1
|
Nguyen HT, Wiederkehr A, Wollheim CB, Park KS. Regulation of autophagy by perilysosomal calcium: a new player in β-cell lipotoxicity. Exp Mol Med 2024; 56:273-288. [PMID: 38297165 PMCID: PMC10907728 DOI: 10.1038/s12276-024-01161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 02/02/2024] Open
Abstract
Autophagy is an essential quality control mechanism for maintaining organellar functions in eukaryotic cells. Defective autophagy in pancreatic beta cells has been shown to be involved in the progression of diabetes through impaired insulin secretion under glucolipotoxic stress. The underlying mechanism reveals the pathologic role of the hyperactivation of mechanistic target of rapamycin (mTOR), which inhibits lysosomal biogenesis and autophagic processes. Moreover, accumulating evidence suggests that oxidative stress induces Ca2+ depletion in the endoplasmic reticulum (ER) and cytosolic Ca2+ overload, which may contribute to mTOR activation in perilysosomal microdomains, leading to autophagic defects and β-cell failure due to lipotoxicity. This review delineates the antagonistic regulation of autophagic flux by mTOR and AMP-dependent protein kinase (AMPK) at the lysosomal membrane, and both of these molecules could be activated by perilysosomal calcium signaling. However, aberrant and persistent Ca2+ elevation upon lipotoxic stress increases mTOR activity and suppresses autophagy. Therefore, normalization of autophagy is an attractive therapeutic strategy for patients with β-cell failure and diabetes.
Collapse
Affiliation(s)
- Ha Thu Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | | | - Claes B Wollheim
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Korea.
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
2
|
Guo M, Li M, Cui F, Wang H, Ding X, Gao W, Fang X, Chen L, Niu P, Ma J. Mediation effect of serum zinc on insulin secretion inhibited by methyl tert-butyl ether in gas station workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8952-8962. [PMID: 38183540 DOI: 10.1007/s11356-023-31772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Methyl tert-butyl ether (MTBE), a type of gasoline additive, has been found to affect insulin function and glucose homeostasis in animal experiments, but there is still no epidemiological evidence. Zinc (Zn) is a key regulatory element of insulin secretion and function, and Zn homeostasis can be disrupted by MTBE exposure through inducing oxidative stress. Therefore, we suspected that Zn might be involved and play an important role in the process of insulin secretion inhibited by MTBE exposure. In this study, we recruited 201 male subjects including occupational and non-occupational MTBE exposure from Anhui Province, China in 2019. Serum insulin and functional analog fibroblast growth factor 1 (FGF1) and blood MTBE were detected by Elisa and headspace solid-phase microextraction and gas chromatography-high-resolution mass spectrometry. According to MTBE internal exposure level, the workers were divided into low- and high-exposed groups and found that the serum insulin level in the high-exposed group was significantly lower than that in the low-exposed group (p = 0.003) while fasting plasma glucose (FPG) level increased obviously in the high-exposed group compared to the low-exposed group (p = 0.001). Further analysis showed that MTBE exposure level was positively correlated with FPG level, but negatively correlated with serum insulin level, which suggested that the FPG level increase might be related to the decrease of serum insulin level induced by MTBE exposure. The results of further mediation effect analysis showed that changes in serum zinc levels played a major intermediary role in the process of insulin secretion inhibition and blood glucose elevation caused by MTBE exposure. In addition, a significant negative correlation was found between MTBE exposure and serum Zn level, which might play a strong mediating effect on the inhibition of insulin secretion induced by MTBE exposure. In conclusion, our study provided evidence that MTBE could inhibit insulin secretion and interfere with Zn metabolism in gas station workers for the first time, and found that Zn might play an important mediation effect during the process of inhibiting insulin secretion and interfering with glucose metabolism induced by MTBE exposure.
