1
|
Venkatakrishnan V, Laremore TN, Buckley TSC, Armache JP, Anand GS. Multiplicity of Regulatory Subunit Conformations Defines Structural Ensemble of Reset Protein Kinase A Holoenzyme. J Am Chem Soc 2025; 147:14174-14190. [PMID: 40241376 DOI: 10.1021/jacs.4c16269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
How protein kinase A (PKA) is reset to a basal state following 3'5'-cyclic adenosine monophosphate (cAMP)-mediated activation is unknown. Here we describe the mechanism of cAMP-PKA type I signal termination leading to a reset of PKA by holoenzyme formation through the obligatory action of phosphodiesterases (PDEs). We report a catalytic subunit (Cα)-assisted mechanism for the reset of type I PKA and describe for the first time multiple structures of the reset PKA holoenzyme (RIα2:Cα2) that capture an ensemble of multiple conformational end-states through integrative electron microscopy and structural mass spectrometry approaches. Together these complementary methods highlight the large conformational dynamics of the regulatory subunit (RIα) within the tetrameric reset PKA holoenzyme. The cAMP-free reset PKA holoenzyme adopts multiple distinct conformations of RIα with contributions from the N-terminal linker and CNB-B dynamics. Our findings highlight the interplay between RIα, Cα, and PDEs (PDE8) in cAMP-PKA signalosomes to offer a new paradigm for PDE-mediated regulation of cAMP-PKA signaling.
Collapse
Affiliation(s)
- Varun Venkatakrishnan
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tatiana N Laremore
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Theresa S C Buckley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jean-Paul Armache
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Molecular, Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802, United States
| | - Ganesh S Anand
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Tomlinson L, Batchelor M, Sarsby J, Byrne DP, Brownridge PJ, Bayliss R, Eyers PA, Eyers CE. Exploring the Conformational Landscape and Stability of Aurora A Using Ion-Mobility Mass Spectrometry and Molecular Modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:420-435. [PMID: 35099954 PMCID: PMC9007459 DOI: 10.1021/jasms.1c00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Protein kinase inhibitors are highly effective in treating diseases driven by aberrant kinase signaling and as chemical tools to help dissect the cellular roles of kinase signaling complexes. Evaluating the effects of binding of small molecule inhibitors on kinase conformational dynamics can assist in understanding both inhibition and resistance mechanisms. Using gas-phase ion-mobility mass spectrometry (IM-MS), we characterize changes in the conformational landscape and stability of the protein kinase Aurora A (Aur A) driven by binding of the physiological activator TPX2 or small molecule inhibition. Aided by molecular modeling, we establish three major conformations, the relative abundances of which were dependent on the Aur A activation status: one highly populated compact conformer similar to that observed in most crystal structures, a second highly populated conformer possessing a more open structure infrequently found in crystal structures, and an additional low-abundance conformer not currently represented in the protein databank. Notably, inhibitor binding induces more compact configurations of Aur A, as adopted by the unbound enzyme, with both IM-MS and modeling revealing inhibitor-mediated stabilization of active Aur A.
Collapse
Affiliation(s)
- Lauren
J. Tomlinson
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Matthew Batchelor
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Joscelyn Sarsby
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Dominic P. Byrne
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Philip J. Brownridge
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Richard Bayliss
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Patrick A. Eyers
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Claire E. Eyers
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| |
Collapse
|
3
|
Isensee J, van Cann M, Despang P, Araldi D, Moeller K, Petersen J, Schmidtko A, Matthes J, Levine JD, Hucho T. Depolarization induces nociceptor sensitization by CaV1.2-mediated PKA-II activation. J Cell Biol 2021; 220:212600. [PMID: 34431981 PMCID: PMC8404467 DOI: 10.1083/jcb.202002083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 01/20/2023] Open
Abstract
Depolarization drives neuronal plasticity. However, whether depolarization drives sensitization of peripheral nociceptive neurons remains elusive. By high-content screening (HCS) microscopy, we revealed that depolarization of cultured sensory neurons rapidly activates protein kinase A type II (PKA-II) in nociceptors by calcium influx through CaV1.2 channels. This effect was modulated by calpains but insensitive to inhibitors of cAMP formation, including opioids. In turn, PKA-II phosphorylated Ser1928 in the distal C terminus of CaV1.2, thereby increasing channel gating, whereas dephosphorylation of Ser1928 involved the phosphatase calcineurin. Patch-clamp and behavioral experiments confirmed that depolarization leads to calcium- and PKA-dependent sensitization of calcium currents ex vivo and local peripheral hyperalgesia in the skin in vivo. Our data suggest a local activity-driven feed-forward mechanism that selectively translates strong depolarization into further activity and thereby facilitates hypersensitivity of nociceptor terminals by a mechanism inaccessible to opioids.
Collapse
Affiliation(s)
- Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Marianne van Cann
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Patrick Despang
- Department of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Dioneia Araldi
- Division of Neuroscience, Departments of Medicine and Oral & Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA
| | - Katharina Moeller
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jonas Petersen
- Institute for Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute for Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan Matthes
- Department of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jon D Levine
- Division of Neuroscience, Departments of Medicine and Oral & Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Karamafrooz A, Brennan J, Thomas DD, Parker LL. Integrated Phosphoproteomics for Identifying Substrates of Human Protein Kinase A ( PRKACA) and Its Oncogenic Mutant DNAJB1 -PRKACA. J Proteome Res 2021; 20:4815-4830. [PMID: 34436901 PMCID: PMC10153428 DOI: 10.1021/acs.jproteome.1c00500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The DNAJB1-PRKACA fusion is the signature genetic event of fibrolamellar hepatocellular carcinoma (FL-HCC), a rare but lethal liver cancer that primarily affects adolescents and young adults. A deletion fuses the first exon of the HSP40 gene (DNAJB1), with exons 2-10 of protein kinase A (PRKACA), producing the chimeric kinase DNAJB1-PKAca (J-PKAca). The HSP40 portion's scaffolding/chaperone function has been implicated in redirecting substrate recognition to upregulate oncogenic pathways, but the direct substrates of this fusion are not fully known. We integrated cell-based and in vitro phosphoproteomics to identify substrates targeted directly by PKA and J-PKAca, comparing phosphoproteome profiles from cells with in vitro rephosphorylation of peptides and proteins from lysates using recombinant enzymes. We identified a subset of phosphorylation sites in both cell-based and in vitro experiments, as well as altered pathways and proteins consistent with observations from related studies. We also treated cells with PKA inhibitors that function by two different mechanisms (rpcAMPs and PKI) and examined phosphoproteome profiles, finding some substrates that persisted in the presence of inhibitors and revealing differences between WT and chimera. Overall, these results provide potential insights into J-PKAca's oncogenic activity in a complex cellular system and may provide candidate targets for therapeutic follow-up.
Collapse
Affiliation(s)
- Adak Karamafrooz
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Current affiliation: Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Jack Brennan
- Independent Technology Consultant, LIC, Boston, Massachusetts 02129, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laurie L Parker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Civera M, Moroni E, Sorrentino L, Vasile F, Sattin S. Chemical and Biophysical Approaches to Allosteric Modulation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monica Civera
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche Giulio Natta, SCITEC Via Mario Bianco 9 20131 Milan Italy
| | - Luca Sorrentino
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Francesca Vasile
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Sara Sattin
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
6
|
Sivaraman T. A Review on Computational Approaches for Analyzing Hydrogen- Deuterium (H/D) Exchange of Proteins. Protein Pept Lett 2021; 28:372-381. [PMID: 33006533 DOI: 10.2174/0929866527666201002145859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/22/2022]
Abstract
Native state Hydrogen-Deuterium (H/D) exchange method has been used to study the structures and the unfolding pathways for quite a number of proteins. The H/D exchange method is generally monitored using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) techniques. NMR-assisted H/D exchange methods primarily monitor the residue level fluctuation of proteins, whereas MS-assisted H/D exchange methods analyze multifold ensemble conformations of proteins. In this connection, quite a large number of computational tools and algorithms have been developed for processing and analyzing huge amount of the H/D exchange data generated from these techniques. In this review, most of the freely available computational tools associated with the H/D exchange of proteins have been comprehensively reviewed and scopes to improve/ develop novel computational approaches for analyzing the H/D exchange data of proteins have also been brought into fore.
Collapse
Affiliation(s)
- Thirunavukkarasu Sivaraman
- Drug Design and Discovery Lab, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore - 641021, Tamil Nadu, India
| |
Collapse
|
7
|
Noncanonical protein kinase A activation by oligomerization of regulatory subunits as revealed by inherited Carney complex mutations. Proc Natl Acad Sci U S A 2021; 118:2024716118. [PMID: 34006641 DOI: 10.1073/pnas.2024716118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Familial mutations of the protein kinase A (PKA) R1α regulatory subunit lead to a generalized predisposition for a wide range of tumors, from pituitary adenomas to pancreatic and liver cancers, commonly referred to as Carney complex (CNC). CNC mutations are known to cause overactivation of PKA, but the molecular mechanisms underlying such kinase overactivity are not fully understood in the context of the canonical cAMP-dependent activation of PKA. Here, we show that oligomerization-induced sequestration of R1α from the catalytic subunit of PKA (C) is a viable mechanism of PKA activation that can explain the CNC phenotype. Our investigations focus on comparative analyses at the level of structure, unfolding, aggregation, and kinase inhibition profiles of wild-type (wt) PKA R1α, the A211D and G287W CNC mutants, as well as the cognate acrodysostosis type 1 (ACRDYS1) mutations A211T and G287E. The latter exhibit a phenotype opposite to CNC with suboptimal PKA activation compared with wt. Overall, our results show that CNC mutations not only perturb the classical cAMP-dependent allosteric activation pathway of PKA, but also amplify significantly more than the cognate ACRDYS1 mutations nonclassical and previously unappreciated activation pathways, such as oligomerization-induced losses of the PKA R1α inhibitory function.
