1
|
Delgado-Nungaray JA, Figueroa-Yáñez LJ, Reynaga-Delgado E, Corona-España AM, Gonzalez-Reynoso O. Unveiling the endogenous CRISPR-Cas system in Pseudomonas aeruginosa PAO1. PLoS One 2024; 19:e0312783. [PMID: 39739718 DOI: 10.1371/journal.pone.0312783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/13/2024] [Indexed: 01/02/2025] Open
Abstract
Multidrug resistance in Pseudomonas aeruginosa, a high-priority pathogen per the World Health Organization, poses a global threat due to carbapenem resistance and limited antibiotic treatments. Using the bioinformatic tools CRISPRCasFinder, CRISPRCasTyper, CRISPRloci, and CRISPRImmunity, we analyzed the genome of P. aeruginosa PAO1 and revealed an orphan CRISPR system, suggesting it may be a remnant of a type IV system due to the presence of the DinG protein. This system comprises two CRISPR arrays and noteworthy DinG and Cas3 proteins, supporting recent evidence about the association between type IV and I CRISPR systems. Additionally, we demonstrated a co-evolutionary relationship between the orphan CRISPR system in P. aeruginosa PAO1 and the mobile genetic element and prophages identified. One self-targeting spacer was identified, often associated with bacterial evolution and autoimmunity, and no Acr proteins. This research opens avenues for studying how these CRISPR arrays regulate pathogenicity and for developing alternative strategies using its endogenous orphan CRISPR system against carbapenem-resistant P. aeruginosa strains.
Collapse
Affiliation(s)
- Javier Alejandro Delgado-Nungaray
- Chemical Engineering Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Luis Joel Figueroa-Yáñez
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Eire Reynaga-Delgado
- Pharmacobiology Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ana Montserrat Corona-España
- Chemical Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Orfil Gonzalez-Reynoso
- Chemical Engineering Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
2
|
Alves VF, Tadielo LE, Pires ACMDS, Pereira MG, Bersot LDS, De Martinis ECP. Hidden Places for Foodborne Bacterial Pathogens and Novel Approaches to Control Biofilms in the Meat Industry. Foods 2024; 13:3994. [PMID: 39766937 PMCID: PMC11675819 DOI: 10.3390/foods13243994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Biofilms are of great concern for the meat industry because, despite the implementation of control plans, they remain important hotspots of contamination by foodborne pathogens, highlighting the need to better understand the ecology of these microecosystems. The objective of this paper was to critically survey the recent scientific literature on microbial biofilms of importance for meat safety and quality, also pointing out the most promising methods to combat them. For this, the databases PubMed, Scopus, Science Direct, Web of Science, and Google Scholar were surveyed in a 10-year time frame (but preferably papers less than 5 years old) using selected keywords relevant for the microbiology of meats, especially considering bacteria that are tolerant to cleaning and sanitization processes. The literature findings showed that massive DNA sequencing has deeply impacted the knowledge on the species that co-habit biofilms with important foodborne pathogens (Listeria monocytogenes, Salmonella, pathogenic Escherichia coli, and Staphylococcus aureus). It is likely that recalcitrant commensal and/or spoilage microbiota somehow protect the more fastidious organisms from harsh conditions, in addition to harboring antimicrobial resistance genes. Among the members of background microbiota, Pseudomonas, Acinetobacter, and Enterobacteriales have been commonly found on food contact and non-food contact surfaces in meat processing plants, in addition to less common genera, such as Psychrobacter, Enhydrobacter, Brevundimonas, and Rothia, among others. It has been hypothesized that these rare taxa may represent a primary layer in microbial biofilms, offering better conditions for the adhesion of otherwise poor biofilm formers, especially considering their tolerance to cold conditions and sanitizers. Taking into consideration these findings, it is not only important to target the foodborne pathogens per se in cleaning and disinfection plans but the use of multiple hurdles is also recommended to dismantle the recalcitrant structures of biofilms. In this sense, the last part of this manuscript presents an updated overview of the antibiofilm methods available, with an emphasis on eco-friendly approaches.
Collapse
Affiliation(s)
| | - Leonardo Ereno Tadielo
- Department of Animal Production and Food, State University of Santa Catarina, Lages 88040-900, Brazil;
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (A.C.M.d.S.P.); (M.G.P.)
| | | | | |
Collapse
|
3
|
Corbella M, Bravo J, Demkiv AO, Calixto AR, Sompiyachoke K, Bergonzi C, Brownless ALR, Elias MH, Kamerlin SCL. Catalytic Redundancies and Conformational Plasticity Drives Selectivity and Promiscuity in Quorum Quenching Lactonases. JACS AU 2024; 4:3519-3536. [PMID: 39328773 PMCID: PMC11423328 DOI: 10.1021/jacsau.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Several enzymes from the metallo-β-lactamase-like family of lactonases (MLLs) degrade N-acyl L-homoserine lactones (AHLs). They play a role in a microbial communication system known as quorum sensing, which contributes to pathogenicity and biofilm formation. Designing quorum quenching (QQ) enzymes that can interfere with this communication allows them to be used in a range of industrial and biomedical applications. However, tailoring these enzymes for specific communication signals requires a thorough understanding of their mechanisms and the physicochemical properties that determine their substrate specificities. We present here a detailed biochemical, computational, and structural study of GcL, which is a highly proficient and thermostable MLL with broad substrate specificity. We show that GcL not only accepts a broad range of substrates but also hydrolyzes these substrates through at least two different mechanisms. Further, the preferred mechanism appears to depend on both the substrate structure and/or the nature of the residues lining the active site. We demonstrate that other lactonases, such as AiiA and AaL, show similar mechanistic promiscuity, suggesting that this is a shared feature among MLLs. Mechanistic promiscuity has been seen previously in the lactonase/paraoxonase PON1, as well as with protein tyrosine phosphatases that operate via a dual general acid mechanism. The apparent prevalence of this phenomenon is significant from both a biochemical and protein engineering perspective: in addition to optimizing for specific substrates, it may be possible to optimize for specific mechanisms, opening new doors not just for the design of novel quorum quenching enzymes but also of other mechanistically promiscuous enzymes.
Collapse
Affiliation(s)
- Marina Corbella
- Departament
de Química Inorgànica (Seeió de Química
Orgànica) & Institut de Química Teòrica i
Computacional (IQTCUB), Universitat de Barcelona, Martíi Franquès 1, 08028 Barcelona, Spain
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Joe Bravo
- BioTechnology
Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Andrey O. Demkiv
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Ana Rita Calixto
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Kitty Sompiyachoke
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint
Paul, Minnesota 55108, United States
| | - Celine Bergonzi
- BioTechnology
Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Alfie-Louise R. Brownless
- School of
Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Mikael H. Elias
- BioTechnology
Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint
Paul, Minnesota 55108, United States
| | - Shina Caroline Lynn Kamerlin
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
- School of
Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Wang J, Ju T, Guo L, Shan W, Wu Q, Zhang H, Zhang J. Quorum-quenching enzyme Est816 assisted antibiotics against periodontitis induced by Aggregatibacter actinomycetemcomitans in rats. Front Cell Infect Microbiol 2024; 14:1368684. [PMID: 38779565 PMCID: PMC11109752 DOI: 10.3389/fcimb.2024.1368684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Quorum-quenching enzyme Est816 hydrolyzes the lactone rings of N-acyl homoserine lactones, effectively blocking the biofilm formation and development of Gram-negative bacteria. However, its applications in the oral field is limited. This study aimed to evaluate the efficacy of enzyme Est816 in combination with antibiotics against periodontitis induced by Aggregatibacter actinomycetemcomitans in vitro and in vivo. Methods The antimicrobial efficacy of enzyme Est816 in combination with minocycline, metronidazole, and amoxicillin was determined using the minimum inhibitory concentration test. The anti-biofilm effect of enzyme Est816 was assessed using scanning electron microscopy, live/dead bacterial staining, crystal violet staining, and real-time quantitative PCR. Biocompatibility of enzyme Est816 was assessed in human gingival fibroblasts (HGF) by staining. A rat model of periodontitis was established to evaluate the effect of enzyme Est816 combined with minocycline using micro-computed tomography and histological staining. Results Compared to minocycline, metronidazole, and amoxicillin treatment alone, simultaneous treatment with enzyme Est816 increased the sensitivity of biofilm bacteria to antibiotics. Enzyme Est816 with minocycline exhibited the highest rate of biofilm clearance and high biocompatibility. Moreover, the combination of enzyme Est816 with antibiotics improved the antibiofilm effects of the antibiotics synergistically, reducing the expression of the virulence factor leukotoxin gene (ltxA) and fimbria-associated gene (rcpA). Likewise, the combination of enzyme Est816 with minocycline exhibited a remarkable inhibitory effect on bone resorption and inflammation damage in a rat model of periodontitis. Discussion The combination of enzyme Est816 with antibiotics represents a prospective anti-biofilm strategy with the potential to treat periodontitis.