Collapse
Affiliation(s)
- Mingxiao Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Mengdi Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Fengtao Cui
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd., Huaibei, 235000, Anhui Province, China
| | - Hanyun Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xinping Ding
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd., Huaibei, 235000, Anhui Province, China
| | - Wei Gao
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd., Huaibei, 235000, Anhui Province, China
| | - Xingqiang Fang
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd., Huaibei, 235000, Anhui Province, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Wang J, Chen M, Wang M, Zhao W, Zhang C, Liu X, Cai M, Qiu Y, Zhang T, Zhou H, Zhao W, Si S, Shao R. The novel ER stress inducer Sec C triggers apoptosis by sulfating ER cysteine residues and degrading YAP via ER stress in pancreatic cancer cells. Acta Pharm Sin B 2022; 12:210-227. [PMID: 35127381 PMCID: PMC8800039 DOI: 10.1016/j.apsb.2021.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most lethal malignancies. Although gemcitabine (GEM) is a standard treatment for PAAD, resistance limits its application and therapy. Secoemestrin C (Sec C) is a natural compound from the endophytic fungus Emericella, and its anticancer activity has not been investigated since it was isolated. Our research is the first to indicate that Sec C is a broad-spectrum anticancer agent and could exhibit potently similar anticancer activity both in GEM-resistant and GEM-sensitive PAAD cells. Interestingly, Sec C exerted a rapid growth-inhibiting effect (80% death at 6 h), which might be beneficial for patients who need rapid tumor shrinkage before surgery. Liquid chromatography/mass spectrometry and N-acetyl-l-cysteine (NAC) reverse assays show that Sec C sulfates cysteines to disrupt disulfide-bonds formation in endoplasmic reticulum (ER) proteins to cause protein misfolding, leading to ER stress and disorder of lipid biosynthesis. Microarray data and subsequent assays show that ER stress-mediated ER-associated degradation (ERAD) ubiquitinates and downregulates YAP to enhance ER stress via destruction complex (YAP-Axin-GSK-βTrCP), which also elucidates a unique degrading style for YAP. Potent anticancer activity in GEM-resistant cells and low toxicity make Sec C a promising anti-PAAD candidate.
Collapse
Affiliation(s)
| | | | - Mengyan Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxia Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Conghui Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiujun Liu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meilian Cai
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuhan Qiu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianshu Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huimin Zhou
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuyi Si
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Attie AD, Tang QQ, Bornfeldt KE. The insulin centennial-100 years of milestones in biochemistry. J Biol Chem 2021; 297:101278. [PMID: 34717954 PMCID: PMC8605089 DOI: 10.1016/j.jbc.2021.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
|
5
|
Attie AD, Tang QQ, Bornfeldt KE. The insulin centennial-100 years of milestones in biochemistry. J Lipid Res 2021; 62:100132. [PMID: 34717951 PMCID: PMC8721491 DOI: 10.1016/j.jlr.2021.100132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/05/2022] Open
|
6
|
Sims EK, Carr ALJ, Oram RA, DiMeglio LA, Evans-Molina C. 100 years of insulin: celebrating the past, present and future of diabetes therapy. Nat Med 2021; 27:1154-1164. [PMID: 34267380 PMCID: PMC8802620 DOI: 10.1038/s41591-021-01418-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/28/2021] [Indexed: 02/04/2023]
Abstract
The year 2021 marks the centennial of Banting and Best's landmark description of the discovery of insulin. This discovery and insulin's rapid clinical deployment effectively transformed type 1 diabetes from a fatal diagnosis into a medically manageable chronic condition. In this Review, we describe key accomplishments leading to and building on this momentous occasion in medical history, including advancements in our understanding of the role of insulin in diabetes pathophysiology, the molecular characterization of insulin and the clinical use of insulin. Achievements are also viewed through the lens of patients impacted by insulin therapy and the evolution of insulin pharmacokinetics and delivery over the past 100 years. Finally, we reflect on the future of insulin therapy and diabetes treatment, as well as challenges to be addressed moving forward, so that the full potential of this transformative discovery may be realized.
Collapse
Affiliation(s)
- Emily K Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- The Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- The Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alice L J Carr
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- The Academic Kidney Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- The Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- The Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- The Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
- The Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Kay RG, Barker P, Burling K, Cohen M, Halsall D, Reimann F, Gribble FM, Semple RK, Church D. Increased C-Peptide Immunoreactivity in Insulin Autoimmune Syndrome (Hirata Disease) Due to High Molecular Weight Proinsulin. Clin Chem 2021; 67:854-862. [PMID: 34051096 PMCID: PMC8167340 DOI: 10.1093/clinchem/hvab043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
Background Determination of C-peptide is important in the investigation of unexplained hyperinsulinemic hypoglycemia because a high C-peptide concentration usually indicates endogenous insulin hypersecretion. Insulin autoimmune syndrome (IAS) denotes hyperinsulinemic hypoglycemia due to insulin-binding antibodies that prolong insulin half-life. C-peptide clearance is considered to be unaffected, and although a marked C-peptide immunoreactivity in hypoglycemic samples has been reported, it has been suspected to be artifactual. High-resolution mass spectrometry enables examination of the basis of C-peptide-immunoreactivity in IAS. Methods Precipitation of plasma with polyethylene glycol was followed by C-peptide immunoassay. Plasma peptides extracted by solvent precipitation were characterized by nano-LC–MS/MS and analyzed using an untargeted data-dependent method. Peptides related to proinsulin, in amino acid sequence, were identified using proprietary bioinformatics software and confirmed by repeat LC–MS/MS analysis. Gel filtration chromatography coupled to LC–MS/MS was used to identify proinsulin-related peptides present in IAS immunocomplexes. Results were compared with those from C-peptide immunoassay. Results Polyethylene glycol precipitation of IAS plasma, but not control plasma, depleted C-peptide immunoreactivity consistent with immunoglobulin-bound C-peptide immunoreactivity. LC–MS/MS detected proinsulin and des 31,32 proinsulin at higher abundance in IAS plasma compared with control plasma. Analysis by gel filtration chromatography coupled to LC–MS/MS demonstrated proinsulin and des 31,32 proinsulin, but no C-peptide, in plasma immunocomplexes. Conclusions Antibody binding can enrich proinsulin and des 31,32 proinsulin in IAS immunocomplexes. Proinsulin cross-reactivity in some C-peptide immunoassays can lead to artifactually increased C-peptide results.