Collapse
|
8
|
Adenylate control in cAMP signaling: implications for adaptation in signalosomes. Biochem J 2021; 477:2981-2998. [PMID: 32722762 DOI: 10.1042/bcj20200435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
In cAMP-Protein Kinase A (PKA) signaling, A-kinase anchoring protein scaffolds assemble PKA in close proximity to phosphodiesterases (PDE), kinase-substrates to form signaling islands or 'signalosomes'. In its basal state, inactive PKA holoenzyme (R2:C2) is activated by binding of cAMP to regulatory (R)-subunits leading to dissociation of active catalytic (C)-subunits. PDEs hydrolyze cAMP-bound to the R-subunits to generate 5'-AMP for termination and resetting the cAMP signaling. Mechanistic basis for cAMP signaling has been derived primarily by focusing on the proteins in isolation. Here, we set out to simulate cAMP signaling activation-termination cycles in a signalosome-like environment with PDEs and PKA subunits in close proximity to each other. Using a combination of fluorescence polarization and amide hydrogen exchange mass spectrometry with regulatory (RIα), C-subunit (Cα) and PDE8 catalytic domain, we have tracked movement of cAMP through activation-termination cycles. cAMP signaling operates as a continuum of four phases: (1) Activation and dissociation of PKA into R- and C-subunits by cAMP and facilitated by substrate (2) PDE recruitment to R-subunits (3) Hydrolysis of cAMP to 5'-AMP (4) Reassociation of C-subunit to 5'-AMP-bound-RIα in the presence of excess ATP to reset cAMP signaling to form the inactive PKA holoenzyme. Our results demonstrate that 5'-AMP is not merely a passive hydrolysis end-product of PDE action. A 'ligand-free' state R subunit does not exist in signalosomes as previously assumed. Instead the R-subunit toggles between cAMP- or 5'-AMP bound forms. This highlights, for the first time, the importance of 5'-AMP in promoting adaptation and uncovers adenylate control in cAMP signaling.
Collapse
|
9
|
Byun JA, VanSchouwen B, Akimoto M, Melacini G. Allosteric inhibition explained through conformational ensembles sampling distinct "mixed" states. Comput Struct Biotechnol J 2020; 18:3803-3818. [PMID: 33335680 PMCID: PMC7720024 DOI: 10.1016/j.csbj.2020.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 11/29/2022] Open
Abstract
Allosteric modulation provides an effective avenue for selective and potent enzyme inhibition. Here, we summarize and critically discuss recent advances on the mechanisms of allosteric partial agonists for three representative signalling enzymes activated by cyclic nucleotides: the cAMP-dependent protein kinase (PKA), the cGMP-dependent protein kinase (PKG), and the exchange protein activated by cAMP (EPAC). The comparative analysis of partial agonism in PKA, PKG and EPAC reveals a common emerging theme, i.e. the sampling of distinct “mixed” conformational states, either within a single domain or between distinct domains. Here, we show how such “mixed” states play a crucial role in explaining the observed functional response, i.e. partial agonism and allosteric pluripotency, as well as in maximizing inhibition while minimizing potency losses. In addition, by combining Nuclear Magnetic Resonance (NMR), Molecular Dynamics (MD) simulations and Ensemble Allosteric Modeling (EAM), we also show how to map the free-energy landscape of conformational ensembles containing “mixed” states. By discussing selected case studies, we illustrate how MD simulations and EAM complement NMR to quantitatively relate protein dynamics to function. The resulting NMR- and MD-based EAMs are anticipated to inform not only the design of new generations of highly selective allosteric inhibitors, but also the choice of multidrug combinations.
Collapse
Affiliation(s)
- Jung Ah Byun
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Ghode A, Gross LZF, Tee WV, Guarnera E, Berezovsky IN, Biondi RM, Anand GS. Synergistic Allostery in Multiligand-Protein Interactions. Biophys J 2020; 119:1833-1848. [PMID: 33086047 PMCID: PMC7677135 DOI: 10.1016/j.bpj.2020.09.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Amide hydrogen-deuterium exchange mass spectrometry is powerful for describing combinatorial coupling effects of a cooperative ligand pair binding at noncontiguous sites: adenosine at the ATP-pocket and a docking peptide (PIFtide) at the PIF-pocket, on a model protein kinase PDK1. Binding of two ligands to PDK1 reveal multiple hotspots of synergistic allostery with cumulative effects greater than the sum of individual effects mediated by each ligand. We quantified this synergism and ranked these hotspots using a difference in deuteration-based approach, which showed that the strongest synergistic effects were observed at three of the critical catalytic loci of kinases: the αB-αC helices, and HRD-motif loop, and DFG-motif. Additionally, we observed weaker synergistic effects at a distal GHI-subdomain locus. Synergistic changes in deuterium exchange observed at a distal site but not at the intermediate sites of the large lobe of the kinase reveals allosteric propagation in proteins to operate through two modes. Direct electrostatic interactions between polar and charged amino acids that mediate targeted relay of allosteric signals, and diffused relay of allosteric signals through soft matter-like hydrophobic core amino acids. Furthermore, we provide evidence that the conserved β-3 strand lysine of protein kinases (Lys111 of PDK1) functions as an integrator node to coordinate allosteric coupling of the two ligand-binding sites. It maintains indirect interactions with the ATP-pocket and mediates a critical salt bridge with a glutamate (Glu130) of αC helix, which is conserved across all kinases. In summary, allosteric propagation in cooperative, dual-liganded enzyme targets is bidirectional and synergistic and offers a strategy for combinatorial drug development.
Collapse
Affiliation(s)
- Abhijeet Ghode
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Lissy Z F Gross
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Wei-Ven Tee
- Department of Biological Sciences, National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Matrix, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute, Agency for Science, Technology and Research, Matrix, Singapore
| | - Igor N Berezovsky
- Department of Biological Sciences, National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Matrix, Singapore
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
11
|
Chan MH, Aminzai S, Hu T, Taran A, Li S, Kim C, Pilz RB, Casteel DE. A substitution in cGMP-dependent protein kinase 1 associated with aortic disease induces an active conformation in the absence of cGMP. J Biol Chem 2020; 295:10394-10405. [PMID: 32506052 DOI: 10.1074/jbc.ra119.010984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 06/04/2020] [Indexed: 01/27/2023] Open
Abstract
Type 1 cGMP-dependent protein kinases (PKGs) play important roles in human cardiovascular physiology, regulating vascular tone and smooth-muscle cell phenotype. A mutation in the human PRKG1 gene encoding cGMP-dependent protein kinase 1 (PKG1) leads to thoracic aortic aneurysms and dissections. The mutation causes an arginine-to-glutamine (RQ) substitution within the first cGMP-binding pocket in PKG1. This substitution disrupts cGMP binding to the pocket, but it also unexpectedly causes PKG1 to have high activity in the absence of cGMP via an unknown mechanism. Here, we identified the molecular mechanism whereby the RQ mutation increases basal kinase activity in the human PKG1α and PKG1β isoforms. Although we found that the RQ substitution (R177Q in PKG1α and R192Q in PKG1β) increases PKG1α and PKG1β autophosphorylation in vitro, we did not detect increased autophosphorylation of the PKG1α or PKG1β RQ variant isolated from transiently transfected 293T cells, indicating that increased basal activity of the RQ variants in cells was not driven by PKG1 autophosphorylation. Replacement of Arg-177 in PKG1α with alanine or methionine also increased basal activity. PKG1 exists as a parallel homodimer linked by an N-terminal leucine zipper, and we show that the WT chain in WT-RQ heterodimers partly reduces basal activity of the RQ chain. Using hydrogen/deuterium-exchange MS, we found that the RQ substitution causes PKG1β to adopt an active conformation in the absence of cGMP, similar to that of cGMP-bound WT enzyme. We conclude that the RQ substitution in PKG1 increases its basal activity by disrupting the formation of an inactive conformation.
Collapse
Affiliation(s)
- Matthew H Chan
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Sahar Aminzai
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Tingfei Hu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Amatya Taran
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Choel Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and the Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Byun JA, Akimoto M, VanSchouwen B, Lazarou TS, Taylor SS, Melacini G. Allosteric pluripotency as revealed by protein kinase A. SCIENCE ADVANCES 2020; 6:eabb1250. [PMID: 32596469 PMCID: PMC7304965 DOI: 10.1126/sciadv.abb1250] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/08/2020] [Indexed: 05/03/2023]
Abstract
The functional response of a signaling system to an allosteric stimulus often depends on subcellular conditions, a phenomenon known as pluripotent allostery. For example, a single allosteric modulator, Rp-cAMPS, of the prototypical protein kinase A (PKA) switches from antagonist to agonist depending on MgATP levels. However, the mechanism underlying such pluripotent allostery has remained elusive for decades. Using nuclear magnetic resonance spectroscopy, ensemble models, kinase assays, and molecular dynamics simulations, we show that allosteric pluripotency arises from surprisingly divergent responses of highly homologous tandem domains. The differential responses perturb domain-domain interactions and remodel the free-energy landscape of inhibitory excited states sampled by the regulatory subunit of PKA. The resulting activation threshold values are comparable to the effective free energy of regulatory and catalytic subunit binding, which depends on metabolites, substrates, and mutations, explaining pluripotent allostery and warranting a general redefinition of allosteric targets to include specific subcellular environments.
