1
|
Dong S, Zhao M, Zhu J, Li T, Yan M, Xing K, Liu P, Yu S, Ma J, He H. Natural killer cells: a future star for immunotherapy of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1442673. [PMID: 39234249 PMCID: PMC11371580 DOI: 10.3389/fimmu.2024.1442673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024] Open
Abstract
The interplay between immune components and the epithelium plays a crucial role in the development and progression of head and neck squamous cell carcinoma (HNSCC). Natural killer (NK) cells, one of the main tumor-killing immune cell populations, have received increasing attention in HNSCC immunotherapy. In this review, we explore the mechanism underlying the interplay between NK cells and HNSCC. A series of immune evasion strategies utilized by cancer cells restrict HNSCC infiltration of NK cells. Overcoming these limitations can fully exploit the antineoplastic potential of NK cells. We also investigated the tumor-killing efficacy of NK cell-based immunotherapies, immunotherapeutic strategies, and new results from clinical trials. Notably, cetuximab, the most essential component of NK cell-based immunotherapy, inhibits the epidermal growth factor receptor (EGFR) signaling pathway and activates the immune system in conjunction with NK cells, inducing innate effector functions and improving patient prognosis. In addition, we compiled information on other areas for the improvement of patient prognosis using anti-EGFR receptor-based monoclonal antibody drugs and the underlying mechanisms and prognoses of new immunotherapeutic strategies for the treatment of HNSCC.
Collapse
Affiliation(s)
- Shuyan Dong
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jin Zhu
- Department of Pathology, Xi’an Daxing Hospital, Xi’an, China
| | - Ting Li
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingze Yan
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kaixun Xing
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Ma
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Hongjiang He
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
2
|
Kong A, Kirkham AJ, Savage JS, Mant R, Lax S, Good J, Forster MD, Sacco JJ, Schipani S, Harrington KJ, Yap C, Mehanna H. Results and lessons learnt from the WISTERIA phase I trial combining AZD1775 with cisplatin pre- or post-operatively in head and neck cancer. BJC REPORTS 2024; 2:6. [PMID: 39220748 PMCID: PMC11357979 DOI: 10.1038/s44276-023-00026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 09/04/2024]
Abstract
Background Pre-clinical studies suggest AZD1775, a WEE1 kinase inhibitor, potentiates the activity of various chemotherapeutic agents. Methods WISTERIA was a prospective, parallel two-group, open-label, dose-finding, phase I clinical trial. Eligible patients had histologically confirmed oral, laryngeal, or hypopharyngeal squamous cell carcinoma, ECOG performance status 0/1, and aged ≥18-to-≤70 years. Primary outcomes were adverse events and defining recommended dose and schedule of AZD1775 in combination with cisplatin in pre-operative (Group A), or with cisplatin/radiotherapy in post-operative (Group B) patients. Dose determination was guided by a modified time-to-event continual reassessment method (mTITE-CRM). Results Between 30-Oct-2017 and 15-Jul-2019, nine patients were registered: Three into Group A and six into Group B. WISTERIA was closed early due to poor recruitment. Five dose-limiting toxicities (DLTs) were reported in four Group B patients. Seven serious adverse events were reported in four patients: One in Group A, and three in Group B. Three were related to treatment. No treatment-related deaths were reported. Conclusions WISTERIA did not complete its primary objectives due to poor recruitment and toxicities reported in Group B. However, use of the novel mTITE-CRM improved flexibility in reducing accrual suspension periods and should be considered for future trials in complex patient populations. Clinical Trial Registration ISRCTN76291951.
Collapse
Affiliation(s)
| | - Amanda J. Kirkham
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Joshua S. Savage
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Rhys Mant
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Siân Lax
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - James Good
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Martin D. Forster
- UCL Cancer Institute / University College London Hospitals NHS Foundation Trust, London, UK
| | - Joseph J. Sacco
- The Clatterbridge Cancer Centre, Wirral/University of Liverpool, Liverpool, UK
| | - Stephano Schipani
- Beatson West of Scotland Cancer Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Christina Yap
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Hisham Mehanna
- InHANSE, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Jacobs MT, Wong P, Zhou AY, Becker-Hapak M, Marin ND, Marsala L, Foster M, Foltz JA, Cubitt CC, Tran J, Russler-Germain DA, Neal C, Kersting-Schadek S, Chang L, Schappe T, Pence P, McClain E, Zevallos JP, Rich JT, Paniello RC, Jackson c RS, Pipkorn P, Adkins DR, DeSelm CJ, Berrien-Elliott MM, Puram SV, Fehniger TA. Memory-like Differentiation, Tumor-Targeting mAbs, and Chimeric Antigen Receptors Enhance Natural Killer Cell Responses to Head and Neck Cancer. Clin Cancer Res 2023; 29:4196-4208. [PMID: 37556118 PMCID: PMC10796148 DOI: 10.1158/1078-0432.ccr-23-0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/03/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is an aggressive tumor with low response rates to frontline PD-1 blockade. Natural killer (NK) cells are a promising cellular therapy for T cell therapy-refractory cancers, but are frequently dysfunctional in patients with HNSCC. Strategies are needed to enhance NK cell responses against HNSCC. We hypothesized that memory-like (ML) NK cell differentiation, tumor targeting with cetuximab, and engineering with an anti-EphA2 (Erythropoietin-producing hepatocellular receptor A2) chimeric antigen receptor (CAR) enhance NK cell responses against HNSCC. EXPERIMENTAL DESIGN We generated ML NK and conventional (c)NK cells from healthy donors, then evaluated their ability to produce IFNγ, TNF, degranulate, and kill HNSCC cell lines and primary HNSCC cells, alone or in combination with cetuximab, in vitro and in vivo using xenograft models. ML and cNK cells were engineered to express anti-EphA2 CAR-CD8A-41BB-CD3z, and functional responses were assessed in vitro against HNSCC cell lines and primary HNSCC tumor cells. RESULTS Human ML NK cells displayed enhanced IFNγ and TNF production and both short- and long-term killing of HNSCC cell lines and primary targets, compared with cNK cells. These enhanced responses were further improved by cetuximab. Compared with controls, ML NK cells expressing anti-EphA2 CAR had increased IFNγ and cytotoxicity in response to EphA2+ cell lines and primary HNSCC targets. CONCLUSIONS These preclinical findings demonstrate that ML differentiation alone or coupled with either cetuximab-directed targeting or EphA2 CAR engineering were effective against HNSCCs and provide the rationale for investigating these combination approaches in early phase clinical trials for patients with HNSCC.
Collapse
Affiliation(s)
- Miriam T. Jacobs
- Division of Oncology, Department of Medicine, Washington University School of Medicine
- Alvin J. Siteman Cancer Center, St. Louis, MO, USA
| | - Pamela Wong
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Alice Y. Zhou
- Division of Oncology, Department of Medicine, Washington University School of Medicine
- Alvin J. Siteman Cancer Center, St. Louis, MO, USA
| | - Michelle Becker-Hapak
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Nancy D. Marin
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Lynne Marsala
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Mark Foster
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Jennifer A. Foltz
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Celia C. Cubitt
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Jennifer Tran
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - David A. Russler-Germain
- Division of Oncology, Department of Medicine, Washington University School of Medicine
- Alvin J. Siteman Cancer Center, St. Louis, MO, USA
| | - Carly Neal
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | | | - Lily Chang
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Timfothy Schappe
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Patrick Pence
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Ethan McClain
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Jose P. Zevallos
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jason T Rich
- Alvin J. Siteman Cancer Center, St. Louis, MO, USA
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Randal C. Paniello
- Alvin J. Siteman Cancer Center, St. Louis, MO, USA
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan S. Jackson c
- Alvin J. Siteman Cancer Center, St. Louis, MO, USA
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrik Pipkorn
- Alvin J. Siteman Cancer Center, St. Louis, MO, USA
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Douglas R. Adkins
- Division of Oncology, Department of Medicine, Washington University School of Medicine
- Alvin J. Siteman Cancer Center, St. Louis, MO, USA
| | - Carl J. DeSelm
- Alvin J. Siteman Cancer Center, St. Louis, MO, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Melissa M. Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine
- Alvin J. Siteman Cancer Center, St. Louis, MO, USA
| | - Sidharth V. Puram
- Alvin J. Siteman Cancer Center, St. Louis, MO, USA
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Todd A. Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine
- Alvin J. Siteman Cancer Center, St. Louis, MO, USA
| |
Collapse
|
4
|
Tröster A, DiPrima M, Jores N, Kudlinzki D, Sreeramulu S, Gande SL, Linhard V, Ludig D, Schug A, Saxena K, Reinecke M, Heinzlmeir S, Leisegang MS, Wollenhaupt J, Lennartz F, Weiss MS, Kuster B, Tosato G, Schwalbe H. Optimization of the Lead Compound NVP-BHG712 as a Colorectal Cancer Inhibitor. Chemistry 2023; 29:e202203967. [PMID: 36799129 PMCID: PMC10133194 DOI: 10.1002/chem.202203967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
The ephrin type-A receptor 2 (EPHA2) kinase belongs to the largest family of receptor tyrosine kinases. There are several indications of an involvement of EPHA2 in the development of infectious diseases and cancer. Despite pharmacological potential, EPHA2 is an under-examined target protein. In this study, we synthesized a series of derivatives of the inhibitor NVP-BHG712 and triazine-based compounds. These compounds were evaluated to determine their potential as kinase inhibitors of EPHA2, including elucidation of their binding mode (X-ray crystallography), affinity (microscale thermophoresis), and selectivity (Kinobeads assay). Eight inhibitors showed affinities in the low-nanomolar regime (KD <10 nM). Testing in up to seven colon cancer cell lines that express EPHA2 reveals that several derivatives feature promising effects for the control of human colon carcinoma. Thus, we have developed a set of powerful tool compounds for fundamental new research on the interplay of EPH receptors in a cellular context.
Collapse
Affiliation(s)
- Alix Tröster
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Michael DiPrima
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, NIH Bethesda Campus, Building 37, Room 4124, Bethesda, MD 20892, USA
| | - Nathalie Jores
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Denis Kudlinzki
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Santosh L. Gande
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| | - Verena Linhard
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Damian Ludig
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Alexander Schug
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Krishna Saxena
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Maria Reinecke
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
- German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
| | - Matthias S. Leisegang
- Institute for Cardiovascular Physiology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)
| | - Jan Wollenhaupt
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)
| | - Frank Lennartz
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)
| | - Manfred S. Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
- German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, NIH Bethesda Campus, Building 37, Room 4124, Bethesda, MD 20892, USA
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| |
Collapse
|
5
|
Liao J, Li X, Gan Y, Han S, Rong P, Wang W, Li W, Zhou L. Artificial intelligence assists precision medicine in cancer treatment. Front Oncol 2023; 12:998222. [PMID: 36686757 PMCID: PMC9846804 DOI: 10.3389/fonc.2022.998222] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cancer is a major medical problem worldwide. Due to its high heterogeneity, the use of the same drugs or surgical methods in patients with the same tumor may have different curative effects, leading to the need for more accurate treatment methods for tumors and personalized treatments for patients. The precise treatment of tumors is essential, which renders obtaining an in-depth understanding of the changes that tumors undergo urgent, including changes in their genes, proteins and cancer cell phenotypes, in order to develop targeted treatment strategies for patients. Artificial intelligence (AI) based on big data can extract the hidden patterns, important information, and corresponding knowledge behind the enormous amount of data. For example, the ML and deep learning of subsets of AI can be used to mine the deep-level information in genomics, transcriptomics, proteomics, radiomics, digital pathological images, and other data, which can make clinicians synthetically and comprehensively understand tumors. In addition, AI can find new biomarkers from data to assist tumor screening, detection, diagnosis, treatment and prognosis prediction, so as to providing the best treatment for individual patients and improving their clinical outcomes.