Collapse
Affiliation(s)
- Richard G Kay
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Peter Barker
- Core Biochemical Assay Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Keith Burling
- Core Biochemical Assay Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Mark Cohen
- Department of Diabetes & Endocrinology, Royal Free London NHS Foundation Trust, London, UK
| | - David Halsall
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Frank Reimann
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.,National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Fiona M Gribble
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.,National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Robert K Semple
- University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
| | - David Church
- Department of Clinical Biochemistry and Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
8
|
Dzianová P, Asai S, Chrudinová M, Kosinová L, Potalitsyn P, Šácha P, Hadravová R, Selicharová I, Kříž J, Turkenburg JP, Brzozowski AM, Jiráček J, Žáková L. The efficiency of insulin production and its content in insulin-expressing model β-cells correlate with their Zn 2+ levels. Open Biol 2020; 10:200137. [PMID: 33081637 PMCID: PMC7653362 DOI: 10.1098/rsob.200137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/24/2020] [Indexed: 12/29/2022] Open
Abstract
Insulin is produced and stored inside the pancreatic β-cell secretory granules, where it is assumed to form Zn2+-stabilized oligomers. However, the actual storage forms of this hormone and the impact of zinc ions on insulin production in vivo are not known. Our initial X-ray fluorescence experiment on granules from native Langerhans islets and insulinoma-derived INS-1E cells revealed a considerable difference in the zinc content. This led our further investigation to evaluate the impact of the intra-granular Zn2+ levels on the production and storage of insulin in different model β-cells. Here, we systematically compared zinc and insulin contents in the permanent INS-1E and BRIN-BD11 β-cells and in the native rat pancreatic islets by flow cytometry, confocal microscopy, immunoblotting, specific messenger RNA (mRNA) and total insulin analysis. These studies revealed an impaired insulin production in the permanent β-cell lines with the diminished intracellular zinc content. The drop in insulin and Zn2+ levels was paralleled by a lower expression of ZnT8 zinc transporter mRNA and hampered proinsulin processing/folding in both permanent cell lines. To summarize, we showed that the disruption of zinc homeostasis in the model β-cells correlated with their impaired insulin and ZnT8 production. This indicates a need for in-depth fundamental research about the role of zinc in insulin production and storage.
Collapse
Affiliation(s)
- Petra Dzianová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Seiya Asai
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague 2, Czech Republic
| | - Martina Chrudinová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Lucie Kosinová
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic
| | - Pavlo Potalitsyn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague 2, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Jan Kříž
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Andrzej Marek Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| |
Collapse
|
9
|
Gerber PA, Rutter GA. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus. Antioxid Redox Signal 2017; 26:501-518. [PMID: 27225690 PMCID: PMC5372767 DOI: 10.1089/ars.2016.6755] [Citation(s) in RCA: 428] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. CRITICAL ISSUES Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene-environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn2+ concentrations and thus susceptibility to hypoxia and oxidative stress. FUTURE DIRECTIONS Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501-518.
Collapse
Affiliation(s)
- Philipp A. Gerber
- Department of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Cerasi E, Seino S. Donald F. Steiner: great scientist, close friend, real 'Mensch'. Diabetes Obes Metab 2015; 17 Suppl 1:1-2. [PMID: 26332960 DOI: 10.1111/dom.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E Cerasi
- Department of Medicine, Endocrinology & Metabolism Service, Hadassah Medical Centre, Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
11
|
Fang J, Liu M, Zhang X, Sakamoto T, Taatjes DJ, Jena BP, Sun F, Woods J, Bryson T, Kowluru A, Zhang K, Chen X. COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis. Mol Endocrinol 2015; 29:1156-69. [PMID: 26083833 DOI: 10.1210/me.2015-1012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cells possess a highly active protein synthetic and export machinery in the endoplasmic reticulum (ER) to accommodate the massive production of proinsulin. ER homeostasis is vital for β-cell functions and is maintained by the delicate balance between protein synthesis, folding, export, and degradation. Disruption of ER homeostasis by diabetes-causing factors leads to β-cell death. Among the 4 components to maintain ER homeostasis in β-cells, the role of ER export in insulin biogenesis is the least understood. To address this knowledge gap, the present study investigated the molecular mechanism of proinsulin ER export in MIN6 cells and primary islets. Two inhibitory mutants of the secretion-associated RAS-related protein (Sar)1 small GTPase, known to specifically block coat protein complex II (COPII)-dependent ER export, were overexpressed in β-cells using recombinant adenoviruses. Results from this approach, as well as small interfering RNA-mediated Sar1 knockdown, demonstrated that defective Sar1 function blocked proinsulin ER export and abolished its conversion to mature insulin in MIN6 cells, isolated mouse, and human islets. It is further revealed, using an in vitro vesicle formation assay, that proinsulin was packaged into COPII vesicles in a GTP- and Sar1-dependent manner. Blockage of COPII-dependent ER exit by Sar1 mutants strongly induced ER morphology change, ER stress response, and β-cell apoptosis. These responses were mediated by the PKR (double-stranded RNA-dependent kinase)-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (p-eIF2α) and inositol-requiring protein 1 (IRE1)/x-box binding protein 1 (Xbp1) pathways but not via activating transcription factor 6 (ATF6). Collectively, results from the study demonstrate that COPII-dependent ER export plays a vital role in insulin biogenesis, ER homeostasis, and β-cell survival.
