1
|
Carrano G, Arrieta-Aguirre I, Díez A, Bregón-Villahoz M, Fernandez-de-Larrinoa I, Moragues MD. Anti-Candida Antibodies of Patients with Invasive Candidiasis Inhibit Growth, Alter Cell Wall Structure, and Kill Candida albicans In Vitro. Mycopathologia 2024; 189:16. [PMID: 38324097 PMCID: PMC10850236 DOI: 10.1007/s11046-023-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024]
Abstract
Invasive candidiasis (IC), caused by Candida yeasts, particularly Candida albicans, poses a significant threat with high mortality rates. Diagnosis is challenging due to Candida's common presence in human microbiota. To address this, our research group developed an immunofluorescence assay detecting Candida albicans Germ Tube Antibodies (CAGTA) in IC patients. CAGTA, indicative of invasive processes, is associated with a lower mortality rate in ICU patients. Based on this premise, this study aims to provide results regarding the lack of knowledge about the potential activity of CAGTA against invasive infections in humans caused by the fungus Candida albicans. Therefore, in order to characterize the activity of CAGTA produced by patients with IC, we used sera from 29 patients with IC caused by either C. albicans or non-albicans Candida species. Whole serum IgG antibodies were fractionated into anti-blastospores, CAGTA-enriched, and purified CAGTA and the assessments included XTT colorimetric assays for metabolic activity, CFU counts for viability, and microscopy for growth, viability, and morphological analysis. The CAGTA-enriched IgG fraction significantly reduced the metabolic activity and viability of C. albicans compared to anti-blastospores. Purified CAGTA altered germ tube cell wall surfaces, as revealed by electron microscopy, and exhibited fungicidal properties by DiBAC fluorescent staining. In conclusion, antibodies in response to invasive candidiasis have antifungal activity against Candida albicans, influencing metabolic activity, viability, and cell wall structure, leading to cell death. These findings suggest the potential utility of CAGTA as diagnostic markers and support the possibility of developing immunization protocols against Candida infections.
Collapse
Affiliation(s)
- Giulia Carrano
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Araba, Spain.
| | - Inés Arrieta-Aguirre
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - Ander Díez
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - Marta Bregón-Villahoz
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - Iñigo Fernandez-de-Larrinoa
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Gipuzkoa, Spain
| | - María-Dolores Moragues
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| |
Collapse
|
2
|
Biomarkers for the diagnosis of invasive candidiasis in immunocompetent and immunocompromised patients. Diagn Microbiol Infect Dis 2021; 101:115509. [PMID: 34384954 DOI: 10.1016/j.diagmicrobio.2021.115509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 01/05/2023]
Abstract
Blood culture methods show low sensitivity, so reliable non-culture diagnostic tests are needed to help clinicians with the introduction, de-escalation, and discontinuation of antifungal therapy in patients with suspected invasive candidiasis (IC). We evaluated different biomarkers for the diagnosis of IC in immunocompetent and immunocompromised patients at risk for developing invasive fungal diseases. The specificity of Candida albicans germ-tube antibodies (CAGTA) detection was high (89%-100%), but sensitivity did not exceed 61% even after raising the cut-off from 1/160 to 1/80. We developed enzyme-linked immunoassays detecting antibodies against C. albicans proteins (Als3-N, Hwp1-N, or Met6) that resulted more sensitive (66%-92%) but less specific than CAGTA assay. The combination of 1,3-beta-D-glucan (BDG) detection and CAGTA results provided the highest diagnostic usefulness in immunocompetent patients. However, in immunocompromised patients, anti-Met6 antibodies was the best biomarker, both, alone or in combination with BDG.
Collapse
|
3
|
Mass Spectrometry-Based Proteomic and Immunoproteomic Analyses of the Candida albicans Hyphal Secretome Reveal Diagnostic Biomarker Candidates for Invasive Candidiasis. J Fungi (Basel) 2021; 7:jof7070501. [PMID: 34201883 PMCID: PMC8306665 DOI: 10.3390/jof7070501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023] Open
Abstract
Invasive candidiasis (IC) is associated with high morbidity and mortality in hospitalized patients if not diagnosed early. Long-term use of central venous catheters is a predisposing factor for IC. Hyphal forms of Candida albicans (the major etiological agent of IC) are related to invasion of host tissues. The secreted proteins of hyphae are involved in virulence, host interaction, immune response, and immune evasion. To identify IC diagnostic biomarker candidates, we characterized the C. albicans hyphal secretome by gel-free proteomic analysis, and further assessed the antibody-reactivity patterns to this subproteome in serum pools from 12 patients with non-catheter-associated IC (ncIC), 11 patients with catheter-associated IC (cIC), and 11 non-IC patients. We identified 301 secreted hyphal proteins stratified to stem from the extracellular region, cell wall, cell surface, or intracellular compartments. ncIC and cIC patients had higher antibody levels to the hyphal secretome than non-IC patients. Seven secreted hyphal proteins were identified to be immunogenic (Bgl2, Eno1, Pgk1, Glx3, Sap5, Pra1 and Tdh3). Antibody-reactivity patterns to Bgl2, Eno1, Pgk1 and Glx3 discriminated IC patients from non-IC patients, while those to Sap5, Pra1 and Tdh3 differentiated between cIC and non-IC patients. These proteins may be useful for development of future IC diagnostic tests.
Collapse
|
4
|
Immunoproteomic analysis of Clostridium botulinum type B secretome for identification of immunogenic proteins against botulism. Biotechnol Lett 2021; 43:1019-1036. [PMID: 33629143 PMCID: PMC7904509 DOI: 10.1007/s10529-021-03091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 02/01/2021] [Indexed: 11/12/2022]
Abstract
Objectives To identify immunogenic proteins of C. botulinum type B secretome by immunoproteomic analysis. Results In the present study, an attempt was made to elucidate the vaccine candidates/diagnostic molecules against botulism using immuno proteomic approach. C. botulinum type B secretome was elucidated when it was grown in TPGY as well as CMM media. Predominant 51 proteins were identified in both the media using 2-DE and mass spectrometry analysis. 2D gels (CMM & TPGY) were probed with respected proteins mice antiserum and obtained 17 and 10 immunogenic proteins in TPGY as well as CMM media respectively. Hypothetical protein CLOSPO_00563, ornithine carbamoyl transferase, FlaA, molecular chaperone GroEL and secreted protease proteins were found as the common immuno dominant proteins in both media. Polyclonal Antibodies raised against C. botulinum types A and E showed cross-reactivity with secretome C. botulinum type B at the lowest dilution (1:1000) but did not show cross reactivity with highest dilution (1:30,000) with C. botulinum type B secretome. Polyclonal antibodies against C. botulinum type F secretome did not show cross reactivity with C. botulinum type B secretome. Conclusions Identified immunogenic proteins can be used as vaccine candidates and diagnostic markers for the infant and wound botulism but common immunogenic proteins may be the best vaccine candidate molecule for development of vaccine as well as diagnostic system against the infant and wound botulism. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03091-4.
Collapse
|
5
|
Marcus K, Lelong C, Rabilloud T. What Room for Two-Dimensional Gel-Based Proteomics in a Shotgun Proteomics World? Proteomes 2020; 8:proteomes8030017. [PMID: 32781532 PMCID: PMC7563651 DOI: 10.3390/proteomes8030017] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Two-dimensional gel electrophoresis was instrumental in the birth of proteomics in the late 1980s. However, it is now often considered as an outdated technique for proteomics—a thing of the past. Although this opinion may be true for some biological questions, e.g., when analysis depth is of critical importance, for many others, two-dimensional gel electrophoresis-based proteomics still has a lot to offer. This is because of its robustness, its ability to separate proteoforms, and its easy interface with many powerful biochemistry techniques (including western blotting). This paper reviews where and why two-dimensional gel electrophoresis-based proteomics can still be profitably used. It emerges that, rather than being a thing of the past, two-dimensional gel electrophoresis-based proteomics is still highly valuable for many studies. Thus, its use cannot be dismissed on simple fashion arguments and, as usual, in science, the tree is to be judged by the fruit.