Collapse
Affiliation(s)
- Junmin Wang
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Tianjuan Ju
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, XI''an, Shaanxi, China
| | - Lifeng Guo
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Wenwen Shan
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Qianxia Wu
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Haichuan Zhang
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Jing Zhang
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Corbella M, Bravo J, Demkiv AO, Calixto AR, Sompiyachoke K, Bergonzi C, Elias MH, Kamerlin SCL. Catalytic Redundancies and Conformational Plasticity Drives Selectivity and Promiscuity in Quorum Quenching Lactonases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592096. [PMID: 38746346 PMCID: PMC11092605 DOI: 10.1101/2024.05.01.592096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Several enzymes from the metallo-β-lactamase-like family of lactonases (MLLs) degrade N- acyl-L-homoserine lactones (AHLs). In doing so, they play a role in a microbial communication system, quorum sensing, which contributes to pathogenicity and biofilm formation. There is currently great interest in designing quorum quenching ( QQ ) enzymes that can interfere with this communication and be used in a range of industrial and biomedical applications. However, tailoring these enzymes for specific targets requires a thorough understanding of their mechanisms and the physicochemical properties that determine their substrate specificities. We present here a detailed biochemical, computational, and structural study of the MLL GcL, which is highly proficient, thermostable, and has broad substrate specificity. Strikingly, we show that GcL does not only accept a broad range of substrates but is also capable of utilizing different reaction mechanisms that are differentially used in function of the substrate structure or the remodeling of the active site via mutations. Comparison of GcL to other lactonases such as AiiA and AaL demonstrates similar mechanistic promiscuity, suggesting this is a shared feature across lactonases in this enzyme family. Mechanistic promiscuity has previously been observed in the lactonase/paraoxonase PON1, as well as with protein tyrosine phosphatases that operate via a dual general-acid mechanism. The apparent prevalence of this phenomenon is significant from both a biochemical and an engineering perspective: in addition to optimizing for specific substrates, it is possible to optimize for specific mechanisms, opening new doors not just for the design of novel quorum quenching enzymes, but also of other mechanistically promiscuous enzymes.
Collapse
|
6
|
Zhang J, Liu M, Guo H, Gao S, Hu Y, Zeng G, Yang D. Nanotechnology-driven strategies to enhance the treatment of drug-resistant bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1968. [PMID: 38772565 DOI: 10.1002/wnan.1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
The misuse of antibiotics has led to increased bacterial resistance, posing a global public health crisis and seriously endangering lives. Currently, antibiotic therapy remains the most common approach for treating bacterial infections, but its effectiveness against multidrug-resistant bacteria is diminishing due to the slow development of new antibiotics and the increase of bacterial drug resistance. Consequently, developing new a\ntimicrobial strategies and improving antibiotic efficacy to combat bacterial infection has become an urgent priority. The emergence of nanotechnology has revolutionized the traditional antibiotic treatment, presenting new opportunities for refractory bacterial infection. Here we comprehensively review the research progress in nanotechnology-based antimicrobial drug delivery and highlight diverse platforms designed to target different bacterial resistance mechanisms. We also outline the use of nanotechnology in combining antibiotic therapy with other therapeutic modalities to enhance the therapeutic effectiveness of drug-resistant bacterial infections. These innovative therapeutic strategies have the potential to enhance bacterial susceptibility and overcome bacterial resistance. Finally, the challenges and prospects for the application of nanomaterial-based antimicrobial strategies in combating bacterial resistance are discussed. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Ming Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Haiyang Guo
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Shuwen Gao
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Yanling Hu
- College of Life and Health, Nanjing Polytechnic Institute, Nanjing, China
| | - Guisheng Zeng
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| |
Collapse
|
7
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
8
|
Sompiyachoke K, Elias MH. Engineering quorum quenching acylases with improved kinetic and biochemical properties. Protein Sci 2024; 33:e4954. [PMID: 38520282 PMCID: PMC10960309 DOI: 10.1002/pro.4954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 03/25/2024]
Abstract
Many Gram-negative bacteria use N-acyl-L-homoserine lactone (AHL) signals to coordinate phenotypes such as biofilm formation and virulence factor production. Quorum-quenching enzymes, such as AHL acylases, chemically degrade these molecules which prevents signal reception by bacteria and inhibits undesirable biofilm-related traits. These capabilities make acylases appealing candidates for controlling microbes, yet candidates with high activity levels and substrate specificity and that are capable of being formulated into materials are needed. In this work, we undertook engineering efforts against two AHL acylases, PvdQ and MacQ, to generate these improved properties using the Protein One-Stop Shop Server. The engineering of acylases is complicated by low-throughput enzymatic assays. Alleviating this challenge, we report a time-course kinetic assay for AHL acylases that monitors the real-time production of homoserine lactone. Using the assay, we identified variants of PvdQ that were significantly stabilized, with melting point increases of up to 13.2°C, which translated into high resistance against organic solvents and increased compatibility with material coatings. While the MacQ mutants were unexpectedly destabilized, they had considerably improved kinetic properties, with >10-fold increases against N-butyryl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone. Accordingly, these changes resulted in increased quenching abilities using a biosensor model and greater inhibition of virulence factor production of Pseudomonas aeruginosa PA14. While the crystal structure of one of the MacQ variants, M1, did not reveal obvious structural determinants explaining the observed changes in kinetics, it allowed for the capture of an acyl-enzyme intermediate that confirms a previously hypothesized catalytic mechanism of AHL acylases.
Collapse
Affiliation(s)
- Kitty Sompiyachoke
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMinnesotaUSA
- Biotechnology InstituteSt. PaulMinnesotaUSA
| |
Collapse
|
9
|
Malachy Udowo V, Unimuke TO, Louis H, Udoh II, Edet HO, Okafor PC. Enhanced sensing of bacteria biomarkers by ZnO and graphene oxide decorated PEDOT film. J Biomol Struct Dyn 2024:1-14. [PMID: 38499994 DOI: 10.1080/07391102.2024.2328740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Developing a biofilm biomarker detector and inhibitor will immensely benefit efforts geared at curbing infectious diseases and microbiologically induced corrosion of medical implants, marine vessels and buried steel pipelines. N-Acyl homoserine lactones (AHLs) are important biomarkers gram-negative bacteria use for communication. In this work, we investigated the interactions between three AHL molecules and graphene oxide (GO) and ZnO nanomaterials embedded in conjugated poly(3,4-ethylenedioxythiophene) (PEDOT) film. The results show that PEDOT/GO/ZnO detected AHLs to a considerable extent with adsorption enthalpies of -4.02, -4.87 and -4.97 KJ/mol, respectively, for N-(2-oxotetrahydrofuran-3-yl)heptanamide (AHL1), 2-hydroxy-N-(2-oxotetrahydrofuran-3-yl)nonanamide (AHL2) and (E)-3-(3-hydroxyphenyl)-N-(2-oxotetrahydrofuran-3-yl)acrylamide (AHL3) molecules. The ZnO nanoparticles facilitated charge redistribution and transfer, thereby enhancing the conductivity and overall sensitivity of the substrate toward the AHLs. The adsorption distance and sites of interactions further tuned the charge migration and signal generation by the substrate, thus affirming the suitability of the modeled thin film as a sensor material. Excellent stability and conductivity were maintained before and after the adsorption of each AHL molecule. Moreover, the desorption time for each AHL molecule was calculated, and the result affirmed that the modeled film materials are promising for developing highly sensitive biosensors.