Collapse
Affiliation(s)
- Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Bußmann L, Hoffer K, von Bargen CM, Droste C, Lange T, Kemmling J, Schröder-Schwarz J, Vu AT, Akingunsade L, Nollau P, Rangarajan S, de Wijn R, Oetting A, Müller C, Böckelmann LC, Zech HB, Berger JC, Möckelmann N, Busch CJ, Böttcher A, Gatzemeier F, Klinghammer K, Simnica D, Binder M, Struve N, Rieckmann T, Schumacher U, Clauditz TS, Betz CS, Petersen C, Rothkamm K, Münscher A, Kriegs M. Analyzing tyrosine kinase activity in head and neck cancer by functional kinomics: Identification of hyperactivated Src family kinases as prognostic markers and potential targets. Int J Cancer 2021; 149:1166-1180. [PMID: 33890294 DOI: 10.1002/ijc.33606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/20/2023]
Abstract
Signal transduction via protein kinases is of central importance in cancer biology and treatment. However, the clinical success of kinase inhibitors is often hampered by a lack of robust predictive biomarkers, which is also caused by the discrepancy between kinase expression and activity. Therefore, there is a need for functional tests to identify aberrantly activated kinases in individual patients. Here we present a systematic analysis of the tyrosine kinases in head and neck cancer using such a test-functional kinome profiling. We detected increased tyrosine kinase activity in tumors compared with their corresponding normal tissue. Moreover, we identified members of the family of Src kinases (Src family kinases [SFK]) to be aberrantly activated in the majority of the tumors, which was confirmed by additional methods. We could also show that SFK hyperphosphorylation is associated with poor prognosis, while inhibition of SFK impaired cell proliferation, especially in cells with hyperactive SFK. In summary, functional kinome profiling identified SFK to be frequently hyperactivated in head and neck squamous cell carcinoma. SFK may therefore be potential therapeutic targets. These results furthermore demonstrate how functional tests help to increase our understanding of cancer biology and support the expansion of precision oncology.
Collapse
Affiliation(s)
- Lara Bußmann
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Laboratory of Radiobiology and Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konstantin Hoffer
- Laboratory of Radiobiology and Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara Marie von Bargen
- Department of Pathology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Conrad Droste
- Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Kemmling
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Schröder-Schwarz
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anh Thu Vu
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lara Akingunsade
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Nollau
- Department of Pediatric Hematology and Oncology, Research Institute Children's Cancer Center, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Rik de Wijn
- PamGene International B.V., 's-Hertogenbosch, The Netherlands
| | - Agnes Oetting
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Müller
- Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of General and Interventional Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Clemens Böckelmann
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrike Barbara Zech
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joanna Caroline Berger
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolaus Möckelmann
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chia-Jung Busch
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne Böttcher
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Donjete Simnica
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Nina Struve
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Sebastian Clauditz
- Department of Pathology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Stephan Betz
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrian Münscher
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Otorhinolaryngology, Marienkrankenhaus Hamburg, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology and Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Werthmann RC, Tzouros M, Lamerz J, Augustin A, Fritzius T, Trovò L, Stawarski M, Raveh A, Diener C, Fischer C, Gassmann M, Lindemann L, Bettler B. Symmetric signal transduction and negative allosteric modulation of heterodimeric mGlu1/5 receptors. Neuropharmacology 2020; 190:108426. [PMID: 33279506 DOI: 10.1016/j.neuropharm.2020.108426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
For a long time metabotropic glutamate receptors (mGluRs) were thought to regulate neuronal functions as obligatory homodimers. Recent reports, however, indicate the existence of heterodimers between group-II and -III mGluRs in the brain, which differ from the homodimers in their signal transduction and sensitivity to negative allosteric modulators (NAMs). Whether the group-I mGluRs, mGlu1 and mGlu5, form functional heterodimers in the brain is still a matter of debate. We now show that mGlu1 and mGlu5 co-purify from brain membranes and hippocampal tissue and co-localize in cultured hippocampal neurons. Complementation assays with mutants deficient in agonist-binding or G protein-coupling reveal that mGlu1/5 heterodimers are functional in heterologous cells and transfected cultured hippocampal neurons. In contrast to heterodimers between group-II and -III mGluRs, mGlu1/5 receptors exhibit a symmetric signal transduction, with both protomers activating G proteins to a similar extent. NAMs of either protomer in mGlu1/5 receptors partially inhibit signaling, showing that both protomers need to be able to reach an active conformation for full receptor activity. Complete heterodimer inhibition is observed when both protomers are locked in their inactive state by a NAM. In summary, our data show that mGlu1/5 heterodimers exhibit a symmetric signal transduction and thus intermediate signaling efficacy and kinetic properties. Our data support the existence of mGlu1/5 heterodimers in neurons and highlight differences in the signaling transduction of heterodimeric mGluRs that influence allosteric modulation.
Collapse
Affiliation(s)
- Ruth C Werthmann
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Manuel Tzouros
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Jens Lamerz
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Angélique Augustin
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Thorsten Fritzius
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Luca Trovò
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Michal Stawarski
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Adi Raveh
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Catherine Diener
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Christophe Fischer
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Lothar Lindemann
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
8
|
Samonig L, Loipetzberger A, Blöchl C, Rurik M, Kohlbacher O, Aberger F, Huber CG. Proteins and Molecular Pathways Relevant for the Malignant Properties of Tumor-Initiating Pancreatic Cancer Cells. Cells 2020; 9:E1397. [PMID: 32503348 PMCID: PMC7349116 DOI: 10.3390/cells9061397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/29/2022] Open
Abstract
Cancer stem cells (CSCs), a small subset of the tumor bulk with highly malignant properties, are deemed responsible for tumor initiation, growth, metastasis, and relapse. In order to reveal molecular markers and determinants of their tumor-initiating properties, we enriched rare stem-like pancreatic tumor-initiating cells (TICs) by harnessing their clonogenic growth capacity in three-dimensional multicellular spheroid cultures. We compared pancreatic TICs isolated from three-dimensional tumor spheroid cultures with nontumor-initiating cells (non-TICs) enriched in planar cultures. Employing differential proteomics (PTX), we identified more than 400 proteins with significantly different expression in pancreatic TICs and the non-TIC population. By combining the unbiased PTX with mRNA expression analysis and literature-based predictions of pro-malignant functions, we nominated the two calcium-binding proteins S100A8 (MRP8) and S100A9 (MRP14) as well as galactin-3-binding protein LGALS3BP (MAC-2-BP) as putative determinants of pancreatic TICs. In silico pathway analysis followed by candidate-based RNA interference mediated loss-of-function analysis revealed a critical role of S100A8, S100A9, and LGALS3BP as molecular determinants of TIC proliferation, migration, and in vivo tumor growth. Our study highlights the power of combining unbiased proteomics with focused gene expression and functional analyses for the identification of novel key regulators of TICs, an approach that warrants further application to identify proteins and pathways amenable to drug targeting.
Collapse
Affiliation(s)
- Lisa Samonig
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, A-5020 Salzburg, Austria; (L.S.); (C.B.)
| | - Andrea Loipetzberger
- Department of Biosciences, Cancer Cluster Salzburg, Molecular Cancer and Stem Cell Research, University of Salzburg, A-5020 Salzburg, Austria;
| | - Constantin Blöchl
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, A-5020 Salzburg, Austria; (L.S.); (C.B.)
| | - Marc Rurik
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany; (M.R.); (O.K.)
| | - Oliver Kohlbacher
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany; (M.R.); (O.K.)
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Hoppe-Seyler-Str. 9, 72076 Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Fritz Aberger
- Department of Biosciences, Cancer Cluster Salzburg, Molecular Cancer and Stem Cell Research, University of Salzburg, A-5020 Salzburg, Austria;
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, A-5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, A-5020 Salzburg, Austria; (L.S.); (C.B.)
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, A-5020 Salzburg, Austria
| |
Collapse
|
9
|
Kong A, Good J, Kirkham A, Savage J, Mant R, Llewellyn L, Parish J, Spruce R, Forster M, Schipani S, Harrington K, Sacco J, Murray P, Middleton G, Yap C, Mehanna H. Phase I trial of WEE1 inhibition with chemotherapy and radiotherapy as adjuvant treatment, and a window of opportunity trial with cisplatin in patients with head and neck cancer: the WISTERIA trial protocol. BMJ Open 2020; 10:e033009. [PMID: 32184305 PMCID: PMC7076237 DOI: 10.1136/bmjopen-2019-033009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Patients with head and neck squamous cell carcinoma with locally advanced disease often require multimodality treatment with surgery, radiotherapy and/or chemotherapy. Adjuvant radiotherapy with concurrent chemotherapy is offered to patients with high-risk pathological features postsurgery. While cure rates are improved, overall survival remains suboptimal and treatment has a significant negative impact on quality of life.Cell cycle checkpoint kinase inhibition is a promising method to selectively potentiate the therapeutic effects of chemoradiation. Our hypothesis is that combining chemoradiation with a WEE1 inhibitor will affect the biological response to DNA damage caused by cisplatin and radiation, thereby enhancing clinical outcomes, without increased toxicity. This trial explores the associated effect of WEE1 kinase inhibitor adavosertib (AZD1775). METHODS AND ANALYSIS This phase I dose-finding, open-label, multicentre trial aims to determine the highest safe dose of AZD1775 in combination with cisplatin chemotherapy preoperatively (group A) as a window of opportunity trial, and in combination with postoperative cisplatin-based chemoradiation (group B).Modified time-to-event continual reassessment method will determine the recommended dose, recruiting up to 21 patients per group. Primary outcomes are recommended doses with predefined target dose-limiting toxicity probabilities of 25% monitored up to 42 days (group A), and 30% monitored up to 12 weeks (group B). Secondary outcomes are disease-free survival times (groups A and B). Exploratory objectives are evaluation of pharmacodynamic (PD) effects, identification and correlation of potential biomarkers with PD markers of DNA damage, determine rate of resection status and surgical complications for group A; and quality of life in group B. ETHICS AND DISSEMINATION Research Ethics Committee, Edgbaston, West Midlands (REC reference 16/WM/0501) initial approval received on 18/01/2017. Results will be disseminated via peer-reviewed publication and presentation at international conferences. TRIAL REGISTRATION NUMBER ISRCTN76291951 and NCT03028766.
Collapse
Affiliation(s)
- Anthony Kong
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - James Good
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Amanda Kirkham
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Joshua Savage
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Rhys Mant
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Joanna Parish
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Rachel Spruce
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Stefano Schipani
- Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, Glasgow, UK
| | | | - Joseph Sacco
- Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, Wirral, UK
| | | | - Gary Middleton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Christina Yap
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Hisham Mehanna
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Xu Z, Shen W, Pan A, Sun F, Zhang J, Gao P, Li L. Decreased Nek9 expression correlates with aggressive behaviour and predicts unfavourable prognosis in breast cancer. Pathology 2020; 52:329-335. [PMID: 32098687 DOI: 10.1016/j.pathol.2019.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022]
Abstract
As a new member of Neks family, Nek9 regulates spindle assembly and controls chromosome alignment and centrosome separation. In the current study we aimed to investigate the expression of Nek9 in breast cancer and its clinical significance. We evaluated the expression of Nek9 in invasive ductal carcinoma (IDC, n=316), ductal carcinoma in situ (DCIS), usual ductal hyperplasia, atypical ductal hyperplasia, fibroadenoma and normal breast tissues using immunohistochemistry. The results revealed significantly reduced Nek9 in IDCs (41.8%) compared to benign breast lesions. Moreover, gradually reduced Nek9 was found from DCIS to invasive carcinoma and metastatic tumour within the same tumours. The decrease in Nek9 expression was associated with larger tumour size (p=0.0087), high grade (p<0.0001) and high Ki-67 index (p<0.0020). TCGA and GEO datasets analysis revealed low level of Nek9 mRNA was more frequent in triple negative breast cancers, and associated with poor overall survival and distant metastasis-free survival. These findings suggest an important role of Nek9 in the progression of breast cancer, and aberrantly expressed Nek9 correlates with more aggressive clinicopathological variables and predicts poor clinical prognosis. Nek9 may serve as a potential predictive factor for patients with breast cancer.
