing TPP2, TPP2 S449A, TPP2 S449T, or CCTα-KDEL proteins on the TPP2-depleted background; Plasmids for eukaryotic transient expression of rat CYP19A1-Flag, CYP19A1 S118A-Flag, CYP19A1 S118D-Flag, Sac I ML GFP Strand 11 Long, OMMGFP 1-10, G-CEPIA1er, GCAMP2, CEPIA3mt, ACC-GFP, or SERCA1-GFP; AAV2 carrying the expression cassette of mouse CYP19A1-3 X Flag-T2A-ZsGreen. Techniques used in this study include: Flow cytometry, Immunofluorescence (IF) staining, Immunohistochemical (IHC) staining, Luxol fast blue (LFB) staining, β-galactosidase staining, Lipid droplet (LD) staining, Calcium (Ca2+) staining, Stimulated emission depletion (STED) imaging, Transmission electron microscopic imaging, Two-photon imaging, Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end Labeling (TUNEL) assay, Bromodeoxyuridine (BrdU) assay, Enzymatic activity assay, Proximity ligation assay (PLA), In vivo electrophysiological recording, Long-term potentiation (LTP) recording, Split-GFP-based mitochondria-associated membrane (MAM) detection, Immunoprecipitation (IP), Cellular fractionation, In situ hybridization, Semi-quantitative RT-PCR, Immunoblot, Mass spectrometry-based lipidomics, metabolomics, proteomics, Primary hippocampal neuron culture and Morris water maze (MWM) test. Results: We found that TPP2, independent of its enzymatic activity, plays a crucial role in maintaining the homeostasis of intracellular Ca2+ and phosphatidylcholine (PC) in the central nervous system (CNS) of mice. In consistence with the critical importance of Ca2+ and PC in the CNS, TPP2 gene ablation causes presenile dementia in female mice, which is closely associated with Ca2+/PC dysregulation-induced endoplasmic reticulum (ER) stress, abnormal autophagic degradation of CYP19A1 (aromatase), and estrogen depletion. This work therefore uncovers a new role of TPP2 in lipogenesis and neurosteroidogenesis which is tightly related to cognitive function of adult female mice. Conclusion: Our study reveals a crucial role of TPP2 in controlling homeostasis of Ca2+ and lipids in CNS, and its deficiency causes sexual dimorphism in dementia. Thus, this study is not only of great significance for elucidating the pathogenesis of dementia and its futural treatment, but also for interpreting the role of TPP2 in other systems and their related disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Chengtong He
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Lin Wang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Liao Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Hui Liu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Wujun Shen
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Sanwei Jiang
- Henan International Key Laboratory for Noninvasive Neuromodulation, Department of Physiology & Pathology, Xinxiang Medical University, Xinxiang, PR China
| | - Kaixuan Pei
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jingjing Gao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Yawei Qi
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Yang Liu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Junqiang Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
| | - Ruiling Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
| | - Chengbiao Lu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
- Henan International Key Laboratory for Noninvasive Neuromodulation, Department of Physiology & Pathology, Xinxiang Medical University, Xinxiang, PR China
- Senior author for electrophysiological experiments and related analysis
| | - Jia Tong
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| |
Collapse
|
13
|
Ha HTT, Sukumar VK, Chua JWB, Nguyen DT, Nguyen TQ, Lim LHK, Cazenave-Gassiot A, Nguyen LN. Mfsd7b facilitates choline transport and missense mutations affect choline transport function. Cell Mol Life Sci 2023; 81:3. [PMID: 38055060 PMCID: PMC11072022 DOI: 10.1007/s00018-023-05048-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
MFSD7b belongs to the Major Facilitator Superfamily of transporters that transport small molecules. Two isoforms of MFSD7b have been identified and they are reported to be heme exporters that play a crucial role in maintaining the cytosolic and mitochondrial heme levels, respectively. Mutations of MFSD7b (also known as FLVCR1) have been linked to retinitis pigmentosa, posterior column ataxia, and hereditary sensory and autonomic neuropathy. Although MFSD7b functions have been linked to heme detoxification by exporting excess heme from erythroid cells, it is ubiquitously expressed with a high level in the kidney, gastrointestinal tract, lungs, liver, and brain. Here, we showed that MFSD7b functions as a facilitative choline transporter. Expression of MFSD7b slightly but significantly increased choline import, while its knockdown reduced choline influx in mammalian cells. The influx of choline transported by MFSD7b is dependent on the expression of choline metabolizing enzymes such as choline kinase (CHKA) and intracellular choline levels, but it is independent of gradient of cations. Additionally, we showed that choline transport function of Mfsd7b is conserved from fly to man. Employing our transport assays, we showed that missense mutations of MFSD7b caused reduced choline transport functions. Our results show that MFSD7b functions as a facilitative choline transporter in mammalian cells.
Collapse
Affiliation(s)
- Hoa Thi Thuy Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Viresh Krishnan Sukumar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Jonathan Wei Bao Chua
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Dat T Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Toan Q Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Lina Hsiu Kim Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
14
|
Valentine WJ, Shimizu T, Shindou H. Lysophospholipid acyltransferases orchestrate the compositional diversity of phospholipids. Biochimie 2023; 215:24-33. [PMID: 37611890 DOI: 10.1016/j.biochi.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Lysophospholipid acyltransferases (LPLATs), in concert with glycerol-3-phosphate acyltransferases (GPATs) and phospholipase A1/2s, orchestrate the compositional diversity of the fatty chains in membrane phospholipids. Fourteen LPLAT enzymes which come from two distinct families, AGPAT and MBOAT, have been identified, and in this mini-review we provide an overview of their roles in de novo and remodeling pathways of membrane phospholipid biosynthesis. Recently new nomenclature for LPLATs has been introduced (LPLATx, where x is a number 1-14), and we also give an overview of key biological functions that have been discovered for LPLAT1-14, revealed primarily through studies of LPLAT-gene-deficient mice as well as by linkages to various human diseases.
Collapse
Affiliation(s)
- William J Valentine
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan.
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Institute of Microbial Chemistry, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
15
|
Yan B, Haiyang Zhang, Li H, Gao Y, Wei Y, Chang C, Zhang L, Li Z, Zhu L, Xu J. Molecular regulation of lipid metabolism in Suaeda salsa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107894. [PMID: 37482030 DOI: 10.1016/j.plaphy.2023.107894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Suaeda salsa is remarkable for its high oil content and abundant unsaturated fatty acids. In this study, the regulatory networks on fatty acid and lipid metabolism were constructed by combining the de novo transcriptome and lipidome data. Differentially expressed genes (DEGs) associated with lipids biosynthesis pathways were identified in the S. salsa transcriptome. DEGs involved in fatty acid and glycerolipids were generally up-regulated in leaf tissues. DEGs for TAG assembly were enriched in developing seeds, while DEGs in phospholipid metabolic pathways were enriched in root tissues. Polar lipids were extracted from S. salsa tissues and analyzed by lipidomics. The proportion of galactolipid MGDG was the highest in S. salsa leaves. The molar percentage of PG was high in the developing seeds, and the other main phospholipids had higher molar percentage in roots of S. salsa. The predominant C36:6 molecular species indicates that S. salsa is a typical 18:3 plant. The combined transcriptomic and lipidomic data revealed that different tissues of S. salsa were featured with DEGs associated with specific lipid metabolic pathways, therefore, represented unique lipid profiles. This study will be helpful on understanding lipid metabolism pathway and exploring the key genes involved in lipid synthesis in S. salsa.