Collapse
Affiliation(s)
- Victor Malachy Udowo
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Tomsmith O Unimuke
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Hitler Louis
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy or Research and Education, Kelambakkam, Tamil Nadu, India
| | - Inime Ime Udoh
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henry O Edet
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Peter C Okafor
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| |
Collapse
|
10
|
Sikdar R, Beauclaire MV, Lima BP, Herzberg MC, Elias MH. N-acyl homoserine lactone signaling modulates bacterial community associated with human dental plaque. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585217. [PMID: 38559107 PMCID: PMC10980036 DOI: 10.1101/2024.03.15.585217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
N-acyl homoserine lactones (AHLs) are small diffusible signaling molecules that mediate a cell density-dependent bacterial communication system known as quorum sensing (QS). AHL-mediated QS regulates gene expression to control many critical bacterial behaviors including biofilm formation, pathogenicity, and antimicrobial resistance. Dental plaque is a complex multispecies oral biofilm formed by successive colonization of the tooth surface by groups of commensal, symbiotic, and pathogenic bacteria, which can contribute to tooth decay and periodontal diseases. While the existence and roles of AHL-mediated QS in oral microbiota have been debated, recent evidence indicates that AHLs play significant roles in oral biofilm development and community dysbiosis. The underlying mechanisms, however, remain poorly characterized. To better understand the importance of AHL signaling in dental plaque formation, we manipulated AHL signaling by adding AHL lactonases or exogenous AHL signaling molecules. We find that AHLs can be detected in dental plaque grown under 5% CO2 conditions, but not when grown under anaerobic conditions, and yet anaerobic cultures are still responsive to AHLs. QS signal disruption using lactonases leads to changes in microbial population structures in both planktonic and biofilm states, changes that are dependent on the substrate preference of the used lactonase but mainly result in the increase in the abundance of commensal and pioneer colonizer species. Remarkably, the opposite manipulation, that is the addition of exogenous AHLs increases the abundance of late colonizer bacterial species. Hence, this work highlights the importance of AHL-mediated QS in dental plaque communities, its potential different roles in anaerobic and aerobic parts of dental plaque, and underscores the potential of QS interference in the control of periodontal diseases.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Mai V. Beauclaire
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Bruno P. Lima
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mikael H. Elias
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
11
|
Gonzales M, Kergaravat B, Jacquet P, Billot R, Grizard D, Chabrière É, Plener L, Daudé D. Disrupting quorum sensing as a strategy to inhibit bacterial virulence in human, animal, and plant pathogens. Pathog Dis 2024; 82:ftae009. [PMID: 38724459 PMCID: PMC11110857 DOI: 10.1093/femspd/ftae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
The development of sustainable alternatives to conventional antimicrobials is needed to address bacterial virulence while avoiding selecting resistant strains in a variety of fields, including human, animal, and plant health. Quorum sensing (QS), a bacterial communication system involved in noxious bacterial phenotypes such as virulence, motility, and biofilm formation, is of utmost interest. In this study, we harnessed the potential of the lactonase SsoPox to disrupt QS of human, fish, and plant pathogens. Lactonase treatment significantly alters phenotypes including biofilm formation, motility, and infection capacity. In plant pathogens, SsoPox decreased the production of plant cell wall degrading enzymes in Pectobacterium carotovorum and reduced the maceration of onions infected by Burkholderia glumae. In human pathogens, lactonase treatment significantly reduced biofilm formation in Acinetobacter baumannii, Burkholderia cepacia, and Pseudomonas aeruginosa, with the cytotoxicity of the latter being reduced by SsoPox treatment. In fish pathogens, lactonase treatment inhibited biofilm formation and bioluminescence in Vibrio harveyi and affected QS regulation in Aeromonas salmonicida. QS inhibition can thus be used to largely impact the virulence of bacterial pathogens and would constitute a global and sustainable approach for public, crop, and livestock health in line with the expectations of the One Health initiative.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille University, MEPHI, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Baptiste Kergaravat
- Aix Marseille University, MEPHI, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Pauline Jacquet
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Raphaël Billot
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Damien Grizard
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Éric Chabrière
- Aix Marseille University, MEPHI, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Laure Plener
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| |
Collapse
|
12
|
Porzio E, Andrenacci D, Manco G. Thermostable Lactonases Inhibit Pseudomonas aeruginosa Biofilm: Effect In Vitro and in Drosophila melanogaster Model of Chronic Infection. Int J Mol Sci 2023; 24:17028. [PMID: 38069351 PMCID: PMC10707464 DOI: 10.3390/ijms242317028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Pseudomonas aeruginosa is one of the six antimicrobial-resistant pathogens known as "ESKAPE" that represent a global threat to human health and are considered priority targets for the development of novel antimicrobials and alternative therapeutics. The virulence of P. aeruginosa is regulated by a four-chemicals communication system termed quorum sensing (QS), and one main class of QS signals is termed acylhomoserine lactones (acyl-HSLs), which includes 3-Oxo-dodecanoil homoserine lactone (3-Oxo-C12-HSL), which regulates the expression of genes implicated in virulence and biofilm formation. Lactonases, like Paraoxonase 2 (PON2) from humans and the phosphotriesterase-like lactonases (PLLs) from thermostable microorganisms, are able to hydrolyze acyl-HSLs. In this work, we explored in vitro and in an animal model the effect of some lactonases on the production of Pseudomonas virulence factors. This study presents a model of chronic infection in which bacteria were administered by feeding, and Drosophila adults were treated with enzymes and the antibiotic tobramycin, alone or in combination. In vitro, we observed significant effects of lactonases on biofilm formation as well as effects on bacterial motility and the expression of virulence factors. The treatment in vivo by feeding with the lactonase SacPox allowed us to significantly increase the biocidal effect of tobramycin in chronic infection.
Collapse
Affiliation(s)
- Elena Porzio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| | - Davide Andrenacci
- CNR Institute of Molecular Genetics “Luigi-Luca Cavalli-Sforza” Unit of Bologna, 40136 Bologna, Italy
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
13
|
Yang ZJ, Shao Q, Jiang Y, Jurich C, Ran X, Juarez RJ, Yan B, Stull SL, Gollu A, Ding N. Mutexa: A Computational Ecosystem for Intelligent Protein Engineering. J Chem Theory Comput 2023; 19:7459-7477. [PMID: 37828731 PMCID: PMC10653112 DOI: 10.1021/acs.jctc.3c00602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 10/14/2023]
Abstract
Protein engineering holds immense promise in shaping the future of biomedicine and biotechnology. This Review focuses on our ongoing development of Mutexa, a computational ecosystem designed to enable "intelligent protein engineering". In this vision, researchers will seamlessly acquire sequences of protein variants with desired functions as biocatalysts, therapeutic peptides, and diagnostic proteins through a finely-tuned computational machine, akin to Amazon Alexa's role as a versatile virtual assistant. The technical foundation of Mutexa has been established through the development of a database that combines and relates enzyme structures and their respective functions (e.g., IntEnzyDB), workflow software packages that enable high-throughput protein modeling (e.g., EnzyHTP and LassoHTP), and scoring functions that map the sequence-structure-function relationship of proteins (e.g., EnzyKR and DeepLasso). We will showcase the applications of these tools in benchmarking the convergence conditions of enzyme functional descriptors across mutants, investigating protein electrostatics and cavity distributions in SAM-dependent methyltransferases, and understanding the role of nonelectrostatic dynamic effects in enzyme catalysis. Finally, we will conclude by addressing the future steps and fundamental challenges in our endeavor to develop new Mutexa applications that assist the identification of beneficial mutants in protein engineering.
Collapse
Affiliation(s)
- Zhongyue J. Yang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data
Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Qianzhen Shao
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yaoyukun Jiang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Christopher Jurich
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Xinchun Ran
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Reecan J. Juarez
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Bailu Yan
- Department
of Biostatistics, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Sebastian L. Stull
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Anvita Gollu
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ning Ding
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
14
|
Xu F, Liao J, Hu J, Feng Y, Huang Y, Feng X, Li S. Biofouling mitigation and microbial community dynamics in the membrane bioreactor by the indigenous quorum quenching bacterium Delftia sp. JL5. BIORESOURCE TECHNOLOGY 2023; 388:129753. [PMID: 37696340 DOI: 10.1016/j.biortech.2023.129753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
The quorum quenching (QQ) strategy has attracted increasing attention in membrane bioreactor (MBR) fouling control. However, the applicable QQ strain remains limited. This study investigated the antibiofouling performance of a new indigenous QQ bacterium, Delftia sp. JL5 (JL5) in MBR. JL5 produces intracellular acylase that irreversibly degrades N-acylhomoserine lactones (AHL), inhibited biofilm formation of quorum-sensing bacteria from activated sludge. During 120 days of operation, immobilized JL5 substantially delayed MBR biofouling by 2.1 and 2.9 times, at a flux rate of 30 L/(m2·h) and 20 L/(m2·h), respectively. A slower flux rate was favorable for effective mitigation of JL5 biofouling. JL5 reduced the AHL and extracellular polymeric substances of biocake without affecting the efficiency of waste removal. The presence of JL5 significantly changed the microbial structure of the membrane biocake, but not the activated sludge. Collectively, high activity, durability, and acid tolerance credited JL5 as a promising strain for QQ-MBR.