Collapse
Affiliation(s)
- Ziru Xu
- Department of Pathology, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, PR China
| | - Wenping Shen
- Department of Pathology, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, PR China
| | - Aifeng Pan
- Department of Pathology, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, PR China
| | - Feifei Sun
- Department of Pathology, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, PR China
| | - Jing Zhang
- Department of Pathology, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, PR China
| | - Peng Gao
- Department of Pathology, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, PR China
| | - Li Li
- Department of Pathology, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, PR China.
| |
Collapse
|
11
|
Sheng Y, Wei J, Zhang Y, Gao X, Wang Z, Yang J, Yan S, Zhu Y, Zhang Z, Xu D, Wang C, Zheng Y, Dong Q, Qin L. Mutated EPHA2 is a target for combating lymphatic metastasis in intrahepatic cholangiocarcinoma. Int J Cancer 2019; 144:2440-2452. [PMID: 30412282 DOI: 10.1002/ijc.31979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Abstract
Exploring the genetic aberrations favoring metastasis is important for understanding and developing novel strategies to combat cancer metastasis. It remains lack of effective treatment for the dismal prognosis of intrahepatic cholangiocarcinoma (ICC). Here, we aimed to study genetic alternations during lymph node metastasis of ICC and investigate potential mechanisms and clinical strategy focused on mutations. We performed whole-exome sequencing and transcriptome sequencing on samples from 30 ICC patients, including lymph node metastases from five of the patients. We identified the alterations of genetic pattern related to lymph node metastases of ICC. EPHA2, a member of the tyrosine kinase family, was found to be frequently mutated in ICC. Correlation analysis indicated that EPHA2 mutations were closely associated with lymph node metastasis of ICC. In vitro and in vivo experiments revealed that EPHA2 mutations could lead to ligand independent phosphorylation of Ser897, and promote lymphatic metastasis of ICC, in which NOTCH1 signaling pathway played an important role. In both in vitro assays and patient-derived xenografts, an inhibitor of Ser897 phosphorylation effectively suppressed the metastasis of ICC with mutated EPHA2. Our findings demonstrated that EPHA2 mutants may be an attractive therapeutic target for lymphatic metastasis of ICC.
Collapse
Affiliation(s)
- Yuanyuan Sheng
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinwang Wei
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yu Zhang
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaomei Gao
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zheng Wang
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jing Yang
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shican Yan
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying Zhu
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ze Zhang
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Da Xu
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chaoqun Wang
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Zhang Y, Xu Z, Sun Y, Chi P, Lu X. Knockdown of KLK11 reverses oxaliplatin resistance by inhibiting proliferation and activating apoptosis via suppressing the PI3K/AKT signal pathway in colorectal cancer cell. Onco Targets Ther 2018; 11:809-821. [PMID: 29497313 PMCID: PMC5820466 DOI: 10.2147/ott.s151867] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction Kallikrein 11 (KLK11) plays a crucial role in drug-resistance to oxaliplatin (L-OHP) in the treatment of metastatic colorectal cancer (mCRC). The study aimed to investigate the role of KLK11 in chemoresistance, and to clarify the mechanism underlying reverse of L-OHP resistance by knockdown of KLK11. Materials and Methods Resistance to oxaliplatin was induced in HCT-8 (HCT-8/L-OHP) colorectal adenocarcinoma cell lines by exposing cells to increasing concentrations of L-OHP. MTT, RT-qPCR, and Western blot were used to evaluate the resistance to L-OHP. We then knocked down KLK11 in HCT-8/L-OHP cells to explore the mechanism through which KLK11 reverses L-OHP resistance. The mRNA and protein expression of KLK11 in tissues from mCRC patients were detected by RT-qPCR and immunohistochemistry. Results The drug resistance index (RI) of HCT-8/L-OHP cell line to L-OHP, 5-Fluorouracil (5-FU), Irinotecan (CPT-11), Vincristine (VCR) and Cis-diamminedichloroplatinum (CDDP) were 10, 5.35, 3.23, 1.28, and 6.64, respectively. Increased expression of multi-drug resistant genes ABCC1, ABCB1, GSTP1 and ERCC1 were detected in HCT-8/L-OHP cell line. Moreover, the activated PI3K/AKT pathway was related to L-OHP-resistance. Knockdown of KLK11 in HCT-8/L-OHP cell reversed L-OHP-resistance by inhibiting cell growth and activating apoptosis via suppressing the PI3K/AKT signaling pathway. Moreover, high expression of KLK11 in chemoresistant-patients was associated with lymph node metastases and histopathology. Conclusion KLK11 was highly expressed in chemoresistant-patients and L-OHP-resistant cell lines. Moreover, L-OHP resistance was associated with activated PI3K/AKT signal pathway. Knockdown of KLK11 can reverse L-OHP resistance by blocking PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Zongbin Xu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Yanwu Sun
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Xingrong Lu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| |
Collapse
|
13
|
#2714, a novel active inhibitor with potent G2/M phase arrest and antitumor efficacy in preclinical models. Cell Death Discov 2018. [PMID: 29531821 PMCID: PMC5841443 DOI: 10.1038/s41420-018-0032-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Arresting cell cycle has been one of the most common approaches worldwide in cancer therapy. Specifically, arresting cells in the G2/M phase is a promising therapeutic approach in the battle against lung cancer. In the present study, we demonstrated the anticancer activities and possible mechanism of compound #2714, which can prompt G2/M phase arrest followed by cell apoptosis induction in Lewis lung carcinoma LL/2 cells. In vitro, #2714 significantly inhibited LL/2 cell viability in a concentration- and time-dependent manner while exhibiting few toxicities on non-cancer cells. The mechanism study showed that cell proliferation inhibition due to the treatment with #2714 correlated with G2/M phase arrest and was followed by LL/2 cell apoptosis. The characterized changes were associated with the downregulation of phosphorylated cell division cycle 25C (Cdc25C) and upregulation of p53. Apoptosis-associated activation of cleaved caspase-3 was also detected. Moreover, #2714 strongly attenuated LL/2 cell proliferation by disrupting the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK). In vivo, intraperitoneal administration of #2714 (25–100 mg/kg/day) to mice bearing established tumors in xenograft models significantly prevented LL/2 tumor growth (58.1%) without detectable toxicity. Compound #2714 significantly increased apoptosis in LL/2 lung cancer cells in mice models, as observed via terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay, and the data from an immunohistochemical analysis showed that #2714 remarkably inhibited the proliferation and angiogenesis of lung cancer in vivo. Taken together, our data suggest that #2714 has a high potential anti-lung cancer efficacy with a pathway-specific mechanism of G2/M phase arrest and subsequent apoptosis induction both in vitro and in vivo; its potential to be an anticancer candidate warrants further investigation.
Collapse
|
14
|
Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat Commun 2017; 8:1476. [PMID: 29133793 PMCID: PMC5684323 DOI: 10.1038/s41467-017-01559-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 09/27/2017] [Indexed: 01/28/2023] Open
Abstract
Small molecule splicing modifiers have been previously described that target the general splicing machinery and thus have low specificity for individual genes. Several potent molecules correcting the splicing deficit of the SMN2 (survival of motor neuron 2) gene have been identified and these molecules are moving towards a potential therapy for spinal muscular atrophy (SMA). Here by using a combination of RNA splicing, transcription, and protein chemistry techniques, we show that these molecules directly bind to two distinct sites of the SMN2 pre-mRNA, thereby stabilizing a yet unidentified ribonucleoprotein (RNP) complex that is critical to the specificity of these small molecules for SMN2 over other genes. In addition to the therapeutic potential of these molecules for treatment of SMA, our work has wide-ranging implications in understanding how small molecules can interact with specific quaternary RNA structures. Small molecules correcting the splicing deficit of the survival of motor neuron 2 (SMN2) gene have been identified as having therapeutic potential. Here, the authors provide evidence that SMN2 mRNA forms a ribonucleoprotein complex that can be specifically targeted by these small molecules.
Collapse
|
15
|
Deane F, Lin AJS, Hains PG, Pilgrim SL, Robinson PJ, McCluskey A. FD5180, a Novel Protein Kinase Affinity Probe, and the Effect of Bead Loading on Protein Kinase Identification. ACS OMEGA 2017; 2:3828-3838. [PMID: 30023706 PMCID: PMC6044883 DOI: 10.1021/acsomega.7b00020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/12/2017] [Indexed: 06/08/2023]
Abstract
The effects of compound loading on the identification of protein kinases (PKs) was examined using two previously reported sepharose-supported PK inhibitors (PKIs): bisindolylmaleimide X (S1) and CZC8004 (S2). Compound loadings of 0.1, 0.5, 2.5, 5, 10, 25, and 50% content and an ethanolamine-blocked control bead (no compound) were investigated. A 50% bead loading gave the highest level of PK identification for both S1 and S2, extracting 34 and 55 PKs, respectively, from a single cell lysate. Control beads allowed overall identification of 23 PKs, which we term the kinase beadome, whereas sepharose-supported sunitinib (S7; 50% loading) identified 20, 11 of which were common to the control beads. The reliability of bead pull-downs was examined in duplicate experiments using two independently synthesized batches each of S1 and S2. Bead S1 showed high similarity in the absolute numbers of PKs identified across two experiments, at 40 and 35 PKs, of which 26 were common across the two batches of beads, with 14 and 9 unique PKs identified in each experiment. The S2 beads extracted 61 and 64 PKs with 55 PKs common across the two bead batches examined. We also report on the development and use of a novel promiscuous PKI analogue, 2-[(5-chloro-2{[4-(piperazin-1-yl)phenyl]amino}pyrimidin-4-yl)amino]-N-methylbenzene-sulfonamide (S15), which extracted 12 additional unique PKs over the two parent compounds from which it was designed, the combination of which identifies 160 unique PKs. S15 was based on the common pyrimidine core scaffold of S9 and S10. Thus, S15 expands the utility of kinobeads by broadening the kinome coverage for bead-based pull-down. Combining the data for all beads across 90 and 180 min liquid chromatography-mass spectrometry (LC-MS)/MS analysis identified a total of 160 unique PKs.
Collapse
Affiliation(s)
- Fiona
M. Deane
- Chemistry,
Centre for Chemical Biology, The University
of Newcastle, University
Drive, Callaghan, NSW 2308, Australia
| | - Andrew J. S. Lin
- Chemistry,
Centre for Chemical Biology, The University
of Newcastle, University
Drive, Callaghan, NSW 2308, Australia
| | - Peter G. Hains
- Cell
Signalling Unit, Children’s Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - Sarah L. Pilgrim
- Chemistry,
Centre for Chemical Biology, The University
of Newcastle, University
Drive, Callaghan, NSW 2308, Australia
| | - Phillip J. Robinson
- Cell
Signalling Unit, Children’s Medical Research Institute, The University of Sydney, Sydney, NSW 2145, Australia
| | - Adam McCluskey
- Chemistry,
Centre for Chemical Biology, The University
of Newcastle, University
Drive, Callaghan, NSW 2308, Australia
| |
Collapse
|
16
|
Zhang M, Singh R, Peng S, Mazumdar T, Sambandam V, Shen L, Tong P, Li L, Kalu NN, Pickering CR, Frederick M, Myers JN, Wang J, Johnson FM. Mutations of the LIM protein AJUBA mediate sensitivity of head and neck squamous cell carcinoma to treatment with cell-cycle inhibitors. Cancer Lett 2017; 392:71-82. [PMID: 28126323 PMCID: PMC5404895 DOI: 10.1016/j.canlet.2017.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/22/2023]
Abstract
The genomic alterations identified in head and neck squamous cell carcinoma (HNSCC) tumors have not resulted in any changes in clinical care, making the development of biomarker-driven targeted therapy for HNSCC a major translational gap in knowledge. To fill this gap, we used 59 molecularly characterized HNSCC cell lines and found that mutations of AJUBA, SMAD4 and RAS predicted sensitivity and resistance to treatment with inhibitors of polo-like kinase 1 (PLK1), checkpoint kinases 1 and 2, and WEE1. Inhibition or knockdown of PLK1 led to cell-cycle arrest at the G2/M transition and apoptosis in sensitive cell lines and decreased tumor growth in an orthotopic AJUBA-mutant HNSCC mouse model. AJUBA protein expression was undetectable in most AJUBA-mutant HNSCC cell lines, and total PLK1 and Bora protein expression were decreased. Exogenous expression of wild-type AJUBA in an AJUBA-mutant cell line partially rescued the phenotype of PLK1 inhibitor-induced apoptosis and decreased PLK1 substrate inhibition, suggesting a threshold effect in which higher drug doses are required to affect PLK1 substrate inhibition. PLK1 inhibition was an effective therapy for HNSCC in vitro and in vivo. However, biomarkers to guide such therapy are lacking. We identified AJUBA, SMAD4 and RAS mutations as potential candidate biomarkers of response of HNSCC to treatment with these mitotic inhibitors.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Otolaryngology-Head & Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ratnakar Singh
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaohua Peng
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuhina Mazumdar
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vaishnavi Sambandam
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nene N Kalu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Mitchell Frederick
- Department of Otolaryngology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Golkowski M, Vidadala RSR, Lombard CK, Suh HW, Maly DJ, Ong SE. Kinobead and Single-Shot LC-MS Profiling Identifies Selective PKD Inhibitors. J Proteome Res 2017; 16:1216-1227. [PMID: 28102076 DOI: 10.1021/acs.jproteome.6b00817] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ATP-competitive protein kinase inhibitors are important research tools and therapeutic agents. Because there are >500 human kinases that contain highly conserved active sites, the development of selective inhibitors is extremely challenging. Methods to rapidly and efficiently profile kinase inhibitor targets in cell lysates are urgently needed to discover selective compounds and to elucidate the mechanisms of action for polypharmacological inhibitors. Here, we describe a protocol for microgram-scale chemoproteomic profiling of ATP-competitive kinase inhibitors using kinobeads. We employed a gel-free in situ digestion protocol coupled to nanoflow liquid chromatography-mass spectrometry to profile ∼200 kinases in single analytical runs using as little as 5 μL of kinobeads and 300 μg of protein. With our kinobead reagents, we obtained broad coverage of the kinome, monitoring the relative expression levels of 312 kinases in a diverse panel of 11 cancer cell lines. Further, we profiled a set of pyrrolopyrimidine- and pyrazolopyrimidine-based kinase inhibitors in competition-binding experiments with label-free quantification, leading to the discovery of a novel selective and potent inhibitor of protein kinase D (PKD) 1, 2, and 3. Our protocol is useful for rapid and sensitive profiling of kinase expression levels and ATP-competitive kinase inhibitor selectivity in native proteomes.