Collapse
Affiliation(s)
- Bowei Yan
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haiyang Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Huixin Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yuqiao Gao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yulei Wei
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Chuanyi Chang
- Harbin Academy of Agricultural Science, Harbin, 150028, China
| | - Liguo Zhang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zuotong Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Lei Zhu
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Jingyu Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
16
|
Silva da Fonsêca V, Goncalves VDC, Augusto Izidoro M, Guimarães de Almeida AC, Luiz Affonso Fonseca F, Alexandre Scorza F, Finsterer J, Scorza CA. Parkinson's Disease and the Heart: Studying Cardiac Metabolism in the 6-Hydroxydopamine Model. Int J Mol Sci 2023; 24:12202. [PMID: 37569578 PMCID: PMC10418594 DOI: 10.3390/ijms241512202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Parkinson's-disease (PD) is an incurable, age-related neurodegenerative disease, and its global prevalence of disability and death has increased exponentially. Although motor symptoms are the characteristic manifestations of PD, the clinical spectrum also contains a wide variety of non-motor symptoms, which are the main cause of disability and determinants of the decrease in a patient's quality of life. Noteworthy in this regard is the stress on the cardiac system that is often observed in the course of PD; however, its effects have not yet been adequately researched. Here, an untargeted metabolomics approach was used to assess changes in cardiac metabolism in the 6-hydroxydopamine model of PD. Beta-sitosterol, campesterol, cholesterol, monoacylglycerol, α-tocopherol, stearic acid, beta-glycerophosphoric acid, o-phosphoethanolamine, myo-inositol-1-phosphate, alanine, valine and allothreonine are the metabolites that significantly discriminate parkinsonian rats from sham counterparts. Upon analysis of the metabolic pathways with the aim of uncovering the main biological pathways involved in concentration patterns of cardiac metabolites, the biosynthesis of both phosphatidylethanolamine and phosphatidylcholine, the glucose-alanine cycle, glutathione metabolism and plasmalogen synthesis most adequately differentiated sham and parkinsonian rats. Our results reveal that both lipid and energy metabolism are particularly involved in changes in cardiac metabolism in PD. These results provide insight into cardiac metabolic signatures in PD and indicate potential targets for further investigation.
Collapse
Affiliation(s)
- Victor Silva da Fonsêca
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.S.d.F.); (V.d.C.G.); (F.A.S.)
| | - Valeria de Cassia Goncalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.S.d.F.); (V.d.C.G.); (F.A.S.)
| | - Mario Augusto Izidoro
- Laboratório de Espectrometria de Massas-Associação Beneficente de Coleta de Sangue (COLSAN), São Paulo 04038-000, Brazil;
| | - Antônio-Carlos Guimarães de Almeida
- Laboratório de Neurociências Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del Rei 36301-160, Brazil;
| | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas da Faculdade de Medicina do ABC, Santo André 09060-650, Brazil;
- Departamento de Ciências Farmacêuticas da Universidade Federal de Sao Paulo (UNIFESP), Diadema 09972-270, Brazil
| | - Fulvio Alexandre Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.S.d.F.); (V.d.C.G.); (F.A.S.)
| | | | - Carla Alessandra Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.S.d.F.); (V.d.C.G.); (F.A.S.)
| |
Collapse
|
17
|
Nie M, Liu T, Qiu X, Yang J, Liu J, Ren J, Zhou B. Regulation mechanism of lipids for extracellular yellow pigments production by Monascus purpureus BWY-5. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12654-6. [PMID: 37405437 DOI: 10.1007/s00253-023-12654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/06/2023]
Abstract
The biosynthesis and secretion of Monascus pigments are closely related to the integrity of the cell membrane, which determines the composition of lipids and its content in cell membrane. The present study aimed to thoroughly describe the changes of lipid profiling in Monascus purpureus BWY-5, which was screened by carbon ion beam irradiation (12C6+) to almost single yield extracellular Monascus yellow pigments (extra-MYPs), by absolute quantitative lipidomics and tandem mass tags (TMT) based quantitative proteomic. 12C6+ irradiation caused non-lipid oxidation damage to Monascus cell membrane, leading to an imbalance in cell membrane lipid homeostasis. This imbalance was attributed to significant changes not only in the composition but also in the content of lipids in Monascus, especially the inhibition of glycerophospholipid biosynthesis. Integrity of plasma membrane was maintained by the increased production of ergosterol, monogalactosylmonoacylglycerol (MGMG) and sulfoquinovosylmonoacylglycerol (SQMG), while mitochondrial membrane homeostasis was maintained by the increase of cardiolipin production. The growth and extra-MYPs production of Monascus BWY-5 have been regulated by the promotion of sphingolipids (ceramide and sulfatide) biosynthesis. Simultaneous, energy homeostasis may be achieved by increase of TG synthesis and Ca2+/Mg2+-ATPase activity. These finding suggest ergosterol, cardiolipin, sphingolipids, MGMG and SQMG play a key facilitating role in cytomembrane lipid homeostasis maintaining for Monascus purpureus BWY-5, and then it is closely related to cell growth and extra-MYPs production. KEY POINTS: 1. Energy homeostasis in Monascus purpureus BWY-5 was achieved by increase of TG synthesis and Ca2+/Mg2+-ATPase activity. 2. Integrity of plasma membrane in Monascus purpureus BWY-5 was maintained by the increased production of ergosterol. 3. Mitochondrial membrane homeostasis in Monascus purpureus BWY-5 was maintaed by the increase of cardiolipin synthesis.
Collapse
Affiliation(s)
- Moyu Nie
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, Hunan, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Tao Liu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, Hunan, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xunhan Qiu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, Hunan, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jingjing Yang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, Hunan, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jun Liu
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, Hunan, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, Hunan, China
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Bo Zhou
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, Hunan, China.
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
18
|
Zemorshidi F, Nafissi S, Boostani R, Karimiani EG, Ashtiani BH, Karimzadeh P, Miryounesi M, Tonekaboni SH, Nilipour Y. Megaconial congenital muscular dystrophy due to CHKB gene variants, the first report of thirteen Iranian patients. Neuromuscul Disord 2023; 33:589-595. [PMID: 37393748 DOI: 10.1016/j.nmd.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Megaconial congenital muscular dystrophy (OMIM: 602,541) related to CHKB gene mutation is a newly defined rare autosomal recessive disorder, with multisystem involvement presenting from the neonatal period to adolescence. Choline kinase beta, lipid transport enzyme, catalyzes the biosynthesis of phosphatidylcholine and phosphatidylethanolamine, two major components of the mitochondrial membrane, on which respiratory enzyme activities are dependent. CHKB gene variants lead to loss-of-function of choline kinase b and lipid metabolism defects and mitochondrial structural changes. To date, many megaconial congenital muscular dystrophy cases due to CHKB gene variants have been reported worldwide. We describe thirteen Iranian megaconial congenital muscular dystrophy cases related to CHKB gene variants, including clinical presentations, laboratory and muscle biopsy findings, and novel CHKB gene variants. The most common symptoms and signs included intellectual disability, delayed gross-motor developmental milestones, language skills problems, muscle weakness, as well as autistic features, and behavioral problems. Muscle biopsy examination showed the striking finding of peripheral arrangements of large mitochondria in muscle fibers and central sarcoplasmic areas devoid of mitochondria. Eleven different CHKB gene variants including six novel variants were found in our patients. Despite the rarity of this disorder, recognition of the multisystem clinical presentations combined with characteristic findings of muscle histology can properly guide to genetic evaluation of CHKB gene.