Collapse
Affiliation(s)
- Fangfang Xu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Jialong Liao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Forigin Research Center, Fairylands Environmental Sci-Tech (Shenzhen) Co. Ltd., Shenzhen 518055, China
| | - Jinchen Hu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yunshi Feng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yanyao Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xingtong Feng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Huang S, Bergonzi C, Smith S, Hicks RE, Elias MH. Field testing of an enzymatic quorum quencher coating additive to reduce biocorrosion of steel. Microbiol Spectr 2023; 11:e0517822. [PMID: 37668433 PMCID: PMC10580884 DOI: 10.1128/spectrum.05178-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/27/2023] [Indexed: 09/06/2023] Open
Abstract
Microbial colonization can be detrimental to the integrity of metal surfaces and lead to microbiologically influenced corrosion. Biocorrosion is a serious problem for aquatic and marine industries in the world and severely affects the maritime transportation industry by destroying port infrastructure and increasing fuel usage and the time and cost required for maintenance of transport vessels. Here, we evaluate the potential of a stable quorum quenching lactonase enzyme to reduce biocorrosion in the field. Over the course of 21 months, steel samples coated with lactonase-containing acrylic paint were submerged at two different sites and depths in the Duluth-Superior Harbor (Lake Superior, MN, USA) and benchmarked against controls, including the biological biocide surfactin. In this experiment, the lactonase treatment outperformed the surfactin biocide treatment and significantly reduced the number of corrosion tubercles (37%; P < 0.01) and the corroded surface area (39%; P < 0.01) as compared to the acrylic-coated control coupons. In an attempt to evaluate the effects of signal disruption of surface microbial communities and the reasons for lower corrosion levels, 16S rRNA sequencing was performed and community populations were analyzed. Interestingly, surface communities were similar between all treatments, and only minor changes could be observed. Among these changes, several groups, including sulfate-reducing bacteria (SRB), appeared to correlate with corrosion levels, and more specifically, SRB abundance levels were lower on lactonase-treated steel coupons. We surmise that these minute community changes may have large impacts on corrosion rates. Overall, these results highlight the potential use of stable quorum quenching lactonases as an eco-friendly antifouling coating additive. IMPORTANCE Biocorrosion severely affects the maritime transportation industry by destroying port infrastructure and increasing fuel usage and the time and cost required to maintain transport vessels. Current solutions are partly satisfactory, and the antifouling coating still largely depends on biocide-containing products that are harmful to the environment. The importance of microbial signaling in biofouling and biocorrosion is not elucidated. We here take advantage of a highly stable lactonase that can interfere with N-acyl homoserine lactone-based quorum sensing and remain active in a coating base. The observed results show that an enzyme-containing coating can reduce biocorrosion over 21 months in the field. It also reveals subtle changes in the abundance of surface microbes, including sulfate-reducing bacteria. This work may contribute to pave the way for strategies pertaining to surface microbiome changes to reduce biocorrosion.
Collapse
Affiliation(s)
- Siqian Huang
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Biotechnology Institute, St. Paul, Minnesota, USA
| | - Celine Bergonzi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Biotechnology Institute, St. Paul, Minnesota, USA
| | - Sherry Smith
- Independant Scholar, Minneapolis, Minnesota, USA
| | - Randall E. Hicks
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Biotechnology Institute, St. Paul, Minnesota, USA
| |
Collapse
|
16
|
Sompiyachoke K, Elias MH. Engineering Quorum Quenching Acylases with Improved Kinetic and Biochemical Properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555929. [PMID: 37693529 PMCID: PMC10491313 DOI: 10.1101/2023.09.01.555929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Many Gram-negative bacteria respond to N-acyl-L-homoserine lactone (AHL) signals to coordinate phenotypes such as biofilm formation and virulence factor production. Quorum-quenching enzymes, such as acylases, chemically degrade AHL signals, prevent signal reception by bacteria, and inhibit undesirable traits related to biofilm. These capabilities make these enzymes appealing candidates for controlling microbes. Yet, enzyme candidates with high activity levels, high substrate specificity for specific interference, and that are capable of being formulated into materials are needed. In this work, we undertook engineering efforts against two AHL acylases, PvdQ and MacQ, to obtain improved acylase variants. The engineering of acylase is complicated by low-throughput enzymatic assays. To alleviate this challenge, we report a time-course kinetic assay for AHL acylase that tracks the real-time production of homoserine lactone. Using the protein one-stop shop server (PROSS), we identified variants of PvdQ that were significantly stabilized, with melting point increases of up to 13.2 °C, which translated into high resistance against organic solvents and increased compatibility with material coatings. We also generated mutants of MacQ with considerably improved kinetic properties, with >10-fold increases against N-butyryl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone. In fact, the variants presented here exhibit unique combinations of stability and activity levels. Accordingly, these changes resulted in increased quenching abilities using a biosensor model and greater inhibition of virulence factor production of Pseudomonas aeruginosa PA14. While the crystal structure of one of the MacQ variants, M1, did not reveal obvious structural determinants explaining the observed changes in kinetics, it allowed for the capture of an acyl-enzyme intermediate that confirms a previously hypothesized catalytic mechanism of AHL acylases.
Collapse
Affiliation(s)
- Kitty Sompiyachoke
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, St. Paul, MN, 55108, USA
| | - Mikael H. Elias
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, St. Paul, MN, 55108, USA
- University of Minnesota, Biotechnology Institute, St. Paul, MN, 55108, USA
| |
Collapse
|
17
|
Zhang Y, Liu X, Wen H, Cheng Z, Zhang Y, Zhang H, Mi Z, Fan X. Anti-Biofilm Enzymes-Assisted Antibiotic Therapy against Burn Wound Infection by Pseudomonas aeruginosa. Antimicrob Agents Chemother 2023; 67:e0030723. [PMID: 37272814 PMCID: PMC10353415 DOI: 10.1128/aac.00307-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Pseudomonas aeruginosa can form biofilms at the site of burn wound, leading to infection and the failure of treatment regimens. The previous in vitro study demonstrated that a combination of the quorum-quenching enzyme AidHA147G and the extracellular matrix hydrolase PslG was effective in inhibiting biofilm and promoting antibiotic synergy. The aim of the present study was to evaluate the efficacy of this combination of enzymes in conjunction with tobramycin in treating burn wound infected with P. aeruginosa. The results showed that this treatment was effective in quorum-quenching and biofilm inhibition on infected wounds. Compared with the tobramycin treatment only, simultaneous treatment with the enzymes and antibiotics significantly reduced the severity of tissue damage, decreased the bacterial load, and reduced the expression of the inflammatory indicators myeloperoxidase (MPO) and malondialdehyde (MDA). Topical application of the enzymes also reduced the bacterial load and inflammation to some extent. These results indicate that the combined-enzyme approach is a potentially effective treatment for P. aeruginosa biofilm infections of burn wounds.
Collapse
Affiliation(s)
- Yixin Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xiaolong Liu
- University of Science and Technology of China, Hefei, Anhui, China
| | - Huamei Wen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhongle Cheng
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanyu Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Haichuan Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, China
| | - Zhongwen Mi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xinjiong Fan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
18
|
Lima EMF, Winans SC, Pinto UM. Quorum sensing interference by phenolic compounds - A matter of bacterial misunderstanding. Heliyon 2023; 9:e17657. [PMID: 37449109 PMCID: PMC10336516 DOI: 10.1016/j.heliyon.2023.e17657] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/15/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
Over the past decade, numerous publications have emerged in the literature focusing on the inhibition of quorum sensing (QS) by plant extracts and phenolic compounds. However, there is still a scarcity of studies that delve into the specific mechanisms by which these compounds inhibit QS. Thus, our question is whether phenolic compounds can inhibit QS in a specific or indirect manner and to elucidate the underlying mechanisms involved. This study is focused on the most studied QS system, namely, autoinducer type 1 (AI-1), represented by N-acyl-homoserine lactone (AHL) signals and the AHL-mediated QS responses. Here, we analyzed the recent literature in order to understand how phenolic compounds act at the cellular level, at sub-inhibitory concentrations, and evaluated by which QS inhibition mechanisms they may act. The biotechnological application of QS inhibitors holds promising prospects for the pharmaceutical and food industries, serving as adjunct therapies and in the prevention of biofilms on various surfaces.