Collapse
Affiliation(s)
- Jingye Fang
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Ming Liu
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Xuebao Zhang
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Takeshi Sakamoto
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Douglas J Taatjes
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Bhanu P Jena
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Fei Sun
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - James Woods
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Tim Bryson
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Anjaneyulu Kowluru
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Kezhong Zhang
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Xuequn Chen
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
12
|
Danne T, Becker RHA, Ping L, Philotheou A. Insulin glargine metabolite 21(A) -Gly-human insulin (M1) is the principal component circulating in the plasma of young children with type 1 diabetes: results from the PRESCHOOL study. Pediatr Diabetes 2015; 16:299-304. [PMID: 25041275 DOI: 10.1111/pedi.12161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND AIMS Insulin glargine metabolite 21(A) -Gly-human insulin (M1) is the principal component circulating in plasma of adults with type 1 diabetes. The objective of this study was to confirm this finding in young children and to rule out accumulation of parent insulin glargine. DESIGN AND METHODS Children with type 1 diabetes from the PRESCHOOL study, aged 2-6 yr, were treated with insulin glargine for 24 wk (n = 62). Blood samples were drawn at weeks 1, 2, and 4 approximately 24 h after the last dose and analyzed for glargine, M1, and Thr(30B) -des-M1 (M2) using immunoaffinity purification and liquid chromatography with mass spectrometry. The lower limit of quantification was 33 pmol/L for all analytes. RESULTS M1 was the principal active component circulating in plasma. Mean (SD) plasma Ctrough values were 101 (138), 80 (122), and 79 (102) pmol/L following glargine doses of 0.33 (0.02), 0.34 (0.02), and 0.38 (0.03) U/kg at weeks 1, 2, and 4, respectively. Parent insulin glargine and M2 concentrations were below the level of quantification. These results are in line with those observed in adults and indicate no accumulation of the parent compound in this patient population. CONCLUSION In young children with type 1 diabetes, the principal component circulating in plasma after subcutaneous injection of insulin glargine is M1, the pharmacologically active component. No accumulation of the parent insulin glargine was observed. These data provide additional evidence on the safety profile of insulin glargine in young children (Clinical trial identifier: NCT00993473).
Collapse
Affiliation(s)
- Thomas Danne
- "Auf der Bult" Children and Youth Hospital, Hannover, Germany
| | | | | | | |
Collapse
|
13
|
Lee JS, Wu Y, Skallos P, Fang J, Zhang X, Karnovsky A, Woods J, Stemmer PM, Liu M, Zhang K, Chen X. Proteomics analysis of rough endoplasmic reticulum in pancreatic beta cells. Proteomics 2015; 15:1508-11. [PMID: 25546123 PMCID: PMC4489703 DOI: 10.1002/pmic.201400345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/02/2014] [Accepted: 12/18/2014] [Indexed: 12/20/2022]
Abstract
Pancreatic beta cells have well-developed ER to accommodate for the massive production and secretion of insulin. ER homeostasis is vital for normal beta cell function. Perturbation of ER homeostasis contributes to beta cell dysfunction in both type 1 and type 2 diabetes. To systematically identify the molecular machinery responsible for proinsulin biogenesis and maintenance of beta cell ER homeostasis, a widely used mouse pancreatic beta cell line, MIN6 cell was used to purify rough ER. Two different purification schemes were utilized. In each experiment, the ER pellets were solubilized and analyzed by 1D SDS-PAGE coupled with HPLC-MS/MS. A total of 1467 proteins were identified in three experiments with ≥95% confidence, among which 1117 proteins were found in at least two separate experiments and 737 proteins found in all three experiments. GO analysis revealed a comprehensive profile of known and novel players responsible for proinsulin biogenesis and ER homeostasis. Further bioinformatics analysis also identified potential beta cell specific ER proteins as well as ER proteins present in the risk genetic loci of type 2 diabetes. This dataset defines a molecular environment in the ER for proinsulin synthesis, folding and export and laid a solid foundation for further characterizations of altered ER homeostasis under diabetes-causing conditions. All MS data have been deposited in the ProteomeXchange with identifier PXD001081 (http://proteomecentral.proteomexchange.org/dataset/PXD001081).