Collapse
Affiliation(s)
- J. A. Byun
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - M. Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - B. VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - T. S. Lazarou
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - S. S. Taylor
- Departments of Chemistry and Biochemistry and Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - G. Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
13
|
Ahmed A, Boulton S, Shao H, Akimoto M, Natarajan A, Cheng X, Melacini G. Recent Advances in EPAC-Targeted Therapies: A Biophysical Perspective. Cells 2019; 8:E1462. [PMID: 31752286 PMCID: PMC6912387 DOI: 10.3390/cells8111462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
The universal second messenger cAMP regulates diverse intracellular processes by interacting with ubiquitously expressed proteins, such as Protein Kinase A (PKA) and the Exchange Protein directly Activated by cAMP (EPAC). EPAC is implicated in multiple pathologies, thus several EPAC-specific inhibitors have been identified in recent years. However, the mechanisms and molecular interactions underlying the EPAC inhibition elicited by such compounds are still poorly understood. Additionally, being hydrophobic low molecular weight species, EPAC-specific inhibitors are prone to forming colloidal aggregates, which result in non-specific aggregation-based inhibition (ABI) in aqueous systems. Here, we review from a biophysical perspective the molecular basis of the specific and non-specific interactions of two EPAC antagonists-CE3F4R, a non-competitive inhibitor, and ESI-09, a competitive inhibitor of EPAC. Additionally, we discuss the value of common ABI attenuators (e.g., TX and HSA) to reduce false positives at the expense of introducing false negatives when screening aggregation-prone compounds. We hope this review provides the EPAC community effective criteria to evaluate similar compounds, aiding in the optimization of existing drug leads, and informing the development of the next generation of EPAC-specific inhibitors.
Collapse
Affiliation(s)
- Alveena Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.A.); (S.B.)
| | - Stephen Boulton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.A.); (S.B.)
| | - Hongzhao Shao
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (H.S.); (M.A.)
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (H.S.); (M.A.)
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Texas Therapeutics Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.A.); (S.B.)
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (H.S.); (M.A.)
| |
Collapse
|
14
|
Chen G, Fan M, Liu Y, Sun B, Liu M, Wu J, Li N, Guo M. Advances in MS Based Strategies for Probing Ligand-Target Interactions: Focus on Soft Ionization Mass Spectrometric Techniques. Front Chem 2019; 7:703. [PMID: 31709232 PMCID: PMC6819514 DOI: 10.3389/fchem.2019.00703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
The non-covalent interactions between small drug molecules and disease-related proteins (ligand-target interactions) mediate various pharmacological processes in the treatment of different diseases. The development of the analytical methods to assess those interactions, including binding sites, binding energies, stoichiometry and association-dissociation constants, could assist in clarifying the mechanisms of action, precise treatment of targeted diseases as well as the targeted drug discovery. For the last decades, mass spectrometry (MS) has been recognized as a powerful tool to study the non-covalent interactions of the ligand-target complexes with the characteristics of high sensitivity, high-resolution, and high-throughput. Soft ionization mass spectrometry, especially the electrospray mass spectrometry (ESI-MS) and matrix assisted laser desorption ionization mass spectrometry (MALDI-MS), could achieve the complete transformation of the target analytes into the gas phase, and subsequent detection of the small drug molecules and disease-related protein complexes, and has exerted great advantages for studying the drug ligands-protein targets interactions, even in case of identifying active components as drug ligands from crude extracts of medicinal plants. Despite of other analytical techniques for this purpose, such as the NMR and X-ray crystallography, this review highlights the principles, research hotspots and recent applications of the soft ionization mass spectrometry and its hyphenated techniques, including hydrogen-deuterium exchange mass spectrometry (HDX-MS), chemical cross-linking mass spectrometry (CX-MS), and ion mobility spectrometry mass spectrometry (IMS-MS), in the study of the non-covalent interactions between small drug molecules and disease-related proteins.
Collapse
Affiliation(s)
- Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Ye Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Meixian Liu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
15
|
Cao B, Lu TW, Martinez Fiesco JA, Tomasini M, Fan L, Simon SM, Taylor SS, Zhang P. Structures of the PKA RIα Holoenzyme with the FLHCC Driver J-PKAcα or Wild-Type PKAcα. Structure 2019; 27:816-828.e4. [PMID: 30905674 PMCID: PMC6506387 DOI: 10.1016/j.str.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 01/07/2023]
Abstract
Fibrolamellar hepatocellular carcinoma (FLHCC) is driven by J-PKAcα, a kinase fusion chimera of the J domain of DnaJB1 with PKAcα, the catalytic subunit of protein kinase A (PKA). Here we report the crystal structures of the chimeric fusion RIα2:J-PKAcα2 holoenzyme formed by J-PKAcα and the PKA regulatory (R) subunit RIα, and the wild-type (WT) RIα2:PKAcα2 holoenzyme. The chimeric and WT RIα holoenzymes have quaternary structures different from the previously solved WT RIβ and RIIβ holoenzymes. The WT RIα holoenzyme showed the same configuration as the chimeric RIα2:J-PKAcα2 holoenzyme and a distinct second conformation. The J domains are positioned away from the symmetrical interface between the two RIα:J-PKAcα heterodimers in the chimeric fusion holoenzyme and are highly dynamic. The structural and dynamic features of these holoenzymes enhance our understanding of the fusion chimera protein J-PKAcα that drives FLHCC as well as the isoform specificity of PKA.
Collapse
Affiliation(s)
- Baohua Cao
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Tsan-Wen Lu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Juliana A Martinez Fiesco
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Michael Tomasini
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Lixin Fan
- Small-Angle X-ray Scattering Core Facility, Center for Cancer Research of the National Cancer Institute, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Ping Zhang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
16
|
He X, Ni D, Lu S, Zhang J. Characteristics of Allosteric Proteins, Sites, and Modulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:107-139. [DOI: 10.1007/978-981-13-8719-7_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Boulton S, Selvaratnam R, Blondeau JP, Lezoualc'h F, Melacini G. Mechanism of Selective Enzyme Inhibition through Uncompetitive Regulation of an Allosteric Agonist. J Am Chem Soc 2018; 140:9624-9637. [PMID: 30016089 DOI: 10.1021/jacs.8b05044] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Classical uncompetitive inhibitors are potent pharmacological modulators of enzyme function. Since they selectively target enzyme-substrate complexes (E:S), their inhibitory potency is amplified by increasing substrate concentrations. Recently, an unconventional uncompetitive inhibitor, called CE3F4R, was discovered for the exchange protein activated by cAMP isoform 1 (EPAC1). Unlike conventional uncompetitive inhibitors, CE3F4R is uncompetitive with respect to an allosteric effector, cAMP, as opposed to the substrate (i.e., CE3F4R targets the E:cAMP rather than the E:S complex). However, the mechanism of CE3F4R as an uncompetitive inhibitor is currently unknown. Here, we elucidate the mechanism of CE3F4R's action using NMR spectroscopy. Due to limited solubility and line broadening, which pose major challenges for traditional structural determination approaches, we resorted to a combination of protein- and ligand-based NMR experiments to comparatively analyze EPAC mutations, inhibitor analogs, and cyclic nucleotide derivatives that trap EPAC at different stages of activation. We discovered that CE3F4R binds within the EPAC cAMP-binding domain (CBD) at a subdomain interface distinct from the cAMP binding site, acting as a wedge that stabilizes a cAMP-bound mixed-intermediate. The mixed-intermediate includes attributes of both the apo/inactive and cAMP-bound/active states. In particular, the intermediate targeted by CE3F4R traps a CBD's hinge helix in its inactive conformation, locking EPAC into a closed domain topology that restricts substrate access to the catalytic domain. The proposed mechanism of action also explains the isoform selectivity of CE3F4R in terms of a single EPAC1 versus EPAC2 amino acid difference that destabilizes the active conformation of the hinge helix.