Collapse
Affiliation(s)
- Emília Maria França Lima
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Stephen C. Winans
- Department of Microbiology, 361A Wing Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Uelinton Manoel Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Gonzales M, Plener L, Armengaud J, Armstrong N, Chabrière É, Daudé D. Lactonase-mediated inhibition of quorum sensing largely alters phenotypes, proteome, and antimicrobial activities in Burkholderia thailandensis E264. Front Cell Infect Microbiol 2023; 13:1190859. [PMID: 37333853 PMCID: PMC10272358 DOI: 10.3389/fcimb.2023.1190859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Burkholderia thailandensis is a study model for Burkholderia pseudomallei, a highly virulent pathogen, known to be the causative agent of melioidosis and a potential bioterrorism agent. These two bacteria use an (acyl-homoserine lactone) AHL-mediated quorum sensing (QS) system to regulate different behaviors including biofilm formation, secondary metabolite productions, and motility. Methods Using an enzyme-based quorum quenching (QQ) strategy, with the lactonase SsoPox having the best activity on B. thailandensis AHLs, we evaluated the importance of QS in B. thailandensis by combining proteomic and phenotypic analyses. Results We demonstrated that QS disruption largely affects overall bacterial behavior including motility, proteolytic activity, and antimicrobial molecule production. We further showed that QQ treatment drastically decreases B. thailandensis bactericidal activity against two bacteria (Chromobacterium violaceum and Staphylococcus aureus), while a spectacular increase in antifungal activity was observed against fungi and yeast (Aspergillus niger, Fusarium graminearum and Saccharomyces cerevisiae). Discussion This study provides evidence that QS is of prime interest when it comes to understanding the virulence of Burkholderia species and developing alternative treatments.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- Gene&GreenTK, Marseille, France
| | | | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | |
Collapse
|
20
|
Dai C, Qu Y, Wu W, Li S, Chen Z, Lian S, Jing J. QSP: An open sequence database for quorum sensing related gene analysis with an automatic annotation pipeline. WATER RESEARCH 2023; 235:119814. [PMID: 36934538 DOI: 10.1016/j.watres.2023.119814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Quorum sensing (QS) has attracted great attention due to its important role in the bacterial interactions and its relevance to water management. With the development of high-throughput sequencing technology, a specific database for QS-related sequence annotation is urgently needed. Here, Hidden Markov Model (HMM) profiles for 38 types of QS-related proteins were built using a total of 4024 collected seed sequences. Based on both homolog search and keywords confirmation against the non-redundant database, we established a QS-related protein (QSP) database, that includes 809,721 protein sequences and 186,133 nucleotide sequences, downloaded available at: https://github.com/chunxiao-dcx/QSP. The entries were classified into 38 types and 315 subtypes among 91 bacterial phyla. Furthermore, an automatic annotation pipeline, named QSAP, was developed for rapid annotation, classification and abundance quantification of QSP-like sequences from sequencing data. This pipeline provided the two homolog alignment strategies offered by Diamond (Blastp) or HMMER (Hmmscan), as well as a data cleansing function for a subset or union set of the hits. The pipeline was tested using 14 metagenomic samples from various water environments, including activated sludge, deep-sea sediments, estuary water, and reservoir water. The QSAP pipeline is freely available for academic use in the code repository at: https://github.com/chunxiao-dcx/QSAP. The establishment of this database and pipeline, provides a useful tool for QS-related sequence annotation in a wide range of projects, and will increase our understanding of QS communication in aquatic environments.
Collapse
Affiliation(s)
- Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Weize Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiawei Jing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
21
|
de Leon V, Orr K, Stelinski LL, Mandadi K, Ibanez-Carrasco F. Inoculation of Tomato With Plant Growth Promoting Rhizobacteria Affects the Tomato-Potato Psyllid-Candidatus Liberibacter Solanacearum Interactions. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:379-388. [PMID: 36723158 DOI: 10.1093/jee/toad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 05/30/2023]
Abstract
The Rio Grande Valley (RGV) in southern Texas is well-suited for vegetable production due to its relatively mild/warm weather conditions in the fall and winter. Consequently, insects inflict year-round, persistent damage to crops in the RGV and regions with similar climate. Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), commonly known as the potato psyllid, is a known vector of Candidatus Liberibacter solanacearum (CLso) (Hyphomicrobiales: Rhizobiaceae), a fastidious phloem-limited bacterium associated to vein-greening in tomatoes and Zebra Chip in potatoes. Vector control is the primary approach of integrated pest management (IPM) strategies that aim to prevent plant diseases in commercial agricultural systems. However, resistance-selective pressures that decrease the effectiveness of chemical control (insecticide) applications over time are of increasing concern. Therefore, we explore an ecological approach to devising alternative IPM methodologies to manage the psyllid-transmitted CLso pathogen to supplement existing chemical products and application schedules without increasing resistance. In this study, our objective was to examine the effects of plant-growth promoting rhizobacteria (PGPR) on host-vector-pathogen interactions. Soil-drench applications of PGPRs to Solanum lycopersicum (Solanales: Solanaceae) seedlings revealed structural and possible physiological changes to the plant host and indirect changes on psyllid behavior: host plants had increased length and biomass of roots and exhibited delayed colonization by CLso, while psyllids displayed changes in parental (F0) psyllid behavior (orientation and oviposition) in response to treated hosts and in the sex ratio of their progeny (F1). Based on our results, we suggest that PGPR may have practical use in commercial tomato production.
Collapse
Affiliation(s)
- Victoria de Leon
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
| | - Katharine Orr
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Kranthi Mandadi
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- Department of Plant Pathology & Microbiology, Texas A&M University, 496 Olsen Boulevard, College Station, TX, 77840, USA
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, USA
| | - Freddy Ibanez-Carrasco
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- Department of Entomology, Texas A&M University, Minnie Bell Heep Center, Suite 412, 2475 TAMU, 370 Olsen Boulevard, College Station, TX, 77843, USA
| |
Collapse
|
22
|
Wang D, Cui F, Ren L, Li J, Li T. Quorum-quenching enzymes: Promising bioresources and their opportunities and challenges as alternative bacteriostatic agents in food industry. Compr Rev Food Sci Food Saf 2023; 22:1104-1127. [PMID: 36636773 DOI: 10.1111/1541-4337.13104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
The problems of spoilage, disease, and biofilm caused by bacterial quorum-sensing (QS) systems have posed a significant challenge to the development of the food industry. Quorum-quenching (QQ) enzymes can block QS by hydrolyzing or modifying the signal molecule, making these enzymes promising new candidates for use as antimicrobials. With many recent studies of QQ enzymes and their potential to target foodborne bacteria, an updated and systematic review is necessary. Thus, the goals of this review were to summarize what is known about the effects of bacterial QS on the food industry; discuss the current understanding of the catalytic mechanisms of QQ enzymes, including lactonase, acylase, and oxidoreductase; and describe strategies for the engineering and evolution of QQ enzymes for practical use. In particular, this review focuses on the latest progress in the application of QQ enzymes in the field of food. Finally, the current challenges limiting the systematic application of QQ enzymes in the food industry are discussed to help guide the future development of these important enzymes.
Collapse
Affiliation(s)
- Dangfeng Wang
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China
| | - Fangchao Cui
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China
| | - Likun Ren
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jianrong Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian, China
| |
Collapse
|
23
|
Targeting Multidrug-Recalcitrant Pseudomonas aeruginosa Biofilms: Combined-Enzyme Treatment Enhances Antibiotic Efficacy. Antimicrob Agents Chemother 2023; 67:e0135822. [PMID: 36602373 PMCID: PMC9872604 DOI: 10.1128/aac.01358-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that forms biofilms during infection, resulting in recalcitrance to antibiotic treatment. Biofilm inhibition is a promising research direction for the treatment of biofilm-associated infections. Here, a combined-enzyme biofilm-targeted strategy was put forward for the first time to simultaneously prevent biofilm formation and break down preformed biofilms. The N-acylhomoserine lactonase AidH was used as a quorum-sensing inhibitor and was modified to enhance the inhibitory effect on biofilms by rational design. Mutant AidHA147G exerted maximum activity at the human body temperature and pH and could reduce the expression of virulence factors as well as biofilm-related genes of P. aeruginosa. Subsequently, the P. aeruginosa self-produced glycosyl hydrolase PslG joined with AidHA147G to disrupt biofilms. Interestingly, under the combined-enzyme intervention for P. aeruginosa wild-type strain PAO1 and clinical strains, no biofilm was observed on the bottom of NEST glass-bottom cell culture dishes. The combination strategy also helped multidrug-resistant clinical strains change from resistant to intermediate or sensitive to many antibiotics commonly used in clinical practice. These results demonstrated that the combined-enzyme approach for inhibiting biofilms is a potential clinical treatment for P. aeruginosa infection.
Collapse
|
24
|
The Role of Quorum Sensing Molecules in Bacterial-Plant Interactions. Metabolites 2023; 13:metabo13010114. [PMID: 36677039 PMCID: PMC9863971 DOI: 10.3390/metabo13010114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Quorum sensing (QS) is a system of communication of bacterial cells by means of chemical signals called autoinducers, which modulate the behavior of entire populations of Gram-negative and Gram-positive bacteria. Three classes of signaling molecules have been recognized, Al-1, Al-2, Al-3, whose functions are slightly different. However, the phenomenon of quorum sensing is not only concerned with the interactions between bacteria, but the whole spectrum of interspecies interactions. A growing number of research results confirm the important role of QS molecules in the growth stimulation and defense responses in plants. Although many of the details concerning the signaling metabolites of the rhizosphere microflora and plant host are still unknown, Al-1 compounds should be considered as important components of bacterial-plant interactions, leading to the stimulation of plant growth and the biological control of phytopathogens. The use of class 1 autoinducers in plants to induce beneficial activity may be a practical solution to improve plant productivity under field conditions. In addition, researchers are also interested in tools that offer the possibility of regulating the activity of autoinducers by means of degrading enzymes or specific inhibitors (QSI). Current knowledge of QS and QSI provides an excellent foundation for the application of research to biopreparations in agriculture, containing a consortia of AHL-producing bacteria and QS inhibitors and limiting the growth of phytopathogenic organisms.