Collapse
Affiliation(s)
- Martin Golkowski
- Department of Pharmacology, School of Medicine and Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Rama Subba Rao Vidadala
- Department of Pharmacology, School of Medicine and Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Chloe K Lombard
- Department of Pharmacology, School of Medicine and Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Hyong Won Suh
- Department of Pharmacology, School of Medicine and Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Dustin J Maly
- Department of Pharmacology, School of Medicine and Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Shao-En Ong
- Department of Pharmacology, School of Medicine and Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
18
|
Heinzlmeir S, Kudlinzki D, Sreeramulu S, Klaeger S, Gande SL, Linhard V, Wilhelm M, Qiao H, Helm D, Ruprecht B, Saxena K, Médard G, Schwalbe H, Kuster B. Chemical Proteomics and Structural Biology Define EPHA2 Inhibition by Clinical Kinase Drugs. ACS Chem Biol 2016; 11:3400-3411. [PMID: 27768280 DOI: 10.1021/acschembio.6b00709] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The receptor tyrosine kinase EPHA2 (Ephrin type-A receptor 2) plays important roles in oncogenesis, metastasis, and treatment resistance, yet therapeutic targeting, drug discovery, or investigation of EPHA2 biology is hampered by the lack of appropriate inhibitors and structural information. Here, we used chemical proteomics to survey 235 clinical kinase inhibitors for their kinase selectivity and identified 24 drugs with submicromolar affinities for EPHA2. NMR-based conformational dynamics together with nine new cocrystal structures delineated drug-EPHA2 interactions in full detail. The combination of selectivity profiling, structure determination, and kinome wide sequence alignment allowed the development of a classification system in which amino acids in the drug binding site of EPHA2 are categorized into key, scaffold, potency, and selectivity residues. This scheme should be generally applicable in kinase drug discovery, and we anticipate that the provided information will greatly facilitate the development of selective EPHA2 inhibitors in particular and the repurposing of clinical kinase inhibitors in general.
Collapse
Affiliation(s)
- Stephanie Heinzlmeir
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Denis Kudlinzki
- Center
for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, 60438 Frankfurt, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sridhar Sreeramulu
- Center
for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, 60438 Frankfurt, Germany
| | - Susan Klaeger
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Santosh Lakshmi Gande
- Center
for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, 60438 Frankfurt, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Verena Linhard
- Center
for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, 60438 Frankfurt, Germany
| | - Mathias Wilhelm
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Huichao Qiao
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Dominic Helm
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Benjamin Ruprecht
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Krishna Saxena
- Center
for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, 60438 Frankfurt, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Guillaume Médard
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Harald Schwalbe
- Center
for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, 60438 Frankfurt, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Bernhard Kuster
- Chair
of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Integrated Protein Science Munich (CIPSM), 85354 Freising, Germany
- Bavarian
Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
19
|
Mao L, Deng WW, Yu GT, Bu LL, Liu JF, Ma SR, Wu L, Kulkarni AB, Zhang WF, Sun ZJ. Inhibition of SRC family kinases reduces myeloid-derived suppressor cells in head and neck cancer. Int J Cancer 2016; 140:1173-1185. [PMID: 27798955 DOI: 10.1002/ijc.30493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 12/30/2022]
Abstract
SRC family kinases (SFKs), a group of nonreceptor tyrosine kinases, modulate multiple cellular functions, such as cell proliferation, differentiation and metabolism. SFKs display aberrant activity in progressive stages of human cancers. However, the precise role of SFKs in the head and neck squamous cell carcinoma (HNSCC) signaling network is far from clear. In this study, we found that the inhibition of SFKs activity by dasatinib effectively reduced the tumor size and population of MDSCs in the HNSCC mouse model. Molecular analysis indicates that phosphorylation of LYN, rather than SRC, was inhibited by dasatinib treatment. Next, we analyzed LYN expression by immunostaining and found that it was overexpressed in the human HNSCC specimens. Moreover, LYN expression in stromal cells positively correlated with myeloid-derived suppressor cells (MDSCs) makers CD11b and CD33 in human HNSCC. The dual positive expression of LYN in epithelial and stromal cells (EPI+ SRT+ ) was associated with unfavorable overall survival of HNSCC patients. These findings indicate that SFKs may be a potential target for an effective immunotherapy of HNSCC by decreasing MDSCs and moreover, LYN will have an impact on such therapeutic strategy.
Collapse
Affiliation(s)
- Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ashok B Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Wen-Feng Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Identification of candidate genes for congenital heart defects on proximal chromosome 8p. Sci Rep 2016; 6:36133. [PMID: 27808268 PMCID: PMC5093561 DOI: 10.1038/srep36133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
With the application of advanced molecular cytogenetic techniques, the number of patients identified as having abnormal chromosome 8p has increased progressively. Individuals with terminal 8p deletion have been extensively described in previous studies. The manifestations usually include cardiac anomalies, developmental delay/mental retardation, craniofacial abnormalities, and multiple other minor anomalies. However, some patients with proximal deletion also presented with similar phenotypic features. Here we describe a female child with an 18.5-Mb deletion at 8p11.23–p22 that include the cardiac-associated loci NKX2-6 and NRG1. Further mutation screening of these two candidate genes in 143 atrial septal defect patients, two heterozygous mutations NKX2-6 (c.1A > T) and NRG1 (c.1652G > A) were identified. The mutations were described for the first time in patients with congenital heart disease (CHD). The c.1A > T NKX2-6 generated a protein truncated by 45 amino acids with a decreased level of mRNA expression, whereas the NRG1 mutation had no significant effect on protein functions. Our findings suggest that 8p21-8p12 may be another critical region for 8p-associated CHD, and some cardiac malformations might be due to NKX2-6 haploinsufficiency. This study also links the NKX2-6 mutation to ASD for the first time, providing novel insight into the molecular underpinning of this common form of CHD.
Collapse
|
21
|
Radhakrishnan A, Nanjappa V, Raja R, Sathe G, Puttamallesh VN, Jain AP, Pinto SM, Balaji SA, Chavan S, Sahasrabuddhe NA, Mathur PP, Kumar MM, Prasad TSK, Santosh V, Sukumar G, Califano JA, Rangarajan A, Sidransky D, Pandey A, Gowda H, Chatterjee A. A dual specificity kinase, DYRK1A, as a potential therapeutic target for head and neck squamous cell carcinoma. Sci Rep 2016; 6:36132. [PMID: 27796319 PMCID: PMC5086852 DOI: 10.1038/srep36132] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022] Open
Abstract
Despite advances in clinical management, 5-year survival rate in patients with late-stage head and neck squamous cell carcinoma (HNSCC) has not improved significantly over the past decade. Targeted therapies have emerged as one of the most promising approaches to treat several malignancies. Though tyrosine phosphorylation accounts for a minority of total phosphorylation, it is critical for activation of signaling pathways and plays a significant role in driving cancers. To identify activated tyrosine kinase signaling pathways in HNSCC, we compared the phosphotyrosine profiles of a panel of HNSCC cell lines to a normal oral keratinocyte cell line. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) was one of the kinases hyperphosphorylated at Tyr-321 in all HNSCC cell lines. Inhibition of DYRK1A resulted in an increased apoptosis and decrease in invasion and colony formation ability of HNSCC cell lines. Further, administration of the small molecular inhibitor against DYRK1A in mice bearing HNSCC xenograft tumors induced regression of tumor growth. Immunohistochemical labeling of DYRK1A in primary tumor tissues using tissue microarrays revealed strong to moderate staining of DYRK1A in 97.5% (39/40) of HNSCC tissues analyzed. Taken together our results suggest that DYRK1A could be a novel therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Aneesha Radhakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Remya Raja
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Vinuth N. Puttamallesh
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Ankit P. Jain
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Sneha M. Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
| | - Sai A. Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Sandip Chavan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | | | - Premendu P. Mathur
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Mahesh M. Kumar
- Department of Neuro-Virology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - T. S. Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575018, India
| | - Vani Santosh
- Department of Pathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Geethanjali Sukumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
| | - Joseph A. Califano
- Milton J. Dance Head and Neck Center, Greater Baltimore Medical Center, Baltimore, MD 21204, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine,Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575018, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575018, India
| |
Collapse
|
22
|
Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, Joos TO, Kling S, Poetz O, Fehm T, Neubauer H, Kuster B, Templin MF. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun 2016; 7:12852. [PMID: 27659302 PMCID: PMC5036152 DOI: 10.1038/ncomms12852] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
Dissecting cellular signalling requires the analysis of large number of proteins. The DigiWest approach we describe here transfers the western blot to a bead-based microarray platform. By combining gel-based protein separation with immobilization on microspheres, hundreds of replicas of the initial blot are created, thus enabling the comprehensive analysis of limited material, such as cells collected by laser capture microdissection, and extending traditional western blotting to reach proteomic scales. The combination of molecular weight resolution, sensitivity and signal linearity on an automated platform enables the rapid quantification of hundreds of specific proteins and protein modifications in complex samples. This high-throughput western blot approach allowed us to identify and characterize alterations in cellular signal transduction that occur during the development of resistance to the kinase inhibitor Lapatinib, revealing major changes in the activation state of Ephrin-mediated signalling and a central role for p53-controlled processes. Dissecting cellular signalling requires the analysis of large numbers of proteins. Here the authors describe DigiWest, a high-throughput protein detection method that combines the concept of western and widely-used bead array systems that allows rapid quantification of hundreds of specific proteins.
