1
|
Budsayapanpong V, Amornlertwatana Y, Konguthaithip G, Watcharakhom S, Intui K, Chaichana J, Khamenkhetkarn M, Jaikang C. Metabolomic insights into methamphetamine exposure: 1H-NMR-based urinary biomarker identification and pathway disruption. Chem Biol Interact 2025; 412:111449. [PMID: 40024497 DOI: 10.1016/j.cbi.2025.111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Affiliation(s)
- Varat Budsayapanpong
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yutti Amornlertwatana
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Giatgong Konguthaithip
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Somlada Watcharakhom
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kanicnan Intui
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jatuporn Chaichana
- Toxicology Section, Regional Medical Science Center 1 Chiang Mai 191 Tumbon Don Keaw, Ampher Mae Rim, Chiang Mai, 50180, Thailand
| | - Manee Khamenkhetkarn
- Toxicology Section, Regional Medical Science Center 1 Chiang Mai 191 Tumbon Don Keaw, Ampher Mae Rim, Chiang Mai, 50180, Thailand
| | - Churdsak Jaikang
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Cui M, Guo Q, Zhao S, Liu X, Yang C, Liu P, Wang L. An untargeted comparative metabolomics analysis of infants with and without late-onset breast milk jaundice. PLoS One 2024; 19:e0308710. [PMID: 39133689 PMCID: PMC11318923 DOI: 10.1371/journal.pone.0308710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Late-onset breast milk jaundice (LBMJ) is a common form of hyperbilirubinemia, which can result in serious complications for newborns with persistently high bilirubin levels. The aim of this study was to investigate the differences in fecal metabolites between breastfed infants with and without LBMJ in order to elucidate potential biological mechanisms. METHODS Biological samples were collected from 12 infants with LBMJ and 12 healthy individuals. Ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS) was utilized for non-targeted determination of fecal metabolites. Principal components analysis (PCA), cluster analysis, and differential metabolite analysis were performed in both positive ion mode and negative ion mode for the two groups. Additionally, the KEGG database was employed to comprehensively analyze the pathways of differential metabolites. RESULTS There were no significant differences in maternal and neonatal demographic characteristics between the two groups (p > 0.05). The results of PCA and cluster heat map analysis in both modes showed that there were significant differences in metabolites between the two groups. Among 751 differential metabolites (DMs) detected in positive ion mode, 720 were up-regulated in the case group while 31 were down-regulated. In negative ion mode, 1891 DMs were detected, including 817 up-regulated metabolites and 1074 down-regulated metabolites in the case group. Analysis of differential metabolic pathways showed that the DMs of the two groups were mainly annotated and enriched in Biotin metabolism, N-Glycan biosynthesis, Taurine and hypotaurine metabolism, Pyrimidine metabolism, and Pentose and glucuronate interconversions. CONCLUSION Significant differences exist in fecal metabolites between LBMJ infants and healthy controls. The study of differential metabolic pathways provides insights into the mechanism of LBMJ.
Collapse
Affiliation(s)
- Mingxuan Cui
- Department of Clinical Nutrition, Peking University People’s Hospital, Beijing, China
| | - Qianying Guo
- Department of Clinical Nutrition, Peking University People’s Hospital, Beijing, China
| | - Shilong Zhao
- Department of Clinical Nutrition, Peking University People’s Hospital, Beijing, China
| | - Xinran Liu
- Department of Clinical Nutrition, Peking University People’s Hospital, Beijing, China
| | - Chen Yang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing, China
| | - Peng Liu
- Department of Clinical Nutrition, Peking University People’s Hospital, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
3
|
AlMalki RH, Al-Nasrallah HK, Aldossry A, Barnawi R, Al-Khaldi S, Almozyan S, Al-Ansari MM, Ghebeh H, Abdel Rahman AM, Al-Alwan M. Comparative Analysis of Breast Cancer Metabolomes Highlights Fascin's Central Role in Regulating Key Pathways Related to Disease Progression. Int J Mol Sci 2024; 25:7891. [PMID: 39063133 PMCID: PMC11277536 DOI: 10.3390/ijms25147891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Omics technologies provide useful tools for the identification of novel biomarkers in many diseases, including breast cancer, which is the most diagnosed cancer in women worldwide. We and others have reported a central role for the actin-bundling protein (fascin) in regulating breast cancer disease progression at different levels. However, whether fascin expression promotes metabolic molecules that could predict disease progression has not been fully elucidated. Here, fascin expression was manipulated via knockdown (fascinKD+NORF) and rescue (fascinKD+FORF) in the naturally fascin-positive (fascinpos+NORF) MDA-MB-231 breast cancer cells. Whether fascin dysregulates metabolic profiles that are associated with disease progression was assessed using untargeted metabolomics analyses via liquid chromatography-mass spectrometry. Overall, 12,226 metabolic features were detected in the tested cell pellets. Fascinpos+NORF cell pellets showed 2510 and 3804 significantly dysregulated metabolites compared to their fascinKD+NORF counterparts. Fascin rescue (fascinKD+FORF) revealed 2710 significantly dysregulated cellular metabolites compared to fascinKD+NORF counterparts. A total of 101 overlapped cellular metabolites between fascinKD+FORF and fascinpos+NORF were significantly dysregulated in the fascinKD+NORF cells. Analysis of the significantly dysregulated metabolites by fascin expression revealed their involvement in the metabolism of sphingolipid, phenylalanine, tyrosine, and tryptophan biosynthesis, and pantothenate and CoA biosynthesis, which are critical pathways for breast cancer progression. Our findings of fascin-mediated alteration of metabolic pathways could be used as putative poor prognostic biomarkers and highlight other underlying mechanisms of fascin contribution to breast cancer progression.
Collapse
Affiliation(s)
- Reem H. AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Huda K. Al-Nasrallah
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (H.K.A.-N.); (A.A.); (R.B.); (S.A.-K.); (S.A.); (H.G.)
| | - Alanoud Aldossry
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (H.K.A.-N.); (A.A.); (R.B.); (S.A.-K.); (S.A.); (H.G.)
| | - Rayanah Barnawi
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (H.K.A.-N.); (A.A.); (R.B.); (S.A.-K.); (S.A.); (H.G.)
| | - Samiyah Al-Khaldi
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (H.K.A.-N.); (A.A.); (R.B.); (S.A.-K.); (S.A.); (H.G.)
- Applied Genomics Technologies Institute, Health Sector, King Abdulaziz City for Sciences and Technology, Riyadh 11442, Saudi Arabia
| | - Sheema Almozyan
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (H.K.A.-N.); (A.A.); (R.B.); (S.A.-K.); (S.A.); (H.G.)
| | - Mysoon M. Al-Ansari
- Department of Molecular Oncology, Cancer Biology & Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hazem Ghebeh
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (H.K.A.-N.); (A.A.); (R.B.); (S.A.-K.); (S.A.); (H.G.)
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Monther Al-Alwan
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (H.K.A.-N.); (A.A.); (R.B.); (S.A.-K.); (S.A.); (H.G.)
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
4
|
Liu B, Du Z, Zhang W, Guo X, Lu Y, Jiang Y, Tu P. A pseudo-targeted metabolomics for discovery of potential biomarkers of cardiac hypertrophy in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1240:124133. [PMID: 38733887 DOI: 10.1016/j.jchromb.2024.124133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/07/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
Cardiac hypertrophy (CH) is one of the stages in the occurrence and development of severe cardiovascular diseases, and exploring its biomarkers is beneficial for delaying the progression of severe cardiovascular diseases. In this research, we established a comprehensive and highly efficient pseudotargeted metabolomics method, which demonstrated a superior capacity to identify differential metabolites when compared to traditionaluntargeted metabolomics. The intra/inter-day precision and reproducibility results proved the method is reliable and precise. The established method was then applied to seek the potential differentiated metabolic biomarkers of cardiac hypertrophy (CH) rats, and oxylipins, phosphorylcholine (PC), lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE), Krebs cycle intermediates, carnitines, amino acids, and bile acids were disclosed to be the possible differentiate components. Their metabolic pathway analysis revealed that the potential metabolic alterations in CH rats were mainly associated with phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arachidonic acid metabolism, citrate cycle, glyoxylate and dicarboxylate metabolism, and tyrosine metabolism. In sum, this research provided a comprehensiveand reliable LC-MS/MS MRM platform for pseudo-targeted metabolomics investigation of disease condition, and some interesting potential biomarkers were disclosed for CH, which merit further exploration in the future.