Collapse
|
25
|
Sikdar R, Elias MH. Evidence for Complex Interplay between Quorum Sensing and Antibiotic Resistance in Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0126922. [PMID: 36314960 PMCID: PMC9769976 DOI: 10.1128/spectrum.01269-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Quorum sensing (QS) is a cell-density-dependent, intercellular communication system mediated by small diffusible signaling molecules. QS regulates a range of bacterial behaviors, including biofilm formation, virulence, drug resistance mechanisms, and antibiotic tolerance. Enzymes capable of degrading signaling molecules can interfere in QS-a process termed as quorum quenching (QQ). Remarkably, previous work reported some cases where enzymatic interference in QS was synergistic to antibiotics against Pseudomonas aeruginosa. The premise of combination therapy is attractive to fight against multidrug-resistant bacteria, yet comprehensive studies are lacking. Here, we evaluate the effects of QS signal disruption on the antibiotic resistance profile of P. aeruginosa by testing 222 antibiotics and antibacterial compounds from 15 different classes. We found compelling evidence that QS signal disruption does indeed affect antibiotic resistance (40% of all tested compounds; 89/222), albeit not always synergistically (not synergistic for 19% of compounds; 43/222). For some tested antibiotics, such as sulfathiazole and trimethoprim, we were able to relate the changes in resistance caused by QS signal disruption to the modulation of the expression of key genes of the folate biosynthetic pathway. Moreover, using a P. aeruginosa-based Caenorhabditis elegans killing model, we confirmed that enzymatic QQ modulates the effects of antibiotics on P. aeruginosa's pathogenicity in vivo. Altogether, these results show that signal disruption has profound and complex effects on the antibiotic resistance profile of P. aeruginosa. This work suggests that combination therapy including QQ and antibiotics should be discussed not globally but, rather, in case-by-case studies. IMPORTANCE Quorum sensing (QS) is a cell-density-dependent communication system used by a wide range of bacteria to coordinate behaviors. Strategies pertaining to the interference in QS are appealing approaches to control microbial behaviors that depend on QS, including virulence and biofilms. Interference in QS was previously reported to be synergistic with antibiotics, yet no systematic assessment exists. Here, we evaluate the potential of combination treatments using the model opportunistic human pathogen Pseudomonas aeruginosa PA14. In this model, collected data demonstrate that QS largely modulates the antibiotic resistance profile of PA14 (for more than 40% of the tested drugs). However, the outcome of combination treatments is synergistic for only 19% of them. This research demonstrates the complex relationship between QS and antibiotic resistance and suggests that combination therapy including QS inhibitors and antibiotics should be discussed not globally but, rather, in case-by-case studies.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
26
|
Bioassay-Guided Fractionation Leads to the Detection of Cholic Acid Generated by the Rare Thalassomonas sp. Mar Drugs 2022; 21:md21010002. [PMID: 36662175 PMCID: PMC9860883 DOI: 10.3390/md21010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial symbionts of marine invertebrates are rich sources of novel, pharmaceutically relevant natural products that could become leads in combatting multidrug-resistant pathogens and treating disease. In this study, the bioactive potential of the marine invertebrate symbiont Thalassomonas actiniarum was investigated. Bioactivity screening of the strain revealed Gram-positive specific antibacterial activity as well as cytotoxic activity against a human melanoma cell line (A2058). The dereplication of the active fraction using HPLC-MS led to the isolation and structural elucidation of cholic acid and 3-oxo cholic acid. T. actiniarum is one of three type species belonging to the genus Thalassomonas. The ability to generate cholic acid was assessed for all three species using thin-layer chromatography and was confirmed by LC-MS. The re-sequencing of all three Thalassomonas type species using long-read Oxford Nanopore Technology (ONT) and Illumina data produced complete genomes, enabling the bioinformatic assessment of the ability of the strains to produce cholic acid. Although a complete biosynthetic pathway for cholic acid synthesis in this genus could not be determined based on sequence-based homology searches, the identification of putative penicillin or homoserine lactone acylases in all three species suggests a mechanism for the hydrolysis of conjugated bile acids present in the growth medium, resulting in the generation of cholic acid and 3-oxo cholic acid. With little known currently about the bioactivities of this genus, this study serves as the foundation for future investigations into their bioactive potential as well as the potential ecological role of bile acid transformation, sterol modification and quorum quenching by Thalassomonas sp. in the marine environment.
Collapse
|
27
|
Falà AK, Álvarez-Ordóñez A, Filloux A, Gahan CGM, Cotter PD. Quorum sensing in human gut and food microbiomes: Significance and potential for therapeutic targeting. Front Microbiol 2022; 13:1002185. [PMID: 36504831 PMCID: PMC9733432 DOI: 10.3389/fmicb.2022.1002185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Human gut and food microbiomes interact during digestion. The outcome of these interactions influences the taxonomical composition and functional capacity of the resident human gut microbiome, with potential consequential impacts on health and disease. Microbe-microbe interactions between the resident and introduced microbiomes, which likely influence host colonisation, are orchestrated by environmental conditions, elements of the food matrix, host-associated factors as well as social cues from other microorganisms. Quorum sensing is one example of a social cue that allows bacterial communities to regulate genetic expression based on their respective population density and has emerged as an attractive target for therapeutic intervention. By interfering with bacterial quorum sensing, for instance, enzymatic degradation of signalling molecules (quorum quenching) or the application of quorum sensing inhibitory compounds, it may be possible to modulate the microbial composition of communities of interest without incurring negative effects associated with traditional antimicrobial approaches. In this review, we summarise and critically discuss the literature relating to quorum sensing from the perspective of the interactions between the food and human gut microbiome, providing a general overview of the current understanding of the prevalence and influence of quorum sensing in this context, and assessing the potential for therapeutic targeting of quorum sensing mechanisms.
Collapse
Affiliation(s)
- A. Kate Falà
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Cormac G. M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,School of Pharmacy, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland,*Correspondence: Paul D. Cotter,
| |
Collapse
|
28
|
Molecular Mechanisms and Applications of N-Acyl Homoserine Lactone-Mediated Quorum Sensing in Bacteria. Molecules 2022; 27:molecules27217584. [PMID: 36364411 PMCID: PMC9654057 DOI: 10.3390/molecules27217584] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Microbial biodiversity includes biotic and abiotic components that support all life forms by adapting to environmental conditions. Climate change, pollution, human activity, and natural calamities affect microbial biodiversity. Microbes have diverse growth conditions, physiology, and metabolism. Bacteria use signaling systems such as quorum sensing (QS) to regulate cellular interactions via small chemical signaling molecules which also help with adaptation under undesirable survival conditions. Proteobacteria use acyl-homoserine lactone (AHL) molecules as autoinducers to sense population density and modulate gene expression. The LuxI-type enzymes synthesize AHL molecules, while the LuxR-type proteins (AHL transcriptional regulators) bind to AHLs to regulate QS-dependent gene expression. Diverse AHLs have been identified, and the diversity extends to AHL synthases and AHL receptors. This review comprehensively explains the molecular diversity of AHL signaling components of Pseudomonas aeruginosa, Chromobacterium violaceum, Agrobacterium tumefaciens, and Escherichia coli. The regulatory mechanism of AHL signaling is also highlighted in this review, which adds to the current understanding of AHL signaling in Gram-negative bacteria. We summarize molecular diversity among well-studied QS systems and recent advances in the role of QS proteins in bacterial cellular signaling pathways. This review describes AHL-dependent QS details in bacteria that can be employed to understand their features, improve environmental adaptation, and develop broad biomolecule-based biotechnological applications.
Collapse
|
29
|
Applying molecular and phenotypic screening assays to identify efficient quorum quenching lactonases. Enzyme Microb Technol 2022; 160:110092. [DOI: 10.1016/j.enzmictec.2022.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022]
|
30
|
Ivshina I, Bazhutin G, Tyumina E. Rhodococcus strains as a good biotool for neutralizing pharmaceutical pollutants and obtaining therapeutically valuable products: Through the past into the future. Front Microbiol 2022; 13:967127. [PMID: 36246215 PMCID: PMC9557007 DOI: 10.3389/fmicb.2022.967127] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Active pharmaceutical ingredients present a substantial risk when they reach the environment and drinking water sources. As a new type of dangerous pollutants with high chemical resistance and pronounced biological effects, they accumulate everywhere, often in significant concentrations (μg/L) in ecological environments, food chains, organs of farm animals and humans, and cause an intense response from the aquatic and soil microbiota. Rhodococcus spp. (Actinomycetia class), which occupy a dominant position in polluted ecosystems, stand out among other microorganisms with the greatest variety of degradable pollutants and participate in natural attenuation, are considered as active agents with high transforming and degrading impacts on pharmaceutical compounds. Many representatives of rhodococci are promising as unique sources of specific transforming enzymes, quorum quenching tools, natural products and novel antimicrobials, biosurfactants and nanostructures. The review presents the latest knowledge and current trends regarding the use of Rhodococcus spp. in the processes of pharmaceutical pollutants’ biodegradation, as well as in the fields of biocatalysis and biotechnology for the production of targeted pharmaceutical products. The current literature sources presented in the review can be helpful in future research programs aimed at promoting Rhodococcus spp. as potential biodegraders and biotransformers to control pharmaceutical pollution in the environment.