Collapse
Affiliation(s)
- Fridolin Treindl
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany.,Pharmaceutical Biotechnology, Eberhard-Karls-Universität Tübingen, Tübingen, 72770 Reutlingen, Germany
| | - Benjamin Ruprecht
- Chair for Proteomics and Bioanalytics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany.,Center for Integrated Protein Science Munich, 85354 Freising, Germany
| | - Yvonne Beiter
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany.,Pharmaceutical Biotechnology, Eberhard-Karls-Universität Tübingen, Tübingen, 72770 Reutlingen, Germany
| | - Silke Schultz
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Duesseldorf, 40225 Düsseldorf, Germany
| | - Anette Döttinger
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Annette Staebler
- Department of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Thomas O Joos
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Simon Kling
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Duesseldorf, 40225 Düsseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Duesseldorf, 40225 Düsseldorf, Germany
| | - Bernhard Kuster
- Chair for Proteomics and Bioanalytics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany.,Center for Integrated Protein Science Munich, 85354 Freising, Germany.,Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technische Universität München, 85354 Freising, Germany
| | - Markus F Templin
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany.,Pharmaceutical Biotechnology, Eberhard-Karls-Universität Tübingen, Tübingen, 72770 Reutlingen, Germany
| |
Collapse
|
23
|
Ruprecht B, Zecha J, Heinzlmeir S, Médard G, Lemeer S, Kuster B. Evaluation of Kinase Activity Profiling Using Chemical Proteomics. ACS Chem Biol 2015; 10:2743-52. [PMID: 26378887 DOI: 10.1021/acschembio.5b00616] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Protein kinases are important mediators of intracellular signaling and are reversibly activated by phosphorylation. Immobilized kinase inhibitors can be used to enrich these often low-abundance proteins, to identify targets of kinase inhibitors, or to probe their selectivity. It has been suggested that the binding of kinases to affinity beads reflects a kinase's activation status, a concept that is under considerable debate. To assess the merits of the idea, we performed a series of experiments including quantitative phosphoproteomics and purification of kinases by single or mixed affinity matrices from signaling activated or resting cancer cells. The data show that mixed affinity beads largely bind kinases independent of their activation status, and experiments using individual immobilized kinase inhibitors show mixed results in terms of preference for binding the active or inactive conformation. Taken together, activity- or conformation-dependent binding to such affinity resins depends (i) on the kinase, (ii) on the affinity probe, and (iii) on the activation status of the lysate or cell. As a result, great caution should be exercised when inferring kinase activity from such binding data. The results also suggest that assaying kinase activity using binding data is restricted to a limited number of well-chosen cases.
Collapse
Affiliation(s)
- Benjamin Ruprecht
- Chair
of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenemeyer-Forum 5, 85354 Freising, Germany
- Center for Protein Science Munich (CIPSM), 85354 Freising, Germany
| | - Jana Zecha
- Chair
of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenemeyer-Forum 5, 85354 Freising, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Stephanie Heinzlmeir
- Chair
of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenemeyer-Forum 5, 85354 Freising, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Guillaume Médard
- Chair
of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenemeyer-Forum 5, 85354 Freising, Germany
| | - Simone Lemeer
- Chair
of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenemeyer-Forum 5, 85354 Freising, Germany
- Center for Protein Science Munich (CIPSM), 85354 Freising, Germany
| | - Bernhard Kuster
- Chair
of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenemeyer-Forum 5, 85354 Freising, Germany
- Center for Protein Science Munich (CIPSM), 85354 Freising, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
- Bavarian
Biomolecular Mass Spectrometry Center, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
24
|
Sirvent A, Urbach S, Roche S. Contribution of phosphoproteomics in understanding SRC signaling in normal and tumor cells. Proteomics 2015; 15:232-44. [PMID: 25403792 DOI: 10.1002/pmic.201400162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/30/2014] [Accepted: 11/12/2014] [Indexed: 01/02/2023]
Abstract
The membrane-anchored, non-receptor tyrosine kinase (non-RTK) SRC is a critical regulator of signal transduction induced by a large variety of cell-surface receptors, including RTKs that bind to growth factors to control cell growth and migration. When deregulated, SRC shows strong oncogenic activity, probably because of its capacity to promote RTK-mediated downstream signaling even in the absence of extracellular stimuli. Accordingly, SRC is frequently deregulated in human cancer and is thought to play important roles during tumorigenesis. However, our knowledge on the molecular mechanism by which SRC controls signaling is incomplete due to the limited number of key substrates identified so far. Here, we review how phosphoproteomic methods have changed our understanding of the mechanisms underlying SRC signaling in normal and tumor cells and discuss how these novel findings can be used to improve therapeutic strategies aimed at targeting SRC signaling in human cancer.
Collapse
Affiliation(s)
- Audrey Sirvent
- CNRS UMR5237, University Montpellier 1 and 2, CRBM, Montpellier, France
| | | | | |
Collapse
|
25
|
Complementary PTM Profiling of Drug Response in Human Gastric Carcinoma by Immunoaffinity and IMAC Methods with Total Proteome Analysis. Proteomes 2015; 3:160-183. [PMID: 28248267 PMCID: PMC5217380 DOI: 10.3390/proteomes3030160] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 01/14/2023] Open
Abstract
Gaining insight into normal cellular signaling and disease biology is a critical goal of proteomic analyses. The ability to perform these studies successfully to extract the maximum value and discovery of biologically relevant candidate biomarkers is therefore of primary importance. Many successful studies in the past have focused on total proteome analysis (changes at the protein level) combined with phosphorylation analysis by metal affinity enrichment (changes at the PTM level). Here, we use the gastric carcinoma cell line MKN-45 treated with the c-Met inhibitor SU11274 and PKC inhibitor staurosporine to investigate the most efficient and most comprehensive strategies for both total protein and PTM analysis. Under the conditions used, total protein analysis yielded few changes in response to either compound, while analysis of phosphorylation identified thousands of sites that changed differentially between the two treatments. Both metal affinity and antibody-based enrichments were used to assess phosphopeptide changes, and the data generated by the two methods was largely complementary (non-overlapping). Label-free quantitation of peptide peak abundances was used to accurately determine fold-changes between control and treated samples. Protein interaction network analysis allowed the data to be placed in a biologically relevant context, and follow-up validation of selected findings confirmed the accuracy of the proteomic data. Together, this study provides a framework for start-to-finish proteomic analysis of any experimental system under investigation to maximize the value of the proteomic study and yield the best chance for uncovering actionable target candidates.
Collapse
|
26
|
Möckelmann N, Kriegs M, Lörincz BB, Busch CJ, Knecht R. Molecular targeting in combination with platinum-based chemoradiotherapy in head and neck cancer treatment. Head Neck 2015; 38 Suppl 1:E2173-81. [DOI: 10.1002/hed.24031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2015] [Indexed: 01/13/2023] Open
Affiliation(s)
- Nikolaus Möckelmann
- Department of Otorhinolaryngology and Head and Neck Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Malte Kriegs
- Laboratory of Radiobiology and Experimental Radiooncology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Balazs B. Lörincz
- Department of Otorhinolaryngology and Head and Neck Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Chia-Jung Busch
- Department of Otorhinolaryngology and Head and Neck Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Rainald Knecht
- Department of Otorhinolaryngology and Head and Neck Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
27
|
Stoepker C, Ameziane N, van der Lelij P, Kooi IE, Oostra AB, Rooimans MA, van Mil SE, Brink A, Dietrich R, Balk JA, Ylstra B, Joenje H, Feller SM, Brakenhoff RH. Defects in the Fanconi Anemia Pathway and Chromatid Cohesion in Head and Neck Cancer. Cancer Res 2015; 75:3543-53. [PMID: 26122845 DOI: 10.1158/0008-5472.can-15-0528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/19/2015] [Indexed: 11/16/2022]
Abstract
Failure to repair DNA damage or defective sister chromatid cohesion, a process essential for correct chromosome segregation, can be causative of chromosomal instability (CIN), which is a hallmark of many types of cancers. We investigated how frequent this occurs in head and neck squamous cell carcinoma (HNSCC) and whether specific mechanisms or genes could be linked to these phenotypes. The genomic instability syndrome Fanconi anemia is caused by mutations in any of at least 16 genes regulating DNA interstrand crosslink (ICL) repair. Since patients with Fanconi anemia have a high risk to develop HNSCC, we investigated whether and to which extent Fanconi anemia pathway inactivation underlies CIN in HNSCC of non-Fanconi anemia individuals. We observed ICL-induced chromosomal breakage in 9 of 17 (53%) HNSCC cell lines derived from patients without Fanconi anemia. In addition, defective sister chromatid cohesion was observed in five HNSCC cell lines. Inactivation of FANCM was responsible for chromosomal breakage in one cell line, whereas in two other cell lines, somatic mutations in PDS5A or STAG2 resulted in inadequate sister chromatid cohesion. In addition, FANCF methylation was found in one cell line by screening an additional panel of 39 HNSCC cell lines. Our data demonstrate that CIN in terms of ICL-induced chromosomal breakage and defective chromatid cohesion is frequently observed in HNSCC. Inactivation of known Fanconi anemia and chromatid cohesion genes does explain CIN in the minority of cases. These findings point to phenotypes that may be highly relevant in treatment response of HNSCC.
Collapse
Affiliation(s)
- Chantal Stoepker
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Najim Ameziane
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Petra van der Lelij
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Irsan E Kooi
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Anneke B Oostra
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Martin A Rooimans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Saskia E van Mil
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Arjen Brink
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Ralf Dietrich
- German Fanconi Anemia Support Group and Research Fund, Unna-Siddinghausen, Germany
| | - Jesper A Balk
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Hans Joenje
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Stephan M Feller
- Biological Systems Architecture Group, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, United Kingdom
| | - Ruud H Brakenhoff
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Koch H, Busto MEDC, Kramer K, Médard G, Kuster B. Chemical Proteomics Uncovers EPHA2 as a Mechanism of Acquired Resistance to Small Molecule EGFR Kinase Inhibition. J Proteome Res 2015; 14:2617-25. [PMID: 25963923 DOI: 10.1021/acs.jproteome.5b00161] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) have become an important therapeutic option for treating several forms of cancer. Gefitinib, an inhibitor of the epidermal growth factor receptor (EGFR), is in clinical use for treating non-small cell lung cancer (NSCLC) harboring activating EGFR mutations. However, despite high initial response rates, many patients develop resistance to gefitinib. The molecular mechanisms of TKI resistance often remain unclear. Here, we describe a chemical proteomic approach comprising kinase affinity purification (kinobeads) and quantitative mass spectrometry for the identification of kinase inhibitor resistance mechanisms in cancer cells. We identified the previously described amplification of MET and found EPHA2 to be more than 10-fold overexpressed (p < 0.001) in gefitinib-resistant HCC827 cells suggesting a potential role in developing resistance. siRNA-mediated EPHA2 knock-down or treating cells with the multikinase inhibitor dasatinib restored sensitivity to gefitinib. Of all dasatinib targets, EPHA2 exhibited the most drastic effect (p < 0.001). In addition, EPHA2 knockdown or ephrin-A1 treatment of resistant cells decreased FAK phosphorylation and cell migration. These findings confirm EPHA2 as an actionable drug target, provide a rational basis for drug combination approaches, and indicate that chemical proteomics is broadly applicable for the discovery of kinase inhibitor resistance.
Collapse
Affiliation(s)
| | | | | | | | - Bernhard Kuster
- ¶Center for Integrated Protein Science Munich, 81377 Munich, Germany
| |
Collapse
|
29
|
Aleem E, Arceci RJ. Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol 2015; 3:16. [PMID: 25914884 PMCID: PMC4390903 DOI: 10.3389/fcell.2015.00016] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed.
Collapse
Affiliation(s)
- Eiman Aleem
- Department of Child Health, The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix Phoenix, AZ, USA ; Department of Zoology, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Robert J Arceci
- Department of Child Health, The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix Phoenix, AZ, USA
| |
Collapse
|
30
|
Abstract
Small molecule inhibitors of protein kinases are key tools for signal transduction research and represent a major class of targeted drugs. Recent developments in quantitative proteomics enable an unbiased view on kinase inhibitor selectivity and modes of action in the biological context. While chemical proteomics techniques utilizing quantitative mass spectrometry interrogate both target specificity and affinity in cellular extracts, proteome-wide phosphorylation analyses upon kinase inhibitor treatment identify signal transduction pathway and network regulation in an unbiased manner. Thus, critical information is provided to promote new insights into mechanisms of kinase signaling and their relevance for kinase inhibitor drug discovery.