Collapse
Affiliation(s)
| | | | - Jean-Paul Blondeau
- Université Paris-Sud , Faculté de Pharmacie , 92296 Cedex Châtenay-Malabry , France
| | - Frank Lezoualc'h
- Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse III Paul Sabatier , 31432 Cedex 04 Toulouse , France
| | | |
Collapse
|
18
|
Reversing allosteric communication: From detecting allosteric sites to inducing and tuning targeted allosteric response. PLoS Comput Biol 2018; 14:e1006228. [PMID: 29912863 PMCID: PMC6023240 DOI: 10.1371/journal.pcbi.1006228] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/28/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022] Open
Abstract
The omnipresence of allosteric regulation together with the fundamental role of structural dynamics in this phenomenon have initiated a great interest to the detection of regulatory exosites and design of corresponding effectors. However, despite a general consensus on the key role of dynamics most of the earlier efforts on the prediction of allosteric sites are heavily crippled by the static nature of the underlying methods, which are either structure-based approaches seeking for deep surface pockets typical for “traditional” orthosteric drugs or sequence-based techniques exploiting the conservation of protein sequences. Because of the critical role of global protein dynamics in allosteric signaling, we investigate the hypothesis of reversibility in allosteric communication, according to which allosteric sites can be detected via the perturbation of the functional sites. The reversibility is tested here using our structure-based perturbation model of allostery, which allows one to analyze the causality and energetics of allosteric communication. We validate the “reverse perturbation” hypothesis and its predictive power on a set of classical allosteric proteins, then, on the independent extended benchmark set. We also show that, in addition to known allosteric sites, the perturbation of the functional sites unravels rather extended protein regions, which can host latent regulatory exosites. These protein parts that are dynamically coupled with functional sites can also be used for inducing and tuning allosteric communication, and an exhaustive exploration of the per-residue contributions to allosteric effects can eventually lead to the optimal modulation of protein activity. The site-effector interactions necessary for a specific mode and level of allosteric communication can be fine-tuned by adjusting the site’s structure to an available effector molecule and by the design or selection of an appropriate ligand. Recent advances in the development of allosteric drugs allow one to fully appreciate the sheer power of allosteric effectors in the avoiding toxicity, receptor desensitization and modulatory rather than on/off mode of action, compared to the traditional orthosteric compounds. The detection of allosteric sites is one of the major challenges in the quest for allosteric drugs. This work proposes a “reverse perturbation” approach for identifying allosteric sites as a result of a perturbation applied to the functional ones. We show that according to the traditional Monod-Changeux-Jacob’s definition of allostery, considering non-overlapping regulatory and functional sites is a critical prerequisite for the successful detection of allosteric sites. Using the reverse perturbation method, it is possible to determine wide protein regions with a potential to induce an allosteric response and to adjust its strength. Further studies on inducing and fine-tuning of allosteric signalling seem to be of a great importance for efficient design of non-orthosteric ligands in the development of novel drugs.
Collapse
|
19
|
Isensee J, Kaufholz M, Knape MJ, Hasenauer J, Hammerich H, Gonczarowska-Jorge H, Zahedi RP, Schwede F, Herberg FW, Hucho T. PKA-RII subunit phosphorylation precedes activation by cAMP and regulates activity termination. J Cell Biol 2018; 217:2167-2184. [PMID: 29615473 PMCID: PMC5987717 DOI: 10.1083/jcb.201708053] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 02/18/2018] [Accepted: 03/15/2018] [Indexed: 11/22/2022] Open
Abstract
Activity of endogenous protein kinase A (PKA) could never be analyzed directly in the cellular environment. Isensee et al. used antibodies to quantify conformational changes leading to an open conformation of endogenous PKA-II holoenzymes, which allowed them to analyze and model its activation cycle in primary sensory neurons. Type II isoforms of cyclic adenosine monophosphate (cAMP)–dependent protein kinase A (PKA-II) contain a phosphorylatable epitope within the inhibitory domain of RII subunits (pRII) with still unclear function. In vitro, RII phosphorylation occurs in the absence of cAMP, whereas staining of cells with pRII-specific antibodies revealed a cAMP-dependent pattern. In sensory neurons, we found that increased pRII immunoreactivity reflects increased accessibility of the already phosphorylated RII epitope during cAMP-induced opening of the tetrameric RII2:C2 holoenzyme. Accordingly, induction of pRII by cAMP was sensitive to novel inhibitors of dissociation, whereas blocking catalytic activity was ineffective. Also in vitro, cAMP increased the binding of pRII antibodies to RII2:C2 holoenzymes. Identification of an antibody specific for the glycine-rich loop of catalytic subunits facing the pRII-epitope confirmed activity-dependent binding with similar kinetics, proving that the reassociation is rapid and precisely controlled. Mechanistic modeling further supported that RII phosphorylation precedes cAMP binding and controls the inactivation by modulating the reassociation involving the coordinated action of phosphodiesterases and phosphatases.
Collapse
Affiliation(s)
- Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Melanie Kaufholz
- Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Matthias J Knape
- Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Center for Mathematics, Technische Universität München, Garching, Germany
| | - Hanna Hammerich
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Humberto Gonczarowska-Jorge
- ISAS, Leibniz-Institut für Analytische Wissenschaften, Dortmund, Germany.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - René P Zahedi
- ISAS, Leibniz-Institut für Analytische Wissenschaften, Dortmund, Germany
| | | | | | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Gerlits O, Campbell JC, Blakeley MP, Kim C, Kovalevsky A. Neutron Crystallography Detects Differences in Protein Dynamics: Structure of the PKG II Cyclic Nucleotide Binding Domain in Complex with an Activator. Biochemistry 2018. [PMID: 29517905 DOI: 10.1021/acs.biochem.8b00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As one of the main receptors of a second messenger, cGMP, cGMP-dependent protein kinase (PKG) isoforms I and II regulate distinct physiological processes. The design of isoform-specific activators is thus of great biomedical importance and requires detailed structural information about PKG isoforms bound with activators, including accurate positions of hydrogen atoms and a description of the hydrogen bonding and water architecture. Here, we determined a 2.2 Å room-temperature joint X-ray/neutron (XN) structure of the human PKG II carboxyl cyclic nucleotide binding (CNB-B) domain bound with a potent PKG II activator, 8-pCPT-cGMP. The XN structure directly visualizes intermolecular interactions and reveals changes in hydrogen bonding patterns upon comparison to the X-ray structure determined at cryo-temperatures. Comparative analysis of the backbone hydrogen/deuterium exchange patterns in PKG II:8-pCPT-cGMP and previously reported PKG Iβ:cGMP XN structures suggests that the ability of these agonists to activate PKG is related to how effectively they quench dynamics of the cyclic nucleotide binding pocket and the surrounding regions.
Collapse
Affiliation(s)
- Oksana Gerlits
- Bredesen Center , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - James C Campbell
- Department of Pharmacology and Chemical Biology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Matthew P Blakeley
- Large-Scale Structures Group , Institut Laue Langevin , 38042 Grenoble Cedex 9, France
| | - Choel Kim
- Department of Pharmacology and Chemical Biology , Baylor College of Medicine , Houston , Texas 77030 , United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Andrey Kovalevsky
- Neutron Scattering Division, Neutron Sciences Directorate , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
21
|
Eyers CE, Vonderach M, Ferries S, Jeacock K, Eyers PA. Understanding protein–drug interactions using ion mobility–mass spectrometry. Curr Opin Chem Biol 2018; 42:167-176. [DOI: 10.1016/j.cbpa.2017.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 01/23/2023]
|
22
|
Jiang HM, Dong JK, Song K, Wang TD, Huang WK, Zhang JM, Yang XY, Shen Y, Zhang J. A novel allosteric site in casein kinase 2α discovered using combining bioinformatics and biochemistry methods. Acta Pharmacol Sin 2017; 38:1691-1698. [PMID: 28748912 DOI: 10.1038/aps.2017.55] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022]
Abstract
Casein kinase 2 (CK2) is a highly pleiotropic serine-threonine kinase, which catalyzed phosphorylation of more than 300 proteins that are implicated in regulation of many cellular functions, such as signal transduction, transcriptional control, apoptosis and the cell cycle. On the other hand, CK2 is abnormally elevated in a variety of tumors, and is considered as a promising therapeutic target. The currently available ATP-competitive CK2 inhibitors, however, lack selectivity, which has impeded their development in cancer therapy. Because allosteric inhibitors can avoid the shortcomings of conventional kinase inhibitors, this study was aimed to discover a new allosteric site in CK2α and to investigate the effects of mutations in this site on the activity of CK2α. Using Allosite based on protein dynamics and structural alignment, we predicted a new allosteric site that was partly located in the αC helix of CK2α. Five residues exposed on the surface of this site were mutated to validate the prediction. Kinetic analyses were performed using a luminescent ADP detection assay by varying the concentrations of a peptide substrate, and the results showed that the mutations I78C and I78W decreased CK2α activity, whereas V31R, K75E, I82C and P109C increased CK2α activity. Potential allosteric pathways were identified using the Monte Carlo path generation approach, and the results of these predicted allosteric pathways were consistent with the mutation analysis. Multiple sequence alignments of CK2α with the other kinases in the family were conducted using the ClustalX method, which revealed the diversity of the residues in the site. In conclusion, we identified a new allosteric site in CK2α that can be altered to modulate the activity of the kinase. Because of the high diversity of the residues in the site, the site can be targeted using rational drug design of specific CK2α inhibitors for biological relevance.
Collapse
|
23
|
Hirakis SP, Malmstrom RD, Amaro RE. Molecular Simulations Reveal an Unresolved Conformation of the Type IA Protein Kinase A Regulatory Subunit and Suggest Its Role in the cAMP Regulatory Mechanism. Biochemistry 2017; 56:3885-3888. [PMID: 28661131 PMCID: PMC5751417 DOI: 10.1021/acs.biochem.7b00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We identify a previously unresolved, unrecognized, and highly stable conformation of the protein kinase A (PKA) regulatory subunit RIα. This conformation, which we term the "Flipback" structure, bridges conflicting characteristics in crystallographic structures and solution experiments of the PKA RIα heterotetramer. Our simulations reveal a hinge residue, G235, in the B/C helix that is conserved through all isoforms of RI. Brownian dynamics simulations suggest that the Flipback conformation plays a role in cAMP association to the A domain of the R subunit.