Collapse
Affiliation(s)
- Bing Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Zhiyong Du
- National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wenxin Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiaoyu Guo
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Yingyuan Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| | - Yong Jiang
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| | - Pengfei Tu
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| |
Collapse
|
5
|
Wang M, Yin F, Kong L, Yang L, Sun H, Sun Y, Yan G, Han Y, Wang X. Chinmedomics: a potent tool for the evaluation of traditional Chinese medicine efficacy and identification of its active components. Chin Med 2024; 19:47. [PMID: 38481256 PMCID: PMC10935806 DOI: 10.1186/s13020-024-00917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
As an important part of medical science, Traditional Chinese Medicine (TCM) attracts much public attention due to its multi-target and multi-pathway characteristics in treating diseases. However, the limitations of traditional research methods pose a dilemma for the evaluation of clinical efficacy, the discovery of active ingredients and the elucidation of the mechanism of action. Therefore, innovative approaches that are in line with the characteristics of TCM theory and clinical practice are urgently needed. Chinmendomics, a newly emerging strategy for evaluating the efficacy of TCM, is proposed. This strategy combines systems biology, serum pharmacochemistry of TCM and bioinformatics to evaluate the efficacy of TCM with a holistic view by accurately identifying syndrome biomarkers and monitoring their complex metabolic processes intervened by TCM, and finding the agents associated with the metabolic course of pharmacodynamic biomarkers by constructing a bioinformatics-based correlation network model to further reveal the interaction between agents and pharmacodynamic targets. In this article, we review the recent progress of Chinmedomics to promote its application in the modernisation and internationalisation of TCM.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
6
|
Lu Y, Zhao C, Wang C, Cai H, Hu Y, Chen L, Yu S, Zhu H, Liu P, Wan'e W, Zhang H. The effect and mechanism of Qingre Huashi formula in the treatment of chronic hepatitis B with Gan-dan-shi-Re syndrome: An integrated transcriptomic and targeted metabolomic analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117092. [PMID: 37634751 DOI: 10.1016/j.jep.2023.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingre Huashi (QRHS) formula is an empirical prescription for the treatment of Gan-Dan-Shi-Re syndrome (GDSR) syndrome in traditional Chinese medicine (TCM). GDSR is one of the typical TCM syndromes in chronic hepatitis B (CHB). However, little is known about the mechanism of the QRHS formula in treating CHB patients with GDSR. The biological basis of GDSR also remains largely unknown. AIM OF THE STUDY GDSR mostly occurs in the acute and early stages of chronic liver disease. Effectively alleviating GDSR stalls disease development and benefits patients. The purpose of this study was to explore the molecular basis of GDSR in CHB and then study the mechanism of the QRHS formula treating GDSR using transcriptomics and metabolomics. MATERIALS AND METHODS The transcriptome and metabolome of CHB patients with GDSR syndrome were detected using RNA microarray combined with ultra-high performance liquid chromatography/mass spectrometry and information mining. The potential biomarkers were identified from differentially expressed genes and metabolites, and the metabolic pathway was analyzed. We also investigated the callback of metabolic biomarkers after treatment with the QRHS formula, an empirical prescription for the treatment of GDSR syndrome. RT-PCR analysis was carried out in an independent patient cohort of CHB for validation. RESULTS Four candidate genes-GPT2, HK2, DDIT3, and HIF1A-and 14 candidate metabolic biomarkers, including L-alpha-aminobutyric acid, selenomethionine, and fructose 1,6-bisphosphate, were identified and validated. All four transcripts of GPT2, HK2, DDIT3, and HIF1A were significantly differentially expressed between the GDSR and non-GDSR groups through independent microarray data and RT-PCR. After treatment with the QRHS formula, the clinical indexes and TCM syndrome were significantly improved, and the 14 disturbed biomarkers were obviously corrected. Three metabolic pathways were confirmed to be perturbed in CHB GDSR patients: alanine, aspartate, and glutamate metabolism, arginine biosynthesis, and aminoacyl-tRNA biosynthesis. CONCLUSION Using integrated transcriptomic and targeted metabolomic methods, we identified the potential biomarkers and dysregulated metabolic pathways in CHB patients with GDSR syndrome, which was alleviated by the QRHS formula treatment. These results may provide the mechanism of metabolic dysregulation in GDSR syndrome as well as that underlying the curative effect of the QRHS formula.
Collapse
Affiliation(s)
- Yiyu Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chaoqun Zhao
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chengbao Wang
- Shandong Medical College, Jinan, Shandong, 250004, China
| | - Hong Cai
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361015, China
| | - Yuting Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Long Chen
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shanghai Yu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huiming Zhu
- Fifth People's Hospital of Suzhou, Jiangsu, 215007, China
| | - Ping Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wang Wan'e
- Huai'an Fourth People's Hospital, Huai'an, Jiangsu, 223300, China.
| | - Hua Zhang
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
7
|
Kuang X, Li J, Xu Y, Yang L, Liu X, Yang J, Tai W. Transcriptomic and Metabolomic Analysis of Liver Cirrhosis. Comb Chem High Throughput Screen 2024; 27:922-932. [PMID: 37461343 PMCID: PMC11092553 DOI: 10.2174/1386207326666230717094936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 05/16/2024]
Abstract
BACKGROUND Liver cirrhosis is one of the leading causes of decreased life expectancy worldwide. However, the molecular mechanisms underlying liver cirrhosis remain unclear. In this study, we performed a comprehensive analysis using transcriptome and metabolome sequencing to explore the genes, pathways, and interactions associated with liver cirrhosis. METHODS We performed transcriptome and metabolome sequencing of blood samples from patients with cirrhosis and healthy controls (1:1 matched for sex and age). We validated the differentially expressed microRNA (miRNA) and mRNAs using real-time quantitative polymerase chain reaction. RESULTS For transcriptome analysis, we screened for differentially expressed miRNAs and mRNAs, analyzed mRNAs to identify possible core genes and pathways, and performed coanalysis of miRNA and mRNA sequencing results. In terms of the metabolome, we screened five pathways that were substantially enriched in the differential metabolites. Next, we identified the metabolites with the most pronounced differences among these five metabolic pathways. We performed receiver operating characteristic (ROC) curve analysis of these five metabolites to determine their diagnostic efficacy for cirrhosis. Finally, we explored possible links between the transcriptome and metabolome. CONCLUSION Based on sequencing and bioinformatics, we identified miRNAs and genes that were differentially expressed in the blood of patients with liver cirrhosis. By exploring pathways and disease-specific networks, we identified unique biological mechanisms. In terms of metabolomes, we identified novel biomarkers and explored their diagnostic efficacy. We identified possible common pathways in the transcriptome and metabolome that could serve as candidates for further studies.
Collapse
Affiliation(s)
- Xiao Kuang
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, Kunming, China
| | - Jinyu Li
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiheng Xu
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lihong Yang
- Department ofGastroenterology, Yunnan Research for Liver Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoxiao Liu
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinhui Yang
- Department ofGastroenterology, Yunnan Research for Liver Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Tai
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Deep A, Swaroop S, Dubey D, Rawat A, Verma A, Baisya B, Parihar R, Goel A, Rungta S. The metabolic fingerprint of chronic hepatitis C progression: Metabolome shifts and cutting-edge diagnostic options. J Mol Recognit 2024; 37:e3066. [PMID: 37916582 DOI: 10.1002/jmr.3066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/23/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Hepatitis C virus infection causes chronic diseases such as cirrhosis and hepatocellular carcinoma. Metabolomics research has been shown to be linked to pathophysiologic pathways in liver illnesses. The aim of this study was to investigate the serum metabolic profile of patients with chronic hepatitis C (CHC) infection and to identify underlying mechanisms as well as potential biomarkers associated with the disease. Nuclear magnetic resonance (NMR) was used to evaluate the sera of 83 patients with CHC virus and 52 healthy control volunteers (NMR). Then, multivariate statistical analysis was used to find distinguishing metabolites between the two groups. Sixteen out of 40 metabolites including include 3-HB, betaine, carnitine, creatinine, fucose, glutamine, glycerol, isopropanol, lysine, mannose, methanol, methionine, ornithine, proline, serine, and valine-were shown to be significantly different between the CHC and normal control (NC) groups (variable importance in projection >1 and p < 0.05). All the metabolic perturbations in this disease are associated with pathways of Glycine, serine, and threonine metabolism, glycerolipid metabolism, arginine and proline metabolism, aminoacyl-tRNA biosynthesis, cysteine and methionine metabolism, alanine, aspartate, and glutamate metabolism. Multivariate statistical analysis constructed using these expressed metabolites showed CHC patients can be discriminated from NCs with high sensitivity (90%) and specificity (99%). The metabolomics approach may expand the diagnostic armamentarium for patients with CHC while contributing to a comprehensive understanding of disease mechanisms.
Collapse
Affiliation(s)
- Amar Deep
- Department of Medical Gastroenterology, KGMU, Lucknow, India
- Experimental and Public Health Laboratory, Department of Zoology, Lucknow University, Lucknow, India
| | - Suchit Swaroop
- Experimental and Public Health Laboratory, Department of Zoology, Lucknow University, Lucknow, India
| | | | - Atul Rawat
- Centre of Biomedical Research, Lucknow, India
| | - Ajay Verma
- Centre of Biomedical Research, Lucknow, India
| | | | | | - Amit Goel
- Department of Medical Gastroenterology, SGPGIMS, Lucknow, India
| | - Sumit Rungta
- Department of Medical Gastroenterology, KGMU, Lucknow, India
| |
Collapse
|
9
|
Barla I, Efentakis P, Lamprou S, Gavriatopoulou M, Dimopoulos MA, Terpos E, Andreadou I, Thomaidis N, Gikas E. Metabolomics Point out the Effects of Carfilzomib on Aromatic Amino Acid Biosynthesis and Degradation. Int J Mol Sci 2023; 24:13966. [PMID: 37762269 PMCID: PMC10530946 DOI: 10.3390/ijms241813966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Carfilzomib (Cfz) is an antineoplastic agent indicated for the treatment of multiple myeloma. However, its beneficial action is attenuated by the occurrence of cardiotoxicity and nephrotoxicity as the most common adverse effects. Presently, there is well-established knowledge on the pathomechanisms related to these side effects; however, the research on the metabolic alterations provoked by the drug is limited. (2) An in vivo simulation of Cfz-induced toxicity was developed in (i) Cfz-treated and (ii) control mice. An RP-HRMS-based protocol and an advanced statistical treatment were used to investigate the impact of Cfz on the non-polar metabolome. (3) The differential analysis classified the Cfz-treated and control mice and resulted in a significant number of identified biomarkers with AUC > 0.9. The drug impaired the biosynthesis and degradation of aromatic amino acids (AAA) and led to alterations of uremic toxins in the renal and urine levels. Furthermore, the renal degradation of tryptophan was affected, inducing its degradation via the kynurenine pathway. (4) The renal levels of metabolites showed impaired excretion and degradation of AAAs. Cfz was, finally, correlated with the biosynthesis of renal dopamine, explaining the biochemical causes of water and ion retention and the increase in systolic pressure.