Collapse
Affiliation(s)
- Henrik Daub
- Evotec (München) GmbH, Am Klopferspitz
19a, 82152 Martinsried, Germany
| |
Collapse
|
31
|
Hayano T, Yokota Y, Hosomichi K, Nakaoka H, Yoshihara K, Adachi S, Kashima K, Tsuda H, Moriya T, Tanaka K, Enomoto T, Inoue I. Molecular characterization of an intact p53 pathway subtype in high-grade serous ovarian cancer. PLoS One 2014; 9:e114491. [PMID: 25460179 PMCID: PMC4252108 DOI: 10.1371/journal.pone.0114491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/10/2014] [Indexed: 12/30/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most aggressive histological type of epithelial ovarian cancer, which is characterized by a high frequency of somatic TP53 mutations. We performed exome analyses of tumors and matched normal tissues of 34 Japanese patients with HGSOC and observed a substantial number of patients without TP53 mutation (24%, 8/34). Combined with the results of copy number variation analyses, we subdivided the 34 patients with HGSOC into subtypes designated ST1 and ST2. ST1 showed intact p53 pathway and was characterized by fewer somatic mutations and copy number alterations. In contrast, the p53 pathway was impaired in ST2, which is characterized by abundant somatic mutations and copy number alterations. Gene expression profiles combined with analyses using the Gene Ontology resource indicate the involvement of specific biological processes (mitosis and DNA helicase) that are relevant to genomic stability and cancer etiology. In particular we demonstrate the presence of a novel subtype of patients with HGSOC that is characterized by an intact p53 pathway, with limited genomic alterations and specific gene expression profiles.
Collapse
Affiliation(s)
- Takahide Hayano
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | - Yuki Yokota
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Hirofumi Nakaoka
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sosuke Adachi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsunori Kashima
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Japan
| | - Takuya Moriya
- Department of Pathology, Kawasaki Medical School, Kurashiki, Japan
| | - Kenichi Tanaka
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Niigata Medical Center Hospital, Niigata, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
32
|
Ruprecht B, Koch H, Medard G, Mundt M, Kuster B, Lemeer S. Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns. Mol Cell Proteomics 2014; 14:205-15. [PMID: 25394399 DOI: 10.1074/mcp.m114.043109] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Advances in phosphopeptide enrichment methods enable the identification of thousands of phosphopeptides from complex samples. Current offline enrichment approaches using TiO(2), Ti, and Fe immobilized metal ion affinity chromatography (IMAC) material in batch or microtip format are widely used, but they suffer from irreproducibility and compromised selectivity. To address these shortcomings, we revisited the merits of performing phosphopeptide enrichment in an HPLC column format. We found that Fe-IMAC columns enabled the selective, comprehensive, and reproducible enrichment of phosphopeptides out of complex lysates. Column enrichment did not suffer from bead-to-sample ratio issues and scaled linearly from 100 μg to 5 mg of digest. Direct measurements on an Orbitrap Velos mass spectrometer identified >7500 unique phosphopeptides with 90% selectivity and good quantitative reproducibility (median cv of 15%). The number of unique phosphopeptides could be increased to more than 14,000 when the IMAC eluate was subjected to a subsequent hydrophilic strong anion exchange separation. Fe-IMAC columns outperformed Ti-IMAC and TiO(2) in batch or tip mode in terms of phosphopeptide identification and intensity. Permutation enrichments of flow-throughs showed that all materials largely bound the same phosphopeptide species, independent of physicochemical characteristics. However, binding capacity and elution efficiency did profoundly differ among the enrichment materials and formats. As a result, the often quoted orthogonality of the materials has to be called into question. Our results strongly suggest that insufficient capacity, inefficient elution, and the stochastic nature of data-dependent acquisition in mass spectrometry are the causes of the experimentally observed complementarity. The Fe-IMAC enrichment workflow using an HPLC format developed here enables rapid and comprehensive phosphoproteome analysis that can be applied to a wide range of biological systems.
Collapse
Affiliation(s)
- Benjamin Ruprecht
- From the * Chair of Proteomics and Bioanalytics, Technische Universität München, Emil Erlenmeyer Forum 5, 85354 Freising, Germany, ¶ Center for Integrated Protein Science Munich, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | - Heiner Koch
- From the * Chair of Proteomics and Bioanalytics, Technische Universität München, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | - Guillaume Medard
- From the * Chair of Proteomics and Bioanalytics, Technische Universität München, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | - Max Mundt
- From the * Chair of Proteomics and Bioanalytics, Technische Universität München, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | - Bernhard Kuster
- From the * Chair of Proteomics and Bioanalytics, Technische Universität München, Emil Erlenmeyer Forum 5, 85354 Freising, Germany, ¶ Center for Integrated Protein Science Munich, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | - Simone Lemeer
- From the * Chair of Proteomics and Bioanalytics, Technische Universität München, Emil Erlenmeyer Forum 5, 85354 Freising, Germany, ¶ Center for Integrated Protein Science Munich, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| |
Collapse
|
33
|
Baro M, de Llobet LI, Figueras A, Skvortsova I, Mesia R, Balart J. Dasatinib worsens the effect of cetuximab in combination with fractionated radiotherapy in FaDu- and A431-derived xenografted tumours. Br J Cancer 2014; 111:1310-8. [PMID: 25077442 PMCID: PMC4183853 DOI: 10.1038/bjc.2014.432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/02/2014] [Accepted: 07/09/2014] [Indexed: 12/24/2022] Open
Abstract
Background: Cetuximab is often combined with radiotherapy in advanced SCCHN. Alternative routes bypassing inhibition of EGFR with cetuximab may overshadow the efficacy of this combination. We undertook this study to investigate a possible role of dasatinib in this scenario. Methods: The SCC5, SCC25, SCC29, FaDu and A431 cell lines were assessed in vitro for cell proliferation under cetuximab and dasatinib treatments. In FaDu and A431 cells, dasatinib plus cetuximab resulted in higher proliferation than cetuximab alone. Then, FaDu and A431 cells were implanted into subcutaneous tissue of athymic mice that were irradiated with 30 Gy in 10 fractions over 2 weeks, and treated with cetuximab and dasatinib. Tumour growth, DNA synthesis and angiogenesis were determined. The EGFR, RAS-GTP activity, phosphorylated AKT, ERK1/2, SRC protein levels and VEGF secretion were determined in vitro. Results: The addition of dasatinib to cetuximab and radiotherapy increased tumour growth, DNA synthesis and angiogenesis that were associated with RAS, AKT and ERK1/2 activation, and SRC inhibition in FaDu and A431 cells. Conclusions: In xenografts derived from these two cell lines, dasatinib did not improve the efficacy of cetuximab combined with radiotherapy. On the contrary, it worsened tumour control achieved by the combination of these two treatments.
Collapse
Affiliation(s)
- M Baro
- Laboratory of Translational Research, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain
| | - L I de Llobet
- Laboratory of Translational Research, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain
| | - A Figueras
- Laboratory of Translational Research, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain
| | - I Skvortsova
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - R Mesia
- Department of Medical Oncology, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain
| | - J Balart
- 1] Laboratory of Translational Research, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain [2] Department of Radiation Oncology, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| |
Collapse
|
34
|
Meistermann H, Gao J, Golling S, Lamerz J, Le Pogam S, Tzouros M, Sankabathula S, Gruenbaum L, Nájera I, Langen H, Klumpp K, Augustin A. A novel immuno-competitive capture mass spectrometry strategy for protein-protein interaction profiling reveals that LATS kinases regulate HCV replication through NS5A phosphorylation. Mol Cell Proteomics 2014; 13:3040-8. [PMID: 25044019 DOI: 10.1074/mcp.m113.028977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mapping protein-protein interactions is essential to fully characterize the biological function of a protein and improve our understanding of diseases. Affinity purification coupled to mass spectrometry (AP-MS) using selective antibodies against a target protein has been commonly applied to study protein complexes. However, one major limitation is a lack of specificity as a substantial part of the proposed binders is due to nonspecific interactions. Here, we describe an innovative immuno-competitive capture mass spectrometry (ICC-MS) method to allow systematic investigation of protein-protein interactions. ICC-MS markedly increases the specificity of classical immunoprecipitation (IP) by introducing a competition step between free and capturing antibody prior to IP. Instead of comparing only one experimental sample with a control, the methodology generates a 12-concentration antibody competition profile. Label-free quantitation followed by a robust statistical analysis of the data is then used to extract the cellular interactome of a protein of interest and to filter out background proteins. We applied this new approach to specifically map the interactome of hepatitis C virus (HCV) nonstructural protein 5A (NS5A) in a cellular HCV replication system and uncovered eight new NS5A-interacting protein candidates along with two previously validated binding partners. Follow-up biological validation experiments revealed that large tumor suppressor homolog 1 and 2 (LATS1 and LATS2, respectively), two closely related human protein kinases, are novel host kinases responsible for NS5A phosphorylation at a highly conserved position required for optimal HCV genome replication. These results are the first illustration of the value of ICC-MS for the analysis of endogenous protein complexes to identify biologically relevant protein-protein interactions with high specificity.
Collapse
Affiliation(s)
- Hélène Meistermann
- From the ‡Pharma Research and Early Development Department, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland and
| | - Junjun Gao
- the ¶Pharma Research and Early Development Department, F. Hoffmann-La Roche Ltd, Nutley, NJ, 07110-1199
| | - Sabrina Golling
- From the ‡Pharma Research and Early Development Department, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland and
| | - Jens Lamerz
- From the ‡Pharma Research and Early Development Department, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland and
| | - Sophie Le Pogam
- the ¶Pharma Research and Early Development Department, F. Hoffmann-La Roche Ltd, Nutley, NJ, 07110-1199
| | - Manuel Tzouros
- From the ‡Pharma Research and Early Development Department, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland and
| | - Sailaja Sankabathula
- the ¶Pharma Research and Early Development Department, F. Hoffmann-La Roche Ltd, Nutley, NJ, 07110-1199
| | - Lore Gruenbaum
- the ¶Pharma Research and Early Development Department, F. Hoffmann-La Roche Ltd, Nutley, NJ, 07110-1199
| | - Isabel Nájera
- the ¶Pharma Research and Early Development Department, F. Hoffmann-La Roche Ltd, Nutley, NJ, 07110-1199
| | - Hanno Langen
- From the ‡Pharma Research and Early Development Department, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland and
| | - Klaus Klumpp
- the ¶Pharma Research and Early Development Department, F. Hoffmann-La Roche Ltd, Nutley, NJ, 07110-1199
| | - Angélique Augustin
- From the ‡Pharma Research and Early Development Department, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland and
| |
Collapse
|
35
|
Giansanti P, Preisinger C, Huber KVM, Gridling M, Superti-Furga G, Bennett KL, Heck AJR. Evaluating the promiscuous nature of tyrosine kinase inhibitors assessed in A431 epidermoid carcinoma cells by both chemical- and phosphoproteomics. ACS Chem Biol 2014; 9:1490-8. [PMID: 24804581 DOI: 10.1021/cb500116c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deregulation of protein tyrosine kinase signaling has been linked to many diseases, most notably cancer. As a consequence, small molecule inhibitors of protein tyrosine kinases may provide powerful strategies for treatment. Following the successful introduction of imatinib in the treatment of chronic myelogenous leukemia, such drugs are also now evaluated for other types of cancer. However, many developed kinase inhibitors are not very target-specific and therefore may induce side effects. The importance of such side effects is certainly cell-proteome dependent. Understanding the all-inclusive action of a tyrosine kinase inhibitor on each individual cell-type entails the identification of potential targets, combined with monitoring the downstream effects revealing the signaling networks involved. Here, we explored a multilevel quantitative mass spectrometry-based proteomic strategy to identify the direct targets and downstream signaling effect of four tyrosine kinase inhibitors (imatinib, dasatinib, bosutinib, and nilotinib) in epidermoid carcinoma cells, as a model system for skin-cancer. More than 25 tyrosine kinases showed affinity to the drugs, with imatinib and nilotinib displaying a high specificity, especially when compared to dasatinib and bosutinib. Consequently, the latter two drugs showed a larger effect on downstream phosphotyrosine signaling. Many of the proteins affected are key regulators in cell adhesion and invasion. Our data represents a multiplexed view on the promiscuous action of certain tyrosine kinase inhibitors that needs to be taking into consideration prior to the application of these drugs in the treatment of different forms of cancer.