Collapse
Affiliation(s)
- Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty & Medical Proteome Analysis, Center for Proteindiagnostics (PRODI) Ruhr-University Bochum Gesundheitscampus, 4 44801 Bochum, Germany;
| | - Cécile Lelong
- CBM UMR CNRS5249, Université Grenoble Alpes, CEA, CNRS, 17 rue des Martyrs, CEDEX 9, 38054 Grenoble, France;
| | - Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Université Grenoble Alpes, CNRS, 38054 Grenoble, France
- Correspondence: ; Tel.: +33-438-783-212
| |
Collapse
|
6
|
Moonlighting Proteins at the Candidal Cell Surface. Microorganisms 2020; 8:microorganisms8071046. [PMID: 32674422 PMCID: PMC7409194 DOI: 10.3390/microorganisms8071046] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022] Open
Abstract
The cell wall in Candida albicans is not only a tight protective envelope but also a point of contact with the human host that provides a dynamic response to the constantly changing environment in infection niches. Particularly important roles are attributed to proteins exposed at the fungal cell surface. These include proteins that are stably and covalently bound to the cell wall or cell membrane and those that are more loosely attached. Interestingly in this regard, numerous loosely attached proteins belong to the class of “moonlighting proteins” that are originally intracellular and that perform essentially different functions in addition to their primary housekeeping roles. These proteins also demonstrate unpredicted interactions with non-canonical partners at an a priori unexpected extracellular location, achieved via non-classical secretion routes. Acting both individually and collectively, the moonlighting proteins contribute to candidal virulence and pathogenicity through their involvement in mechanisms critical for successful host colonization and infection, such as the adhesion to host cells, interactions with plasma homeostatic proteolytic cascades, responses to stress conditions and molecular mimicry. The documented knowledge of the roles of these proteins in C. albicans pathogenicity has utility for assisting the design of new therapeutic, diagnostic and preventive strategies against candidiasis.
Collapse
|
7
|
Pitarch A, Gil C, Blanco G. Vultures from different trophic guilds show distinct oral pathogenic yeast signatures and co-occurrence networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138166. [PMID: 32224410 DOI: 10.1016/j.scitotenv.2020.138166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 06/10/2023]
Abstract
Vultures have evolved adaptive mechanisms to prevent infections associated with their scavenging lifestyle. However, food-borne exposure to antimicrobial pharmaceuticals can promote opportunistic infections with adverse outcomes. Here, we used multivariate and network analyses to increase understanding of the behavior of the yeast communities causing oral mycosis outbreaks recently reported in wild nestling cinereous (Aegypius monachus), griffon (Gyps fulvus) and Egyptian (Neophron percnopterus) vultures (CV, GV and EV, respectively) exposed to antibiotics from livestock farming. Common and unique yeast signatures (of Candida, Debaromyces, Diutina, Meyerozyma, Naganishia, Pichia, Rhodotorula, Trichosporon and Yarrowia species) associated with oral mycoses were identified in the three vulture species. Hierarchical clustering analysis (HCA) and principal component analysis (PCA) highlighted that oral lesions from CV and GV shared similar yeast signatures (of major causative pathogens of opportunistic mycoses, such as Candida albicans, Candida parapsilosis and Candida tropicalis), while EV had a distinct yeast signature (of uncommon pathogenic species, such as Candida dubliniensis, Candida zeylanoides, Pichia fermentans and Rhodotorula spp.). Synergistic interactions between yeast species from distinct fungal phyla were found in lesions from CV and GV, but not in EV. These formed co-occurrence subnetworks with partially or fully connected topology. This study reveals that the composition, assembly and co-occurrence patterns of the yeast communities causing oral mycoses differ between vulture species with distinct feeding habits and scavenging lifestyles. Yeast species widely pathogenic to humans and animals, and yeast co-occurrence relationships, are distinctive hallmarks of oral mycoses in CV and GV. These vulture species are more exposed to antibiotics from intensively medicated livestock carcasses provided in supplementary feeding stations and show higher incidence of thrush-like oral lesions than EV. These findings may be useful for development of new initiatives or changes in the conservation of these avian scavengers affected by anthropogenic activities.
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology and Parasitology, Complutense University of Madrid (UCM) and Ramón y Cajal Institute of Health Research (IRYCIS), Spain; Ramón y Cajal University Hospital (HURC) Foundation for Biomedical Research, Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain.
| | - Concha Gil
- Department of Microbiology and Parasitology, Complutense University of Madrid (UCM) and Ramón y Cajal Institute of Health Research (IRYCIS), Spain; Ramón y Cajal University Hospital (HURC) Foundation for Biomedical Research, Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Guillermo Blanco
- Department of Evolutionary Ecology, National Museum of Natural Sciences, Spanish Research Council (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Carrano G, Paulone S, Lainz L, Sevilla MJ, Blasi E, Moragues MD. Anti-Candidaalbicans germ tube antibodies reduce in vitro growth and biofilm formation of C. albicans. Rev Iberoam Micol 2019; 36:9-16. [PMID: 30686747 DOI: 10.1016/j.riam.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/11/2018] [Accepted: 07/25/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Invasive candidiasis by Candida albicans is associated with high morbidity and mortality, due in part to the late implementation of an appropriate antifungal therapy hindered by the lack of an early diagnosis. AIMS We aimed to evaluate the in vitro antifungal activity of the antibodies against C. albicans germ tubes (CAGTA) raised in a rabbit model of candidemia. METHODS We measured the effect of CAGTA activity by colorimetric XTT and crystal violet assays, and colony forming units count, both on C. albicans planktonic cells and during the course of biofilm formation and maturation. Viability and cell morphology were assessed by optical, fluorescent or scanning electron microscopy. RESULTS CAGTA ≥50μg/ml caused a strong inhibition of C. albicans blastospores growth, and DiBAC fluorescent staining evidenced a fungicidal activity. Moreover, electron microscopy images revealed that CAGTA induced morphological alterations of the surface of C. albicans germ tubes grown free as well as in biofilm. Interestingly, CAGTA ≥80μg/ml reduced the amount of C. albicans biofilm, and this effect started at the initial adhesion stage of the biofilm formation, during the first 90min. CONCLUSIONS This is the first report showing that CAGTA reduce C. albicans growth, and impair its metabolic activity and ability to form biofilm in vitro. The antigens recognized by CAGTA could be the basis for the development of immunization protocols that might protect against Candida infections.