Collapse
Affiliation(s)
- Fariba Zemorshidi
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Boostani
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London SW170RE, United Kingdom; Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | | | - Parvaneh Karimzadeh
- Pediatric Neurology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pediatric Neurology Department, Mofid Children's Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Tonekaboni
- Pediatric Neurology Department, Mofid Children's Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yalda Nilipour
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Pathology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Sarma AS, Siddardha B, T PL, Ranganath P, Dalal A. A novel homozygous synonymous splicing variant in SELENOI gene causes spastic paraplegia 81. J Gene Med 2023; 25:e3501. [PMID: 36942482 DOI: 10.1002/jgm.3501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Hereditary spastic paraplegia 81 is a recently identified, rare autosomal recessive disease, caused by biallelic pathogenic variants in the SELENOI gene, with only two families reported to date. The features documented in the two previous affected families include sensorineural deafness, blindness, cleft palate, delayed motor development, regression of motor skills, impaired intellectual development, poor speech and language acquisition, spasticity, hyperreflexia, white matter abnormalities and cerebral and cerebellar atrophy. METHODS In the present study, we performed exome sequencing analysis in a single family with two affected siblings to identify the genetic cause of complicated hereditary spastic paraplegia. The results were further confirmed by Sanger sequencing, cDNA analysis and 3D protein modelling. RESULTS Exome sequencing identified a homozygous, synonymous variant in the SELENOI gene (NM_033505.4:c.126G>A:p.(Lys42Lys)) in both of the siblings. Sanger sequencing confirmed the heterozygous status in both parents consistent with the autosomal recessive inheritance. This variant has been found to disrupt normal splicing and lead to skipping of exon 2, causing in-frame deletion of SELENOI N-terminal 23 amino acids [NM_033505.4:c.57_126del:p.(Tyr20_Lys42del)] and further leading to structural changes in the protein. CONCLUSIONS We report a novel homozygous synonymous variant in the SELENOI gene causing abnormal splicing in two patients affected with hereditary spastic paraplegia 81. This report further expands the phenotypic and genotypic spectrum of hereditary spastic paraplegia 81.
Collapse
Affiliation(s)
- Asodu Sandeep Sarma
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Bathula Siddardha
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Pragna Lakshmi T
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Prajnya Ranganath
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
20
|
Saaoud F, Martinez L, Lu Y, Xu K, Shao Y, Zhuo JL, Gillespie A, Wang H, Tabbara M, Salama A, Yang X, Vazquez-Padron RI. Chronic Kidney Disease Transdifferentiates Veins into a Specialized Immune-Endocrine Organ with Increased MYCN-AP1 Signaling. Cells 2023; 12:1482. [PMID: 37296603 PMCID: PMC10252601 DOI: 10.3390/cells12111482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Most patients with end-stage renal disease (ESRD) and advanced chronic kidney disease (CKD) choose hemodialysis as their treatment of choice. Thus, upper-extremity veins provide a functioning arteriovenous access to reduce dependence on central venous catheters. However, it is unknown whether CKD reprograms the transcriptome of veins and primes them for arteriovenous fistula (AVF) failure. To examine this, we performed transcriptomic analyses of bulk RNA sequencing data of veins isolated from 48 CKD patients and 20 non-CKD controls and made the following findings: (1) CKD converts veins into immune organs by upregulating 13 cytokine and chemokine genes, and over 50 canonical and noncanonical secretome genes; (2) CKD increases innate immune responses by upregulating 12 innate immune response genes and 18 cell membrane protein genes for increased intercellular communication, such as CX3CR1 chemokine signaling; (3) CKD upregulates five endoplasmic reticulum protein-coding genes and three mitochondrial genes, impairing mitochondrial bioenergetics and inducing immunometabolic reprogramming; (4) CKD reprograms fibrogenic processes in veins by upregulating 20 fibroblast genes and 6 fibrogenic factors, priming the vein for AVF failure; (5) CKD reprograms numerous cell death and survival programs; (6) CKD reprograms protein kinase signal transduction pathways and upregulates SRPK3 and CHKB; and (7) CKD reprograms vein transcriptomes and upregulates MYCN, AP1, and 11 other transcription factors for embryonic organ development, positive regulation of developmental growth, and muscle structure development in veins. These results provide novel insights on the roles of veins as immune endocrine organs and the effect of CKD in upregulating secretomes and driving immune and vascular cell differentiation.
Collapse
Affiliation(s)
- Fatma Saaoud
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yifan Lu
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ying Shao
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jia L Zhuo
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Avrum Gillespie
- Section of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alghidak Salama
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Xiaofeng Yang
- Center for Cardiovascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Section of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
21
|
Yu T, Wu L, Zhang T, Hao H, Dong J, Xu Y, Yang H, Liu H, Xie L, Wang G, Liang Y. Insights into Q-markers and molecular mechanism of Sanguisorba saponins in treating ulcerative colitis based on lipid metabolism regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154870. [PMID: 37207387 DOI: 10.1016/j.phymed.2023.154870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Sanguisorba saponin extract (SSE) is the main active part of Sanguisorba officinalis with various pharmacological activities such as anti-inflammatory, anti-bacterial and anti-oxidant. However, its therapeutic role and underlying mechanisms for ulcerative colitis (UC) still need to be elucidated. PURPOSE This study aims to explore the therapeutic effect, effectiveness-material basis-quality markers (Q-markers) and prospective mechanism of function of SSE on UC. METHODS Fresh 2.5% dextran sulfate sodium salt (DSS) solution was placed in drinking bottles for 7 days to induce a mouse model of UC. SSE and sulfasalazine (SASP) were supplemented to mice by gavage for consecutive 7 days to investigate the therapeutic role of SSE on UC. Mouse monocyte macrophages (RAW264.7) and human normal colonic epithelial (NCM460) cells were treated with LPS to induce inflammatory responses, followed by pharmacodynamic examination with different concentrations of SSE. Hematoxylin-eosin (HE) and Alcian blue staining were conducted to evaluate the pathological damage of mice colon. Lipidomic technology was conducted to explore the differential lipids closely related to the disease process of UC. Quantitative PCR analysis, immunohistochemistry and ELISA kit were used to measure the expression levels of the corresponding proteins and pro-inflammatory factors. RESULTS SSE treatment could effectively reduce the elevated expressions of pro-inflammatory factors in RAW264.7 and NCM460 cells due to LPS stimulation. Intragastric administration of SSE was found to significantly alleviate the symptoms of DSS-induced colon injury and low-polar saponins in SSE. Low polarity saponins, especially ZYS-II, were proved to be the main active substances of SSE in treating UC. In addition, SSE could significantly ameliorate the aberrant lipid metabolism in UC mice. The role of phosphatidylcholine (PC)34:1 in the UC pathogenesis has been fully verified in our previous studies. Herein, SSE-dosing effectively reversed the metabolic disorder of PCs in UC mice, and increased the PC34:1 level to normal via up-regulating the expression of phosphocholine cytidylyltransferase (PCYT1α). CONCLUSION Our data innovatively revealed that SSE could significantly alleviate the symptoms of UC by reversing the disorder of PC metabolism induced by DSS modeling. SSE was proved for the first time to be a promising and effective candidate for UC treatment.
Collapse
Affiliation(s)
- Tengjie Yu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Linlin Wu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Tingting Zhang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Hongyuan Hao
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Yizou 180, Shanghai 200233, PR. China
| | - Jing Dong
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Yizou 180, Shanghai 200233, PR. China
| | - Yexin Xu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Huizhu Yang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Huafang Liu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China.