Collapse
Affiliation(s)
- Sophia P. Hirakis
- Department of Chemistry and Biochemistry and National Biomedical Computational Resource, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0304
| | - Robert D. Malmstrom
- Department of Chemistry and Biochemistry and National Biomedical Computational Resource, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0304
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry and National Biomedical Computational Resource, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0304
| |
Collapse
|
24
|
Chandramohan A, Tulsian NK, Anand GS. Dissecting Orthosteric Contacts for a Reverse-Fragment-Based Ligand Design. Anal Chem 2017. [PMID: 28628309 DOI: 10.1021/acs.analchem.7b00587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Orthosteric sites on proteins are formed typically from noncontiguous interacting sites in three-dimensional space where the composite binding interaction of a biological ligand is mediated by multiple synergistic interactions of its constituent functional groups. Through these multiple interactions, ligands stabilize both the ligand binding site and the local secondary structure. However, relative energetic contributions of the individual contacts in these protein-ligand interactions are difficult to resolve. Deconvolution of the contributions of these various functional groups in natural inhibitors/ligand would greatly aid in iterative fragment-based drug discovery (FBDD). In this study, we describe an approach of progressive unfolding of a target protein using a gradient of denaturant urea to reveal the individual energetic contributions of various ligand-functional groups to the affinity of the entire ligand. Through calibrated unfolding of two protein-ligand systems: cAMP-bound regulatory subunit of Protein Kinase A (RIα) and IBMX-bound phosphodiesterase8 (PDE8), monitored by amide hydrogen-deuterium exchange mass spectrometry, we show progressive disruption of individual orthosteric contacts in the ligand binding sites, allowing us to rank the energetic contributions of these individual interactions. In the two cAMP-binding sites of RIα, exocyclic phosphate oxygens of cAMP were identified to mediate stronger interactions than ribose 2'-OH in both the RIα-cAMP binding interfaces. Further, we have also ranked the relative contributions of the different functional groups of IBMX based on their interactions with the orthosteric residues of PDE8. This strategy for deconstruction of individual binding sites and identification of the strongest functional group interaction in enzyme orthosteric sites offers a rational starting point for FBDD.
Collapse
Affiliation(s)
- Arun Chandramohan
- Department of Biological Sciences, National University of Singapore , 14 Science Drive 4, Singapore 117543
| | - Nikhil K Tulsian
- Department of Biological Sciences, National University of Singapore , 14 Science Drive 4, Singapore 117543
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore , 14 Science Drive 4, Singapore 117543
| |
Collapse
|
25
|
Electrostatic Switch Function in the Mechanism of Protein Kinase A I α Activation: Results of the Molecular Dynamics Simulation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5846073. [PMID: 28367443 PMCID: PMC5359514 DOI: 10.1155/2017/5846073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/22/2017] [Accepted: 02/07/2017] [Indexed: 11/17/2022]
Abstract
We used molecular dynamics to find the average path of the A-domain H → B conformational transition in protein kinase A Iα. We obtained thirteen productive trajectories and processed them sequentially using factor and cross-correlation analyses. The conformational transition is presented as partly deterministic sequence of six events. Event B represents H → B transition of the phosphate binding cassette. Main participants of this event form electrostatic switch cAMP(O6)–A202(N-H)–G199(C=O). Through this switch, cAMP transmits information about its binding to hydrophobic switch L203–Y229 and thus triggers conformational transition of A-domain. Events C and D consist in N3A-motif displacement towards phosphate binding cassette and B/C-helix rotation. Event E involves an increase in interaction energy between Y229 and β-subdomain. Taken together, events B, E, and D correspond to the hinge movement towards β-barrel. Transition of B/C-helix turn (a.a. 229–234) from α-form to π-form accounts for event F. Event G implies that π-helical turn is replaced by kink. Emerging in the resulting conformation, electrostatic interaction R241–E200 facilitates kink formation. The obtained data on the mechanism of cAMP-dependent activation of PKA Iα may contribute to new approaches to designing pharmaceuticals based on cAMP analogs.
Collapse
|
26
|
Campbell JC, VanSchouwen B, Lorenz R, Sankaran B, Herberg FW, Melacini G, Kim C. Crystal structure of cGMP-dependent protein kinase Iβ cyclic nucleotide-binding-B domain : Rp-cGMPS complex reveals an apo-like, inactive conformation. FEBS Lett 2016; 591:221-230. [PMID: 27914169 DOI: 10.1002/1873-3468.12505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/13/2016] [Accepted: 11/18/2016] [Indexed: 12/23/2022]
Abstract
The R-diastereomer of phosphorothioate analogs of cGMP, Rp-cGMPS, is one of few known inhibitors of cGMP-dependent protein kinase I (PKG I); however, its mechanism of inhibition is currently not fully understood. Here, we determined the crystal structure of the PKG Iβ cyclic nucleotide-binding domain (PKG Iβ CNB-B), considered a 'gatekeeper' for cGMP activation, bound to Rp-cGMPS at 1.3 Å. Our structural and NMR data show that PKG Iβ CNB-B bound to Rp-cGMPS displays an apo-like structure with its helical domain in an open conformation. Comparison with the cAMP-dependent protein kinase regulatory subunit (PKA RIα) showed that this conformation resembles the catalytic subunit-bound inhibited state of PKA RIα more closely than the apo or Rp-cAMPS-bound conformations. These results suggest that Rp-cGMPS inhibits PKG I by stabilizing the inactive conformation of CNB-B.
Collapse
Affiliation(s)
- James C Campbell
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Robin Lorenz
- Department of Biochemistry, University of Kassel, Kassel, Hesse, Germany
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, CA, USA
| | | | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Choel Kim
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
27
|
β-subunit myristoylation functions as an energy sensor by modulating the dynamics of AMP-activated Protein Kinase. Sci Rep 2016; 6:39417. [PMID: 28000716 PMCID: PMC5175161 DOI: 10.1038/srep39417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022] Open
Abstract
The heterotrimeric AMP-activated protein kinase (AMPK), consisting of α, β and γ subunits, is a stress-sensing enzyme that is activated by phosphorylation of its activation loop in response to increases in cellular AMP. N-terminal myristoylation of the β-subunit has been shown to suppress Thr172 phosphorylation, keeping AMPK in an inactive state. Here we use amide hydrogen-deuterium exchange mass spectrometry (HDX-MS) to investigate the structural and dynamic properties of the mammalian myristoylated and non-myristoylated inactivated AMPK (D139A) in the presence and absence of nucleotides. HDX MS data suggests that the myristoyl group binds near the first helix of the C-terminal lobe of the kinase domain similar to other kinases. Our data, however, also shows that ATP.Mg2+ results in a global stabilization of myristoylated, but not non-myristoylated AMPK, and most notably for peptides of the activation loop of the α-kinase domain, the autoinhibitory sequence (AIS) and the βCBM. AMP does not have that effect and HDX measurements for myristoylated and non-myristoylated AMPK in the presence of AMP are similar. These differences in dynamics may account for a reduced basal rate of phosphorylation of Thr172 in myristoylated AMPK in skeletal muscle where endogenous ATP concentrations are very high.
Collapse
|
28
|
Ligand-mediated changes in conformational dynamics of NpmA: implications for ribosomal interactions. Sci Rep 2016; 6:37061. [PMID: 27845431 PMCID: PMC5109232 DOI: 10.1038/srep37061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/24/2016] [Indexed: 12/30/2022] Open
Abstract
Aminoglycosides are broad-spectrum antibiotics that bind to the 30S ribosomal subunit (30S) of bacteria and disrupt protein translation. NpmA, a structurally well-characterized methyltransferase identified in an E. coli clinical isolate, catalyzes methylation of 30S at A1408 of the 16S rRNA and confers aminoglycoside resistance. Using sucrose cushion centrifugation and isothermal titration calorimetry, we first confirmed the binding between NpmA and 30S. Next, we performed amide Hydrogen/Deuterium Exchange Mass Spectrometry (HDXMS) of apo NpmA and in the presence and absence of SAM/SAH. We observed that ligand binding resulted in time-dependent differences in deuterium exchange not only at the ligand-binding pocket (D25–D55 and A86–E112) but also in distal regions (F62-F82 and Y113-S144) of NpmA. These results provide insights into methylation group donor cofactor-mediated allostery in NpmA in the ligand-bound states, which could not be observed in the static endpoint crystal structures. We predict that the two distal sites in NpmA form part of the allosteric sites that importantly are part of the main 16S rRNA binding interface. Thus HDXMS helped uncover allosteric communication relays that couple SAM/SAH binding sites with the ribosome-binding site. This highlights how HDXMS together with X-ray crystallography can provide important allosteric insights in protein-ligand complexes.