Collapse
Affiliation(s)
- Giulia Carrano
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain; Department of Nursing I, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Simona Paulone
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy; PhD Programme in Clinical Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucía Lainz
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - María-Jesús Sevilla
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Elisabetta Blasi
- Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy; PhD Programme in Clinical Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
9
|
Venkatesh A, Gil C, Fuentes M, LaBaer J, Srivastava S. A Perspective on Proteomics of Infectious Diseases. Proteomics Clin Appl 2018; 12:e1700139. [PMID: 29282898 DOI: 10.1002/prca.201700139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/24/2017] [Indexed: 11/10/2022]
Abstract
Pneumonia, HIV/AIDS, tuberculosis, malaria and several other diseases caused by pathogens largely contribute to the enormous burden of infectious diseases. Over the last few decades, the impact of infectious diseases on a population has been drastic and remains a major health concern even today. Despite advances in science and technology in this era of health and development, there is a substantial knowledge gap in our understanding of the molecular basis of these infectious diseases. The availability of valuable genomic information for a number of pathogens and their hosts has improved our understanding of disease pathogenesis but has not always been useful in addressing important biological questions. The primary reason lies in the fact that genes do not best reflect the status of a cell. Proteins represent the functional molecules of a cell and are ultimately responsible for controlling most aspects of cellular function. Their existence as different isoforms owing to posttranslational modifications suggests that many proteins can be produced by the same gene. Furthermore, not all mRNAs are translated at all times justifying the need to develop additional tools to study proteins as separate molecular entities. Their presence or absence under disease conditions, varying levels, different forms, and functions need to be carefully studied to understand molecular alterations in response to a disease. Here, we describe the applications of proteomics-based approaches to study infectious diseases with a note on the objectives of the Human Proteome Project (HPP)-Human Infectious Diseases (HID) project under the HUPO's flagship program.
Collapse
Affiliation(s)
- Apoorva Venkatesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Concha Gil
- Department of Microbiology II and Proteomics Unit, Plaza de Ramón y Cajal s/n, Complutense University of Madrid, Madrid, Spain
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain.,Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
10
|
Gil-Bona A, Amador-García A, Gil C, Monteoliva L. The external face of Candida albicans: A proteomic view of the cell surface and the extracellular environment. J Proteomics 2017; 180:70-79. [PMID: 29223801 DOI: 10.1016/j.jprot.2017.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 01/06/2023]
Abstract
The cell surface and secreted proteins are the initial points of contact between Candida albicans and the host. Improvements in protein extraction approaches and mass spectrometers have allowed researchers to obtain a comprehensive knowledge of these external subproteomes. In this paper, we review the published proteomic studies that have examined C. albicans extracellular proteins, including the cell surface proteins or surfome and the secreted proteins or secretome. The use of different approaches to isolate cell wall and cell surface proteins, such as fractionation approaches or cell shaving, have resulted in different outcomes. Proteins with N-terminal signal peptide, known as classically secreted proteins, and those that lack the signal peptide, known as unconventionally secreted proteins, have been consistently identified. Existing studies on C. albicans extracellular vesicles reveal that they are relevant as an unconventional pathway of protein secretion and can help explain the presence of proteins without a signal peptide, including some moonlighting proteins, in the cell wall and the extracellular environment. According to the global view presented in this review, cell wall proteins, virulence factors such as adhesins or hydrolytic enzymes, metabolic enzymes and stress related-proteins are important groups of proteins in C. albicans surfome and secretome. BIOLOGICAL SIGNIFICANCE Candida albicans extracellular proteins are involved in biofilm formation, cell nutrient acquisition and cell wall integrity maintenance. Furthermore, these proteins include virulence factors and immunogenic proteins. This review is of outstanding interest, not only because it extends knowledge of the C. albicans surface and extracellular proteins that could be related with pathogenesis, but also because it presents insights that may facilitate the future development of new antifungal drugs and vaccines and contributes to efforts to identify new biomarkers that can be employed to diagnose candidiasis. Here, we list more than 570 C. albicans proteins that have been identified in extracellular locations to deliver the most extensive catalogue of this type of proteins to date. Moreover, we describe 16 proteins detected at all locations analysed in the works revised. These proteins include the glycophosphatidylinositol (GPI)-anchored proteins Ecm33, Pga4 and Phr2 and unconventional secretory proteins such as Eft2, Eno1, Hsp70, Pdc11, Pgk1 and Tdh3. Furthermore, 13 of these 16 proteins are immunogenic and could represent a set of interesting candidates for biomarker discovery.
Collapse
Affiliation(s)
- Ana Gil-Bona
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain
| | - Ahinara Amador-García
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain
| | - Concha Gil
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain.
| | - Lucia Monteoliva
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain.
| |
Collapse
|
11
|
Huertas B, Prieto D, Pitarch A, Gil C, Pla J, Díez-Orejas R. Serum Antibody Profile during Colonization of the Mouse Gut by Candida albicans: Relevance for Protection during Systemic Infection. J Proteome Res 2016; 16:335-345. [PMID: 27539120 DOI: 10.1021/acs.jproteome.6b00383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Candida albicans is a commensal microorganism in the oral cavity and gastrointestinal and urogenital tracts of most individuals that acts as an opportunistic pathogen when the host immune response is reduced. Here, we established different immunocompetent murine models to analyze the antibody responses to the C. albicans proteome during commensalism, commensalism followed by infection, and infection (C, C+I, and I models, respectively). Serum anti-C. albicans IgG antibody levels were higher in colonized mice than in infected mice. The antibody responses during gut commensalism (up to 55 days of colonization) mainly focused on C. albicans proteins involved in stress response and metabolism and differed in both models of commensalism. Different serum IgG antibody-reactivity profiles were also found over time among the three murine models. C. albicans gut colonization protected mice from an intravenous lethal fungal challenge, emphasizing the benefits of fungal gut colonization. This work highlights the importance of fungal gut colonization for future immune prophylactic therapies.
Collapse
Affiliation(s)
- Blanca Huertas
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Daniel Prieto
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Aida Pitarch
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Concha Gil
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jesús Pla
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Rosalía Díez-Orejas
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
12
|
Luo T, Krüger T, Knüpfer U, Kasper L, Wielsch N, Hube B, Kortgen A, Bauer M, Giamarellos-Bourboulis EJ, Dimopoulos G, Brakhage AA, Kniemeyer O. Immunoproteomic Analysis of Antibody Responses to Extracellular Proteins of Candida albicans Revealing the Importance of Glycosylation for Antigen Recognition. J Proteome Res 2016; 15:2394-406. [PMID: 27386892 DOI: 10.1021/acs.jproteome.5b01065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During infection, the human pathogenic fungus Candida albicans undergoes a yeast-to-hypha transition, secretes numerous proteins for invasion of host tissues, and modulates the host's immune response. Little is known about the interplay of C. albicans secreted proteins and the host adaptive immune system. Here, we applied a combined 2D gel- and LC-MS/MS-based approach for the characterization of C. albicans extracellular proteins during the yeast-to-hypha transition, which led to a comprehensive C. albicans secretome map. The serological responses to C. albicans extracellular proteins were investigated by a 2D-immunoblotting approach combined with MS for protein identification. On the basis of the screening of sera from candidemia and three groups of noncandidemia patients, a core set of 19 immunodominant antibodies against secreted proteins of C. albicans was identified, seven of which represent potential diagnostic markers for candidemia (Xog1, Lip4, Asc1, Met6, Tsa1, Tpi1, and Prx1). Intriguingly, some secreted, strongly glycosylated protein antigens showed high cross-reactivity with sera from noncandidemia control groups. Enzymatic deglycosylation of proteins secreted from hyphae significantly impaired sera antibody recognition. Furthermore, deglycosylation of the recombinantly produced, secreted aspartyl protease Sap6 confirmed a significant contribution of glycan epitopes to the recognition of Sap6 by antibodies in patient's sera.