Collapse
Affiliation(s)
- Ioanna Barla
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.B.); (N.T.)
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (P.E.); (S.L.); (I.A.)
| | - Sofia Lamprou
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (P.E.); (S.L.); (I.A.)
| | - Maria Gavriatopoulou
- School of Medicine, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.G.); (M.-A.D.); (E.T.)
| | - Meletios-Athanasios Dimopoulos
- School of Medicine, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.G.); (M.-A.D.); (E.T.)
| | - Evangelos Terpos
- School of Medicine, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.G.); (M.-A.D.); (E.T.)
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (P.E.); (S.L.); (I.A.)
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.B.); (N.T.)
| | - Evangelos Gikas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (I.B.); (N.T.)
| |
Collapse
|
10
|
Fu J, Zhu F, Xu CJ, Li Y. Metabolomics meets systems immunology. EMBO Rep 2023; 24:e55747. [PMID: 36916532 PMCID: PMC10074123 DOI: 10.15252/embr.202255747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/24/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Metabolic processes play a critical role in immune regulation. Metabolomics is the systematic analysis of small molecules (metabolites) in organisms or biological samples, providing an opportunity to comprehensively study interactions between metabolism and immunity in physiology and disease. Integrating metabolomics into systems immunology allows the exploration of the interactions of multilayered features in the biological system and the molecular regulatory mechanism of these features. Here, we provide an overview on recent technological developments of metabolomic applications in immunological research. To begin, two widely used metabolomics approaches are compared: targeted and untargeted metabolomics. Then, we provide a comprehensive overview of the analysis workflow and the computational tools available, including sample preparation, raw spectra data preprocessing, data processing, statistical analysis, and interpretation. Third, we describe how to integrate metabolomics with other omics approaches in immunological studies using available tools. Finally, we discuss new developments in metabolomics and its prospects for immunology research. This review provides guidance to researchers using metabolomics and multiomics in immunity research, thus facilitating the application of systems immunology to disease research.
Collapse
Affiliation(s)
- Jianbo Fu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Zhu C, Zhang Q, Zhao X, Yang Z, Yang F, Yang Y, Tang J, Laghi L. Metabolomic Analysis of Multiple Biological Specimens (Feces, Serum, and Urine) by 1H-NMR Spectroscopy from Dairy Cows with Clinical Mastitis. Animals (Basel) 2023; 13:ani13040741. [PMID: 36830529 PMCID: PMC9952568 DOI: 10.3390/ani13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Due to huge economic losses to the dairy industry worldwide, mastitis can be considered as one of the most common diseases in dairy cows. This work aimed to study this disease by comparing multiple biological specimens (feces, serum, and urine) from individuals with or without clinical mastitis. This was performed by a single analytical platform, namely 1H-NMR, through a multi-matrix strategy. Thanks to the high reproducibility of 1H-NMR, we could characterize 120 molecules across dairy cow feces, serum, and urine. Among them, 23 molecules were in common across the three biofluids. By integrating the results of multi-matrix metabolomics, several pathways pertaining to energy metabolism and amino acid metabolism appeared to be affected by clinical mastitis. The present work wished to deepen the understanding of dairy cow mastitis in its clinical form. Simultaneous analysis of metabolome changes across several key biofluids could facilitate knowledge discovery and the reliable identification of potential biomarkers, which could be, in turn, used to shed light on the early diagnosis of dairy cow mastitis in its subclinical form.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xin Zhao
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Zhibo Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Falong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yang Yang
- Farming and Animal Husbandry Bureau of Ganzi County, Ganzi 626700, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928243 (J.T.); +39-0547-338106 (L.L.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928243 (J.T.); +39-0547-338106 (L.L.)
| |
Collapse
|
12
|
An Untargeted Metabolomics Approach on Carfilzomib-Induced Nephrotoxicity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227929. [PMID: 36432029 PMCID: PMC9697636 DOI: 10.3390/molecules27227929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Carfilzomib (Cfz) is an anti-cancer drug related to cardiorenal adverse events, with cardiovascular and renal complications limiting its clinical use. Despite the important progress concerning the discovery of the underlying causes of Cfz-induced nephrotoxicity, the molecular/biochemical background is still not well clarified. Furthermore, the number of metabolomics-based studies concerning Cfz-induced nephrotoxicity is limited. METHODS A metabolomics UPLC-HRMS-DIA methodology was applied to three bio-sample types i.e., plasma, kidney, and urine, obtained from two groups of mice, namely (i) Cfz (8 mg Cfz/ kg) and (ii) Control (0.9% NaCl) (n = 6 per group). Statistical analysis, involving univariate and multivariate tools, was applied for biomarker detection. Furthermore, a sub-study was developed, aiming to estimate metabolites' correlation among bio-samples, and to enlighten potential mechanisms. RESULTS Cfz mostly affects the kidneys and urine metabolome. Fifty-four statistically important metabolites were discovered, and some of them have already been related to renal diseases. Furthermore, the correlations between bio-samples revealed patterns of metabolome alterations due to Cfz. CONCLUSIONS Cfz causes metabolite retention in kidney and dysregulates (up and down) several metabolites associated with the occurrence of inflammation and oxidative stress.
Collapse
|
13
|
Jiang HY, Gao HY, Li J, Zhou TY, Wang ST, Yang JB, Hao RR, Pang F, Wei F, Liu ZG, Kuang L, Ma SC, He JM, Jin HT. Integrated spatially resolved metabolomics and network toxicology to investigate the hepatotoxicity mechanisms of component D of Polygonum multiflorum Thunb. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115630. [PMID: 35987407 DOI: 10.1016/j.jep.2022.115630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The liver toxicity of Reynoutria multiflora (Thunb.) Moldenke. (Polygonaceae) (Polygonum multiflorum Thunb, PM) has always attracted much attention, but the related toxicity materials and mechanisms have not been elucidated due to multi-component and multi-target characteristics. In previous hepatotoxicity screening, different components of PM were first evaluated and the hepatotoxicity of component D [95% ethanol (EtOH) elution] in a 70% EtOH extract of PM (PM-D) showed the highest hepatotoxicity. Furthermore, the main components of PM-D were identified and their hepatotoxicity was evaluated based on a zebrafish embryo model. However, the hepatotoxicity mechanism of PM-D is unknown. AIM OF THE STUDY This work is to explore the hepatotoxicity mechanisms of PM-D by integrating network toxicology and spatially resolved metabolomics strategy. MATERIALS AND METHODS A hepatotoxicity interaction network of PM-D was constructed based on toxicity target prediction for eight key toxic ingredients and a hepatotoxicity target collection. Then the key signaling pathways were enriched, and molecular docking verification was implemented to evaluate the ability of toxic ingredients to bind to the core targets. The pathological changes of liver tissues and serum biochemical assays of mice were used to evaluate the liver injury effect of mice with oral administration of PM-D. Furthermore, spatially resolved metabolomics was used to visualize significant differences in metabolic profiles in mice after drug administration, to screen hepatotoxicity-related biomarkers and analyze metabolic pathways. RESULTS The contents of four key toxic compounds in PM-D were detected. Network toxicology identified 30 potential targets of liver toxicity of PM-D. GO and KEGG enrichment analyses indicated that the hepatotoxicity of PM-D involved multiple biological activities, including cellular response to endogenous stimulus, organonitrogen compound metabolic process, regulation of the apoptotic process, regulation of kinase, regulation of reactive oxygen species metabolic process and signaling pathways including PI3K-Akt, AMPK, MAPK, mTOR, Ras and HIF-1. The molecular docking confirmed the high binding activity of 8 key toxic ingredients with 10 core targets, including mTOR, PIK3CA, AKT1, and EGFR. The high distribution of metabolites of PM-D in the liver of administrated mice was recognized by mass spectrometry imaging. Spatially resolved metabolomics results revealed significant changes in metabolic profiles after PM-D administration, and metabolites such as taurine, taurocholic acid, adenosine, and acyl-carnitines were associated with PM-D-induced liver injury. Enrichment analyses of metabolic pathways revealed tht linolenic acid and linoleic acid metabolism, carnitine synthesis, oxidation of branched-chain fatty acids, and six other metabolic pathways were significantly changed. Comprehensive analysis revealed that the hepatotoxicity caused by PM-D was closely related to cholestasis, mitochondrial damage, oxidative stress and energy metabolism, and lipid metabolism disorders. CONCLUSIONS In this study, the hepatotoxicity mechanisms of PM-D were comprehensively identified through an integrated spatially resolved metabolomics and network toxicology strategy, providing a theoretical foundation for the toxicity mechanisms of PM and its safe clinical application.