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR. China.
| |
Collapse
|
22
|
Sun SX, Liu YC, Limbu SM, Li DL, Chen LQ, Zhang ML, Yin Z, Du ZY. Vitellogenin 1 is essential for fish reproduction by transporting DHA-containing phosphatidylcholine from liver to ovary. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159289. [PMID: 36708962 DOI: 10.1016/j.bbalip.2023.159289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
Vitellogenins (Vtgs) are essential for female reproduction in oviparous animals, yet the exact roles and mechanisms remain unknown. In the present study, we knocked out vtg1, which is the most abundant Vtg in zebrafish, Danio rerio via the CRISPR/Cas 9 technology. We aimed to identify the roles of Vtg1 and related mechanisms in reproduction and development. We found that, the Vtg1-deficient female zebrafish reduced gonadosomatic index, egg production, yolk granules and mature follicles in ovary compared to the wide type (WT). Moreover, the Vtg1-deficient zebrafish diminished hatching rates, cumulative survival rate, swimming capacity and food intake, but increased malformation rate, and delayed swim bladder development during embryo and early-larval phases. The Vtg1-deficiency in female broodstock inhibited docosahexaenoic acid-enriched phosphatidylcholine (DHA-PC) transportation from liver to ovary, which lowered DHA-PC content in ovary and offspring during larval stage. However, the Vtg1-deficient zebrafish increased gradually the total DHA-PC content via exogeneous food intake, and the differences in swimming capacity and food intake returned to normal as they matured. Furthermore, supplementing Vtg1-deficient zebrafish with dietary PC and DHA partly ameliorated the impaired female reproductive capacity and larval development during early phases. This study indicates that, DHA and PC carried by Vtg1 are crucial for female fecundity, and affect embryo and larval development through maternal-nutrition effects. This is the first study elucidating the nutrient and physiological functions of Vtg1 and the underlying biochemical mechanisms in fish reproduction and development.
Collapse
Affiliation(s)
- Sheng-Xiang Sun
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yi-Chan Liu
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Samwel M Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology University of Dar as Salaam, Dar es Salaam, Tanzania
| | - Dong-Liang Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
23
|
Feng T, Tao Y, Yan Y, Lu S, Li Y, Zhang X, Qiang J. Transcriptional Inhibition of AGPAT2 Induces Abnormal Lipid Metabolism and Oxidative Stress in the Liver of Nile Tilapia Oreochromis niloticus. Antioxidants (Basel) 2023; 12:antiox12030700. [PMID: 36978948 PMCID: PMC10045202 DOI: 10.3390/antiox12030700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
The enzyme 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) is an intermediate enzyme in triglyceride synthesis. The aim was to study the regulatory mechanism of AGPAT2 on Nile tilapia, Oreochromis niloticus. In this study, antisense RNA technology was used to knock-down AGPAT2 in Nile tilapia. Compared with the control groups (transfected with ultrapure water or the blank expression vector), the AGPAT2 knock-down group showed a significantly higher weight gain rate, special growth rate, visceral somatic index, and hepatopancreas somatic index; and significantly increased the total cholesterol, triglycerides, glucose, low-density lipoprotein cholesterol, and insulin levels in serum. In addition, the contents of total cholesterol and triglycerides and the abundance of superoxide dismutase, catalase, and glutathione peroxidase in the liver significantly increased, while the malondialdehyde content significantly decreased. The liver cells became severely vacuolated and accumulated lipids in the AGPAT2 knock-down group. Comparative transcriptome analyses (AGPAT2 knock-down vs. control group) revealed 1789 differentially expressed genes (DEGs), including 472 upregulated genes and 1313 downregulated genes in the AGPAT2 knock-down group. Functional analysis showed that the main pathway of differentially expressed genes enrichment was lipid metabolism and oxidative stress, such as steroid biosynthesis, unsaturated fatty acid biosynthesis, the PPAR signaling pathway, and the P53 pathway. We used qRT-PCR to verify the mRNA expression changes of 13 downstream differential genes in related signaling pathways. These findings demonstrate that knock-down of AGPAT2 in tilapia leads to abnormal lipid metabolism and oxidative stress.
Collapse
Affiliation(s)
- Tiantian Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yue Yan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Siqi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jun Qiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Correspondence:
| |
Collapse
|
24
|
Simon C, Asaro A, Feng S, Riezman H. An organelle-specific photoactivation and dual-isotope labeling strategy reveals phosphatidylethanolamine metabolic flux. Chem Sci 2023; 14:1687-1695. [PMID: 36819876 PMCID: PMC9930920 DOI: 10.1039/d2sc06069h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylethanolamine metabolism plays essential roles in eukaryotic cells but has not been completely investigated due to its complexity. This is because lipid species, unlike proteins or nucleic acids, cannot be easily manipulated at the single molecule level or controlled with subcellular resolution, two of the key factors toward understanding their functions. Here, we use the organelle-targeting photoactivation method to study PE metabolism in living cells with a high spatiotemporal resolution. Containing predefined PE structures, probes which can be selectively introduced into the ER or mitochondria were designed to compare their metabolic products according to their subcellular localization. We combined photo-uncaging with dual stable isotopic labeling to track PE metabolism in living cells by mass spectrometry analysis. Our results reveal that both mitochondria- and ER-released PE participate in phospholipid remodeling, and that PE methylation can be detected only under particular conditions. Thus, our method provides a framework to study phospholipid metabolism at subcellular resolution.
Collapse
Affiliation(s)
- Clémence Simon
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva Geneva 1205 Switzerland
| | - Antonino Asaro
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva Geneva 1205 Switzerland
| | - Suihan Feng
- Unit of Chemical Biology and Lipid Metabolism, Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of SciencesShanghai200031China
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva Geneva 1205 Switzerland
| |
Collapse
|
25
|
Wang YN, Zhang ZH, Liu HJ, Guo ZY, Zou L, Zhang YM, Zhao YY. Integrative phosphatidylcholine metabolism through phospholipase A 2 in rats with chronic kidney disease. Acta Pharmacol Sin 2023; 44:393-405. [PMID: 35922553 PMCID: PMC9889763 DOI: 10.1038/s41401-022-00947-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
Dysregulation in lipid metabolism is the leading cause of chronic kidney disease (CKD) and also the important risk factors for high morbidity and mortality. Although lipid abnormalities were identified in CKD, integral metabolic pathways for specific individual lipid species remain to be clarified. We conducted ultra-high-performance liquid chromatography-high-definition mass spectrometry-based lipidomics and identified plasma lipid species and therapeutic effects of Rheum officinale in CKD rats. Adenine-induced CKD rats were administered Rheum officinale. Urine, blood and kidney tissues were collected for analyses. We showed that exogenous adenine consumption led to declining kidney function in rats. Compared with control rats, a panel of differential plasma lipid species in CKD rats was identified in both positive and negative ion modes. Among the 50 lipid species, phosphatidylcholine (PC), lysophosphatidylcholine (LysoPC) and lysophosphatidic acid (LysoPA) accounted for the largest number of identified metabolites. We revealed that six PCs had integral metabolic pathways, in which PC was hydrolysed into LysoPC, and then converted to LysoPA, which was associated with increased cytosolic phospholipase A2 protein expression in CKD rats. The lower levels of six PCs and their corresponding metabolites could discriminate CKD rats from control rats. Receiver operating characteristic curves showed that each individual lipid species had high values of area under curve, sensitivity and specificity. Administration of Rheum officinale significantly improved impaired kidney function and aberrant PC metabolism in CKD rats. Taken together, this study demonstrates that CKD leads to PC metabolism disorders and that the dysregulation of PC metabolism is involved in CKD pathology.
Collapse
Affiliation(s)
- Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Zhi-Hao Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hong-Jiao Liu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Zhi-Yuan Guo
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Ya-Mei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, 610081, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China.
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China.