Collapse
Affiliation(s)
| | | | | | | | - Natalie Wielsch
- Department of Mass spectrometry/Proteomics, Max-Planck-Institute for Chemical Ecology , 07745 Jena, Germany
| | - Bernhard Hube
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| | | | | | | | | | - Axel A Brakhage
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| | - Olaf Kniemeyer
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| |
Collapse
|
13
|
Pitarch A, Nombela C, Gil C. Top-down characterization data on the speciation of the Candida albicans immunome in candidemia. Data Brief 2015; 6:257-61. [PMID: 26862568 PMCID: PMC4707175 DOI: 10.1016/j.dib.2015.11.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 01/19/2023] Open
Abstract
The characterization of pathogen-specific antigenic proteins at the protein species level is crucial in the development and molecular optimization of novel immunodiagnostics, vaccines or immunotherapeutics for infectious diseases. The major requirements to achieve this molecular level are to obtain 100% sequence coverage and identify all post-translational modifications of each antigenic protein species. In this article, we show nearly complete sequence information for five discrete antigenic species of Candida albicans Tdh3 (glyceraldehyde-3-phosphate dehydrogenase), which have been reported to be differentially recognized both among candidemia patients and between candidemia and control patients. A comprehensive description of the top-down immunoproteomic strategy used for seroprofiling at the C. albicans protein species level in candidemia as well as for the chemical characterization of this immunogenic protein (based on high-resolution 2-DE, Western blotting, peptide mass fingerprinting, tandem mass spectrometry and de novo peptide sequencing) is also provided. The top-down characterization data on the speciation of the C. albicans immunome in candidemia presented here are related to our research article entitled “Seroprofiling at the Candida albicans protein species level unveils an accurate molecular discriminator for candidemia” (Pitarch et al., J. Proteomics, 2015, http://dx.doi.org/10.1016/j.jprot.2015.10.022).
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS), Spain
| | - César Nombela
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS), Spain
| | - Concha Gil
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS), Spain
| |
Collapse
|
14
|
Marín E, Parra-Giraldo CM, Hernández-Haro C, Hernáez ML, Nombela C, Monteoliva L, Gil C. Candida albicans Shaving to Profile Human Serum Proteins on Hyphal Surface. Front Microbiol 2015; 6:1343. [PMID: 26696967 PMCID: PMC4672057 DOI: 10.3389/fmicb.2015.01343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/16/2015] [Indexed: 01/11/2023] Open
Abstract
Candida albicans is a human opportunistic fungus and it is responsible for a wide variety of infections, either superficial or systemic. C. albicans is a polymorphic fungus and its ability to switch between yeast and hyphae is essential for its virulence. Once C. albicans obtains access to the human body, the host serum constitutes a complex environment of interaction with C. albicans cell surface in bloodstream. To draw a comprehensive picture of this relevant step in host-pathogen interaction during invasive candidiasis, we have optimized a gel-free shaving proteomic strategy to identify both, human serum proteins coating C. albicans cells and fungi surface proteins simultaneously. This approach was carried out with normal serum (NS) and heat inactivated serum (HIS). We identified 214 human and 372 C. albicans unique proteins. Proteins identified in C. albicans included 147 which were described as located at the cell surface and 52 that were described as immunogenic. Interestingly, among these C. albicans proteins, we identified 23 GPI-anchored proteins, Gpd2 and Pra1, which are involved in complement system evasion and 7 other proteins that are able to attach plasminogen to C. albicans surface (Adh1, Eno1, Fba1, Pgk1, Tdh3, Tef1, and Tsa1). Furthermore, 12 proteins identified at the C. albicans hyphae surface induced with 10% human serum were not detected in other hypha-induced conditions. The most abundant human proteins identified are involved in complement and coagulation pathways. Remarkably, with this strategy, all main proteins belonging to complement cascades were identified on the C. albicans surface. Moreover, we identified immunoglobulins, cytoskeletal proteins, metabolic proteins such as apolipoproteins and others. Additionally, we identified more inhibitors of complement and coagulation pathways, some of them serpin proteins (serine protease inhibitors), in HIS vs. NS. On the other hand, we detected a higher amount of C3 at the C. albicans surface in NS than in HIS, as validated by immunofluorescence.
Collapse
Affiliation(s)
- Elvira Marín
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Claudia M Parra-Giraldo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Carolina Hernández-Haro
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - María L Hernáez
- Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain
| | - Lucía Monteoliva
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain
| | - Concha Gil
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain
| |
Collapse
|
15
|
Vialas V, Sun Z, Reales-Calderón JA, Hernáez ML, Casas V, Carrascal M, Abián J, Monteoliva L, Deutsch EW, Moritz RL, Gil C. A comprehensive Candida albicans PeptideAtlas build enables deep proteome coverage. J Proteomics 2015; 131:122-130. [PMID: 26493587 DOI: 10.1016/j.jprot.2015.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 12/29/2022]
Abstract
To provide new and expanded proteome documentation of the opportunistically pathogen Candida albicans, we have developed new protein extraction and analysis routines to provide a new, extended and enhanced version of the C. albicans PeptideAtlas. Two new datasets, resulting from experiments consisting of exhaustive subcellular fractionations and different growing conditions, plus two additional datasets from previous experiments on the surface and the secreted proteomes, have been incorporated to increase the coverage of the proteome. High resolution precursor mass spectrometry (MS) and ion trap tandem MS spectra were analyzed with three different search engines using a database containing allele-specific sequences. This approach, novel for a large-scale C. albicans proteomics project, was combined with the post-processing and filtering implemented in the Trans Proteomic Pipeline consistently used in the PeptideAtlas project and resulted in 49,372 additional peptides (3-fold increase) and 1630 more proteins (1.6-fold increase) identified in the new C. albicans PeptideAtlas with respect to the previous build. A total of 71,310 peptides and 4174 canonical (minimal non-redundant set) proteins (4115 if one protein per pair of alleles is considered) were identified representing 66% of the 6218 proteins in the predicted proteome. This makes the new PeptideAtlas build the most comprehensive C. albicans proteomics resource available and the only large-scale one with detections of individual alleles.
Collapse
Affiliation(s)
- Vital Vialas
- Departamento de Microbiología II, Universidad Complutense Madrid (UCM), Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Zhi Sun
- Institute for Systems Biology, 401, Terry Ave North, Seattle, WA 98109, USA
| | - Jose A Reales-Calderón
- Departamento de Microbiología II, Universidad Complutense Madrid (UCM), Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María L Hernáez
- Unidad de Proteómica, Universidad Complutense de Madrid-Parque Científico de Madrid (UCM-PCM), Spain
| | - Vanessa Casas
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | | | - Joaquín Abián
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | - Lucía Monteoliva
- Departamento de Microbiología II, Universidad Complutense Madrid (UCM), Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Eric W Deutsch
- Institute for Systems Biology, 401, Terry Ave North, Seattle, WA 98109, USA
| | - Robert L Moritz
- Institute for Systems Biology, 401, Terry Ave North, Seattle, WA 98109, USA
| | - Concha Gil
- Departamento de Microbiología II, Universidad Complutense Madrid (UCM), Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Corresponding author at: Departamento de Microbiología II, Universidad Complutense Madrid (UCM), Facultad de Farmacia, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
16
|
Pitarch A, Nombela C, Gil C. Seroprofiling at the Candida albicans protein species level unveils an accurate molecular discriminator for candidemia. J Proteomics 2015; 134:144-162. [PMID: 26485298 DOI: 10.1016/j.jprot.2015.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 12/01/2022]
Abstract
Serum antibodies to specific Candida proteins have been reported as potential diagnostic biomarkers for candidemia. However, their diagnostic usefulness at the protein species level has hardly been examined. Using serological proteome analysis, we explored the IgG-antibody responses to Candida albicans protein species in candidemia and control patients. We found that 87 discrete protein species derived from 34 unique proteins were IgG-targets, although only 43 of them were differentially recognized by candidemia and control sera. An increase in the speciation of the immunome, connectivity and modularity of antigenic species co-recognition networks, and heterogeneity of antigenic species recognition patterns was associated with candidemia. IgG antibodies to certain discrete protein species were better predictors of candidemia than those to their corresponding proteins. A molecular discriminator delineated from the combined fingerprints of IgG antibodies to two distinct species of phosphoglycerate kinase and enolase accurately classified candidemia and control patients. These results provide new insight into the anti-Candida IgG-antibody response development in candidemia, and demonstrate that an immunoproteomic signature at the molecular level may be useful for its diagnosis. Our study further highlights the importance of defining pathogen-specific antigens at the chemical and molecular level for their potential application as immunodiagnostic reagents or even vaccine candidates.