Collapse
|
29
|
Littler DR, Bullen HE, Harvey KL, Beddoe T, Crabb BS, Rossjohn J, Gilson PR. Disrupting the Allosteric Interaction between the Plasmodium falciparum cAMP-dependent Kinase and Its Regulatory Subunit. J Biol Chem 2016; 291:25375-25386. [PMID: 27738107 DOI: 10.1074/jbc.m116.750174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/27/2016] [Indexed: 11/06/2022] Open
Abstract
The ubiquitous second messenger cAMP mediates signal transduction processes in the malarial parasite that regulate host erythrocyte invasion and the proliferation of merozoites. In Plasmodium falciparum, the central receptor for cAMP is the single regulatory subunit (R) of protein kinase A (PKA). To aid the development of compounds that can selectively dysregulate parasite PKA signaling, we solved the structure of the PKA regulatory subunit in complex with cAMP and a related analogue that displays antimalarial activity, (Sp)-2-Cl-cAMPS. Prior to signaling, PKA-R holds the kinase's catalytic subunit (C) in an inactive state by exerting an allosteric inhibitory effect. When two cAMP molecules bind to PKA-R, they stabilize a structural conformation that facilitates its dissociation, freeing PKA-C to phosphorylate downstream substrates such as apical membrane antigen 1. Although PKA activity was known to be necessary for erythrocytic proliferation, we show that uncontrolled induction of PKA activity using membrane-permeable agonists is equally disruptive to growth.
Collapse
Affiliation(s)
- Dene R Littler
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and
| | | | - Katherine L Harvey
- the Burnet Institute, Melbourne, Victoria 3004, Australia.,the Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Travis Beddoe
- the Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia, and
| | - Brendan S Crabb
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and.,the Burnet Institute, Melbourne, Victoria 3004, Australia.,the Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jamie Rossjohn
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and.,the Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN Wales, United Kingdom.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Paul R Gilson
- From the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, and .,the Burnet Institute, Melbourne, Victoria 3004, Australia
| |
Collapse
|
30
|
Chandramohan A, Krishnamurthy S, Larsson A, Nordlund P, Jansson A, Anand GS. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design. PLoS Comput Biol 2016; 12:e1004840. [PMID: 27253209 PMCID: PMC4890749 DOI: 10.1371/journal.pcbi.1004840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/01/2016] [Indexed: 12/24/2022] Open
Abstract
A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower). Amide hydrogen deuterium Exchange mass spectrometry (HDXMS) is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM) and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD). Ligand interactions with proteins result in broad changes that are propagated throughout the target proteins, across space and time. These changes can be broadly classified into: orthosteric effects at the ligand binding site and allosteric changes at distal sites. These allosteric changes are difficult to localize and distinguish from binding interactions. In this study, we describe the application of amide hydrogen/deuterium exchange mass-spectrometry (HDXMS) to differentiate between changes occurring at the binding site and at distal allosteric sites by combining HDXMS with X-ray crystallography. Every ligand or a fragment mediates distinct contacts and results in changes in deuterium uptake across the protein. By comparing with orthosteric structural information, it is possible to identify long-range changes (action at a distance) due to the ligands. An important application of HDXMS is that it can identify subtle changes in protein dynamics that cannot be picked up by quantitative screens of protein-ligand interactions or crystal structures. This gives us the ability to describe ligand binding based on the response from different regions in the proteins. Thus it provides us with the potential to accurately measure and compare changes in dynamics upon binding different ligands and fragments, which is greatly valuable in fragment-based ligand design.
Collapse
Affiliation(s)
- Arun Chandramohan
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Andreas Larsson
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Paer Nordlund
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Anna Jansson
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ganesh S. Anand
- Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
31
|
Boulton S, Melacini G. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chem Rev 2016; 116:6267-304. [PMID: 27111288 DOI: 10.1021/acs.chemrev.5b00718] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| |
Collapse
|
32
|
Guarnera E, Berezovsky IN. Allosteric sites: remote control in regulation of protein activity. Curr Opin Struct Biol 2016; 37:1-8. [DOI: 10.1016/j.sbi.2015.10.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 01/22/2023]
|
33
|
Lakkaraju SK, Lemkul JA, Huang J, MacKerell AD. DIRECT-ID: An automated method to identify and quantify conformational variations--application to β2 -adrenergic GPCR. J Comput Chem 2016; 37:416-25. [PMID: 26558323 PMCID: PMC4756637 DOI: 10.1002/jcc.24231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/10/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Abstract
The conformational dynamics of a macromolecule can be modulated by a number of factors, including changes in environment, ligand binding, and interactions with other macromolecules, among others. We present a method that quantifies the differences in macromolecular conformational dynamics and automatically extracts the structural features responsible for these changes. Given a set of molecular dynamics (MD) simulations of a macromolecule, the norms of the differences in covariance matrices are calculated for each pair of trajectories. A matrix of these norms thus quantifies the differences in conformational dynamics across the set of simulations. For each pair of trajectories, covariance difference matrices are parsed to extract structural elements that undergo changes in conformational properties. As a demonstration of its applicability to biomacromolecular systems, the method, referred to as DIRECT-ID, was used to identify relevant ligand-modulated structural variations in the β2 -adrenergic (β2 AR) G-protein coupled receptor. Micro-second MD simulations of the β2 AR in an explicit lipid bilayer were run in the apo state and complexed with the ligands: BI-167107 (agonist), epinephrine (agonist), salbutamol (long-acting partial agonist), or carazolol (inverse agonist). Each ligand modulated the conformational dynamics of β2 AR differently and DIRECT-ID analysis of the inverse-agonist vs. agonist-modulated β2 AR identified residues known through previous studies to selectively propagate deactivation/activation information, along with some previously unidentified ligand-specific microswitches across the GPCR. This study demonstrates the utility of DIRECT-ID to rapidly extract functionally relevant conformational dynamics information from extended MD simulations of large and complex macromolecular systems.
Collapse
Affiliation(s)
- Sirish Kaushik Lakkaraju
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, MD 21201
| | - Justin A. Lemkul
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, MD 21201
| | - Jing Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, MD 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, MD 21201
| |
Collapse
|
34
|
Abstract
Allosteric effects of mutations, ligand binding, or post-translational modifications on protein function occur through changes to the protein's shape, or conformation. In a cell, there are many copies of the same protein, all experiencing these perturbations in a dynamic fashion and fluctuating through different conformations and activity states. According to the "conformational selection and population shift" theory, ligand binding selects a particular conformation. This perturbs the ensemble and induces a population shift. In a new PLOS Biology paper, Melacini and colleagues describe a novel model of protein regulation, the "Double-Conformational Selection Model", which demonstrates how two tandem ligand-binding domains interact to regulate protein function. Here we explain how tandem domains with tuned interactions-but not single domains-can provide a blueprint for sensitive activation sensors within a narrow window of ligand concentration, thereby promoting signaling control.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|
35
|
Di Michele M, Stes E, Vandermarliere E, Arora R, Astorga-Wells J, Vandenbussche J, van Heerde E, Zubarev R, Bonnet P, Linders JTM, Jacoby E, Brehmer D, Martens L, Gevaert K. Limited Proteolysis Combined with Stable Isotope Labeling Reveals Conformational Changes in Protein (Pseudo)kinases upon Binding Small Molecules. J Proteome Res 2015; 14:4179-93. [PMID: 26293246 DOI: 10.1021/acs.jproteome.5b00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Likely due to conformational rearrangements, small molecule inhibitors may stabilize the active conformation of protein kinases and paradoxically promote tumorigenesis. We combined limited proteolysis with stable isotope labeling MS to monitor protein conformational changes upon binding of small molecules. Applying this method to the human serine/threonine kinase B-Raf, frequently mutated in cancer, we found that binding of ATP or its nonhydrolyzable analogue AMP-PNP, but not ADP, stabilized the structure of both B-Raf(WT) and B-Raf(V600E). The ATP-competitive type I B-Raf inhibitor vemurafenib and the type II inhibitor sorafenib stabilized the kinase domain (KD) but had distinct effects on the Ras-binding domain. Stabilization of the B-Raf(WT) KD was confirmed by hydrogen/deuterium exchange MS and molecular dynamics simulations. Our results are further supported by cellular assays in which we assessed cell viability and phosphorylation profiles in cells expressing B-Raf(WT) or B-Raf(V600E) in response to vemurafenib or sorafenib. Our data indicate that an overall stabilization of the B-Raf structure by specific inhibitors activates MAPK signaling and increases cell survival, helping to explain clinical treatment failure. We also applied our method to monitor conformational changes upon nucleotide binding of the pseudokinase KSR1, which holds high potential for inhibition in human diseases.
Collapse
Affiliation(s)
- Michela Di Michele
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Elisabeth Stes
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Elien Vandermarliere
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Rohit Arora
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans , Pôle de chimie, Rue de Chartres, 45100 Orléans, France
| | | | - Jonathan Vandenbussche
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Erika van Heerde
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Scheelelaberatoriet Scheeles väg 2, SE-171 77 Stockholm, Sweden
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans , Pôle de chimie, Rue de Chartres, 45100 Orléans, France
| | - Joannes T M Linders
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Edgar Jacoby
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Dirk Brehmer
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| |
Collapse
|
36
|
Moleschi KJ, Akimoto M, Melacini G. Measurement of State-Specific Association Constants in Allosteric Sensors through Molecular Stapling and NMR. J Am Chem Soc 2015; 137:10777-85. [PMID: 26247242 DOI: 10.1021/jacs.5b06557] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allostery is a ubiquitous mechanism to control biological function and arises from the coupling of inhibitory and binding equilibria. The extent of coupling reflects the inactive vs active state selectivity of the allosteric effector. Hence, dissecting allosteric determinants requires quantification of state-specific association constants. However, observed association constants are typically population-averages, reporting on overall affinities but not on allosteric coupling. Here we propose a general method to measure state-specific association constants in allosteric sensors based on three key elements, i.e., state-selective molecular stapling through disulfide bridges, competition binding saturation transfer experiments and chemical shift correlation analyses to gauge state populations. The proposed approach was applied to the prototypical cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA-RIα), for which the structures of the inactive and active states are available, as needed to design the state-selective disulfide bridges. Surprisingly, the PKA-RIα state-specific association constants are comparable to those of a structurally homologous domain with ∼10(3)-fold lower cAMP-affinity, suggesting that the affinity difference arises primarily from changes in the position of the dynamic apo inhibitory equilibrium.