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, 610081, China.
| |
Collapse
|
26
|
Tan Y, Tang W, Xiao W, Huang R, Li X, Peng W, Yan K, Cao Y, Zeng Y, Kang J. lncRNA-associated ceRNA network revealing the potential regulatory roles of ferroptosis and immune infiltration in Alzheimer's disease. Front Aging Neurosci 2023; 15:1105690. [PMID: 36875702 PMCID: PMC9979855 DOI: 10.3389/fnagi.2023.1105690] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 02/18/2023] Open
Abstract
Background Alzheimer's disease (AD) is the most common form of dementia characterized by a prominent cognitive deterioration of sufficient magnitude to impair daily living. Increasing studies indicate that non-coding RNAs (ncRNAs) are involved in ferroptosis and AD progression. However, the role of ferroptosis-related ncRNAs in AD remains unexplored. Methods We obtained the intersection of differentially expressed genes in GSE5281 (brain tissue expression profile of patients with AD) from the GEO database and ferroptosis-related genes (FRGs) from the ferrDb database. Least absolute shrinkage and selection operator model along with weighted gene co-expression network analysis screened for FRGs highly associated with AD. Results A total of five FRGs were identified and further validated in GSE29378 (area under the curve = 0.877, 95% confidence interval = 0.794-0.960). A competing endogenous RNA (ceRNA) network of ferroptosis-related hub genes (EPT1, KLHL24, LRRFIP1, CXCL2 and CD44) was subsequently constructed to explore the regulatory mechanism between hub genes, lncRNAs and miRNAs. Finally, CIBERSORT algorithms were used to unravel the immune cell infiltration landscape in AD and normal samples. M1 macrophages and mast cells were more infiltrated whereas memory B cells were less infiltrated in AD samples than in normal samples. Spearman's correlation analysis revealed that LRRFIP1 was positively correlated with M1 macrophages (r = -0.340, P < 0.001) whereas ferroptosis-related lncRNAs were negatively correlated with immune cells, wherein miR7-3HG correlated with M1 macrophages and NIFK-AS1, EMX2OS and VAC14-AS1 correlated with memory B cells (|r| > 0.3, P < 0.001). Conclusion We constructed a novel ferroptosis-related signature model including mRNAs, miRNAs and lncRNAs, and characterized its association with immune infiltration in AD. The model provides novel ideas for the pathologic mechanism elucidation and targeted therapy development of AD.
Collapse
Affiliation(s)
- Yejun Tan
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Wang Tang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenbiao Xiao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Roujie Huang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xin Li
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Kuipo Yan
- Department of Cardiology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Yuan Cao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Zeng
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jin Kang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Liu C, Liu D, Wang F, Liu Y, Xie J, Xie J, Xie Y. Construction of a novel choline metabolism-related signature to predict prognosis, immune landscape, and chemotherapy response in colon adenocarcinoma. Front Immunol 2022; 13:1038927. [PMID: 36451813 PMCID: PMC9701742 DOI: 10.3389/fimmu.2022.1038927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a common digestive system malignancy with high mortality and poor prognosis. Accumulating evidence indicates that choline metabolism is closely related to tumorigenesis and development. However, the efficacy of choline metabolism-related signature in predicting patient prognosis, immune microenvironment and chemotherapy response has not been fully clarified. METHODS Choline metabolism-related differentially expressed genes (DEGs) between normal and COAD tissues were screened using datasets from The Cancer Genome Atlas (TCGA), Kyoto Encyclopedia of Genes and Genomes (KEGG), AmiGO2 and Reactome Pathway databases. Two choline metabolism-related genes (CHKB and PEMT) were identified by univariate and multivariate Cox regression analyses. TCGA-COAD was the training cohort, and GSE17536 was the validation cohort. Patients in the high- and low-risk groups were distinguished according to the optimal cutoff value of the risk score. A nomogram was used to assess the prognostic accuracy of the choline metabolism-related signature. Calibration curves, decision curve analysis (DCA), and clinical impact curve (CIC) were used to improve the clinical applicability of the prognostic signature. Gene Ontology (GO) and KEGG pathway enrichment analyses of DEGs in the high- and low-risk groups were performed. KEGG cluster analysis was conducted by the KOBAS-i database. The distribution and expression of CHKB and PEMT in various types of immune cells were analyzed based on single-cell RNA sequencing (scRNA-seq). The CIBERSORT and ESTIMATE algorithms evaluated tumor immune cell infiltration in the high- and low-risk groups. Evaluation of the half maximal inhibitory concentration (IC50) of common chemotherapeutic drugs based on the choline metabolism-related signature was performed. Small molecule compounds were predicted using the Connectivity Map (CMap) database. Molecular docking is used to simulate the binding conformation of small molecule compounds and key targets. By immunohistochemistry (IHC), Western blot, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) experiments, the expression levels of CHKB and PEMT in human, mouse, and cell lines were detected. RESULTS We constructed and validated a choline metabolism-related signature containing two genes (CHKB and PEMT). The overall survival (OS) of patients in the high-risk group was significantly worse than that of patients in the low-risk group. The nomogram could effectively and accurately predict the OS of COAD patients at 1, 3, and 5 years. The DCA curve and CIC demonstrate the clinical utility of the nomogram. scRNA-seq showed that CHKB was mainly distributed in endothelial cells, while PEMT was mainly distributed in CD4+ T cells and CD8+ T cells. In addition, multiple types of immune cells expressing CHKB and PEMT differed significantly. There were significant differences in the immune microenvironment, immune checkpoint expression and chemotherapy response between the two risk groups. In addition, we screened five potential small molecule drugs that targeted treatment for COAD. Finally, the results of IHC, Western blot, and qRT-PCR consistently showed that the expression of CHKB in human, mouse, and cell lines was elevated in normal samples, while PMET showed the opposite trend. CONCLUSION In conclusion, we constructed a choline metabolism-related signature in COAD and revealed its potential application value in predicting the prognosis, immune microenvironment, and chemotherapy response of patients, which may lay an important theoretical basis for future personalized precision therapy.
Collapse
Affiliation(s)
- Cong Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Dingwei Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Fangfei Wang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yang Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jun Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Jinliang Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Yong Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| |
Collapse
|
28
|
Hussein M, Oberrauch S, Allobawi R, Cornthwaite-Duncan L, Lu J, Sharma R, Baker M, Li J, Rao GG, Velkov T. Untargeted Metabolomics to Evaluate Polymyxin B Toxicodynamics following Direct Intracerebroventricular Administration into the Rat Brain. Comput Struct Biotechnol J 2022; 20:6067-6077. [DOI: 10.1016/j.csbj.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
|
29
|
Nunes LGA, Pitts MW, Hoffmann PR. Selenoprotein I (selenoi) as a critical enzyme in the central nervous system. Arch Biochem Biophys 2022; 729:109376. [PMID: 36007576 PMCID: PMC11166481 DOI: 10.1016/j.abb.2022.109376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Selenoprotein I (selenoi) is a unique selenocysteine (Sec)-containing protein widely expressed throughout the body. Selenoi belongs to two different protein families: the selenoproteins that are characterized by a redox reactive Sec residue and the lipid phosphotransferases that contain the highly conserved cytidine diphosphate (CDP)-alcohol phosphotransferase motif. Selenoi catalyzes the third reaction of the CDP-ethanolamine branch of the Kennedy pathway within the endoplasmic reticulum membrane. This is not a redox reaction and does not directly involve the Sec residue, making selenoi quite distinct among selenoproteins. Selenoi is also unique among lipid phosphotransferases as the only family member containing a Sec residue near its C-terminus that serves an unknown function. The reaction catalyzed by selenoi involves the transfer of the ethanolamine phosphate group from CDP-ethanolamine to one of two lipid donors, 1,2-diacylglycerol (DAG) or 1-alkyl-2-acylglycerol (AAG), to produce PE or plasmanyl PE, respectively. Plasmanyl PE is subsequently converted to plasmenyl PE by plasmanylethanolamine desaturase. Both PE and plasmenyl PE are critical phospholipids in the central nervous system (CNS), as demonstrated through clinical studies involving SELENOI mutations as well as studies in cell lines and mice. Deletion of SELENOI in mice is embryonic lethal, while loss-of-function mutations in the human SELENOI gene have been found in rare cases leading to a form of hereditary spastic paraplegia (HSP). HSP is an upper motor disease characterized by spasticity of the lower limbs, which is often manifested with other symptoms such as impaired vision/hearing, ataxia, cognitive/intellectual impairment, and seizures. This article will summarize the current understanding of selenoi as a metabolic enzyme and discuss its role in the CNS physiology and pathophysiology.