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS), Spain.
| | - César Nombela
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS), Spain
| | - Concha Gil
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS), Spain
| |
Collapse
|
17
|
Gil-Bona A, Monteoliva L, Gil C. Global Proteomic Profiling of the Secretome of Candida albicans ecm33 Cell Wall Mutant Reveals the Involvement of Ecm33 in Sap2 Secretion. J Proteome Res 2015; 14:4270-81. [DOI: 10.1021/acs.jproteome.5b00411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ana Gil-Bona
- Departamento de
Microbiología
II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón
y Cajal s/n, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, 28034 Madrid, Spain
| | - Lucía Monteoliva
- Departamento de
Microbiología
II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón
y Cajal s/n, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, 28034 Madrid, Spain
| | - Concha Gil
- Departamento de
Microbiología
II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón
y Cajal s/n, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, 28034 Madrid, Spain
| |
Collapse
|
18
|
Elluru SR, Kaveri SV, Bayry J. The protective role of immunoglobulins in fungal infections and inflammation. Semin Immunopathol 2014; 37:187-97. [PMID: 25404121 DOI: 10.1007/s00281-014-0466-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/06/2014] [Indexed: 02/07/2023]
Abstract
Increased incidence of fungal infections in the immunocompromised individuals and fungi-mediated allergy and inflammatory conditions in immunocompetent individuals is a cause of concern. Consequently, there is a need for efficient therapeutic alternatives to treat fungal infections and inflammation. Several studies have demonstrated that antibodies or immunoglobulins have a role in restricting the fungal burden and their clearance. However, based on the data from monoclonal antibodies, it is now evident that the efficacy of antibodies in fungal infections is dependent on epitope specificity, abundance of protective antibodies, and their isotype. Antibodies confer protection against fungal infections by multiple mechanisms that include direct neutralization of fungi and their antigens, inhibition of growth of fungi, modification of gene expression, signaling and lipid metabolism, causing iron starvation, inhibition of polysaccharide release, and biofilm formation. Antibodies promote opsonization of fungi and their phagocytosis, complement activation, and antibody-dependent cell toxicity. Passive administration of specific protective monoclonal antibodies could also prove to be beneficial in drug resistance cases, to reduce the dosage and associated toxic symptoms of anti-fungal drugs. The longer half-life of the antibodies and flexibilities to modify their structure/forms are additional advantages. The clinical data obtained with two monoclonal antibodies should incite interests in translating pre-clinical success into the clinics. The anti-inflammatory and immunoregulatory role of antibodies in fungal inflammation could be exploited by intravenous immunoglobulin or IVIg.
Collapse
Affiliation(s)
- Sri Ramulu Elluru
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
19
|
Ardizzoni A, Posteraro B, Baschieri MC, Bugli F, Sáez-Rosòn A, Manca L, Cacaci M, Paroni Sterbini F, De Waure C, Sevilla MJ, Peppoloni S, Sanguinetti M, Moragues MD, Blasi E. An antibody reactivity-based assay for diagnosis of invasive candidiasis using protein array. Int J Immunopathol Pharmacol 2014; 27:403-12. [PMID: 25280031 DOI: 10.1177/039463201402700310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The increased incidence of invasive candidiasis and of patients at risk requires early diagnosis and treatment to improve prognosis and survival. The aim of this study was to set up a ten-protein array-based immunoassay to assess the IgG antibody responses against ten well-known immunogenic C. albicans proteins (Bgl2, Eno1, Pgk1, Pdc11, Fba1, Adh1, Als3, Hwp1, Hsp90 and Grp2) in 51 patients with invasive candidiasis (IC) and in 38 culture-negative controls (non-IC). Antibody levels were higher against Bgl2, Eno1, Pgk1, Als3, Hwp1 and Grp2, than against Adh1, Pdc11, Fba1 and Hsp90, irrespectively of the patient group considered. Moreover, the IgG levels against Bgl2, Eno1, Pgk1 and Grp2 were significantly higher in IC than in non-IC patients. Furthermore, the ROC curves generated by the analysis of the antibody responses against Bgl2, Grp2 and Pgk1 displayed AUC values above 0.7, thus discriminating IC and non-IC patients. According to these results, the employment of the microarray immunoassay (a rapid, sensitive and multiparametric system), in parallel with conventional diagnostics, can help to spot IC patients. This ultimately will allow to initiate an early, focused and optimized antifungal therapy.
Collapse
Affiliation(s)
- A Ardizzoni
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - B Posteraro
- Institute of Public Health, Catholic University of the Sacred Heart, Rome Italy
| | - M C Baschieri
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - F Bugli
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - A Sáez-Rosòn
- Infirmary I, País Vasco/Euskal Herriko Universiy, Leioa, Spain
| | - L Manca
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - M Cacaci
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - F Paroni Sterbini
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - C De Waure
- Institute of Public Health, Catholic University of the Sacred Heart, Rome Italy
| | - M J Sevilla
- Department of Immunology, Microbiology and Parasitology, País Vasco/Euskal Herriko University, Leioa, Spain
| | - S Peppoloni
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - M Sanguinetti
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - M D Moragues
- Infirmary I, País Vasco/Euskal Herriko Universiy, Leioa, Spain
| | - E Blasi
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
20
|
Gil-Bona A, Llama-Palacios A, Parra CM, Vivanco F, Nombela C, Monteoliva L, Gil C. Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans. J Proteome Res 2014; 14:142-53. [PMID: 25367658 DOI: 10.1021/pr5007944] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The commensal fungus Candida albicans secretes a considerable number of proteins and, as in different fungal pathogens, extracellular vesicles (EVs) have also been observed. Our report contains the first proteomic analysis of EVs in C. albicans and a comparative proteomic study of the soluble secreted proteins. With this purpose, cell-free culture supernatants from C. albicans were separated into EVs and EV-free supernatant and analyzed by LC-MS/MS. A total of 96 proteins were identified including 75 and 61 proteins in EVs and EV-free supernatant, respectively. Out of these, 40 proteins were found in secretome by proteomic analysis for the first time. The soluble proteins were enriched in cell wall and secreted pathogenesis related proteins. Interestingly, more than 90% of these EV-free supernatant proteins were classical secretory proteins with predicted N-terminal signal peptide, whereas all the leaderless proteins involved in metabolism, including some moonlighting proteins, or in the exocytosis and endocytosis process were exclusively cargo of the EVs. We propose a model of the different mechanisms used by C. albicans secreted proteins to reach the extracellular medium. Furthermore, we tested the potential of the Bgl2 protein, identified in vesicles and EV-free supernatant, to protect against a systemic candidiasis in a murine model.