Collapse
Affiliation(s)
- Hai-Yan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui-Yu Gao
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tian-Yu Zhou
- College of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Shu-Ting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian-Bo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Rui-Rui Hao
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fei Pang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Zhi-Gang Liu
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lian Kuang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuang-Cheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China.
| | - Jiu-Ming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, China.
| | - Hong-Tao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, China.
| |
Collapse
|
14
|
Xu Y, Fu X. Reprogramming of Plant Central Metabolism in Response to Abiotic Stresses: A Metabolomics View. Int J Mol Sci 2022; 23:5716. [PMID: 35628526 PMCID: PMC9143615 DOI: 10.3390/ijms23105716] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Abiotic stresses rewire plant central metabolism to maintain metabolic and energy homeostasis. Metabolites involved in the plant central metabolic network serve as a hub for regulating carbon and energy metabolism under various stress conditions. In this review, we introduce recent metabolomics techniques used to investigate the dynamics of metabolic responses to abiotic stresses and analyze the trend of publications in this field. We provide an updated overview of the changing patterns in central metabolic pathways related to the metabolic responses to common stresses, including flooding, drought, cold, heat, and salinity. We extensively review the common and unique metabolic changes in central metabolism in response to major abiotic stresses. Finally, we discuss the challenges and some emerging insights in the future application of metabolomics to study plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Wei WF, Sun H, Liu SB, Lu SW, Zhang AH, Wang WY, Chai WJ, Wu FF, Yan GL, Guan Y, Wang XJ. Targets and Effective Constituents of ZhiziBaipi Decoction for Treating Damp-Heat Jaundice Syndrome Based on Chinmedomics Coupled with UPLC-MS/MS. Front Pharmacol 2022; 13:857361. [PMID: 35450037 PMCID: PMC9016223 DOI: 10.3389/fphar.2022.857361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Damp-heat jaundice syndrome (DHJS) is a diagnostic model of traditional Chinese medicine (TCM) that refers to jaundice caused by damp-heat pathogen invasion. DHJS is the most common clinical manifestation of TCM, with yellow skin, yellow eyes and anorexia. ZhiziBaipi Decoction (ZBD) is a classic TCM formula that is effective at treating DHJS and various liver diseases. However, the effective components of ZBD in the context of DHJS and the underlying mechanism are unclear. Purpose: This study of ZBD using the DHJS rat model aimed to elucidate the pathobiology of DHJS and the metabolic targets of therapeutic ZBD, construct the network relationship between the components of ZBD and endogenous biomarkers, and clarify the underlying mechanism of ZBD in preventing and treating DHJS. Methods: Using chinmedomics as the core strategy, an animal model was generated, and the therapeutic effect of ZBD was evaluated based on behavioral, histopathological and biochemical indicators. Metabonomics tools were used to identify biomarkers of DHJS, TCM-based serum pharmacochemistry was used to analyze the effective constituents of ZBD, and chinmedomics technology was used to identify ZBD components highly related to DHJS biomarkers. Results: A total of 42 biomarkers were preliminarily identified, and ZBD significantly affected the levels of 29 of these biomarkers. A total of 59 compounds in ZBD were characterized in vivo. According to chinmedomics analysis, the highly correlated components found in blood were isoformononetin, 3-O-feruloylquinic acid, glycyrrhizic acid, oxyberberine, obaculactone and five metabolites. Conclusions: Chinmedomics combined with UPLC-MS/MS was used to study the targets and effective constituents of ZBD for the treatment of DHJS.
Collapse
Affiliation(s)
- Wen-Feng Wei
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shao-Bo Liu
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Sheng-Wen Lu
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-Hua Zhang
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wan-Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Wen-Jun Chai
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Guang-Li Yan
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Guan
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Jun Wang
- National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China.,National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| |
Collapse
|
16
|
Wu FL, Hu YH, Ji P, Li CC, He J. Metabonomics Study on the hepatoprotective effect mechanism of polysaccharides from different processed products of Angelica Sinensis on the layer chickens based on UPLC-Q/TOF-MS/MS, multivariate statistical analysis and conjoint analysis. Biomed Chromatogr 2022; 36:e5362. [PMID: 35393691 PMCID: PMC9286391 DOI: 10.1002/bmc.5362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022]
Abstract
Chicken colibacillosis is one of the most severe diseases in the poultry industry. Ceftiofur sodium (CS) is often used to treat it in clinical practice and lipopolysaccharide (LPS) accumulates in the chicken's body. Previous experimental studies found that CS combined with LPS could induce liver injury in layer chickens, and polysaccharides from charred Angelica sinensis(CASP) had a better hepatoprotective effect than polysaccharides from unprocessed Angelica sinensis(UASP). However, the intervention mechanism was unclear. Thus, UPLC–Q/TOF–MS/MS‐based metabonomics and transcriptomics were used in this study to clarify the hepatoprotective effect mechanism of CASP and UASP in layer chickens. Transcriptomics and enzyme‐linked immunosorbent assay were used for biological verification of some critical mutual metabolic pathways screened with metabonomics. The comprehensive analysis results showed that in a layer chicken liver injury model built with LPS and CS, 12 critical metabolic pathways were disturbed, involving 10 important differential metabolites. The hepatoprotective effect mechanism of CASP is related to the arachidonic acid metabolism and mTOR signaling pathways, involving nine important differential metabolites. In contrast, the hepatoprotective effect mechanism of UASP is related to the arachidonic acid metabolism pathway, involving six important differential metabolites.
Collapse
Affiliation(s)
- Fan-Lin Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, PR China
| | - Yong-Hao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, PR China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, PR China
| | - Chen-Chen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, PR China
| | - Jian He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, PR China
| |
Collapse
|
17
|
Dong M, Du H, Li X, Zhang L, Wang X, Wang Z, Jiang H. Discovery of Biomarkers and Potential Mechanisms of Agarwood Incense Smoke Intervention by Untargeted Metabolomics and Network Pharmacology. Drug Des Devel Ther 2022; 16:265-278. [PMID: 35115762 PMCID: PMC8801373 DOI: 10.2147/dddt.s348028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Background Agarwood, as a traditional Chinese medicine, has great potential value for the treatment of tranquilization. However, its potential mechanisms and biomarkers are still unclear. Methods In this study, ultra-high performance liquid chromatography-quadrupole-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS)-based metabonomics was adopted to discover the potential biomarkers in mice after agarwood incense smoke (AIS) intervention. Furthermore, the chemical components in agarwood were identified based on UHPLC-Q-Exactive Orbitrap-MS. The global view of potential compound-target-pathway (C-T-B) network was constructed through network pharmacology to understand the potentially material basis of biomarkers. Results Metabolic profiling indicated that the metabolic changed significantly in mice serum after AIS intervention. A total of 18 potential biomarkers closely related to insomnia and emotional disease were identified, mainly involving in tryptophan metabolism, arginine and proline metabolism, cysteine and methionine metabolism and steroid hormone biosynthesis pathways. A total of 138 components in agarwood were identified based on UHPLC-Q-Exactive Orbitrap-MS. The results showed that mainly compounds such as flidersia type 2-(2-phenylethyl) chromones (FTPECs) and sesquiterpenes exerted good docking abilities with key target proteins, which were involved in multiple diseases including depression and hypnosis. Conclusion In conclusion, this study enhanced current understanding of the change of metabolic markers after AIS intervention. Meanwhile, it also confirmed the feasibility of combining metabolomics and network pharmacology to identify active components and elucidate the material basis of biomarkers and mechanisms.
Collapse
Affiliation(s)
- Meiyue Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| | - Haitao Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Xueling Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Ling Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Xiaoming Wang
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Zhenguo Wang
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| |
Collapse
|
18
|
He Y, Zhang M, Li T, Tan Z, Zhang A, Ou M, Huang D, Wu F, Wang X. Metabolomics Analysis Coupled With UPLC/MS on Therapeutic Effect of Jigucao Capsule Against Dampness-Heat Jaundice Syndrome. Front Pharmacol 2022; 13:822193. [PMID: 35153793 PMCID: PMC8831696 DOI: 10.3389/fphar.2022.822193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Dampness-heat Jaundice Syndrome (DHJS) is a complex Chinese medicine syndrome, while Jigucao capsule (JGCC) is an effective compound preparation of Chinese medicine for the treatment of DHJS about liver and gallbladder, but its mechanism is not clear yet. The purpose of this study is to clarify the pathogenesis of DHJS and the treatment mechanism of JGCC. We used ultra-high performance liquid chromatography/mass spectrometry (UPLC/MS) combined with pattern recognition, accompanied the advanced software and online database for the urine metabolomics of rats. The potential biomarkers disturbing metabolism were identified and the metabolic pathway was analyzed. We investigated the callback of biomarkers after treatment with JGCC. Finally, A total of 25 potential urine biomarkers were identified, including Arachidonic acid, Phenylpyruvic acid, L-Urobilin and so on, and 14 related metabolic pathways were disturbed. After treatment with JGCC, the clinical biochemical indexes and histopathological were significantly improved, and the disturbed biomarkers were also obviously adjusted. It is proved that JGCC has remarkable effect on the treatment of DHJS.