Collapse
Affiliation(s)
- Jin-sook Lee
- Department of Physiology, Wayne State University, Detroit, MI 48201
| | - Yanning Wu
- Department of Physiology, Wayne State University, Detroit, MI 48201
| | - Patracia Skallos
- Department of Physiology, Wayne State University, Detroit, MI 48201
| | - Jingye Fang
- Department of Physiology, Wayne State University, Detroit, MI 48201
| | - Xuebao Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - James Woods
- Department of Physiology, Wayne State University, Detroit, MI 48201
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
| | - Ming Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
| | - Xuequn Chen
- Department of Physiology, Wayne State University, Detroit, MI 48201
| |
Collapse
|
14
|
Becker RHA, Dahmen R, Bergmann K, Lehmann A, Jax T, Heise T. New insulin glargine 300 Units · mL-1 provides a more even activity profile and prolonged glycemic control at steady state compared with insulin glargine 100 Units · mL-1. Diabetes Care 2015; 38:637-43. [PMID: 25150159 DOI: 10.2337/dc14-0006] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To characterize the pharmacokinetics (PK) and pharmacodynamics (PD) of a new insulin glargine comprising 300 units · mL(-1) (Gla-300), compared with insulin glargine 100 units · mL(-1) (Gla-100) at steady state in people with type 1 diabetes. RESEARCH DESIGN AND METHODS A randomized, double-blind, crossover study (N = 30) was conducted, applying the euglycemic clamp technique over a period of 36 h. In this multiple-dose to steady-state study, participants received once-daily subcutaneous administrations of either 0.4 (cohort 1) or 0.6 units · kg(-1) (cohort 2) Gla-300 for 8 days in one treatment period and 0.4 units · kg(-1) Gla-100 for 8 days in the other. Here we focus on the results of a direct comparison between 0.4 units · kg(-1) of each treatment. PK and PD assessments performed on the last treatment day included serum insulin measurements using a radioimmunoassay and the automated euglycemic glucose clamp technique over 36 h. RESULTS At steady state, insulin concentration (INS) and glucose infusion rate (GIR) profiles of Gla-300 were more constant and more evenly distributed over 24 h compared with those of Gla-100 and lasted longer, as supported by the later time (∼ 3 h) to 50% of the area under the serum INS and GIR time curves from time zero to 36 h post dosing. Tight blood glucose control (≤ 105 mg · dL(-1)) was maintained for approximately 5 h longer (median of 30 h) with Gla-300 compared with Gla-100. CONCLUSIONS Gla-300 provides more even steady-state PK and PD profiles and a longer duration of action than Gla-100, extending blood glucose control well beyond 24 h.
Collapse
Affiliation(s)
| | - Raphael Dahmen
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Karin Bergmann
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Anne Lehmann
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | | |
Collapse
|
15
|
Vashisth H. Theoretical and computational studies of peptides and receptors of the insulin family. MEMBRANES 2015; 5:48-83. [PMID: 25680077 PMCID: PMC4384091 DOI: 10.3390/membranes5010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/28/2015] [Indexed: 01/05/2023]
Abstract
Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK) superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors) has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD) and Monte Carlo (MC) simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins.
Collapse
Affiliation(s)
- Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA.
| |
Collapse
|
16
|
Vashisth H. Flexibility in the insulin receptor ectodomain enables docking of insulin in crystallographic conformation observed in a hormone-bound microreceptor. MEMBRANES 2014; 4:730-46. [PMID: 25309993 PMCID: PMC4289863 DOI: 10.3390/membranes4040730] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/18/2014] [Accepted: 10/05/2014] [Indexed: 12/11/2022]
Abstract
Insulin binding to the insulin receptor (IR) is the first key step in initiating downstream signaling cascades for glucose homeostasis in higher organisms. The molecular details of insulin recognition by IR are not yet completely understood, but a picture of hormone/receptor interactions at one of the epitopes (Site 1) is beginning to emerge from recent structural evidence. However, insulin-bound structures of truncated IR suggest that crystallographic conformation of insulin cannot be accommodated in the full IR ectodomain due to steric overlap of insulin with the first two type III fibronectin domains (F1 and F2), which are contributed to the insulin binding-pocket by the second subunit in the IR homodimer. A conformational change in the F1-F2 pair has thus been suggested. In this work, we present an all-atom structural model of complex of insulin and the IR ectodomain, where no structural overlap of insulin with the receptor domains (F1 and F2) is observed. This structural model was arrived at by flexibly fitting parts of our earlier insulin/IR all-atom model into the simulated density maps of crystallized constructs combined with conformational sampling from apo-IR solution conformations. Importantly, our experimentally-consistent model helps rationalize yet unresolved Site.