Collapse
Affiliation(s)
- Ana Gil-Bona
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid , 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Pitarch A, Nombela C, Gil C. Serum antibody signature directed against Candida albicans Hsp90 and enolase detects invasive candidiasis in non-neutropenic patients. J Proteome Res 2014; 13:5165-84. [PMID: 25377742 DOI: 10.1021/pr500681x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Invasive candidiasis (IC) adds significantly to the morbidity and mortality of non-neutropenic patients if not diagnosed and treated early. To uncover serologic biomarkers that alone or in combination could reliably detect IC in this population, IgG antibody-reactivity profiles to the Candida albicans intracellular proteome were examined by serological proteome analysis (SERPA) and data mining procedures in a training set of 24 non-neutropenic patients. Despite the high interindividual molecular heterogeneity, unsupervised clustering analyses revealed that serum 22-IgG antibody-reactivity patterns differentiated IC from non-IC patients. Univariate analyses further highlighted that 15 out of the 22 SERPA-identified IgG antibodies could be useful candidate IC biomarkers. The diagnostic performance of one of these candidates (anti-Hsp90 IgG antibodies) was validated using an ELISA prototype in a test set of 59 non-neutropenic patients. We then formulated an IC discriminator based on the combined immunoproteomic fingerprints of this and another SERPA-detected and previously validated IC biomarker (anti-Eno1 IgG antibodies) in the training set. Its consistency was substantiated using their ELISA prototypes in the test set. Receiver-operating-characteristic curve analyses showed that this two-biomarker signature accurately identified IC in non-neutropenic patients and provided better IC diagnostic accuracy than the individual biomarkers alone. We conclude that this serum IgG antibody signature directed against C. albicans Hsp90 and Eno1, if confirmed prospectively, may be useful for IC diagnosis in non-neutropenic patients.
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | | |
Collapse
|
22
|
Lee P, Gam L, Yong V, Rosli R, Ng K, Chong P. Immunoproteomic analysis of antibody response to cell wall-associated proteins of Candida tropicalis. J Appl Microbiol 2014; 117:854-65. [DOI: 10.1111/jam.12562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/20/2014] [Accepted: 06/03/2014] [Indexed: 01/10/2023]
Affiliation(s)
- P.Y. Lee
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Serdang Selangor Malaysia
| | - L.H. Gam
- School of Pharmaceutical Sciences; Universiti Sains Malaysia; Penang Malaysia
| | - V.C. Yong
- School of Biosciences; Taylor's University (Lakeside Campus); Subang Jaya Selangor Malaysia
| | - R. Rosli
- Department of Obstetrics and Gynaecology; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Serdang Selangor Malaysia
| | - K.P. Ng
- Department of Medical Microbiology; Faculty of Medicine; University of Malaya; Kuala Lumpur Malaysia
| | - P.P. Chong
- Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Serdang Selangor Malaysia
- Translational Infectious Diseases Program; Centre for Translational Medicine; National University of Singapore; Singapore City Singapore
| |
Collapse
|
23
|
Quantitative proteomic analysis of hepatocyte-secreted extracellular vesicles reveals candidate markers for liver toxicity. J Proteomics 2014; 103:227-40. [PMID: 24747303 DOI: 10.1016/j.jprot.2014.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 01/23/2023]
Abstract
UNLABELLED Extracellular vesicles have created great interest as possible source of biomarkers for different biological processes and diseases. Although the biological function of these vesicles is not fully understood, it is clear that they participate in the removal of unnecessary cellular material and act as carriers of various macromolecules and signals between the cells. In this report, we analyzed the proteome of extracellular vesicles secreted by primary hepatocytes. We used one- and two-dimensional liquid chromatography combined with data-independent mass spectrometry. Employing label-free quantitative proteomics, we detected significant changes in vesicle protein expression levels in this in vitro model after exposure to well-known liver toxins (galactosamine and Escherichia coli-derived lipopolysaccharide). The results allowed us to identify candidate markers for liver injury. We validated a number of these markers in vivo, providing the basis for the development of novel methods to evaluate drug toxicity. This report strongly supports the application of proteomics in the study of extracellular vesicles released by well-controlled in vitro cellular systems. Analysis of such systems should help to identify specific markers for various biological processes and pathological conditions. BIOLOGICAL SIGNIFICANCE Identification of low invasive candidate marker for hepatotoxicity. Support to apply proteomics in the study of extracellular vesicles released by well-controlled in vitro cellular systems to identify low invasive markers for diseases.
Collapse
|
24
|
Lee PY, Gam LH, Yong VC, Rosli R, Ng KP, Chong PP. Identification of immunogenic proteins of Candida parapsilosis by serological proteome analysis. J Appl Microbiol 2014; 116:999-1009. [PMID: 24299471 DOI: 10.1111/jam.12408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 11/24/2013] [Accepted: 11/27/2013] [Indexed: 02/03/2023]
Abstract
AIMS Systemic candidiasis is the leading fungal bloodstream infection, and its incidence has been on the rise. Recently, Candida parapsilosis has emerged as an increasingly prevalent fungal pathogen, but little is known about its antigenic profile. Hence, the current work was performed to discover immunogenic proteins of C. parapsilosis using serological proteome analysis. METHODS AND RESULTS Cell wall proteins extracted from C. parapsilosis were resolved by two-dimensional electrophoresis followed by immunoblotting using antisera from experimentally infected mice. Mass spectrometry analysis of the 32 immunoreactive protein spots resulted in the identification of 12 distinct proteins. Among them, 11 proteins were known antigens of Candida albicans, whereas Idh2p was identified for the first time as an immunogenic protein of Candida species. Recombinant Idh2p was expressed in Escherichia coli, and its antigenicity was verified by immunoblot analysis. CONCLUSIONS An immunoproteomic approach was successfully applied to identify immunogenic proteins of C. parapsilosis, with Idh2p as a novel candidate antigen. The identified antigens may serve as potential biomarkers for development of diagnostic assay and/or vaccine for C. parapsilosis. SIGNIFICANCE AND IMPACT OF THE STUDY This work represents the first immunoproteomic analysis of C. parapsilosis, which provides new insights into host-pathogen interactions and pathogenesis of C. parapsilosis. The immunogenic proteins could be studied as biomarker candidates for C. parapsilosis.
Collapse
Affiliation(s)
- P Y Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | | | | | |
Collapse
|
25
|
Segura V, Medina-Aunon JA, Mora MI, Martínez-Bartolomé S, Abian J, Aloria K, Antúnez O, Arizmendi JM, Azkargorta M, Barceló-Batllori S, Beaskoetxea J, Bech-Serra JJ, Blanco F, Monteiro MB, Cáceres D, Canals F, Carrascal M, Casal JI, Clemente F, Colomé N, Dasilva N, Díaz P, Elortza F, Fernández-Puente P, Fuentes M, Gallardo O, Gharbi SI, Gil C, González-Tejedo C, Hernáez ML, Lombardía M, Lopez-Lucendo M, Marcilla M, Mato JM, Mendes M, Oliveira E, Orera I, Pascual-Montano A, Prieto G, Ruiz-Romero C, Sánchez del Pino MM, Tabas-Madrid D, Valero ML, Vialas V, Villanueva J, Albar JP, Corrales FJ. Surfing transcriptomic landscapes. A step beyond the annotation of chromosome 16 proteome. J Proteome Res 2014; 13:158-172. [PMID: 24138474 DOI: 10.1021/pr400721r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Spanish team of the Human Proteome Project (SpHPP) marked the annotation of Chr16 and data analysis as one of its priorities. Precise annotation of Chromosome 16 proteins according to C-HPP criteria is presented. Moreover, Human Body Map 2.0 RNA-Seq and Encyclopedia of DNA Elements (ENCODE) data sets were used to obtain further information relative to cell/tissue specific chromosome 16 coding gene expression patterns and to infer the presence of missing proteins. Twenty-four shotgun 2D-LC-MS/MS and gel/LC-MS/MS MIAPE compliant experiments, representing 41% coverage of chromosome 16 proteins, were performed. Furthermore, mapping of large-scale multicenter mass spectrometry data sets from CCD18, MCF7, Jurkat, and Ramos cell lines into RNA-Seq data allowed further insights relative to correlation of chromosome 16 transcripts and proteins. Detection and quantification of chromosome 16 proteins in biological matrices by SRM procedures are also primary goals of the SpHPP. Two strategies were undertaken: one focused on known proteins, taking advantage of MS data already available, and the second, aimed at the detection of the missing proteins, is based on the expression of recombinant proteins to gather MS information and optimize SRM methods that will be used in real biological samples. SRM methods for 49 known proteins and for recombinant forms of 24 missing proteins are reported in this study.