Collapse
Affiliation(s)
- Yanmei He
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengli Zhang
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Taiping Li
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhien Tan
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Min Ou
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Danna Huang
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xijun Wang
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
19
|
Geller S, Lieberman H, Belanger AJ, Yew NS, Kloss A, Ivanov AR. Comparison of Microflow and Analytical Flow Liquid Chromatography Coupled to Mass Spectrometry Global Metabolomics Methods Using a Urea Cycle Disorder Mouse Model. J Proteome Res 2022; 21:151-163. [PMID: 34843255 PMCID: PMC8742624 DOI: 10.1021/acs.jproteome.1c00628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microscale-based separations are increasingly being applied in the field of metabolomics for the analysis of small-molecule metabolites. These methods have the potential to provide improved sensitivity, less solvent waste, and reduced sample-size requirements. Ion-pair free microflow-based global metabolomics methods, which we recently reported, were further compared to analytical flow ion-pairing reagent containing methods using a sample set from a urea cycle disorder (UCD) mouse model. Mouse urine and brain homogenate samples representing healthy, diseased, and disease-treated animals were analyzed by both methods. Data processing was performed using univariate and multivariate techniques followed by analyte trend analysis. The microflow methods performed comparably to the analytical flow ion-pairing methods with the ability to separate the three sample groups when analyzed by partial least-squares analysis. The number of detected metabolic features present after each data processing step was similar between the microflow-based methods and the ion-pairing methods in the negative ionization mode. The observed analyte trend and coverage of known UCD biomarkers were the same for both evaluated approaches. The 12.5-fold reduction in sample injection volume required for the microflow-based separations highlights the potential of this method to support studies with sample-size limitations.
Collapse
Affiliation(s)
- Sarah Geller
- Sanofi, Waltham, Massachusetts 02451, United States
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | | | | | - Nelson S Yew
- Sanofi, Waltham, Massachusetts 02451, United States
| | - Alla Kloss
- Sanofi, Waltham, Massachusetts 02451, United States
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
20
|
Wu S, Wang M, Zhang M, He JQ. Metabolomics and microbiomes for discovering biomarkers of antituberculosis drugs-induced hepatotoxicity. Arch Biochem Biophys 2022; 716:109118. [PMID: 34999018 DOI: 10.1016/j.abb.2022.109118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/13/2021] [Accepted: 01/04/2022] [Indexed: 02/08/2023]
Abstract
Anti-tuberculosis (TB) drug-induced hepatotoxicity (ATDH) was related to metabolic and microbial dysregulation, but only limited data was available about the metabolomes and microbiomes in ATDH. We aimed at detecting the metabolic and microbial signatures of ATDH. Urine samples were obtained from ATDH (n = 33) and non-ATDH control (n = 41) and analyzed by untargeted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Metabolites were analyzed by orthogonal projections to latent structures-discriminate analysis (OPLS-DA) and pathway analysis. Eight ATDH and eight non-ATDH control were evaluated by sequencing of 16S rRNA genes, and the Clusters of Orthologous Groups of proteins (COG) database were used for function prediction. Linear discriminant analysis (LDA) effect size (LEfSe) was applied to detect the differential microbiotas between the two groups. The differential microbiotas were further validated by correlation analysis with differential metabolites. OPLS-DA analysis suggested 11 metabolites that differed ATDH from non-ATDH control. Pathway analysis demonstrated that metabolism of arginine and proline, metabolism of d-arginine and d-ornithine, glutathione glycine metabolism, galactose metabolism, niacin and nicotinamide metabolism, and glycine, serine and threonine metabolism were related to ATDH. LEfSe suggested significant differences in microbiotas between the two groups. The o_ Bacteroidales, f_Prevotellaceae, and g_Prevotella were significantly increased in ATDH. In contrast, the f_Chitinophagaceae, c_Gammaproteobacteria, and p_Proteobacteria were significantly increased in non-ATDH group. The biological functions of the sequenced microbiota in this study were related to amino acid transport and metabolism and defense mechanisms. Finally, we detected strong association between urine metabolites and specific urine bacteria (|r| > 0.8). d-glucoheptose showed a strong relationship to Symbiobacterium. Creatine (r = -0.901; P < 0.001) and diglycerol were strongly associated with Alishewanella. Metabolomics and microbiomes indicate ATDH characterized by metabolic and microbial profiles may differ from non-ATDH control.
Collapse
Affiliation(s)
- Shouquan Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Minggui Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Miaomiao Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
21
|
Zuo L, Chen Z, Chen L, Kang J, Shi Y, Liu L, Zhang S, Jia Q, Huang Y, Sun Z. Integrative Analysis of Metabolomics and Transcriptomics Data Identifies Prognostic Biomarkers Associated With Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:750794. [PMID: 34692531 PMCID: PMC8529182 DOI: 10.3389/fonc.2021.750794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most malignant neoplasm in oral cancer. There is growing evidence that its progression involves altered metabolism. The current method of evaluating prognosis is very limited, and metabolomics may provide a new approach for quantitative evaluation. The aim of the study is to evaluate the use of metabolomics as prognostic markers for patients with OSCC. Methods An analytical platform, Ultra-Performance Liquid Chromatography-Quadrupole/Orbitrap High Resolution Mass Spectrometry (UHPLC-Q-Orbitrap HRMS), was used to acquire the serum fingerprinting profiles from a total of 103 patients of OSCC before and after the operation. In total, 103 OSCC patients were assigned to either a training set (n = 73) or a test set (n = 30). The potential biomarkers and the changes of serum metabolites were profiled and correlated with the clinicopathological parameters and survival of the patients by statistical analysis. To further verify our results, we linked them to gene expression using data from the Kyoto Encyclopedia of Genes and Genomes (KEGG). Results In total, 14 differential metabolites and five disturbed pathways were identified between the preoperative group and postoperative group. Succinic acid change-low, hypoxanthine change-high tumor grade, and tumor stage indicated a trend towards improved recurrence-free survival (RFS), whether in a training set or a test set. In addition, succinic acid change-low, hypoxanthine change-high, and tumor grade provided the highest predictive accuracy of the patients with OSCC. KEGG enrichment analysis showed that the imbalance in the amino acid and purine metabolic pathway may affect the prognosis of OSCC. Conclusions The changes of metabolites before and after operation may be related to the prognosis of OSCC patients. UHPLC-Q-Orbitrap HRMS serum metabolomics analysis could be used to further stratify the prognosis of patients with OSCC. These results can better understand the mechanisms related to early recurrence and help develop more effective therapeutic targets.
Collapse
Affiliation(s)
- Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuo Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihuang Chen
- School and Hospital of Stomatology, Weifang Medical University, Weifang, China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuhua Zhang
- Clinical Laboratory, Chongqing Southeast Hospital, Chongqing, China
| | - Qingquan Jia
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Huang
- Research and Development Department, Chongqing Huangjia Biotechnology Limited Company, Chongqing, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Elevated levels of urine isocitrate, hydroxymethylglutarate, and formiminoglutamate are associated with arterial stiffness in Korean adults. Sci Rep 2021; 11:10180. [PMID: 33986342 PMCID: PMC8119418 DOI: 10.1038/s41598-021-89639-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/26/2021] [Indexed: 11/28/2022] Open
Abstract
Recent evidence suggests that cellular perturbations play an important role in the pathogenesis of cardiovascular diseases. Therefore, we analyzed the association between the levels of urinary metabolites and arterial stiffness. Our cross-sectional study included 330 Korean men and women. The brachial-ankle pulse wave velocity was measured as a marker of arterial stiffness. Urinary metabolites were evaluated using a high-performance liquid chromatograph-mass spectrometer. The brachial-ankle pulse wave velocity was found to be positively correlated with l-lactate, citrate, isocitrate, succinate, malate, hydroxymethylglutarate, α-ketoisovalerate, α-keto-β-methylvalerate, methylmalonate, and formiminoglutamate among men. Whereas, among women, the brachial-ankle pulse wave velocity was positively correlated with cis-aconitate, isocitrate, hydroxymethylglutarate, and formiminoglutamate. In the multivariable regression models adjusted for conventional cardiovascular risk factors, three metabolite concentrations (urine isocitrate, hydroxymethylglutarate, and formiminoglutamate) were independently and positively associated with brachial-ankle pulse wave velocity. Increased urine isocitrate, hydroxymethylglutarate, and formiminoglutamate concentrations were associated with brachial-ankle pulse wave velocity and independent of conventional cardiovascular risk factors. Our findings suggest that metabolic disturbances in cells may be related to arterial stiffness.
Collapse
|
23
|
Yu M, Zhou C, Tian D, Jia HM, Li ZQ, Yang C, Ba YM, Wu HK, Zou ZM. Molecular classification and clinical diagnosis of acute-on-chronic liver failure patients by serum metabolomics. J Pharm Biomed Anal 2021; 198:114004. [PMID: 33721610 DOI: 10.1016/j.jpba.2021.114004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Prevalence of acute-on-chronic liver failure (ACLF) patients is growing worldwide, associating with multi-organ failure and high short-term mortality rates. ACLF can be of varying entity manifestation, whereas it remains poorly defined. Traditional Chinese medicine (TCM) stratifies ACLF into two types, damp hot (DH) and cold damp (CD), by seasoned TCM practitioners, for specific treatment with different TCMs. The biggest challenge for the outcome of TCM therapy is the accuracy of diagnosis. However, it is difficult to guarantee it due to lack of the molecule classification of ACLF. Herein, we recruited 58 subjects including 34 ACLF patients (18 DH and 16 CD) and 24 healthy controls, and analyzed serum metabolic profiles using untargeted ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) metabolomics approach. A total of 10 serum metabolites were found as potential biomarkers for diagnosis of ACLF. Among them, taurochenodesoxycholic acid (N3), glycyldeoxycholic acid (N5) and 12-HETE-GABA (N7), varied between two types of ACLF and can be merged as a combination marker to differentiate CD from DH patients with area under the receiver operating curve (AUC) of 0.928 (95 % CI 0.8-1). CD patients possessed comparatively higher bile acid metabolism and lower arachidonic acid metabolism compared with DH patients. The results provide not only serum molecules for early accurate diagnosis of ACLF patients, but also potential clinical biomarkers for classification of CD and DH types. The findings clarify that molecular markers will be objective criteria for diagnosis of clinical types in TCM practice.