Collapse
Affiliation(s)
- Lance G A Nunes
- Department of Anatomy, Physiology and Biochemistry, Honolulu, HI, 96813, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
30
|
Buck A, Prade VM, Kunzke T, Erben RG, Walch A. Spatial metabolomics reveals upregulation of several pyrophosphate-producing pathways in cortical bone of Hyp mice. JCI Insight 2022; 7:e162138. [PMID: 36278488 PMCID: PMC9714788 DOI: 10.1172/jci.insight.162138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/31/2022] [Indexed: 06/28/2024] Open
Abstract
Patients with the renal phosphate-wasting disease X-linked hypophosphatemia (XLH) and Hyp mice, the murine homolog of XLH, are characterized by loss-of-function mutations in phosphate-regulating endopeptidase homolog X-linked (PHEX), leading to excessive secretion of the bone-derived phosphotropic hormone FGF23. The mineralization defect in patients with XLH and Hyp mice is caused by a combination of hypophosphatemia and local accumulation of mineralization-inhibiting molecules in bone. However, the mechanism by which PHEX deficiency regulates bone cell metabolism remains elusive. Here, we used spatial metabolomics by employing matrix-assisted laser desorption/ionization (MALDI) Fourier-transform ion cyclotron resonance mass spectrometry imaging (MSI) of undecalcified bone cryosections to characterize in situ metabolic changes in bones of Hyp mice in a holistic, unbiased manner. We found complex changes in Hyp bone metabolism, including perturbations in pentose phosphate, purine, pyrimidine, and phospholipid metabolism. Importantly, our study identified an upregulation of several biochemical pathways involved in intra- and extracellular production of the mineralization inhibitor pyrophosphate in the bone matrix of Hyp mice. Our data emphasize the utility of MSI-based spatial metabolomics in bone research and provide holistic in situ insights as to how Phex deficiency-induced changes in biochemical pathways in bone cells are linked to impaired bone mineralization.
Collapse
Affiliation(s)
- Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Verena M. Prade
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Reinhold G. Erben
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
31
|
Magri F, Antognozzi S, Ripolone M, Zanotti S, Napoli L, Ciscato P, Velardo D, Scuvera G, Nicotra V, Giacobbe A, Milani D, Fortunato F, Garbellini M, Sciacco M, Corti S, Comi GP, Ronchi D. Megaconial congenital muscular dystrophy due to novel CHKB variants: a case report and literature review. Skelet Muscle 2022; 12:23. [PMID: 36175989 PMCID: PMC9524117 DOI: 10.1186/s13395-022-00306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Choline kinase beta (CHKB) catalyzes the first step in the de novo biosynthesis of phosphatidyl choline and phosphatidylethanolamine via the Kennedy pathway. Derangement of this pathway might also influence the homeostasis of mitochondrial membranes. Autosomal recessive CHKB mutations cause a rare form of congenital muscular dystrophy known as megaconial congenital muscular dystrophy (MCMD). Case presentation We describe a novel proband presenting MCMD due to unpublished CHKB mutations. The patient is a 6-year-old boy who came to our attention for cognitive impairment and slowly progressive muscular weakness. He was the first son of non-consanguineous healthy parents from Sri Lanka. Neurological examination showed proximal weakness at four limbs, weak osteotendinous reflexes, Gowers’ maneuver, and waddling gate. Creatine kinase levels were mildly increased. EMG and brain MRI were normal. Left quadriceps skeletal muscle biopsy showed a myopathic pattern with nuclear centralizations and connective tissue increase. Histological and histochemical staining suggested subsarcolemmal localization and dimensional increase of mitochondria. Ultrastructural analysis confirmed the presence of enlarged (“megaconial”) mitochondria. Direct sequencing of CHKB identified two novel defects: the c.1060G > C (p.Gly354Arg) substitution and the c.448-56_29del intronic deletion, segregating from father and mother, respectively. Subcloning of RT-PCR amplicons from patient’s muscle RNA showed that c.448-56_29del results in the partial retention (14 nucleotides) of intron 3, altering physiological splicing and transcript stability. Biochemical studies showed reduced levels of the mitochondrial fission factor DRP1 and the severe impairment of mitochondrial respiratory chain activity in patient’s muscle compared to controls. Conclusions This report expands the molecular findings associated with MCMD and confirms the importance of considering CHKB variants in the differential diagnosis of patients presenting with muscular dystrophy and mental retardation. The clinical outcome of MCMD patients seems to be influenced by CHKB molecular defects. Histological and ultrastructural examination of muscle biopsy directed molecular studies and allowed the identification and characterization of an intronic mutation, usually escaping standard molecular testing.
Supplementary Information The online version contains supplementary material available at 10.1186/s13395-022-00306-8.
Collapse
Affiliation(s)
- Francesca Magri
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Sara Antognozzi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Michela Ripolone
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Simona Zanotti
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Laura Napoli
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Patrizia Ciscato
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Daniele Velardo
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Giulietta Scuvera
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Medical Genetics Unit, Woman-Child-Newborn Department, Milan, Italy
| | - Valeria Nicotra
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Medical Genetics Unit, Woman-Child-Newborn Department, Milan, Italy
| | - Antonella Giacobbe
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Donatella Milani
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Francesco Fortunato
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Manuela Garbellini
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Monica Sciacco
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Stefania Corti
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Dario Ronchi
- IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy. .,Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
32
|
Klöckner C, Fernández-Murray JP, Tavasoli M, Sticht H, Stoltenburg-Didinger G, Scholle LM, Bakhtiari S, Kruer MC, Darvish H, Firouzabadi SG, Pagnozzi A, Shukla A, Girisha KM, Narayanan DL, Kaur P, Maroofian R, Zaki MS, Noureldeen MM, Merkenschlager A, Gburek-Augustat J, Cali E, Banu S, Nahar K, Efthymiou S, Houlden H, Jamra RA, Williams J, McMaster CR, Platzer K. Bi-allelic variants in CHKA cause a neurodevelopmental disorder with epilepsy and microcephaly. Brain 2022; 145:1916-1923. [PMID: 35202461 PMCID: PMC9630884 DOI: 10.1093/brain/awac074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/15/2021] [Accepted: 02/06/2022] [Indexed: 11/14/2022] Open
Abstract
The Kennedy pathways catalyse the de novo synthesis of phosphatidylcholine and phosphatidylethanolamine, the most abundant components of eukaryotic cell membranes. In recent years, these pathways have moved into clinical focus because four of ten genes involved have been associated with a range of autosomal recessive rare diseases such as a neurodevelopmental disorder with muscular dystrophy (CHKB), bone abnormalities and cone-rod dystrophy (PCYT1A) and spastic paraplegia (PCYT2, SELENOI). We identified six individuals from five families with bi-allelic variants in CHKA presenting with severe global developmental delay, epilepsy, movement disorders and microcephaly. Using structural molecular modelling and functional testing of the variants in a cell-based Saccharomyces cerevisiae model, we determined that these variants reduce the enzymatic activity of CHKA and confer a significant impairment of the first enzymatic step of the Kennedy pathway. In summary, we present CHKA as a novel autosomal recessive gene for a neurodevelopmental disorder with epilepsy and microcephaly.