Collapse
Affiliation(s)
- Piero Giansanti
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Christian Preisinger
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kilian V. M. Huber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Manuela Gridling
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Keiryn L. Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics
Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
36
|
Meirelles GV, Perez AM, de Souza EE, Basei FL, Papa PF, Melo Hanchuk TD, Cardoso VB, Kobarg J. “Stop Ne(c)king around”: How interactomics contributes to functionally characterize Nek family kinases. World J Biol Chem 2014; 5:141-160. [PMID: 24921005 PMCID: PMC4050109 DOI: 10.4331/wjbc.v5.i2.141] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/07/2014] [Accepted: 02/18/2014] [Indexed: 02/05/2023] Open
Abstract
Aside from Polo and Aurora, a third but less studied kinase family involved in mitosis regulation is the never in mitosis-gene A (NIMA)-related kinases (Neks). The founding member of this family is the sole member NIMA of Aspergillus nidulans, which is crucial for the initiation of mitosis in that organism. All 11 human Neks have been functionally assigned to one of the three core functions established for this family in mammals: (1) centrioles/mitosis; (2) primary ciliary function/ciliopathies; and (3) DNA damage response (DDR). Recent findings, especially on Nek 1 and 8, showed however, that several Neks participate in parallel in at least two of these contexts: primary ciliary function and DDR. In the core section of this in-depth review, we report the current detailed functional knowledge on each of the 11 Neks. In the discussion, we return to the cross-connections among Neks and point out how our and other groups’ functional and interactomics studies revealed that most Neks interact with protein partners associated with two if not all three of the functional contexts. We then raise the hypothesis that Neks may be the connecting regulatory elements that allow the cell to fine tune and synchronize the cellular events associated with these three core functions. The new and exciting findings on the Nek family open new perspectives and should allow the Neks to finally claim the attention they deserve in the field of kinases and cell cycle biology.
Collapse
|
37
|
Ku X, Heinzlmeir S, Helm D, Médard G, Kuster B. New affinity probe targeting VEGF receptors for kinase inhibitor selectivity profiling by chemical proteomics. J Proteome Res 2014; 13:2445-52. [PMID: 24712744 DOI: 10.1021/pr401247t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solid tumors are dependent for growth on nutrients and the supply of oxygen, which they often acquire via neoangiogenesis. Vascular endothelial growth factors and the corresponding receptors (VEGFRs) play central roles in this process, and consequently, the blockade of this pathway is one therapeutic strategy for cancer treatment. A number of small molecules inhibiting VEGFR inhibitors have been developed for clinical use, and a comprehensive view of target selectivity is important to assess the therapeutic as well as risk potential of a drug molecule. Recent advances in mass spectrometry-based chemical proteomics allow analyses of drug-target interactions under close-to-physiological conditions, and in this study, we report on the design, synthesis, and application of a small molecule affinity probe as a tool for the selectivity profiling of VEGFR and other kinase inhibitors. The probe is capable of binding >132 protein kinases, including angiokinases such as VEGFRs, PDGFRs, and c-KIT from lysates of cancer cell lines or human placenta tissue. Combining the new probe with Kinobeads in competitive binding assays, we were able to identify nanomolar off-targets of the VEGFR/PDGFR inhibitors pazopanib and axitinib. Because of its broad binding spectrum, the developed chemical tool can be generically used for the discovery of kinase inhibitor targets, which may contribute to a more comprehensive understanding of the mechanisms of action of such drugs.
Collapse
Affiliation(s)
- Xin Ku
- Chair for Proteomics and Bioanalytics, Technische Universität München , Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | | | | | | | | |
Collapse
|
38
|
Bowles DW, Diamond JR, Lam ET, Weekes CD, Astling DP, Anderson RT, Leong S, Gore L, Varella-Garcia M, Vogler BW, Keysar SB, Freas E, Aisner DL, Ren C, Tan AC, Wilhelm F, Maniar M, Eckhardt SG, Messersmith WA, Jimeno A. Phase I study of oral rigosertib (ON 01910.Na), a dual inhibitor of the PI3K and Plk1 pathways, in adult patients with advanced solid malignancies. Clin Cancer Res 2014; 20:1656-65. [PMID: 24493827 PMCID: PMC4160109 DOI: 10.1158/1078-0432.ccr-13-2506] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE To determine the pharmacokinetics (PK), maximum tolerated dose (MTD), safety, and antitumor activity of an oral formulation of rigosertib, a dual phosphoinositide 3-kinase (PI3K) and polo-like kinase 1 (Plk1) pathway inhibitor, in patients with advanced solid malignancies. EXPERIMENTAL DESIGN Patients with advanced solid malignancies received rigosertib twice daily continuously in 21-day cycles. Doses were escalated until intolerable grade ≥2 toxicities, at which point the previous dose level was expanded to define the MTD. All patients were assessed for safety, PK, and response. Urinary PK were performed at the MTD. Archival tumors were assessed for potential molecular biomarkers with multiplex mutation testing. A subset of squamous cell carcinomas (SCC) underwent exome sequencing. RESULTS Forty-eight patients received a median of 2 cycles of therapy at 5 dose levels. Rigosertib exposure increased with escalating doses. Dose-limiting toxicities were hematuria and dysuria. The most common grade ≥2 drug-related toxicities involved urothelial irritation. The MTD is 560 mg twice daily. Activity was seen in head and neck SCCs (1 complete response, 1 partial response) and stable disease for ≥12 weeks was observed in 8 additional patients. Tumors experiencing ≥partial response had PI3K pathway activation, inactivated p53, and unique variants in ROBO3 and FAT1, two genes interacting with the Wnt/β-catenin pathway. CONCLUSIONS The recommended phase II dose of oral rigosertib is 560 mg twice daily given continuously. Urinary toxicity is the dose-limiting and most common toxicity. Alterations in PI3K, p53, and Wnt/β-catenin pathway signaling should be investigated as potential biomarkers of response in future trials.
Collapse
Affiliation(s)
| | | | - Elaine T. Lam
- Department of Medicine, Division of Medical Oncology
| | | | | | | | - Stephen Leong
- Department of Medicine, Division of Medical Oncology
| | - Lia Gore
- Department of Medicine, Division of Medical Oncology
| | | | | | | | | | - Dara L. Aisner
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Chen Ren
- Onconova Therapeutics Inc, Newtown, Pennsylvania
| | - Aik-Chook Tan
- Department of Medicine, Division of Medical Oncology
| | | | - Manoj Maniar
- Onconova Therapeutics Inc, Newtown, Pennsylvania
| | | | | | | |
Collapse
|
39
|
Staunton L, Clancy T, Tonry C, Hernández B, Ademowo S, Dharsee M, Evans K, Parnell AC, Watson RW, Tasken KA, Pennington SR. Protein Quantification by MRM for Biomarker Validation. QUANTITATIVE PROTEOMICS 2014. [DOI: 10.1039/9781782626985-00277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this chapter we describe how mass spectrometry-based quantitative protein measurements by multiple reaction monitoring (MRM) have opened up the opportunity for the assembly of large panels of candidate protein biomarkers that can be simultaneously validated in large clinical cohorts to identify diagnostic protein biomarker signatures. We outline a workflow in which candidate protein biomarker panels are initially assembled from multiple diverse sources of discovery data, including proteomics and transcriptomics experiments, as well as from candidates found in the literature. Subsequently, the individual candidates in these large panels may be prioritised by application of a range of bioinformatics tools to generate a refined panel for which MRM assays may be developed. We describe a process for MRM assay design and implementation, and illustrate how the data generated from these multiplexed MRM measurements of prioritised candidates may be subjected to a range of statistical tools to create robust biomarker signatures for further clinical validation in large patient sample cohorts. Through this overall approach MRM has the potential to not only support individual biomarker validation but also facilitate the development of clinically useful protein biomarker signatures.
Collapse
Affiliation(s)
- L. Staunton
- UCD Conway Institute, School of Medicine and Medical Science, University College Dublin Dublin 4 Ireland
| | - T. Clancy
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Norway
| | - C. Tonry
- UCD Conway Institute, School of Medicine and Medical Science, University College Dublin Dublin 4 Ireland
| | - B. Hernández
- UCD Conway Institute, School of Medicine and Medical Science, University College Dublin Dublin 4 Ireland
| | - S. Ademowo
- UCD Conway Institute, School of Medicine and Medical Science, University College Dublin Dublin 4 Ireland
| | - M. Dharsee
- Ontario Cancer Biomarker Network Toronto Ontario M5A 2K3 Canada
| | - K. Evans
- Ontario Cancer Biomarker Network Toronto Ontario M5A 2K3 Canada
| | - A. C. Parnell
- School of Mathematical Sciences, University College Dublin Dublin 4 Ireland
| | - R. W. Watson
- UCD Conway Institute, School of Medicine and Medical Science, University College Dublin Dublin 4 Ireland
| | - K. A. Tasken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Norway
| | - S. R. Pennington
- UCD Conway Institute, School of Medicine and Medical Science, University College Dublin Dublin 4 Ireland
| |
Collapse
|
40
|
Guo S, Zou J, Wang G. Advances in the proteomic discovery of novel therapeutic targets in cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1259-71. [PMID: 24187485 PMCID: PMC3810204 DOI: 10.2147/dddt.s52216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed.
Collapse
Affiliation(s)
- Shanchun Guo
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Clark Atlanta University, Atlanta, GA, USA
| | | | | |
Collapse
|
41
|
Foerster S, Kacprowski T, Dhople VM, Hammer E, Herzog S, Saafan H, Bien-Möller S, Albrecht M, Völker U, Ritter CA. Characterization of the EGFR interactome reveals associated protein complex networks and intracellular receptor dynamics. Proteomics 2013; 13:3131-44. [PMID: 23956138 DOI: 10.1002/pmic.201300154] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/21/2013] [Accepted: 07/26/2013] [Indexed: 11/05/2022]
Abstract
Growth factor receptor mediated signaling is meanwhile recognized as a complex signaling network, which is initiated by recruiting specific patterns of adaptor proteins to the intracellular domain of epidermal growth factor receptor (EGFR). Approaches to globally identify EGFR-binding proteins are required to elucidate this network. We affinity-purified EGFR with its interacting proteins by coprecipitation from lysates of A431 cells. A total of 183 proteins were repeatedly detected in high-resolution MS measurements. For 15 of these, direct interactions with EGFR were listed in the iRefIndex interaction database, including Grb2, shc-1, SOS1 and 2, STAT 1 and 3, AP2, UBS3B, and ERRFI. The newly developed Cytoscape plugin ModuleGraph allowed retrieving and visualizing 93 well-described protein complexes that contained at least one of the proteins found to interact with EGFR in our experiments. Abundances of 14 proteins were modulated more than twofold upon EGFR activation whereof clathrin-associated adaptor complex AP-2 showed 4.6-fold enrichment. These proteins were further annotated with different cellular compartments. Finally, interactions of AP-2 proteins and the newly discovered interaction of CIP2A could be verified. In conclusion, a powerful technique is presented that allowed identification and quantitative assessment of the EGFR interactome to provide further insight into EGFR signaling.
Collapse
Affiliation(s)
- Sarah Foerster
- Department of Clinical Pharmacy, Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dai W, Li Y, Zhou Q, Xu Z, Sun C, Tan X, Lu L. Cetuximab inhibits oral squamous cell carcinoma invasion and metastasis via degradation of epidermal growth factor receptor. J Oral Pathol Med 2013; 43:250-7. [PMID: 24020947 DOI: 10.1111/jop.12116] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2013] [Indexed: 11/28/2022]
Abstract
Cetuximab (Erbitux, C225) is a chimeric monoclonal antibody that binds to the extracellular domain of epidermal growth factor receptor (EGFR), inhibiting tumor growth, invasion, angiogenesis and metastasis. However, the mechanisms underlying the effect of Cetuximab in human oral squamous cell carcinoma (OSCC) remain unclear. Here, we report that Cetuximab modulates EGFR protein stability through the ubiquitin/proteasome pathway, resulting in the inhibition of human OSCC growth. Cetuximab significantly inhibited the migration and invasion of human OSCC cells by blocking epithelial/mesenchymal transition (EMT) and the AKT and ERK pathways. Furthermore, Cetuximab-inhibited cell growth by modulating the expression of integrin β5. Taken together, these results provide novel insights into the mechanism of Cetuximab action and suggest potential therapeutic strategies for OSCC.