Collapse
Affiliation(s)
- Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham,NH 03824, USA.
| |
Collapse
|
17
|
Abstract
Zinc (Zn2+) is an essential element crucial for growth and development, and also plays a role in cell signaling for cellular processes like cell division and apoptosis. In the mammalian pancreas, Zn2+ is essential for the correct processing, storage, secretion, and action of insulin in beta (β)-cells. Insulin is stored inside secretory vesicles or granules, where two Zn2+ ions coordinate six insulin monomers to form the hexameric-structure on which maturated insulin crystals are based. The total Zn2+ content of the mammalian pancreas is among the highest in the body, and Zn2+ concentration reach millimolar levels in the interior of the dense-core granule. Changes in Zn2+ levels in the pancreas have been found to be associated with diabetes. Hence, the relationship between co-stored Zn2+ and insulin undoubtedly is critical to normal β-cell function. The advances in the field of Zn2+ biology over the last decade have facilitated our understanding of Zn2+ trafficking, its intracellular distribution and its storage. When exocytosis of insulin occurs, insulin granules fuse with the β-cell plasma membrane and release their contents, i.e., insulin as well as substantial amount of free Zn2+, into the extracellular space and the local circulation. Studies increasingly indicate that secreted Zn2+ has autocrine or paracrine signaling in β-cells or the neighboring cells. This review discusses the Zn2+ homeostasis in β-cells with emphasis on the potential signaling role of Zn2+ to islet biology.
Collapse
Affiliation(s)
- Yang V Li
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, 346 Irvine Hall, Athens, OH, 45701, USA,
| |
Collapse
|
18
|
Aslam F, Gardner QTAA, Zain H, Nadeem MS, Ali M, Rashid N, Akhtar M. Studies on the expression and processing of human proinsulin derivatives encoded by different DNA constructs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2116-23. [DOI: 10.1016/j.bbapap.2013.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 07/01/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
|
19
|
Žáková L, Kletvíková E, Veverka V, Lepsík M, Watson CJ, Turkenburg JP, Jirácek J, Brzozowski AM. Structural integrity of the B24 site in human insulin is important for hormone functionality. J Biol Chem 2013; 288:10230-40. [PMID: 23447530 DOI: 10.1074/jbc.m112.448050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the recent first structural insight into the insulin-insulin receptor complex, the role of the C terminus of the B-chain of insulin in this assembly remains unresolved. Previous studies have suggested that this part of insulin must rearrange to reveal amino acids crucial for interaction with the receptor. The role of the invariant Phe(B24), one of the key residues of the hormone, in this process remains unclear. For example, the B24 site functionally tolerates substitutions to D-amino acids but not to L-amino acids. Here, we prepared and characterized a series of B24-modified insulin analogues, also determining the structures of [D-HisB24]-insulin and [HisB24]-insulin. The inactive [HisB24]-insulin molecule is remarkably rigid due to a tight accommodation of the L-His side chain in the B24 binding pocket that results in the stronger tethering of B25-B28 residues to the protein core. In contrast, the highly active [D-HisB24]-insulin is more flexible, and the reverse chirality of the B24C(α) atom swayed the D-His(B24) side chain into the solvent. Furthermore, the pocket vacated by Phe(B24) is filled by Phe(B25), which mimics the Phe(B24) side and main chains. The B25→B24 downshift results in a subsequent downshift of Tyr(B26) into the B25 site and the departure of B26-B30 residues away from the insulin core. Our data indicate the importance of the aromatic L-amino acid at the B24 site and the structural invariance/integrity of this position for an effective binding of insulin to its receptor. Moreover, they also suggest limited, B25-B30 only, unfolding of the C terminus of the B-chain upon insulin activation.