Collapse
Affiliation(s)
- Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Chao Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Dong Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hong-Mei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zhi-Qing Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Chen Yang
- The Fifth Hospital of Wuhan, Wuhan, 430050, China
| | - Yuan-Ming Ba
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Hui-Kun Wu
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
24
|
Wang Z, Xiao Y, Weng F, Li X, Zhu D, Lu F, Liu X, Hou M, Meng Y. R-JaunLab: Automatic Multi-Class Recognition of Jaundice on Photos of Subjects with Region Annotation Networks. J Digit Imaging 2021; 34:337-350. [PMID: 33634415 DOI: 10.1007/s10278-021-00432-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/01/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
Jaundice occurs as a symptom of various diseases, such as hepatitis, the liver cancer, gallbladder or pancreas. Therefore, clinical measurement with special equipment is a common method that is used to identify the total serum bilirubin level in patients. Fully automated multi-class recognition of jaundice combines two key issues: (1) the critical difficulties in multi-class recognition of jaundice approaches contrasting with the binary class and (2) the subtle difficulties in multi-class recognition of jaundice represent extensive individuals variability of high-resolution photos of subjects, huge coherency between healthy controls and occult jaundice, as well as broadly inhomogeneous color distribution. We introduce a novel approach for multi-class recognition of jaundice to detect occult jaundice, obvious jaundice and healthy controls. First, region annotation network is developed and trained to propose eye candidates. Subsequently, an efficient jaundice recognizer is proposed to learn similarities, context, localization features and globalization characteristics on photos of subjects. Finally, both networks are unified by using shared convolutional layer. Evaluation of the structured model in a comparative study resulted in a significant performance boost (categorical accuracy for mean 91.38%) over the independent human observer. Our work was exceeded against the state-of-the-art convolutional neural network (96.85% and 90.06% for training and validation subset, respectively) and showed a remarkable categorical result for mean 95.33% on testing subset. The proposed network makes a performance better than physicians. This work demonstrates the strength of our proposal to help bringing an efficient tool for multi-class recognition of jaundice into clinical practice.
Collapse
Affiliation(s)
- Zheng Wang
- School of Mathematics and Statistics, Central South University, Changsha, Hunan, 410083, China.,Science and Engineering School, Hunan First Normal University, Changsha, 410205, China
| | - Ying Xiao
- Gastroenterology Department of Xiangya Hospital, Central South University, Changsha, 410083, China
| | - Futian Weng
- School of Mathematics and Statistics, Central South University, Changsha, Hunan, 410083, China
| | - Xiaojun Li
- Gastroenterology Department of Xiangya Hospital, Central South University, Changsha, 410083, China
| | - Danhua Zhu
- Department of Gastroenterology, Hunan Provincial People's Hospital, Changsha, 410002, China
| | - Fanggen Lu
- The Second Xiangya Hospital, Central South University, 410083, Changsha, China
| | - Xiaowei Liu
- Gastroenterology Department of Xiangya Hospital, Central South University, Changsha, 410083, China
| | - Muzhou Hou
- School of Mathematics and Statistics, Central South University, Changsha, Hunan, 410083, China.
| | - Yu Meng
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, 518055, China.
| |
Collapse
|
25
|
Khamis MM, Adamko DJ, El-Aneed A. STRATEGIES AND CHALLENGES IN METHOD DEVELOPMENT AND VALIDATION FOR THE ABSOLUTE QUANTIFICATION OF ENDOGENOUS BIOMARKER METABOLITES USING LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:31-52. [PMID: 31617245 DOI: 10.1002/mas.21607] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Metabolomics is a dynamically evolving field, with a major application in identifying biomarkers for drug development and personalized medicine. Numerous metabolomic studies have identified endogenous metabolites that, in principle, are eligible for translation to clinical practice. However, few metabolomic-derived biomarker candidates have been qualified by regulatory bodies for clinical applications. Such interruption in the biomarker qualification process can be largely attributed to various reasons including inappropriate study design and inadequate data to support the clinical utility of the biomarkers. In addition, the lack of robust assays for the routine quantification of candidate biomarkers has been suggested as a potential bottleneck in the biomarker qualification process. In fact, the nature of the endogenous metabolites precludes the application of the current validation guidelines for bioanalytical methods. As a result, there have been individual efforts in modifying existing guidelines and/or developing alternative approaches to facilitate method validation. In this review, three main challenges for method development and validation for endogenous metabolites are discussed, namely matrix effects evaluation, alternative analyte-free matrices, and the choice of internal standards (ISs). Some studies have modified the equations described by the European Medicines Agency for the evaluation of matrix effects. However, alternative strategies were also described; for instance, calibration curves can be generated in solvents and in biological samples and the slopes can be compared through ratios, relative standard deviation, or a modified Stufour suggested approaches while quantifying mainly endogenous metabolitesdent t-test. ISs, on the contrary, are diverse; in which seven different possible types, used in metabolomics-based studies, were identified in the literature. Each type has its advantages and limitations; however, isotope-labeled ISs and ISs created through isotope derivatization show superior performance. Finally, alternative matrices have been described and tested during method development and validation for the quantification of endogenous entities. These alternatives are discussed in detail, highlighting their advantages and shortcomings. The goal of this review is to compare, apprise, and debate current knowledge and practices in order to aid researchers and clinical scientists in developing robust assays needed during the qualification process of candidate metabolite biomarkers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Mona M Khamis
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Darryl J Adamko
- Department of Pediatrics, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| |
Collapse
|
26
|
Han Y, Sun H, Zhang A, Yan G, Wang XJ. Chinmedomics, a new strategy for evaluating the therapeutic efficacy of herbal medicines. Pharmacol Ther 2020; 216:107680. [PMID: 32956722 PMCID: PMC7500400 DOI: 10.1016/j.pharmthera.2020.107680] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Herbal medicines have accumulated valuable clinical experience in thousands of years of applications in traditional Chinese medicine (TCM) or ethnomedicine. The unique multi-target efficacy on complex diseases made herbal medicines gained a global popularity in recent years. However, the characteristic of multi-component acting on multi-target poses a dilemma for the evaluation of therapeutic efficacy of herbal medicines. Advances in metabolomics enable efficient identification of the various changes in biological systems exposed to different treatments or conditions. The use of serum pharmacochemistry of TCM has significant implications for tackling the major issue in herbal medicines development-pharmacodynamic material basis. Chinmedomics integrates metabolomics and serum pharmacochemistry of TCM to investigate the pharmacodynamic material basis and effective mechanisms of herbal medicines on the basis of TCM syndromes and holds the promise of explaining therapeutic efficacy of herbal medicines in scientific language. In this review, the historical development of chinmedomics from concept formation to successful applications was discussed. We also took the systematic research of Yin Chen Hao Tang (YCHT) as an example to show the research strategy of chinmedomics.
Collapse
|
27
|
Wang XS, Sun Z, Liu LW, Du QZ, Liu ZS, Yang YJ, Xue P, Zhao HY. Potential Metabolic Biomarkers for Early Detection of Oral Lichen Planus, a Precancerous Lesion. Front Pharmacol 2020; 11:603899. [PMID: 33240093 PMCID: PMC7677577 DOI: 10.3389/fphar.2020.603899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Oral lichen planus (OLP) is a T-cell-mediated chronic inflammatory disorder and precancerous oral lesion with high incidence. The current diagnostic method of OLP is very limited and metabolomics may provide a new approach for quantitative evaluation. Methods: The Ultra-Performance Liquid Chromatography-Quadrupole/Orbitrap High Resolution Mass Spectrometry (UHPLC-Q-Orbitrap HRMS) was applied to analyze the change of metabolites in serum of patients with OLP. A total of 115 OLP patients and 124 healthy controls were assigned to either a training set (n = 160) or a test set (n = 79). The potential biomarkers and the change of serum metabolites were profiled and evaluated by multivariate analysis. Results: Totally, 23 differential metabolites were identified in the training set between OLP group and healthy group. Three prominent metabolites in receiver operating characteristic (ROC) were selected as a panel to distinguish OLP or healthy individuals in the test set, and the diagnostic accuracy was 86.1%. Conclusions: This study established a new method for the early detection of OLP by analyzing serum metabolomics using UHPLC-Q-Orbitrap HRMS, which will help in understanding the pathological processes of OLP and identifying precancerous lesions in oral cavity.