Collapse
|
31
|
Rehman ZU, Momin AA, Aldehaiman A, Irum T, Grünberg R, Arold ST. The exceptionally efficient quorum quenching enzyme LrsL suppresses Pseudomonas aeruginosa biofilm production. Front Microbiol 2022; 13:977673. [PMID: 36071959 PMCID: PMC9441902 DOI: 10.3389/fmicb.2022.977673] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Quorum quenching (QQ) is the enzymatic degradation of molecules used by bacteria for synchronizing their behavior within communities. QQ has attracted wide attention due to its potential to inhibit biofilm formation and suppress the production of virulence factors. Through its capacity to limit biofouling and infections, QQ has applications in water treatment, aquaculture, and healthcare. Several different QQ enzymes have been described; however, they often lack the high stability and catalytic efficiency required for industrial applications. Previously, we identified genes from genome sequences of Red Sea sediment bacteria encoding potential QQ enzymes. In this study, we report that one of them, named LrsL, is a metallo-β-lactamase superfamily QQ enzyme with outstanding catalytic features. X-ray crystallography shows that LrsL is a zinc-binding dimer. LrsL has an unusually hydrophobic substrate binding pocket that can accommodate a broad range of acyl-homoserine lactones (AHLs) with exceptionally high affinity. In vitro, LrsL achieves the highest catalytic efficiency reported thus far for any QQ enzyme with a Kcat/KM of 3 × 107. LrsL effectively inhibited Pseudomonas aeruginosa biofilm formation without affecting bacterial growth. Furthermore, LrsL suppressed the production of exopolysaccharides required for biofilm production. These features, and its capacity to regain its function after prolonged heat denaturation, identify LrsL as a robust and unusually efficient QQ enzyme for clinical and industrial applications.
Collapse
Affiliation(s)
- Zahid Ur Rehman
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Environmental Science Program, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- *Correspondence: Zahid Ur Rehman, ; Stefan T. Arold,
| | - Afaque A. Momin
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdullah Aldehaiman
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tayyaba Irum
- Services Hospital, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Raik Grünberg
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefan T. Arold
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, Montpellier, France
- *Correspondence: Zahid Ur Rehman, ; Stefan T. Arold,
| |
Collapse
|
32
|
Surpeta B, Grulich M, Palyzová A, Marešová H, Brezovsky J. Common Dynamic Determinants Govern Quorum Quenching Activity in N-Terminal Serine Hydrolases. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bartlomiej Surpeta
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, 02-109 Warsaw, Poland
| | - Michal Grulich
- Laboratory of Modulation of Gene Expression, Institute of Microbiology,v.v.i., Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Andrea Palyzová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology,v.v.i., Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Helena Marešová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology,v.v.i., Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
33
|
Law SKK, Tan HS. The Role of Quorum Sensing, Biofilm Formation, and Iron Acquisition as Key Virulence Mechanisms in Acinetobacter baumannii and the Corresponding Anti-virulence Strategies. Microbiol Res 2022; 260:127032. [DOI: 10.1016/j.micres.2022.127032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
|
34
|
Jiang Y, Yan B, Chen Y, Juarez RJ, Yang ZJ. Molecular Dynamics-Derived Descriptor Informs the Impact of Mutation on the Catalytic Turnover Number in Lactonase Across Substrates. J Phys Chem B 2022; 126:2486-2495. [PMID: 35324218 DOI: 10.1021/acs.jpcb.2c00142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations have been extensively employed to reveal the roles of protein dynamics in mediating enzyme catalysis. However, simulation-derived predictive descriptors that inform the impacts of mutations on catalytic turnover numbers remain largely unexplored. In this work, we report the identification of molecular modeling-derived descriptors to predict mutation effect on the turnover number of lactonase SsoPox with both native and non-native substrates. The study consists of 10 enzyme-substrate complexes resulting from a combination of five enzyme variants with two substrates. For each complex, we derived 15 descriptors from molecular dynamics simulations and applied principal component analysis to rank the predictive capability of the descriptors. A top-ranked descriptor was identified, which is the solvent-accessible surface area (SASA) ratio of the substrate to the active site pocket. A uniform volcano-shaped plot was observed in the distribution of experimental activation free energy against the SASA ratio. To achieve efficient lactonase hydrolysis, a non-native substrate-bound enzyme variant needs to involve a similar range of the SASA ratio to the native substrate-bound wild-type enzyme. The descriptor reflects how well the enzyme active site pocket accommodates a substrate for reaction, which has the potential of guiding optimization of enzyme reaction turnover for non-native chemical transformations.
Collapse
Affiliation(s)
- Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Bailu Yan
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yu Chen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Reecan J Juarez
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
35
|
Lamin A, Kaksonen AH, Cole IS, Chen XB. Quorum sensing inhibitors applications: a new prospect for mitigation of microbiologically influenced corrosion. Bioelectrochemistry 2022; 145:108050. [DOI: 10.1016/j.bioelechem.2022.108050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/21/2022]
|
36
|
Quantifying the optimal strategy of population control of quorum sensing network in Escherichia coli. NPJ Syst Biol Appl 2021; 7:35. [PMID: 34475401 PMCID: PMC8413372 DOI: 10.1038/s41540-021-00196-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Biological functions of bacteria can be regulated by monitoring their own population density induced by the quorum sensing system. However, quantitative insight into the system’s dynamics and regulatory mechanism remain challenging. Here, we construct a comprehensive mathematical model of the synthetic quorum sensing circuit that controls population density in Escherichia coli. Simulations agree well with experimental results obtained under different ribosome-binding site (RBS) efficiencies. We present a quantitative description of the component dynamics and show how the components respond to isopropyl-β-D-1-thiogalactopyranoside (IPTG) induction. The optimal IPTG-induction range for efficiently controlling population density is quantified. The controllable area of population density by acyl-homoserine lactone (AHL) permeability is quantified as well, indicating that high AHL permeability should be treated with a high dose of IPTG, while low AHL permeability should be induced with low dose for efficiently controlling. Unexpectedly, an oscillatory behavior of the growth curve is observed with proper RBS-binding strengths and the oscillation is greatly restricted by the bacterial death induced by toxic metabolic by-products. Moreover, we identify that the mechanism underlying the emergence of oscillation is determined by the negative feedback loop structure within the signaling. Bifurcation analysis and landscape theory are further employed to study the stochastic dynamic and global stability of the system, revealing two faces of toxic metabolic by-products in controlling oscillatory behavior. Overall, our study presents a quantitative basis for understanding and new insights into the control mechanism of quorum sensing system, providing possible clues to guide the development of more rational control strategy.
Collapse
|
37
|
Saral A, Kanekar S, Koul KK, Bhagyawant SS. Plant growth promoting bacteria induce anti-quorum-sensing substances in chickpea legume seedling bioassay. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1577-1595. [PMID: 34366598 PMCID: PMC8295451 DOI: 10.1007/s12298-021-01034-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 05/22/2023]
Abstract
UNLABELLED Microorganisms and their hosts communicate through an array of signals. Many physiological processes regulated in quorum sensing (QS) are dependent on auto-inducers, like N-acyl-homoserine lactones (AHLs) as in numerous groups of both gram-positive and gram-negative bacteria. In vitro grown seven-day old chickpea seedlings treated with plant growth promoting bacteria (PGPRs) were used to screen the AHL mimicking and for phytochemical substances like phytohormones and secondary metabolites such as phenolics and flavonoids. Potential anti-quorum sensing (anti-QS) activity surrounding the roots on semi-solid agar lawn of Chromobacterium violaceum (ATCC12742) was observed. Crude protein (4.46-8.30 μg/mL) and methanolic extracts (100 μg/mL) of seedling gave moderate anti-QS activity against CV12742 anti QS bioassay, respectively. Crude protein and methanolic extract of Bacillus amyloliquefaciens (34.00 ± 2.23; 34.00 ± 4.33 mm) and B. subtilis A (27.00 ± 2.10; 3.29 ± 2.16 mm) treated samples showed higher zone of inhibition due to anti-QS activity. Phytohormone analysis using LC-MS for zeatin, auxin and methyl jasmonate (MeJA) indicated that phytohormones were significantly upregulated by 1909.80 ng/g FW, 669.67 ng/g FW and 244.55 ng/g FW, respectively in Pseudomonas brassicacearum treated seedlings compared to control. UHPLC of PGPR treated seedlings showed overly expressed gallic acid, protocatechuic acid, catechin, p-hydroxybenzoic acid, caffeic acid, catechol, vanillin, and ferulic acid in B. amyloliquefaciens treated seedlings compared to others. Enrichment analysis identified significant pathways related to metabolism, biosynthesis of secondary metabolites. The present study indicates that chickpea neutralizes an extensive range of functional responses to AHLs that may play important role in legume host-microbe interactions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01034-x.