Collapse
Affiliation(s)
- Víctor Segura
- ProteoRed-ISCIII, Center for Applied Medical Research (CIMA), University of Navarra , Pío XII, 55; Ed. CIMA, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vialas V, Sun Z, Loureiro y Penha CV, Carrascal M, Abián J, Monteoliva L, Deutsch EW, Aebersold R, Moritz RL, Gil C. A Candida albicans PeptideAtlas. J Proteomics 2013; 97:62-8. [PMID: 23811049 DOI: 10.1016/j.jprot.2013.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 06/16/2013] [Indexed: 01/08/2023]
Abstract
UNLABELLED Candida albicans public proteomic datasets, though growing steadily in the last few years, still have a very limited presence in online repositories. We report here the creation of a C. albicans PeptideAtlas comprising near 22,000 distinct peptides at a 0.24% False Discovery Rate (FDR) that account for over 2500 canonical proteins at a 1.2% FDR. Based on data from 16 experiments, we attained coverage of 41% of the C. albicans open reading frame sequences (ORFs) in the database used for the searches. This PeptideAtlas provides several useful features, including comprehensive protein and peptide-centered search capabilities and visualization tools that establish a solid basis for the study of basic biological mechanisms key to virulence and pathogenesis such as dimorphism, adherence, and apoptosis. Further, it is a valuable resource for the selection of candidate proteotypic peptides for targeted proteomic experiments via Selected Reaction Monitoring (SRM) or SWATH-MS. BIOLOGICAL SIGNIFICANCE This C. albicans PeptideAtlas resolves the previous absence of fungal pathogens in the PeptideAtlas project. It represents the most extensive characterization of the proteome of this fungus that exists up to the current date, including evidence for uncharacterized ORFs. Through its web interface, PeptideAtlas supports the study of interesting proteins related to basic biological mechanisms key to virulence such as apoptosis, dimorphism and adherence. It also provides a valuable resource to select candidate proteotypic peptides for future (SRM) targeted proteomic experiments. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Vital Vialas
- Dept. Microbiología II, Universidad Complutense de Madrid, Madrid, Spain; IRYCIS: Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.
| | - Zhi Sun
- Institute for Systems Biology, Seattle, WA, USA
| | - Carla Verónica Loureiro y Penha
- Dept. Microbiología II, Universidad Complutense de Madrid, Madrid, Spain; IRYCIS: Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Montserrat Carrascal
- CSIC/UAB Proteomics Laboratory, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas, Spain
| | - Joaquín Abián
- CSIC/UAB Proteomics Laboratory, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas, Spain
| | - Lucía Monteoliva
- Dept. Microbiología II, Universidad Complutense de Madrid, Madrid, Spain; IRYCIS: Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland
| | | | - Concha Gil
- Dept. Microbiología II, Universidad Complutense de Madrid, Madrid, Spain; IRYCIS: Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.
| |
Collapse
|
27
|
Vialás V, Perumal P, Gutierrez D, Ximénez-Embún P, Nombela C, Gil C, Chaffin WL. Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells. Proteomics 2013; 12:2331-9. [PMID: 22685022 DOI: 10.1002/pmic.201100588] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We used a brief trypsin treatment followed by peptide separation and identification using nano-LC followed by off-line MS/MS to identify the surface proteins on live Candida albicans organisms growing in biofilms and planktonic yeast cells and hyphae. One hundred thirty-one proteins were present in at least two of the three replicates of one condition and distributed in various combinations of the three growth conditions. Both previously reported and new surface proteins were identified and these were distributed between covalently attached proteins and noncovalently attached proteins of the cell wall.
Collapse
Affiliation(s)
- Vital Vialás
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Segura V, Medina-Aunon JA, Guruceaga E, Gharbi SI, González-Tejedo C, Sánchez del Pino MM, Canals F, Fuentes M, Casal JI, Martínez-Bartolomé S, Elortza F, Mato JM, Arizmendi JM, Abian J, Oliveira E, Gil C, Vivanco F, Blanco F, Albar JP, Corrales FJ. Spanish human proteome project: dissection of chromosome 16. J Proteome Res 2013; 12:112-122. [PMID: 23234512 DOI: 10.1021/pr300898u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Chromosome 16 Consortium forms part of the Human Proteome Project that aims to develop an entire map of the proteins encoded by the human genome following a chromosome-centric strategy (C-HPP) to make progress in the understanding of human biology in health and disease (B/D-HPP). A Spanish consortium of 16 laboratories was organized into five working groups: Protein/Antibody microarrays, protein expression and Peptide Standard, S/MRM, Protein Sequencing, Bioinformatics and Clinical healthcare, and Biobanking. The project is conceived on a multicenter configuration, assuming the standards and integration procedures already available in ProteoRed-ISCIII, which is encompassed within HUPO initiatives. The products of the 870 protein coding genes in chromosome 16 were analyzed in Jurkat T lymphocyte cells, MCF-7 epithelial cells, and the CCD18 fibroblast cell line as it is theoretically expected that most chromosome 16 protein coding genes are expressed in at least one of these. The transcriptome and proteome of these cell lines was studied using gene expression microarray and shotgun proteomics approaches, indicating an ample coverage of chromosome 16. With regard to the B/D section, the main research areas have been adopted and a biobanking initiative has been designed to optimize methods for sample collection, management, and storage under normalized conditions and to define QC standards. The general strategy of the Chr-16 HPP and the current state of the different initiatives are discussed.
Collapse
Affiliation(s)
- V Segura
- ProteoRed-ISCIII, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Seidler NW. GAPDH, as a Virulence Factor. GAPDH: BIOLOGICAL PROPERTIES AND DIVERSITY 2013; 985:149-78. [DOI: 10.1007/978-94-007-4716-6_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
30
|
Koutroukides TA, Jaros JAJ, Amess B, Martins-de-Souza D, Guest PC, Rahmoune H, Levin Y, Deery M, Charles PD, Hester S, Groen A, Christoforou A, Howard J, Bond N, Bahn S, Lilley KS. Identification of protein biomarkers in human serum using iTRAQ and shotgun mass spectrometry. Methods Mol Biol 2013; 1061:291-307. [PMID: 23963945 DOI: 10.1007/978-1-62703-589-7_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Blood serum is one of the easiest accessible sources of biomarkers and its proteome presents a significant parcel of immune system proteins. These proteins can provide not only biological explanation but also diagnostic and drug response answers independently of the type of disease or condition in question. Shotgun mass spectrometry has profoundly contributed to proteome analysis and is presently considered as an indispensible tool in the field of biomarker discovery. In addition, the multiplexing potential of isotopic labeling techniques such as iTRAQ can increase statistical relevance and accuracy of proteomic data through the simultaneous analysis of different biological samples. Here, we describe a complete protocol using iTRAQ in a shotgun proteomics workflow along with data analysis steps, customized for the challenges associated with the serum proteome.