Collapse
Affiliation(s)
- Kody J Moleschi
- Department of Chemistry and Chemical Biology, and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
37
|
Krishnamurthy S, Tulsian NK, Chandramohan A, Anand GS. Parallel Allostery by cAMP and PDE Coordinates Activation and Termination Phases in cAMP Signaling. Biophys J 2015; 109:1251-63. [PMID: 26276689 DOI: 10.1016/j.bpj.2015.06.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/12/2015] [Accepted: 06/25/2015] [Indexed: 01/26/2023] Open
Abstract
The second messenger molecule cAMP regulates the activation phase of the cAMP signaling pathway through high-affinity interactions with the cytosolic cAMP receptor, the protein kinase A regulatory subunit (PKAR). Phosphodiesterases (PDEs) are enzymes responsible for catalyzing hydrolysis of cAMP to 5' AMP. It was recently shown that PDEs interact with PKAR to initiate the termination phase of the cAMP signaling pathway. While the steps in the activation phase are well understood, steps in the termination pathway are unknown. Specifically, the binding and allosteric networks that regulate the dynamic interplay between PKAR, PDE, and cAMP are unclear. In this study, PKAR and PDE from Dictyostelium discoideum (RD and RegA, respectively) were used as a model system to monitor complex formation in the presence and absence of cAMP. Amide hydrogen/deuterium exchange mass spectrometry was used to monitor slow conformational transitions in RD, using disordered regions as conformational probes. Our results reveal that RD regulates its interactions with cAMP and RegA at distinct loci by undergoing slow conformational transitions between two metastable states. In the presence of cAMP, RD and RegA form a stable ternary complex, while in the absence of cAMP they maintain transient interactions. RegA and cAMP each bind at orthogonal sites on RD with resultant contrasting effects on its dynamics through parallel allosteric relays at multiple important loci. RD thus serves as an integrative node in cAMP termination by coordinating multiple allosteric relays and governing the output signal response.
Collapse
Affiliation(s)
| | | | - Arun Chandramohan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
38
|
Malmstrom RD, Kornev AP, Taylor SS, Amaro RE. Allostery through the computational microscope: cAMP activation of a canonical signalling domain. Nat Commun 2015; 6:7588. [PMID: 26145448 PMCID: PMC4504738 DOI: 10.1038/ncomms8588] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 05/22/2015] [Indexed: 11/09/2022] Open
Abstract
Ligand-induced protein allostery plays a central role in modulating cellular signalling pathways. Here using the conserved cyclic nucleotide-binding domain of protein kinase A's (PKA) regulatory subunit as a prototype signalling unit, we combine long-timescale, all-atom molecular dynamics simulations with Markov state models to elucidate the conformational ensembles of PKA's cyclic nucleotide-binding domain A for the cAMP-free (apo) and cAMP-bound states. We find that both systems exhibit shallow free-energy landscapes that link functional states through multiple transition pathways. This observation suggests conformational selection as the general mechanism of allostery in this canonical signalling domain. Further, we expose the propagation of the allosteric signal through key structural motifs in the cyclic nucleotide-binding domain and explore the role of kinetics in its function. Our approach integrates disparate lines of experimental data into one cohesive framework to understand structure, dynamics and function in complex biological systems.
Collapse
Affiliation(s)
- Robert D. Malmstrom
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0340
- National Biomedical Computation Resource, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0340
| | - Alexandr P. Kornev
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0340
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0340
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0340
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0340
- National Biomedical Computation Resource, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0340
| |
Collapse
|
39
|
Sharon M, Horovitz A. Probing allosteric mechanisms using native mass spectrometry. Curr Opin Struct Biol 2015; 34:7-16. [PMID: 26005781 DOI: 10.1016/j.sbi.2015.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 11/16/2022]
Abstract
Native mass spectrometry (MS) and ion mobility MS provide a way to discriminate between various allosteric mechanisms that cannot be distinguished using ensemble measurements of ligand binding in bulk protein solutions. Native MS, which yields mass measurements of intact assemblies, can be used to determine the values of ligand binding constants of multimeric allosteric proteins, thereby providing a way to distinguish, for example, between concerted and sequential allosteric models. Native MS can also be employed to study cooperativity owing to ligand-modulated protein oligomerization. The rotationally averaged cross-section areas of complexes obtained by ion mobility MS can be used to distinguish between induced fit and conformational selection. Native MS and its allied techniques are, therefore, becoming increasingly powerful tools for dissecting allosteric mechanisms.
Collapse
Affiliation(s)
- Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
40
|
Nevin P, Lu X, Zhang K, Engen JR, Beuning PJ. Noncognate DNA damage prevents the formation of the active conformation of the Y-family DNA polymerases DinB and DNA polymerase κ. FEBS J 2015; 282:2646-60. [PMID: 25899385 DOI: 10.1111/febs.13304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 01/24/2023]
Abstract
Y-family DNA polymerases are specialized to copy damaged DNA, and are associated with increased mutagenesis, owing to their low fidelity. It is believed that the mechanism of nucleotide selection by Y-family DNA polymerases involves conformational changes preceding nucleotidyl transfer, but there is limited experimental evidence for such structural changes. In particular, nucleotide-induced conformational changes in bacterial or eukaryotic Y-family DNA polymerases have, to date, not been extensively characterized. Using hydrogen-deuterium exchange mass spectrometry, we demonstrate here that the Escherichia coli Y-family DNA polymerase DinB and its human ortholog DNA polymerase κ undergo a conserved nucleotide-induced conformational change in the presence of undamaged DNA and the correct incoming nucleotide. Notably, this holds true for damaged DNA containing N(2) -furfuryl-deoxyguanosine, which is efficiently copied by these two polymerases, but not for damaged DNA containing the major groove modification O(6) -methyl-deoxyguanosine, which is a poor substrate. Our observations suggest that DinB and DNA polymerase κ utilize a common mechanism for nucleotide selection involving a conserved prechemical conformational transition promoted by the correct nucleotide and only preferred DNA substrates.
Collapse
Affiliation(s)
- Philip Nevin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Xueguang Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
41
|
Biswas KH, Badireddy S, Rajendran A, Anand GS, Visweswariah SS. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2. PeerJ 2015; 3:e882. [PMID: 25922789 PMCID: PMC4411481 DOI: 10.7717/peerj.882] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/18/2015] [Indexed: 01/01/2023] Open
Abstract
GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.
Collapse
Affiliation(s)
- Kabir Hassan Biswas
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | - Suguna Badireddy
- Department of Biological Sciences, National University of Singapore , Singapore , Singapore
| | - Abinaya Rajendran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | | | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| |
Collapse
|
42
|
Jäger AV, De Gaudenzi JG, Mild JG, Mc Cormack B, Pantano S, Altschuler DL, Edreira MM. Identification of novel cyclic nucleotide binding proteins in Trypanosoma cruzi. Mol Biochem Parasitol 2015; 198:104-12. [PMID: 25724722 DOI: 10.1016/j.molbiopara.2015.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 02/03/2015] [Accepted: 02/14/2015] [Indexed: 11/19/2022]
Abstract
Cyclic AMP has been implicated as second messenger in a wide range of cellular processes. In the protozoan parasite Trypanosoma cruzi, cAMP is involved in the development of the parasite's life cycle. While cAMP effectors have been widely studied in other eukaryotic cells, little is known about cAMP's mechanism of action in T. cruzi. To date, only a cAMP-dependent protein kinase A (PKA) has been cloned and characterised in this parasite; however experimental evidence indicates the existence of cAMP-dependent, PKA-independent events. In order to identify new cAMP binding proteins as potential cAMP effectors, we carried out in silico studies using the predicted T. cruzi proteome. Using a combination of search methods 27 proteins with putative cNMP binding domains (CBDs) were identified. Phylogenetic analysis of the CBDs presented a homogeneous distribution, with sequences segregated into two main branches: one containing kinases-like proteins and the other gathering hypothetical proteins with different function or no other known. Comparative modelling of the strongest candidates provides support for the hypothesis that these proteins may give rise to structurally viable cyclic nucleotide binding domains. Pull-down and nucleotide displacement assays strongly suggest that TcCLB.508523.80 could bind cAMP and eventually be a new putative PKA-independent cAMP effector in T. cruzi.