Collapse
Affiliation(s)
- Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | | | - Mahtab Tavasoli
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3N 0A1, Canada
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | | | | | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, Arizona 85004, USA
- Departments of Child Health, Neurology, Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, Arizona 85004, USA
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, Arizona 85004, USA
- Departments of Child Health, Neurology, Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, Arizona 85004, USA
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Alex Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, QLD 4029, Australia
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Mahmoud M Noureldeen
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Andreas Merkenschlager
- Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Janina Gburek-Augustat
- Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Elisa Cali
- Department of Pediatric Neurology, Dr. M.R. Khan Shishu (Children) Hospital and ICH, Mirpur, Dhaka, Bangladesh
| | - Selina Banu
- Department of Pediatric Neurology, Dr. M.R. Khan Shishu (Children) Hospital and ICH, Mirpur, Dhaka, Bangladesh
| | - Kamrun Nahar
- Department of Pediatric Neurology, Dr. M.R. Khan Shishu (Children) Hospital and ICH, Mirpur, Dhaka, Bangladesh
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Jason Williams
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3N 0A1, Canada
| | | | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
33
|
Aparicio A, Camacho ET, Philp NJ, Wirkus SA. A mathematical model of GLUT1 modulation in rods and RPE and its differential impact in cell metabolism. Sci Rep 2022; 12:10645. [PMID: 35739198 PMCID: PMC9226191 DOI: 10.1038/s41598-022-13950-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
We present a mathematical model of key glucose metabolic pathways in two cells of the human retina: the rods and the retinal pigmented epithelium (RPE). Computational simulations of glucose transporter 1 (GLUT1) inhibition in the model accurately reproduce experimental data from conditional knockout mice and reveal that modification of GLUT1 expression levels of both cells differentially impacts their metabolism. We hypothesize that, under glucose scarcity, the RPE's energy producing pathways are altered in order to preserve its functionality, impacting the photoreceptors' outer segment renewal. On the other hand, when glucose is limited in the rods, aerobic glycolysis is preserved, which maintains the lactate contribution to the RPE.
Collapse
Affiliation(s)
- Andrea Aparicio
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA.
| | - Erika T Camacho
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen A Wirkus
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| |
Collapse
|
34
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
35
|
Rabeler C, Chen M, Kaplinsky N. BUMPY STEM Is an Arabidopsis Choline/Ethanolamine Kinase Required for Normal Development and Chilling Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:851960. [PMID: 35574129 PMCID: PMC9100391 DOI: 10.3389/fpls.2022.851960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/17/2022] [Indexed: 05/10/2023]
Abstract
Phospholipid biosynthesis is a core metabolic pathway that affects all aspects of plant growth and development. One of the earliest step in this pathway is mediated by choline/ethanolamine kinases (CEKs), enzymes in the Kennedy pathway that catalyze the synthesis of the polar head groups found on the most abundant plant phospholipids. The Arabidopsis genome encodes four CEKs. CEK1-3 have been well characterized using viable mutants while CEK4 encodes an essential gene, making it difficult to characterize its effects on plant development and responses to the environment. We have isolated an EMS-induced allele of CEK4 called bumpy stem (bst). bst plants are viable, allowing the effects of decreased CEK4 function to be characterized throughout the Arabidopsis life cycle. bst mutants have a range of developmental defects including ectopic stem growths at the base of their flowers, reduced fertility, and short roots and stems. They are also sensitive to cold temperatures. Supplementation with choline, phosphocholine, ethanolamine, and phosphoethanolamine rescues bst root phenotypes, highlighting the flow of metabolites between the choline and ethanolamine branches of the Kennedy pathway. The identification of bst and characterization of its phenotypes defines new roles for CEK4 that go beyond its established biochemical function as an ethanolamine kinase.
Collapse
Affiliation(s)
- Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Mingjie Chen
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Nick Kaplinsky
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- *Correspondence: Nick Kaplinsky,
| |
Collapse
|
36
|
Valentine WJ, Yanagida K, Kawana H, Kono N, Noda NN, Aoki J, Shindou H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J Biol Chem 2021; 298:101470. [PMID: 34890643 PMCID: PMC8753187 DOI: 10.1016/j.jbc.2021.101470] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase A1/2s enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified. Here we provide an overview of the biochemical and biological activities of these mammalian enzymes, including their predicted structures, involvements in human diseases, and essential physiological roles as revealed by gene-deficient mice. Recently, the nomenclature used to refer to these enzymes has generated some confusion due to the use of multiple names to refer to the same enzyme and instances of the same name being used to refer to completely different enzymes. Thus, this review proposes a more uniform LPLAT enzyme nomenclature, as well as providing an update of recent advances made in the study of LPLATs, continuing from our JBC mini review in 2009.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Keisuke Yanagida
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
37
|
Ajith A, Mondal S, Chattopadhyay S, Kumar A, Sthanikam Y, Chacko AG, Prabhu K, Chacko G, Vanjare HA, Rajesh RV, Banerjee S. Mass Spectrometry Imaging Deciphers Dysregulated Lipid Metabolism in the Human Hippocampus Affected by Temporal Lobe Epilepsy. ACS Chem Neurosci 2021; 12:4187-4194. [PMID: 34657435 DOI: 10.1021/acschemneuro.1c00587] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most prevalent form of human epilepsy, often accompanied by neurodegeneration in the hippocampus. Like other neurological diseases, TLE is expected to disrupt lipid homeostasis. However, the lipid architecture of the human TLE brain is relatively understudied, and the molecular mechanism of epileptogenesis is poorly understood. We performed desorption electrospray ionization mass spectrometry imaging of 39 fresh frozen surgical specimens of the human hippocampus to investigate lipid profiles in TLE with hippocampal sclerosis (n = 14) and control (non-TLE; n = 25) groups. In contrast to several previous studies on animal models of epilepsy, we report reduced expression of various important lipids, notably phosphatidylcholine (PC) and phosphatidylethanolamine (PE), in the human TLE hippocampus. In addition, metabolic pathway analysis suggested the possible dysregulation of the Kennedy pathway in TLE, resulting in striking reductions of PC and PE levels. This revelation opens up opportunities to further investigate the associated molecular mechanisms and possible therapeutic targets for TLE.