Collapse
Affiliation(s)
- Theodoros A Koutroukides
- Department of Chemical Engineering and Biotechnology, Cambridge Centre for Neuropsychiatric Research, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rodríguez-Suárez E, Whetton AD. The application of quantification techniques in proteomics for biomedical research. MASS SPECTROMETRY REVIEWS 2013; 32:1-26. [PMID: 22847841 DOI: 10.1002/mas.21347] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 06/01/2023]
Abstract
The systematic analysis of biological processes requires an understanding of the quantitative expression patterns of proteins, their interacting partners and their subcellular localization. This information was formerly difficult to accrue as the relative quantification of proteins relied on antibody-based methods and other approaches with low throughput. The advent of soft ionization techniques in mass spectrometry plus advances in separation technologies has aligned protein systems biology with messenger RNA, DNA, and microarray technologies to provide data on systems as opposed to singular protein entities. Another aspect of quantitative proteomics that increases its importance for the coming few years is the significant technical developments underway both for high pressure liquid chromatography and mass spectrum devices. Hence, robustness, reproducibility and mass accuracy are still improving with every new generation of instruments. Nonetheless, the methods employed require validation and comparison to design fit for purpose experiments in advanced protein analyses. This review considers the newly developed systematic protein investigation methods and their value from the standpoint that relative or absolute protein quantification is required de rigueur in biomedical research.
Collapse
|
32
|
Ahmed SS, Black S, Ulmer J. New developments and concepts related to biomarker application to vaccines. Microb Biotechnol 2011; 5:233-40. [PMID: 21895991 PMCID: PMC3815783 DOI: 10.1111/j.1751-7915.2011.00277.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This minireview will provide a perspective on new developments and concepts related to biomarker applications for vaccines. In the context of preventive vaccines, biomarkers have the potential to predict adverse events in select subjects due to differences in genetic make-up/underlying medical conditions or to predict effectiveness (good versus poor response). When expanding them to therapeutic vaccines, their utility in identification of patients most likely to respond favourably (or avoid potentially negative effects of treatment) becomes self-explanatory. Despite the progress made so far on dissection of various pathways of biological significance in humans, there is still plenty to unravel about the mysteries related to the quantitative and qualitative aspects of the human host response. This review will provide a focused overview of new concepts and developments in the field of vaccine biomarkers including (i) vaccine-dependent signatures predicting subject response and safety, (ii) predicting therapeutic vaccine efficacy in chronic diseases, (iii) exploring the genetic make-up of the host that may modulate subject-specific adverse events or affect the quality of immune responses, and (iv) the topic of volunteer stratification as a result of biomarker screening (e.g. for therapeutic vaccines but also potentially for preventive vaccines) or as a reflection of an effort to compare select groups (e.g. vaccinated subjects versus patients recovering from infection) to enable the discovery of clinically relevant biomarkers for preventive vaccines.
Collapse
Affiliation(s)
- S Sohail Ahmed
- Global Clinical Sciences, Vaccines Research, Novartis Vaccines & Diagnostics, 53100 Siena, Italy.
| | | | | |
Collapse
|
33
|
Pešić I, Stefanović V, Müller GA, Müller CA, Čukuranović R, Jahn O, Bojanić V, Koziolek M, Dihazi H. Identification and validation of six proteins as marker for endemic nephropathy. J Proteomics 2011; 74:1994-2007. [DOI: 10.1016/j.jprot.2011.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/07/2011] [Accepted: 05/10/2011] [Indexed: 01/09/2023]
|
34
|
de Klerk N, de Vogel C, Fahal A, van Belkum A, van de Sande WWJ. Fructose-bisphosphate aldolase and pyruvate kinase, two novel immunogens in Madurella mycetomatis. Med Mycol 2011; 50:143-51. [PMID: 21728753 DOI: 10.3109/13693786.2011.593005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eumycetoma, a chronic granulomatous disease characterized by a subcutaneous mass, multiple sinuses and purulent discharge containing grains, remains difficult to diagnose and treat. Madurella mycetomatis is the most common causative agent of eumycetoma. Using a serum pool from patients with active mycetoma, we screened a M. mycetomatis-specific λgt11 cDNA library which was shown to contain 8% of cDNA inserts encoding proteins involved in glycolysis. Two of these enzymes, fructose-bisphosphate aldolase (FBA) and pyruvate kinase (PK), were produced in vitro and their antigenicity was studied with bead-based flow cytometry. It appeared that both FBA and PK IgG antibodies were present in eumycetoma patient sera. However, only FBA antibody levels were found to be significantly higher in eumycetoma patient sera when compared to healthy Sudanese controls. Furthermore, FBA and PK were also found to be expressed on the hyphae present in the mycetoma grain. In conclusion, this study presents two new antigenic proteins of M. mycetomatis next to the translationally controlled tumour protein (TCTP): the glycolytic enzymes FBA and PK. These antigens might be useful as vaccine-candidates in the prevention of mycetoma.
Collapse
Affiliation(s)
- Nele de Klerk
- Erasmus MC, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteomics 2011; 74:1829-41. [PMID: 21669304 DOI: 10.1016/j.jprot.2011.05.040] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/23/2011] [Accepted: 05/26/2011] [Indexed: 12/12/2022]
Abstract
Two-dimensional electrophoresis of proteins has preceded, and accompanied, the birth of proteomics. Although it is no longer the only experimental scheme used in modern proteomics, it still has distinct features and advantages. The purpose of this tutorial paper is to guide the reader through the history of the field, then through the main steps of the process, from sample preparation to in-gel detection of proteins, commenting the constraints and caveats of the technique. Then the limitations and positive features of two-dimensional electrophoresis are discussed (e.g. its unique ability to separate complete proteins and its easy interfacing with immunoblotting techniques), so that the optimal type of applications of this technique in current and future proteomics can be perceived. This is illustrated by a detailed example taken from the literature and commented in detail. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 2).
Collapse
|
36
|
Abstract
Some fungi cause disease in humans and plants, while others have demonstrable potential for the control of insect pests. In addition, fungi are also a rich reservoir of therapeutic metabolites and industrially useful enzymes. Detailed analysis of fungal biochemistry is now enabled by multiple technologies including protein mass spectrometry, genome and transcriptome sequencing and advances in bioinformatics. Yet, the assignment of function to fungal proteins, encoded either by in silico annotated, or unannotated genes, remains problematic. The purpose of this review is to describe the strategies used by many researchers to reveal protein function in fungi, and more importantly, to consolidate the nomenclature of 'unknown function protein' as opposed to 'hypothetical protein' - once any protein has been identified by protein mass spectrometry. A combination of approaches including comparative proteomics, pathogen-induced protein expression and immunoproteomics are outlined, which, when used in combination with a variety of other techniques (e.g. functional genomics, microarray analysis, immunochemical and infection model systems), appear to yield comprehensive and definitive information on protein function in fungi. The relative advantages of proteomic, as opposed to transcriptomic-only, analyses are also described. In the future, combined high-throughput, quantitative proteomics, allied to transcriptomic sequencing, are set to reveal much about protein function in fungi.
Collapse
Affiliation(s)
- Sean Doyle
- Department of Biology and National Institute for Cellular Biotechnology, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|