Collapse
Affiliation(s)
- Adriana V Jäger
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Javier G De Gaudenzi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Jesica G Mild
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina; IQUIBICEN-CONICET, Ciudad de Buenos Aires, Argentina
| | - Bárbara Mc Cormack
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | | | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Martin M Edreira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina; IQUIBICEN-CONICET, Ciudad de Buenos Aires, Argentina; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
43
|
Krishnamurthy S, Moorthy BS, Xin Xiang L, Xin Shan L, Bharatham K, Tulsian NK, Mihalek I, Anand GS. Active site coupling in PDE:PKA complexes promotes resetting of mammalian cAMP signaling. Biophys J 2015; 107:1426-40. [PMID: 25229150 DOI: 10.1016/j.bpj.2014.07.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/03/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022] Open
Abstract
Cyclic 3'5' adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.
Collapse
Affiliation(s)
- Srinath Krishnamurthy
- Department of Biological Sciences, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore
| | | | - Lim Xin Xiang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Lim Xin Shan
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore.
| |
Collapse
|
44
|
A tool set to map allosteric networks through the NMR chemical shift covariance analysis. Sci Rep 2014; 4:7306. [PMID: 25482377 PMCID: PMC4258684 DOI: 10.1038/srep07306] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/07/2014] [Indexed: 11/30/2022] Open
Abstract
Allostery is an essential regulatory mechanism of biological function. Allosteric sites are also pharmacologically relevant as they are often targeted with higher selectivity than orthosteric sites. However, a comprehensive map of allosteric sites poses experimental challenges because allostery is driven not only by structural changes, but also by modulations in dynamics that typically remain elusive to classical structure determination methods. An avenue to overcome these challenges is provided by the NMR chemical shift covariance analysis (CHESCA), as chemical shifts are exquisitely sensitive to redistributions in dynamic conformational ensembles. Here, we propose a set of complementary CHESCA algorithms designed to reliably detect allosteric networks with minimal occurrences of false positives or negatives. The proposed CHESCA toolset was tested for two allosteric proteins (PKA and EPAC) and is expected to complement traditional comparative structural analyses in the comprehensive identification of functionally relevant allosteric sites, including those in otherwise elusive partially unstructured regions.
Collapse
|
45
|
Boras BW, Kornev A, Taylor SS, McCulloch AD. Using Markov state models to develop a mechanistic understanding of protein kinase A regulatory subunit RIα activation in response to cAMP binding. J Biol Chem 2014; 289:30040-51. [PMID: 25202018 DOI: 10.1074/jbc.m114.568907] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protein kinase A (PKA) holoenzyme consists of two catalytic (C) subunits and a regulatory (R) subunit dimer (R(2)C(2)). The kinase is activated by the binding of cAMPs to the two cyclic nucleotide binding domains (CBDs), A and B, on each R-subunit. Despite extensive study, details of the allosteric mechanisms underlying the cooperativity of holoenzyme activation remain unclear. Several Markov state models of PKA-RIα were developed to test competing theories of activation for the R(2)C(2) complex. We found that CBD-B plays an essential role in R-C interaction and promotes the release of the first C-subunit prior to the binding to CBD-A. This favors a conformational selection mechanism for release of the first C-subunit of PKA. However, the release of the second C-subunit requires all four cAMP sites to be occupied. These analyses elucidate R-C heterodimer interactions in the cooperative activation of PKA and cAMP binding and represent a new mechanistic model of R(2)C(2) PKA-RIα activation.
Collapse
Affiliation(s)
| | | | | | - Andrew D McCulloch
- From the Departments of Bioengineering, Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
46
|
Akimoto M, Zhang Z, Boulton S, Selvaratnam R, VanSchouwen B, Gloyd M, Accili EA, Lange OF, Melacini G. A mechanism for the auto-inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel opening and its relief by cAMP. J Biol Chem 2014; 289:22205-20. [PMID: 24878962 DOI: 10.1074/jbc.m114.572164] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels control neuronal and cardiac electrical rhythmicity. There are four homologous isoforms (HCN1-4) sharing a common multidomain architecture that includes an N-terminal transmembrane tetrameric ion channel followed by a cytoplasmic "C-linker," which connects a more distal cAMP-binding domain (CBD) to the inner pore. Channel opening is primarily stimulated by transmembrane elements that sense membrane hyperpolarization, although cAMP reduces the voltage required for HCN activation by promoting tetramerization of the intracellular C-linker, which in turn relieves auto-inhibition of the inner pore gate. Although binding of cAMP has been proposed to relieve auto-inhibition by affecting the structure of the C-linker and CBD, the nature and extent of these cAMP-dependent changes remain limitedly explored. Here, we used NMR to probe the changes caused by the binding of cAMP and of cCMP, a partial agonist, to the apo-CBD of HCN4. Our data indicate that the CBD exists in a dynamic two-state equilibrium, whose position as gauged by NMR chemical shifts correlates with the V½ voltage measured through electrophysiology. In the absence of cAMP, the most populated CBD state leads to steric clashes with the activated or "tetrameric" C-linker, which becomes energetically unfavored. The steric clashes of the apo tetramer are eliminated either by cAMP binding, which selects for a CBD state devoid of steric clashes with the tetrameric C-linker and facilitates channel opening, or by a transition of apo-HCN to monomers or dimer of dimers, in which the C-linker becomes less structured, and channel opening is not facilitated.
Collapse
Affiliation(s)
- Madoka Akimoto
- From the Departments of Chemistry and Chemical Biology and
| | - Zaiyong Zhang
- the Biomolecular NMR and Munich Center for Integrated Protein Science, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Stephen Boulton
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | | | | | - Melanie Gloyd
- From the Departments of Chemistry and Chemical Biology and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Eric A Accili
- the Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, and
| | - Oliver F Lange
- the Biomolecular NMR and Munich Center for Integrated Protein Science, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany, the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Giuseppe Melacini
- From the Departments of Chemistry and Chemical Biology and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada,
| |
Collapse
|
47
|
Unraveling structural mechanisms of allosteric drug action. Trends Pharmacol Sci 2014; 35:256-64. [PMID: 24742712 DOI: 10.1016/j.tips.2014.03.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 11/20/2022]
Abstract
Orthosteric drugs block the active site to obstruct function; allosteric drugs modify the population of the active state, to modulate function. Available data lead us to propose that allosteric drugs can constitute anchors and drivers. The anchor docks into an allosteric pocket. The conformation with which it interacts is unchanged during the transition between the inactive and active states. The anchor provides the foundation that allows the driver to exert a 'pull' and/or 'push' action that shifts the receptor population from the inactive to the active state. The presence or absence of driver atom in an allosteric drug can exert opposite agonism. We map a strategy for driver identification and expect the allosteric trigger concept to transform agonist/antagonist drug discovery.
Collapse
|
48
|
Rogacheva ON, Stefanov VE, Shchegolev BF, Vershinina EA, Savvateeva-Popova EV. Role of arginine 209 in the conformational transition of the protein kinase A regulatory subunit RIα A-domain. J Bioinform Comput Biol 2014; 12:1441005. [PMID: 24712532 DOI: 10.1142/s0219720014410054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Using the combination of molecular dynamics (MD) simulations and geometric clustering we analyzed the role of arginine at 209 position in the transition of protein kinase A Iα (PKA Iα) regulatory subunit A-domain from H- to B-conformation and stabilization of the latter. The mechanism underlying the role of the residue at position 209 in the realization of B-conformation includes: (1) possibility to bind the ligand tightly (if transition happens in the presence of cAMP), (2) capability to hold β2β3-loop in the correct conformation, (3) tendency of residue at 209 position to stabilize B-conformation in the absence and in presence of the ligand. In terms of the effect produced on transition of A-domain from H- to B-conformation in the presence of cAMP, mutational substitutions for R209 can be arranged in the following order: Glu(Gly)>Lys>Ile. In the absence of cAMP the order is different Lys>Gly>Glu>Ile. Thus, our results allow us to presume that the role of arginine at 209 position can be important though not crucial.
Collapse
Affiliation(s)
- Olga N Rogacheva
- St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
49
|
Abstract
In recent years, HDX-MS (hydrogen–deuterium exchange coupled to MS) on biomolecules has evolved from a niche technique to a powerful method in the investigation of protein dynamics. Protein kinases, in particular, represent an area of active study using this technique owing to their well-characterized protein structures and their relevance to diseases such as cancer, immune disorders and neurodegenerative defects. In the present review, we describe how HDX-MS has revealed important dynamic properties of protein kinases and provided insight into the mechanisms of drug binding.
Collapse
|
50
|
PKA RIα homodimer structure reveals an intermolecular interface with implications for cooperative cAMP binding and Carney complex disease. Structure 2013; 22:59-69. [PMID: 24316401 DOI: 10.1016/j.str.2013.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/25/2013] [Accepted: 10/07/2013] [Indexed: 12/31/2022]
Abstract
The regulatory (R) subunit is the cAMP receptor of protein kinase A. Following cAMP binding, the inactive PKA holoenzyme complex separates into two active catalytic (C) subunits and a cAMP-bound R dimer. Thus far, only monomeric R structures have been solved, which fell short in explaining differences of cAMP binding for the full-length protein as compared to the truncated R subunits. Here we solved a full-length R-dimer structure that reflects the biologically relevant conformation, and this structure agrees well with small angle X-ray scattering. An isoform-specific interface is revealed between the protomers. This interface acts as an intermolecular sensor for cAMP and explains the cooperative character of cAMP binding to the RIα dimer. Mutagenesis of residues on this interface not only leads to structural and biochemical changes, but is also linked to Carney complex disease.
Collapse
|