Collapse
Affiliation(s)
- Wei Dai
- Department of Oromaxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Megger DA, Bracht T, Meyer HE, Sitek B. Label-free quantification in clinical proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1581-90. [DOI: 10.1016/j.bbapap.2013.04.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 12/31/2022]
|
44
|
Gholami A, Hahne H, Wu Z, Auer F, Meng C, Wilhelm M, Kuster B. Global Proteome Analysis of the NCI-60 Cell Line Panel. Cell Rep 2013; 4:609-20. [DOI: 10.1016/j.celrep.2013.07.018] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/23/2013] [Accepted: 07/18/2013] [Indexed: 12/12/2022] Open
|
45
|
Pachl F, Plattner P, Ruprecht B, Médard G, Sewald N, Kuster B. Characterization of a chemical affinity probe targeting Akt kinases. J Proteome Res 2013; 12:3792-800. [PMID: 23795919 DOI: 10.1021/pr400455j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein kinases are key regulators of cellular processes, and aberrant function is often associated with human disease. Consequently, kinases represent an important class of therapeutic targets and about 20 kinase inhibitors (KIs) are in clinical use today. Detailed knowledge about the selectivity of KIs is important for the correct interpretation of their pharmacological and systems biological effects. Chemical proteomic approaches for systematic kinase inhibitor selectivity profiling have emerged as important molecular tools in this regard, but the coverage of the human kinome is still incomplete. Here, we describe a new affinity probe targeting Akt and many other members of the AGC kinase family that considerably extends the scope of KI profiling by chemical proteomics. In combination with the previously published kinobeads, the synthesized probe was applied to selectivity profiling of the Akt inhibitors GSK690693 and GSK2141795 in human cancer cells. The results confirmed the inhibition of all Akt isoforms and of a number of known as well as CDC42BPB as a novel putative target for GSK690693. This work also established, for the first time, the kinase selectivity profile of the clinical phase I drug GSK2141795 and identified PRKG1 as a low nanomolar kinase target as well as the ATP-dependent 5'-3' DNA helicase ERCC2 as a potential new non-kinase off-target.
Collapse
Affiliation(s)
- Fiona Pachl
- Chair for Proteomics and Bioanalytics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Cooper MJ, Cox NJ, Zimmerman EI, Dewar BJ, Duncan JS, Whittle MC, Nguyen TA, Jones LS, Ghose Roy S, Smalley DM, Kuan PF, Richards KL, Christopherson RI, Jin J, Frye SV, Johnson GL, Baldwin AS, Graves LM. Application of multiplexed kinase inhibitor beads to study kinome adaptations in drug-resistant leukemia. PLoS One 2013; 8:e66755. [PMID: 23826126 PMCID: PMC3691232 DOI: 10.1371/journal.pone.0066755] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/12/2013] [Indexed: 12/26/2022] Open
Abstract
Protein kinases play key roles in oncogenic signaling and are a major focus in the development of targeted cancer therapies. Imatinib, a BCR-Abl tyrosine kinase inhibitor, is a successful front-line treatment for chronic myelogenous leukemia (CML). However, resistance to imatinib may be acquired by BCR-Abl mutations or hyperactivation of Src family kinases such as Lyn. We have used multiplexed kinase inhibitor beads (MIBs) and quantitative mass spectrometry (MS) to compare kinase expression and activity in an imatinib-resistant (MYL-R) and -sensitive (MYL) cell model of CML. Using MIB/MS, expression and activity changes of over 150 kinases were quantitatively measured from various protein kinase families. Statistical analysis of experimental replicates assigned significance to 35 of these kinases, referred to as the MYL-R kinome profile. MIB/MS and immunoblotting confirmed the over-expression and activation of Lyn in MYL-R cells and identified additional kinases with increased (MEK, ERK, IKKα, PKCβ, NEK9) or decreased (Abl, Kit, JNK, ATM, Yes) abundance or activity. Inhibiting Lyn with dasatinib or by shRNA-mediated knockdown reduced the phosphorylation of MEK and IKKα. Because MYL-R cells showed elevated NF-κB signaling relative to MYL cells, as demonstrated by increased IκBα and IL-6 mRNA expression, we tested the effects of an IKK inhibitor (BAY 65-1942). MIB/MS and immunoblotting revealed that BAY 65-1942 increased MEK/ERK signaling and that this increase was prevented by co-treatment with a MEK inhibitor (AZD6244). Furthermore, the combined inhibition of MEK and IKKα resulted in reduced IL-6 mRNA expression, synergistic loss of cell viability and increased apoptosis. Thus, MIB/MS analysis identified MEK and IKKα as important downstream targets of Lyn, suggesting that co-targeting these kinases may provide a unique strategy to inhibit Lyn-dependent imatinib-resistant CML. These results demonstrate the utility of MIB/MS as a tool to identify dysregulated kinases and to interrogate kinome dynamics as cells respond to targeted kinase inhibition.
Collapse
Affiliation(s)
- Matthew J. Cooper
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Nathan J. Cox
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Eric I. Zimmerman
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brian J. Dewar
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - James S. Duncan
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Martin C. Whittle
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Thien A. Nguyen
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lauren S. Jones
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sreerupa Ghose Roy
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David M. Smalley
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Pei Fen Kuan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kristy L. Richards
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | | - Jian Jin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Gary L. Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lee M. Graves
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
47
|
Guertin AD, Li J, Liu Y, Hurd MS, Schuller AG, Long B, Hirsch HA, Feldman I, Benita Y, Toniatti C, Zawel L, Fawell SE, Gilliland DG, Shumway SD. Preclinical evaluation of the WEE1 inhibitor MK-1775 as single-agent anticancer therapy. Mol Cancer Ther 2013; 12:1442-52. [PMID: 23699655 DOI: 10.1158/1535-7163.mct-13-0025] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibition of the DNA damage checkpoint kinase WEE1 potentiates genotoxic chemotherapies by abrogating cell-cycle arrest and proper DNA repair. However, WEE1 is also essential for unperturbed cell division in the absence of extrinsic insult. Here, we investigate the anticancer potential of a WEE1 inhibitor, independent of chemotherapy, and explore a possible cellular context underlying sensitivity to WEE1 inhibition. We show that MK-1775, a potent and selective ATP-competitive inhibitor of WEE1, is cytotoxic across a broad panel of tumor cell lines and induces DNA double-strand breaks. MK-1775-induced DNA damage occurs without added chemotherapy or radiation in S-phase cells and relies on active DNA replication. At tolerated doses, MK-1775 treatment leads to xenograft tumor growth inhibition or regression. To begin addressing potential response markers for MK-1775 monotherapy, we focused on PKMYT1, a kinase functionally related to WEE1. Knockdown of PKMYT1 lowers the EC(50) of MK-1775 by five-fold but has no effect on the cell-based response to other cytotoxic drugs. In addition, knockdown of PKMYT1 increases markers of DNA damage, γH2AX and pCHK1(S345), induced by MK-1775. In a post hoc analysis of 305 cell lines treated with MK-1775, we found that expression of PKMYT1 was below average in 73% of the 33 most sensitive cell lines. Our findings provide rationale for WEE1 inhibition as a potent anticancer therapy independent of a genotoxic partner and suggest that low PKMYT1 expression could serve as an enrichment biomarker for MK-1775 sensitivity.
Collapse
Affiliation(s)
- Amy D Guertin
- Oncology Biology, Merck Research Laboratories, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Serum proteomics in biomedical research: a systematic review. Appl Biochem Biotechnol 2013; 170:774-86. [PMID: 23609910 DOI: 10.1007/s12010-013-0238-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 04/11/2013] [Indexed: 12/22/2022]
Abstract
Proteins that are important indicators of physiological or pathological states may contribute to the early diagnosis of disease, which may provide a basis for identifying the underlying mechanism of disease development. Serum, contains an abundance of proteins, offers an easy and inexpensive approach for disease detection and possesses a high potential to revolutionize the diagnostics. These differentially expressed proteins in serum have become an important role to monitoring the state for disease. Availability of emerging proteomic techniques gives optimism that serum can eventually be placed as a biomedium for clinical diagnostics. Advancements have benefited biomarker research to the point where serum is now recognized as an excellent diagnostic medium for the detection of disease. Comprehensive proteome of human serum fluid with high accuracy and availability has the potential to open new doors for disease biomarker discovery and for disease diagnostics, providing insights useful for future study. Thus, this review presents an overview of the value of serum as a credible diagnostic tool, and we aim to summarize the proteomic technologies currently used for global analysis of serum proteins and to elaborate on the application of serum proteomics to the discovery of disease biomarkers, and discuss some of the critical challenges and perspectives for this emerging field.
Collapse
|
49
|
Lemeer S, Zörgiebel C, Ruprecht B, Kohl K, Kuster B. Comparing immobilized kinase inhibitors and covalent ATP probes for proteomic profiling of kinase expression and drug selectivity. J Proteome Res 2013; 12:1723-31. [PMID: 23495751 DOI: 10.1021/pr301073j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Kinases are involved in the regulation of many cellular processes and aberrant kinase signaling has been implicated in human disease. As a consequence, kinases are attractive drug targets. Assessing kinase function and drug selectivity in a more physiological context is challenging and often hampered by the generally low expression level of kinases and the extensive post-translation modification in vivo. Kinase drug selectivity screens by chemical proteomics have gained attention because they allow the profiling of hundreds of kinases against one drug at the same time. Here, we directly compared two such methods, notably, immobilized broad spectrum kinase inhibitors (kinobeads) and active site labeling using desthiobiotin-ATP and -ADP probes. Affinity purification of ∼ 100 kinases by either kinobeads or ATP/ADP probes was readily achieved using 1 mg of cellular protein. Bioinformatic analysis revealed a high degree of complementarity of the two techniques. Kinobeads covered the Tyrosine Kinase family particularly well and ATP probes enriched higher numbers of STE family kinases. A consecutive combination of both enrichment strategies therefore allowed for the coverage of a larger part of the kinome than any one technique alone. While kinobeads are very selective for kinases, the ATP/ADP probes also enriched a large number of other nucleotide binding proteins. Both methods were applied to the selectivity profiling of the small molecular Aurora kinase inhibitor tozasertib in K562 cells. Our data confirmed Aurora A, B, and BCR-ABL as the main targets of tozasertib and identified TNK1, STK2, RPS6KA1, and RPS6KA3 as submicromolar off targets.
Collapse
Affiliation(s)
- Simone Lemeer
- Chair of Proteomics and Bioanalytics, Technische Universität München , Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | | | | | | | | |
Collapse
|
50
|
Wang K, Yang T, Wu Q, Zhao X, Nice EC, Huang C. Chemistry-based functional proteomics for drug target deconvolution. Expert Rev Proteomics 2013; 9:293-310. [PMID: 22809208 DOI: 10.1586/epr.12.19] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drug target deconvolution, a process that identifies targets to small molecules in complex biological samples, which underlie the biological responses that are observed when a drug is administered, plays an important role in current drug discovery. Despite the fact that genomics and proteomics have provided a flood of information that contributes to the progress of drug target identification and validation, the current approach to drug target deconvolution still poses dilemmas. Chemistry-based functional proteomics, a multidisciplinary strategy, has become the preferred method of choice to deconvolute drug target pools, based on direct interactions between small molecules and their protein targets. This approach has already identified a broad panel of previously undefined enzymes with potential as drug targets and defined targets that can rationalize side effects and toxicity for new drug candidates and existing therapeutics. Herein, the authors discuss both activity-based protein profiling and compound-centric chemical proteomics approaches used in chemistry-based functional proteomics and their applications for the identification and characterization of small molecular targets.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, PR China
| | | | | | | | | | | |
Collapse
|