Collapse
Affiliation(s)
- Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Vashisth H, Abrams CF. All-atom structural models of insulin binding to the insulin receptor in the presence of a tandem hormone-binding element. Proteins 2013; 81:1017-30. [PMID: 23348915 DOI: 10.1002/prot.24255] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/11/2012] [Accepted: 01/04/2013] [Indexed: 11/10/2022]
Abstract
Insulin regulates blood glucose levels in higher organisms by binding to and activating insulin receptor (IR), a constitutively homodimeric glycoprotein of the receptor tyrosine kinase (RTK) superfamily. Therapeutic efforts in treating diabetes have been significantly impeded by the absence of structural information on the activated form of the insulin/IR complex. Mutagenesis and photo-crosslinking experiments and structural information on insulin and apo-IR strongly suggest that the dual-chain insulin molecule, unlike the related single-chain insulin-like growth factors, binds to IR in a very different conformation than what is displayed in storage forms of the hormone. In particular, hydrophobic residues buried in the core of the folded insulin molecule engage the receptor. There is also the possibility of plasticity in the receptor structure based on these data, which may in part be due to rearrangement of the so-called CT-peptide, a tandem hormone-binding element of IR. These possibilities provide opportunity for large-scale molecular modeling to contribute to our understanding of this system. Using various atomistic simulation approaches, we have constructed all-atom structural models of hormone/receptor complexes in the presence of CT in its crystallographic position and a thermodynamically favorable displaced position. In the "displaced-CT" complex, many more insulin-receptor contacts suggested by experiments are satisfied, and our simulations also suggest that R-insulin potentially represents the receptor-bound form of hormone. The results presented in this work have further implications for the design of receptor-specific agonists/antagonists.
Collapse
Affiliation(s)
- Harish Vashisth
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
21
|
Bolli GB, Hahn AD, Schmidt R, Eisenblaetter T, Dahmen R, Heise T, Becker RHA. Plasma exposure to insulin glargine and its metabolites M1 and M2 after subcutaneous injection of therapeutic and supratherapeutic doses of glargine in subjects with type 1 diabetes. Diabetes Care 2012; 35:2626-30. [PMID: 23093664 PMCID: PMC3507590 DOI: 10.2337/dc12-0270] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 07/10/2012] [Indexed: 02/03/2023]
Abstract
OBJECTIVE In vivo, after subcutaneous injection, insulin glargine (21(A)-Gly-31(B)-Arg-32(B)-Arg-human insulin) is enzymatically processed into 21(A)-Gly-human insulin (metabolite 1 [M1]). 21(A)-Gly-des-30(B)-Thr-human insulin (metabolite 2 [M2]) is also found. In vitro, glargine exhibits slightly higher affinity, whereas M1 and M2 exhibit lower affinity for IGF-1 receptor, as well as mitogenic properties, versus human insulin. The aim of the study was to quantitate plasma concentrations of glargine, M1, and M2 after subcutaneous injection of glargine in male type 1 diabetic subjects. RESEARCH DESIGN AND METHODS Glargine, M1, and M2 were determined in blood samples obtained from 12, 11, and 11 type 1 diabetic subjects who received single subcutaneous doses of 0.3, 0.6, or 1.2 units · kg(-1) glargine in a euglycemic clamp study. Glargine, M1, and M2 were extracted using immunoaffinity columns and quantified by a specific liquid chromatography-tandem mass spectrometry assay. Lower limit of quantification was 0.2 ng · mL(-1) (33 pmol · L(-1)) per analyte. RESULTS Plasma M1 concentration increased with increasing dose; geometric mean (percent coefficient of variation) M1-area under the curve between time of dosing and 30 h after dosing (AUC(0-30h)) was 1,261 (66), 2,867 (35), and 4,693 (22) pmol · h · L(-1) at doses of 0.3, 0.6, and 1.2 units · kg(-1), respectively, and correlated with metabolic effect assessed as pharmacodynamics-AUC(0-30h) of the glucose infusion rate following glargine administration (r = 0.74; P < 0.01). Glargine and M2 were detectable in only one-third of subjects and at a few time points. CONCLUSIONS After subcutaneous injection of glargine in male subjects with type 1 diabetes, exposure to glargine is marginal, if any, even at supratherapeutic doses. Glargine is rapidly and nearly completely processed to M1 (21(A)-Gly-human insulin), which mediates the metabolic effect of injected glargine.
Collapse
Affiliation(s)
- Geremia B Bolli
- Department of Internal Medicine, University of Perugia, Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Studies on the regioselectivity and kinetics of the action of trypsin on proinsulin and its derivatives using mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:182-90. [PMID: 22982989 DOI: 10.1016/j.bbapap.2012.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/20/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022]
Abstract
Human M-proinsulin was cleaved by trypsin at the R(31)R(32)-E(33) and K(64)R(65)-G(66) bonds (B/C and C/A junctions), showing the same cleavage specificity as exhibited by prohormone convertases 1 and 2 respectively. Buffalo/bovine M-proinsulin was also cleaved by trypsin at the K(59)R(60)-G(61) bond but at the B/C junction cleavage occurred at the R(31)R(32)-E(33) as well as the R(31)-R(32)E(33) bond. Thus, the human isoform in the native state, with a 31 residue connecting C-peptide, seems to have a unique structure around the B/C and C/A junctions and cleavage at these sites is predominantly governed by the structure of the proinsulin itself. In the case of both the proinsulin species the cleavage at the B/C junction was preferred (65%) over that at the C/A junction (35%) supporting the earlier suggestion of the presence of some form of secondary structure at the C/A junction. Proinsulin and its derivatives, as natural substrates for trypsin, were used and mass spectrometric analysis showed that the k(cat.)/K(m) values for the cleavage were most favourable for the scission of the bonds at the two junctions (1.02±0.08×10(5)s(-1)M(-1)) and the cleavage of the K(29)-T(30) bond of M-insulin-RR (1.3±0.07×10(5)s(-1)M(-1)). However, the K(29)-T(30) bond in M-insulin, insulin as well as M-proinsulin was shielded from attack by trypsin (k(cat.)/K(m) values around 1000s(-1)M(-1)). Hence, as the biosynthetic path follows the sequence; proinsulin→insulin-RR→insulin, the K(29)-T(30) bond becomes shielded, exposed then shielded again respectively.