Collapse
Affiliation(s)
- Xiao-Shuang Wang
- Stomatological Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Li-Wei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Qiu-Zheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Zhang-Suo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan-Jie Yang
- Stomatological Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, China
| | - Peng Xue
- Health Management Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Yu Zhao
- Stomatological Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School and Hospital of Stomatology of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Nik Mohd Fakhruddin NNI, Shahar S, Ismail IS, Ahmad Azam A, Rajab NF. Urine Untargeted Metabolomic Profiling Is Associated with the Dietary Pattern of Successful Aging among Malaysian Elderly. Nutrients 2020; 12:nu12102900. [PMID: 32977370 PMCID: PMC7597952 DOI: 10.3390/nu12102900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 01/06/2023] Open
Abstract
Food intake biomarkers (FIBs) can reflect the intake of specific foods or dietary patterns (DP). DP for successful aging (SA) has been widely studied. However, the relationship between SA and DP characterized by FIBs still needs further exploration as the candidate markers are scarce. Thus, 1H-nuclear magnetic resonance (1H-NMR)-based urine metabolomics profiling was conducted to identify potential metabolites which can act as specific markers representing DP for SA. Urine sample of nine subjects from each three aging groups, SA, usual aging (UA), and mild cognitive impairment (MCI), were analyzed using the 1H-NMR metabolomic approach. Principal components analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were applied. The association between SA urinary metabolites and its DP was assessed using the Pearson’s correlation analysis. The urine of SA subjects was characterized by the greater excretion of citrate, taurine, hypotaurine, serotonin, and melatonin as compared to UA and MCI. These urinary metabolites were associated with alteration in “taurine and hypotaurine metabolism” and “tryptophan metabolism” in SA elderly. Urinary serotonin (r = 0.48, p < 0.05) and melatonin (r = 0.47, p < 0.05) were associated with oat intake. These findings demonstrate that a metabolomic approach may be useful for correlating DP with SA urinary metabolites and for further understanding of SA development.
Collapse
Affiliation(s)
- Nik Nur Izzati Nik Mohd Fakhruddin
- Dietetic Programme, Centre for Healthy Aging and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Suzana Shahar
- Dietetic Programme, Centre for Healthy Aging and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Correspondence: ; Tel.: +60-3-9289-7602; Fax: +60-3-9289-7161
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (I.S.I.); (A.A.A.)
| | - Amalina Ahmad Azam
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (I.S.I.); (A.A.A.)
| | - Nor Fadilah Rajab
- Biomedical Science Programme, Centre for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
29
|
Zhang J, Xue X, Qiao Y, Li D, Wei Q, Zhang F, Qin X. Astragaloside IV Extends Lifespan of Caenorhabditis elegans by Improving Age-Related Functional Declines and Triggering Antioxidant Responses. Rejuvenation Res 2020; 24:120-130. [PMID: 32741299 DOI: 10.1089/rej.2020.2312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Astragaloside IV (AS-IV) is a representative component of astragaloside saponins in dried roots of Astragali Radix. Astragaloside possesses a broad spectrum of pharmacological activities, including antibacterial, anti-fibrosis, antioxidant, anti-inflammatory, and neuroprotective effects. However, the role of AS-IV in antiaging remains unclear. In this article, we studied the function of AS-IV in antiaging by using the Caenorhabditis elegans (C. elegans) model. We showed that AS-IV can prolong the lifespan of C. elegans in a natural aging model, a paraquat injury model, and a heat stress model and improve the movement capacity of nematodes. 1H-NMR data indicate an improvement of glutamate content and a decrease in glucose in the AS-IV treatment group compared with the control. Further investigation revealed that AS-IV can induce the mRNA expression of superoxide dismutase (SOD) and catalase (CAT) genes and increase the activities of SOD and CAT in the nematode. Interestingly, AS-IV could not extend the lifespan of sod-1, sod-2, sod-3, sod-4, sod-5, ctl-1, ctl-2, ctl-3, and daf-16 mutants. These data indicate that AS-IV prevents aging via mainly improving age-related functional declines, the antioxidant capacity of nematodes and partially modulating the insulin/insulin growth factor 1 signaling pathway activity. Our results provide new insights into how AS-IV prevents and treats aging.
Collapse
Affiliation(s)
- Jianqin Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xiaoli Xue
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yuqi Qiao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Daqi Li
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Qing Wei
- Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Fusheng Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
30
|
Li CY, Niu M, Liu YL, Tang JF, Chen W, Qian G, Zhang MY, Shi YF, Lin JZ, Li XJ, Li RS, Xiao XH, Li GH, Wang JB. Screening for Susceptibility-Related Factors and Biomarkers of Xianling Gubao Capsule-Induced Liver Injury. Front Pharmacol 2020; 11:810. [PMID: 32547402 PMCID: PMC7274038 DOI: 10.3389/fphar.2020.00810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Although increasing reports from the literature on herbal-related hepatotoxicity, the identification of susceptibility-related factors and biomarkers remains challenging due to idiosyncratic drug-induced liver injury (IDILI). As a well-known Chinese medicine prescription, Xianling Gubao Capsule (XLGB) has attracted great attention due to reports of potential liver toxicity. But the mechanism behind it is difficult to determine. In this paper, we found that XLGB-induced liver injury belongs to IDILI through the analysis of clinical liver injury cases. In toxicological experiment assessment, co-exposure to XLGB and non-toxic dose of lipopolysaccharide (LPS) could cause evident liver injury as manifested by significantly increased plasma alanine aminotransferase activity and obvious liver histological damage. However, it failed to induce observable liver injury in normal rats, suggesting that mild immune stress may be a susceptibility factor for XLGB-induced idiosyncratic liver injury. Furthermore, plasma cytokines were determined and 15 cytokines (such as IL-1β, IFN-γ, and MIP-2α etc) were acquired by receiver operating characteristic (ROC) curves analysis. The expression of these 15 cytokines in LPS group was significantly up-regulated in contrast to the normal group. Meanwhile, the metabolomics profile showed that mild immune stress caused metabolic reprogramming, including sphingolipid metabolism, phenylalanine metabolism, and glycerophospholipid metabolism. 8 potential biomarkers (such as sphinganine, glycerophosphoethanolamine, and phenylalanine etc.) were identified by correlation analysis. Therefore, these results suggested that intracellular metabolism and immune changes induced by mild immune stress may be important susceptibility mechanisms for XLGB IDILI.
Collapse
Affiliation(s)
- Chun-Yu Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ya-Lei Liu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Fa Tang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Chen
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Geng Qian
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Yu Zhang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Fei Shi
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Zhi Lin
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing-Jie Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rui-Sheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guo-Hui Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
31
|
Xie L, Zhao Y, Duan J, Fan S, Shu L, Liu H, Wang Y, Xu Y, Li Y. Integrated Proteomics and Metabolomics Reveal the Mechanism of Nephrotoxicity Induced by Triptolide. Chem Res Toxicol 2020; 33:1897-1906. [PMID: 32519852 DOI: 10.1021/acs.chemrestox.0c00091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Triptolide (TP), the main active ingredient of Tripterygium wilfordii Hook F., has great potential in the treatment of autoimmune diseases. However, it has been found that the side effects of TP involve multiple organs and systems, of which the most serious side effects relate to the kidney. The mechanism of nephrotoxicity caused by TP requires further investigation. In the present study, we integrated proteomic and metabolomic methods to identify proteins and small molecule metabolites associated with TP-induced nephrotoxicity. There was a significant difference (p value <0.05) in the expression changes of 357 proteins for quantitative proteomics. In addition, high resolution metabolomic data showed significant changes in the levels of 9 metabolites, including hypoxanthine, PC(22:0/18:4), sphingosine, phenylalanine, etc. Finally, based on the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database for network analysis, it was determined that the 7 differentially expressed proteins were highly correlated with these 9 metabolites. Enrichment analysis revealed that the metabolic pathways involved purine and pyrimidine metabolism, glycerol and phospholipid metabolism, sphingolipid metabolism, and amino acid metabolism. The key target proteins were verified by Western blot technology, and the mechanism of TP-induced nephrotoxicity was further elucidated to provide a basis for safe and rational application.
Collapse
Affiliation(s)
- Lijuan Xie
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Yiwei Zhao
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Jingyi Duan
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Simiao Fan
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Lexin Shu
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Hui Liu
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Yanyan Xu
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin 301600, China
| |
Collapse
|
32
|
Uncovering the anticancer mechanism of petroleum extracts of Farfarae Flos against Lewis lung cancer by metabolomics and network pharmacology analysis. Biomed Chromatogr 2020; 34:e4878. [DOI: 10.1002/bmc.4878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 01/19/2023]
|
33
|
Zhang X, Shi X, Lu X, Li Y, Zhan C, Akhtar ML, Yang L, Bai Y, Zhao J, Wang Y, Yao Y, Li Y, Nie H. Novel Metabolomics Serum Biomarkers for Pancreatic Ductal Adenocarcinoma by the Comparison of Pre-, Postoperative and Normal Samples. J Cancer 2020; 11:4641-4651. [PMID: 32626510 PMCID: PMC7330680 DOI: 10.7150/jca.41250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive human malignancies. The metabolomic approaches are developed to discover the novel biomarkers of PDAC. Methods: 550 preoperative, postoperative PDAC and normal controls (NCs) serums were employed to characterize metabolic alterations in training and validation sets by LC-MS. Results: The results of PLS-DA analysis indicated that three groups could be distinguished clearly and the post-PDAC group is adjacent to a normal group as compared with pre-PDAC group. Further results showed that histidinyl-lysine significantly increased whereas docosahexaenoic acid and LysoPC (14:0) decreased in pre-PDAC patients as compared with NCs. And these three markers had a significant tendency to recover after tumor resection. The validation set results revealed that for CA19-9 negative patients, 92.3% (12/13) of them can be screened using these three metabolites. The combination of these markers could significantly improve the diagnostic performance for PDAC, with higher sensitivity (0.93), specificity (0.92) and AUC (0.97). Moreover, network and pathways analyses explored the latent relationship among differential metabolites. The glycerolipid metabolism and primary bile acid synthesis showed variation in network and pathway analysis. Conclusions: These three markers combined with CA199 displayed high sensitivity and specificity for detecting PDAC patients from NCs. The results indicated that these three metabolites could be regarded as potential biomarkers to distinguish PDAC from NCs.