Collapse
Affiliation(s)
- Anamika Saral
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474011 India
| | - Saptami Kanekar
- Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore, India
| | - Kirtee Kumar Koul
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474011 India
| | | |
Collapse
|
38
|
On the Role of Paraoxonase-1 and Chemokine Ligand 2 (C-C motif) in Metabolic Alterations Linked to Inflammation and Disease. A 2021 Update. Biomolecules 2021; 11:biom11070971. [PMID: 34356595 PMCID: PMC8301931 DOI: 10.3390/biom11070971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023] Open
Abstract
Infectious and many non-infectious diseases share common molecular mechanisms. Among them, oxidative stress and the subsequent inflammatory reaction are of particular note. Metabolic disorders induced by external agents, be they bacterial or viral pathogens, excessive calorie intake, poor-quality nutrients, or environmental factors produce an imbalance between the production of free radicals and endogenous antioxidant systems; the consequence being the oxidation of lipids, proteins, and nucleic acids. Oxidation and inflammation are closely related, and whether oxidative stress and inflammation represent the causes or consequences of cellular pathology, both produce metabolic alterations that influence the pathogenesis of the disease. In this review, we highlight two key molecules in the regulation of these processes: Paraoxonase-1 (PON1) and chemokine (C-C motif) ligand 2 (CCL2). PON1 is an enzyme bound to high-density lipoproteins. It breaks down lipid peroxides in lipoproteins and cells, participates in the protection conferred by HDL against different infectious agents, and is considered part of the innate immune system. With PON1 deficiency, CCL2 production increases, inducing migration and infiltration of immune cells in target tissues and disturbing normal metabolic function. This disruption involves pathways controlling cellular homeostasis as well as metabolically-driven chronic inflammatory states. Hence, an understanding of these relationships would help improve treatments and, as well, identify new therapeutic targets.
Collapse
|
39
|
Ya'ar Bar S, Dor S, Erov M, Afriat-Jurnou L. Identification and Characterization of a New Quorum-Quenching N-acyl Homoserine Lactonase in the Plant Pathogen Erwinia amylovora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5652-5662. [PMID: 33974427 DOI: 10.1021/acs.jafc.1c00366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quorum quenching (QQ) is the ability to interfere with bacterial cell to cell communication, known as quorum sensing (QS). QQ enzymes that degrade or modify acyl homoserine lactones (AHLs) have been attracting increasing interest as promising agents for inhibiting QS-mediated bacterial pathogenicity. Plant pathogens from the genus Erwinia cause diseases in several economically important crops. Fire blight is a devastating plant disease caused by Erwinia amylovora, affecting a wide range of host species within the Rosaceae and posing a major global threat for commercial apple and pear production. While QS has been described in Erwinia species, no AHL-degrading enzymes were identified and characterized. Here, phylogenetic analysis and structural modeling were applied to identify an AHL lactonase in E. amylovora (dubbed EaAiiA). Following recombinant expression and purification, the enzyme was biochemically characterized. EaAiiA lactonase activity was dependent on metal ions and effectively degraded AHLs with high catalytic efficiency. Its highest specific activity (kcat/KM value) was observed against one of the AHLs (3-oxo-C6-homoserine lactone) secreted from E. amylovora. Exogenous addition of the purified enzyme to cultures of E. amylovora reduced the formation of levan, a QS-regulated virulence factor, by 40% and the transcription level of the levansucrase-encoding gene by 55%. Furthermore, preincubation of E. amylovora cultures with EaAiiA inhibited the progress of fire blight symptoms in immature Pyrus communis fruits. These results demonstrate the ability of the identified enzyme from E. amylovora to act as a quorum-quenching lactonase.
Collapse
Affiliation(s)
- Sapir Ya'ar Bar
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| | - Shlomit Dor
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Mayan Erov
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Livnat Afriat-Jurnou
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| |
Collapse
|
40
|
Murugayah SA, Evans GB, Tyndall JDA, Gerth ML. A single point mutation converts a glutaryl-7-aminocephalosporanic acid acylase into an N-acyl-homoserine lactone acylase. Biotechnol Lett 2021; 43:1467-1473. [PMID: 33891232 PMCID: PMC8197700 DOI: 10.1007/s10529-021-03135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022]
Abstract
Objective To change the specificity of a glutaryl-7-aminocephalosporanic acid acylase (GCA) towards N-acyl homoserine lactones (AHLs; quorum sensing signalling molecules) by site-directed mutagenesis. Results Seven residues were identified by analysis of existing crystal structures as potential determinants of substrate specificity. Site-saturation mutagenesis libraries were created for each of the seven selected positions. High-throughput activity screening of each library identified two variants—Arg255Ala, Arg255Gly—with new activities towards N-acyl homoserine lactone substrates. Structural modelling of the Arg255Gly mutation suggests that the smaller side-chain of glycine (as compared to arginine in the wild-type enzyme) avoids a key clash with the acyl group of the N-acyl homoserine lactone substrate. Conclusions Mutation of a single amino acid residue successfully converted a GCA (with no detectable activity against AHLs) into an AHL acylase. This approach may be useful for further engineering of ‘quorum quenching’ enzymes. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03135-9.
Collapse
Affiliation(s)
| | - Gary B Evans
- The Ferrier Research Institute, Victoria University of Wellington, Petone, 5046, New Zealand
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Monica L Gerth
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand. .,School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.
| |
Collapse
|
41
|
Gurevich D, Dor S, Erov M, Dan Y, Moy JC, Mairesse O, Dafny-Yelin M, Adler-Abramovich L, Afriat-Jurnou L. Directed Enzyme Evolution and Encapsulation in Peptide Nanospheres of Quorum Quenching Lactonase as an Antibacterial Treatment against Plant Pathogen. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2179-2188. [PMID: 33405501 DOI: 10.1021/acsami.0c15808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The need to increase agricultural yield has led to an extensive use of antibiotics against plant pathogens, which has resulted in the emergence of resistant strains. Therefore, there is an increasing demand for new methods, preferably with lower chances of developing resistant strains and a lower risk to the environment or public health. Many Gram-negative bacterial pathogens use quorum sensing, a population-density-dependent regulatory mechanism, to monitor the secretion of N-acyl-homoserine lactones (AHLs) and pathogenicity. Therefore, quorum sensing represents an attractive antivirulence target. AHL lactonases hydrolyze AHLs and have potential antibacterial properties; however, their use is limited by thermal instability and durability, or low activity. Here, we demonstrate that an AHL lactonase from the phosphotriesterase-like lactonase family exhibits high activity with the AHL secreted from the plant pathogen Erwinia amylovora and attenuates infection in planta. Using directed enzyme evolution, we were able to increase the enzyme's temperature resistance (T50, the temperature at which 50% of the activity is retained) by 8 °C. Then, by performing enzyme encapsulation in nanospherical capsules composed of tertbutoxycarbonyl-Phe-Phe-OH peptide, the shelf life was extended for more than 5 weeks. Furthermore, the encapsulated and free mutant were able to significantly inhibit up to 70% blossom's infection in the field, achieving the same efficacy as seen with antibiotics commonly used today to treat the plant pathogen. We conclude that specific AHL lactonase can inhibit E. amylovora infection in the field, as it degrades the AHL secreted by this plant pathogen. The combination of directed enzyme evolution and peptide nanostructure encapsulation significantly improved the thermal resistance and shelf life of the enzyme, respectively, increasing its potential in future development as antibacterial treatment.
Collapse
Affiliation(s)
- David Gurevich
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Shlomit Dor
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Mayan Erov
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Yoav Dan
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jehudith Clara Moy
- Northern Agriculture Research & Development, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Orly Mairesse
- Northern Agriculture Research & Development, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Mery Dafny-Yelin
- Northern Agriculture Research & Development, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The ADAMA Center for Novel Delivery Systems in Crop Protection, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Livnat Afriat-Jurnou
- Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- The Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| |
Collapse
|