Collapse
Affiliation(s)
- Akhila Ajith
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Supratim Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Sutirtha Chattopadhyay
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Anubhav Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Yeswanth Sthanikam
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Ari George Chacko
- Department of Neurological Sciences, Christian Medical College, Vellore 632004, India
| | - Krishna Prabhu
- Department of Neurological Sciences, Christian Medical College, Vellore 632004, India
| | - Geeta Chacko
- Department of General Pathology, Christian Medical College, Vellore 632004, India
| | | | | | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
38
|
Miura H, Mizuguchi H, Amano-Iwashita M, Maeda-Kogure R, Negishi A, Sakai A, Toyama T, Kawai H, Mitsumoto A, Kudo N. Clofibric acid increases molecular species of phosphatidylethanolamine containing arachidonic acid for biogenesis of peroxisomal membranes in peroxisome proliferation in the liver. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158963. [PMID: 33945875 DOI: 10.1016/j.bbalip.2021.158963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 01/22/2023]
Abstract
The biogenesis of peroxisomes in relation to the trafficking of proteins to peroxisomes has been extensively examined. However, the supply of phospholipids, which is needed to generate peroxisomal membranes in mammals, remains unclear. Therefore, we herein investigated metabolic alterations induced by clofibric acid, a peroxisome proliferator, in the synthesis of phospholipids, particularly phosphatidylethanolamine (PE) molecular species, and their relationship with the biogenesis of peroxisomal membranes. The subcutaneous administration of clofibric acid to rats at a relatively low dose (130 mg/kg) once a day time-dependently and gradually increased the integrated perimeter of peroxisomes per 100 μm2 hepatocyte cytoplasm (PA). A strong correlation was observed between the content (μmol/mg DNA) of PE containing arachidonic acid (20:4) and PA (r2 = 0.9168). Moreover, the content of PE containing octadecenoic acid (18:1) positively correlated with PA (r2 = 0.8094). The treatment with clofibric acid markedly accelerated the formation of 16:0-20:4 PE by increasing the production of 20:4 and the activity of acyl chain remodeling of pre-existing PE molecular species. Increases in the acyl chain remodeling of PE by clofibric acid were mainly linked to the up-regulated expression of the Lpcat3 gene. On the other hand, clofibric acid markedly increased the formation of palmitic acid (16:0)-18:1 PE through de novo synthesis. These results suggest that the enhanced formation of particular PE molecular species is related to increases in the mass of peroxisomal membranes in peroxisome proliferation in the liver.
Collapse
Affiliation(s)
- Hiroaki Miura
- Research and Development Laboratories, Maruho Co., 1 Awatacho, Chudoji, Shimogyo-ku, Kyoto 600-8815, Japan
| | - Hiroki Mizuguchi
- School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mino Amano-Iwashita
- School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Rie Maeda-Kogure
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Akio Negishi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Ayako Sakai
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Tomoaki Toyama
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Hiroshi Kawai
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Atsushi Mitsumoto
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan
| | - Naomi Kudo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
39
|
Horibata Y, Sugimoto H. Differential contributions of choline phosphotransferases CPT1 and CEPT1 to the biosynthesis of choline phospholipid. J Lipid Res 2021; 62:100100. [PMID: 34331935 PMCID: PMC8387743 DOI: 10.1016/j.jlr.2021.100100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/21/2022] Open
Abstract
Choline phospholipids (PLs) such as phosphatidylcholine (PC) and 1-alkyl-2-acyl-sn-glycerophosphocholine are important components for cell membranes and also serve as a source of several lipid mediators. These lipids are biosynthesized in mammals in the final step of the CDP-choline pathway by the choline phosphotransferases choline phosphotransferase 1 (CPT1) and choline/ethanolamine phosphotransferase 1 (CEPT1). However, the contributions of these enzymes to the de novo biosynthesis of lipids remain unknown. Here, we established and characterized CPT1- and CEPT1-deficient human embryonic kidney 293 cells. Immunohistochemical analyses revealed that CPT1 localizes to the trans-Golgi network and CEPT1 to the endoplasmic reticulum. Enzyme assays and metabolic labeling with radiolabeled choline demonstrated that loss of CEPT1 dramatically decreases choline PL biosynthesis. Quantitative PCR and reintroduction of CPT1 and CEPT1 revealed that the specific activity of CEPT1 was much higher than that of CPT1. LC-MS/MS analysis of newly synthesized lipid molecular species from deuterium-labeled choline also showed that these enzymes have similar preference for the synthesis of PC molecular species, but that CPT1 had higher preference for 1-alkyl-2-acyl-sn-glycerophosphocholine with PUFA than did CEPT1. The endogenous level of PC was not reduced by the loss of these enzymes. However, several 1-alkyl-2-acyl-sn-glycerophosphocholine molecular species were reduced in CPT1-deficient cells and increased in CEPT1-deficient cells when cultured in 0.1% FBS medium. These results suggest that CEPT1 accounts for most choline PL biosynthesis activity, and that both enzymes are responsible for the production of different lipid molecular species in distinct organelles.
Collapse
Affiliation(s)
- Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.
| |
Collapse
|
40
|
Narzt MS, Pils V, Kremslehner C, Nagelreiter IM, Schosserer M, Bessonova E, Bayer A, Reifschneider R, Terlecki-Zaniewicz L, Waidhofer-Söllner P, Mildner M, Tschachler E, Cavinato M, Wedel S, Jansen-Dürr P, Nanic L, Rubelj I, El-Ghalbzouri A, Zoratto S, Marchetti-Deschmann M, Grillari J, Gruber F, Lämmermann I. Epilipidomics of Senescent Dermal Fibroblasts Identify Lysophosphatidylcholines as Pleiotropic Senescence-Associated Secretory Phenotype (SASP) Factors. J Invest Dermatol 2020; 141:993-1006.e15. [PMID: 33333126 DOI: 10.1016/j.jid.2020.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
During aging, skin accumulates senescent cells. The transient presence of senescent cells, followed by their clearance by the immune system, is important in tissue repair and homeostasis. The persistence of senescent cells that evade clearance contributes to the age-related deterioration of the skin. The senescence-associated secretory phenotype of these cells contains immunomodulatory molecules that facilitate clearance but also promote chronic damage. Here, we investigated the epilipidome-the oxidative modifications of phospholipids-of senescent dermal fibroblasts, because these molecules are among the bioactive lipids that were recently identified as senescence-associated secretory phenotype factors. Using replicative- and stress- induced senescence protocols, we identified lysophosphatidylcholines as universally elevated in senescent fibroblasts, whereas other oxidized lipids displayed a pattern that was characteristic for the used senescence protocol. When we tested the lysophosphatidylcholines for senescence-associated secretory phenotype activity, we found that they elicit chemokine release in nonsenescent fibroblasts but also interfere with toll-like receptor 2 and 6/CD36 signaling and phagocytic capacity in macrophages. Using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging, we localized two lysophosphatidylcholine species in aged skin. This suggests that lysophospholipids may facilitate immune evasion and low-grade chronic inflammation in skin aging.
Collapse
Affiliation(s)
- Marie-Sophie Narzt
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz and Vienna, Austria
| | - Vera Pils
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Christopher Kremslehner
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Vienna, Austria
| | - Ionela-Mariana Nagelreiter
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Vienna, Austria; Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Markus Schosserer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Emilia Bessonova
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Alina Bayer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Raffaela Reifschneider
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Lucia Terlecki-Zaniewicz
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Cavinato
- Institute for Biomedical Aging Research, University of Innsbruck, Austria; Center for Molecular Biosciences Innsbruck, Innsbruck, Austria
| | - Sophia Wedel
- Institute for Biomedical Aging Research, University of Innsbruck, Austria; Center for Molecular Biosciences Innsbruck, Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Austria; Center for Molecular Biosciences Innsbruck, Innsbruck, Austria
| | - Lucia Nanic
- Ruder Boskovic Institute, Division of Molecular Biology, Laboratory for Molecular and Cellular Biology, Zagreb, Croatia
| | - Ivica Rubelj
- Ruder Boskovic Institute, Division of Molecular Biology, Laboratory for Molecular and Cellular Biology, Zagreb, Croatia
| | | | - Samuele Zoratto
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Vienna, Austria; Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Martina Marchetti-Deschmann
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz and Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Florian Gruber
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Vienna, Austria.
| | - Ingo Lämmermann
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|