Collapse
|
23
|
Camargo ACM, Fernandes BL, Cruz L, Ferro ES. Bioactive Peptides Produced by Limited Proteolysis. ACTA ACUST UNITED AC 2012. [DOI: 10.4199/c00056ed1v01y201204npe002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Roth J, Whitford I, Dankner R, Szulc AL. How the immunoassay transformed C-peptide from a duckling into a swan. Diabetologia 2012; 55:865-9. [PMID: 22246374 DOI: 10.1007/s00125-011-2421-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/11/2011] [Indexed: 12/15/2022]
Abstract
This edition of 'Then and now' re-examines Lise Heding's very highly cited paper 'Radioimmunological determination of human C-peptide in serum', which was published in Diabetologia in 1975. We show how this article and other related articles by Heding contributed to heightened respect for C-peptide (and transformation of Heding's research programme). Initially thought of as an inert discard, C-peptide in blood is now recognised as an excellent surrogate measure of insulin secretion under a wide range of conditions. The assay is especially valuable for acute ascertainment of the insulin secretory capabilities of patients with type 1 diabetes or of transplanted beta cells. The assay is also being used to monitor endogenous beta cell loss or in vivo expansion of beta cell mass over the long term. We conclude with two promising future applications: (1) measurements of C-peptide in blood (along with insulin, glucose, and HbA(1c)) at annual intervals as a potential approach to earlier diagnosis of diabetes; and (2) among many recent advances in recognising properties of C-peptide (including status as a candidate hormone), most promising is C-peptide as a possible therapy for diabetic neuropathy and nephropathy.
Collapse
Affiliation(s)
- J Roth
- Hofstra North Shore-LIJ School of Medicine, Manhasset, NY, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
Studies of the biosynthesis of insulin in a human insulinoma beginning in 1965 provided the first evidence for a precursor of insulin, the first such prohormone to be identified. Further studies with isolated rat islets then confirmed that the precursor became labeled more rapidly than insulin and later was converted to insulin by a proteolytic processing system located mainly within the secretory granules of the beta cell and was then stored or secreted. The precursor was designated "proinsulin" in 1967 and was isolated and sequenced from beef and pork sources. These structural studies confirmed that the precursor was a single polypeptide chain which began with the B chain of insulin, continued through a connecting segment of 30-35 amino acids and terminated with the A chain. Paired basic residues were identified at the sites of excision of the C-peptide. Human proinsulin and C-peptide were then similarly obtained and sequenced. The human C-peptide assay was developed and provided a useful tool for measuring insulin levels indirectly in diabetics treated with insulin. The discovery of other precursor proteins for a variety of peptide hormones, neuropeptides, or plasma proteins then followed, with all having mainly dibasic cleavage sites for processing. The subsequent discovery of a similar biosynthetic pathway in yeast led to the identification of eukaryotic families of specialized processing subtilisin-like endopeptidases coupled with carboxypeptidase B-like exopeptidases. Most neuroendocrine peptides are processed by two specialized members of this family - PC2 and/or PC1/3 - followed by carboxypeptidase E (CPE). This brief report concentrates mainly on the role of insulin biosynthesis in providing a useful early paradigm of precursor processing in the secretory pathway.
Collapse
Affiliation(s)
- Donald F Steiner
- Department of Biochemistry, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
26
|
Abstract
Ever since the discovery of insulin and its role in the regulation of glucose uptake and utilization, there has been great interest in insulin, its structure and the way in which it interacts with its receptor and effects signal transduction. As the 90th anniversary of the discovery of insulin approaches, it is timely to provide an overview of the landmark discoveries relating to the structure and function of this remarkable molecule and its receptor.
Collapse
Affiliation(s)
- Colin W. Ward
- Walter and Eliza Hall Institute of Medical ResearchParkville, VIC, Australia
| | - Michael C. Lawrence
- Walter and Eliza Hall Institute of Medical ResearchParkville, VIC, Australia
- Department of Medical Biology, University of MelbourneParkville, VIC, Australia
- *Correspondence: Michael C. Lawrence, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052, Australia. e-mail:
| |
Collapse
|