Collapse
Affiliation(s)
- Xiaohan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiuyun Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xin Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chao Zhan
- The Affiliated Tumor Hospital, Harbin Medical University, Harbin, China
| | | | - Lijun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yunfan Bai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jianxiang Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuanfei Yao
- The Affiliated Tumor Hospital, Harbin Medical University, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
34
|
Zhou Z, Chen Y, Gao Y, Bi N, Yue X, He J, Zhang R, Wang L, Abliz Z. Development of a high-coverage metabolome relative quantitative method for large-scale sample analysis. Anal Chim Acta 2020; 1109:44-52. [DOI: 10.1016/j.aca.2020.02.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/23/2022]
|
35
|
Enhanced single-cell metabolomics by capillary electrophoresis electrospray ionization-mass spectrometry with field amplified sample injection. Anal Chim Acta 2020; 1118:36-43. [PMID: 32418602 DOI: 10.1016/j.aca.2020.04.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
Abstract
Single-cell metabolomics provides information on the biochemical state of an individual cell and its relationship with the surrounding environment. Characterization of metabolic cellular heterogeneity is challenging, in part due to the small amounts of analytes and their wide dynamic concentration ranges within individual cells. CE-ESI-MS is well suited to single-cell assays because of its low sample-volume requirements and low detection limits. While the volume of a cell is in the picoliter range, after isolation, the typical volume of the lysed cell sample is on the order of a microliter; however, only nanoliters are injected into the CE system, with the volume mismatch limiting analytical performance. Here we developed an approach for the detection of intracellular metabolites from a single neuron using field amplified sample injection (FASI) CE-ESI-MS. Through the application of FASI, we achieved 100- to 300-fold detection limit enhancement compared to hydrodynamic injections. We further enhanced the analyte identification and quantification accuracy via introduction of two internal standards. As a result, the relative standard deviations of migration times were reduced to <5%, aiding identification. Finally, we successfully applied FASI CE-ESI-MS to the untargeted profiling of metabolites of Aplysia californica pleural sensory neurons with <50 μm diameter cell somata. As a result, twenty one neurotransmitters and metabolites have been quantified in these neurons.
Collapse
|
36
|
High-throughput metabolomics reveals the perturbed metabolic pathways and biomarkers of Yang Huang syndrome as potential targets for evaluating the therapeutic effects and mechanism of geniposide. Front Med 2020; 14:651-663. [PMID: 31901116 DOI: 10.1007/s11684-019-0709-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022]
Abstract
High-throughput metabolomics can clarify the underlying molecular mechanism of diseases via the qualitative and quantitative analysis of metabolites. This study used the established Yang Huang syndrome (YHS) mouse model to evaluate the efficacy of geniposide (GEN). Urine metabolic data were quantified by ultraperformance liquid chromatography-tandem mass spectrometry. The non-target screening of the massive biological information dataset was performed, and a total of 33 metabolites, including tyramine glucuronide, aurine, and L-cysteine, were identified relating to YHS. These differential metabolites directly participated in the disturbance of phase I reaction and hydrophilic transformation of bilirubin. Interestingly, they were completely reversed by GEN. While, as the auxiliary technical means, we also focused on the molecular prediction and docking results in network pharmacological and integrated analysis part. We used integrated analysis to communicate the multiple results of metabolomics and network pharmacology. This study is the first to report that GEN indirectly regulates the metabolite "tyramine glucuronide" through its direct effect on the target heme oxygenase 1 in vivo. Meanwhile, heme oxygenase-1, a prediction of network pharmacology, was the confirmed metabolic enzyme of phase I reaction in hepatocytes. Our study indicated that the combination of high-throughput metabolomics and network pharmacology is a robust combination for deciphering the pathogenesis of the traditional Chinese medicine (TCM) syndrome.
Collapse
|
37
|
Furtado DZS, Leite FBVDM, Jedlicka LDL, Souza DS, Barreto CN, da Silva HDT, Assunção NA. Targeted analysis reveals alteration in pathway in 5p minus individuals. Biomed Chromatogr 2020; 34:e4673. [PMID: 31385327 DOI: 10.1002/bmc.4673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/13/2019] [Accepted: 07/29/2019] [Indexed: 11/07/2022]
Abstract
Cri du Chat or 5p minus (5p-) syndrome is characterized by a deletion located on the chromosome 5 short (-p) arm and has an incidence rate of 1 in 50,000 individuals worldwide. This disease manifests in disturbances across a range of systems biochemicals. Therefore, a targeted metabolomics analysis was evaluated in patients with 5p- syndrome to help unravel the biochemical changes that occur in this disease. Urine samples were collected from people of both sexes aged 1-38 years old and analyzed by ultra-performance liquid chromatography coupled to mass spectrometry. Student' statistical test, metabolomic pathway analysis and metabolite set enrichment analysis were applied to the data. Alterations of some amino acids and amine biogenics levels were found in Cri du Chat Syndrome individuals. The alteration of most of these metabolites is associated with energy recuperation and glycolysis. In general, we found the catabolism of some metabolic pathways to be affected in 5p- patients.
Collapse
Affiliation(s)
- Danielle Zildeana Sousa Furtado
- Laboratório de Radicais Livres em Sistemas Biológicos e Bioanalítica, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | - Fernando Brunale Vilela de Moura Leite
- Laboratório de Radicais Livres em Sistemas Biológicos e Bioanalítica, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | - Leticia Dias Lima Jedlicka
- Laboratório de Radicais Livres em Sistemas Biológicos e Bioanalítica, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil.,Instituto de Estudos em Saúde e Biológicas, Saúde Coletiva, Universidade Federal do Sul e Sudeste do Pará, Brazil
| | - Danilo Santos Souza
- Laboratório de Radicais Livres em Sistemas Biológicos e Bioanalítica, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil.,Núcleo de Graduação em Agroindústria, Universidade Federal de Sergipe, Brazil
| | - Cleber Nunes Barreto
- Laboratório de Radicais Livres em Sistemas Biológicos e Bioanalítica, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | - Heron Dominguez Torres da Silva
- Laboratório de Radicais Livres em Sistemas Biológicos e Bioanalítica, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| | - Nilson Antonio Assunção
- Laboratório de Radicais Livres em Sistemas Biológicos e Bioanalítica, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Brazil
| |
Collapse
|
38
|
Qiu S, Zhang AH, Guan Y, Sun H, Zhang TL, Han Y, Yan GL, Wang XJ. Functional metabolomics using UPLC-Q/TOF-MS combined with ingenuity pathway analysis as a promising strategy for evaluating the efficacy and discovering amino acid metabolism as a potential therapeutic mechanism-related target for geniposide against alcoholic liver disease. RSC Adv 2020; 10:2677-2690. [PMID: 35496090 PMCID: PMC9048633 DOI: 10.1039/c9ra09305b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolomics has been used as a strategy to evaluate the efficacy of and potential targets for natural products.
Collapse
Affiliation(s)
- Shi Qiu
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Ai-hua Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Yu Guan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Hui Sun
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Tian-lei Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Ying Han
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Guang-li Yan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Xi-jun Wang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| |
Collapse
|
39
|
Han L, Ao X, Lin S, Guan S, Zheng L, Han X, Ye H. Quantitative Comparative Proteomics Reveal Biomarkers for Dengue Disease Severity. Front Microbiol 2019; 10:2836. [PMID: 31921022 PMCID: PMC6914681 DOI: 10.3389/fmicb.2019.02836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/22/2019] [Indexed: 01/12/2023] Open
Abstract
Dengue fever (DF) could develop into dengue haemorrhagic fever (DHF) with increased mortality rate. Since the clinical characteristics and pathogen are same in DF and DHF. It's important to identify different molecular biomarkers to predict DHF patients from DF. We conducted a clinical plasma proteomics study using quantification (TMT)-based quantitative proteomics methodology to found the differential expressed protein in DF patients before they developed into DHF. In total 441 proteins were identified up or down regulated. There proteins are enriched in diverse biological processes such as proteasome pathway, Alanine, aspartate, and glutamate metabolism and arginine biosynthesis. Several proteins such as PLAT, LAMB2, and F9 were upregulated in only DF patients which developed into DHF cases, not in DF, compared with healthy-control. In another way, FGL1, MFAP4, GLUL, and VCAM1 were upregulated in both DHF and DF cases compare with healthy-control. RT-PCR and ELISA were used to validate these upregulated gene expression and protein level in 54 individuals. Results displayed the same pattern as proteomics analysis. All including PLAT, LAMB2, F9, VCAM1, FGL1, MFAP4, and GLUL could be considered as potential markers of predicting DHF since the levels of these proteins vary between DF and DHF. These new founding identified potential molecular biomarkers for future development in precision prediction of DHF in DF patients.
Collapse
Affiliation(s)
- Lifen Han
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xiulan Ao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Shujin Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Shengcan Guan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lin Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Hanhui Ye
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
40
|
Rui W, Xia W, Zhao W, Li B, Li J, Feng Y, Chen H, Zhao S. Differential Constituents in Roots, Stems and Leaves of Polygonum multiflorum Thunb. Screened by UPLC/ESI-Q-TOF-MS and Multivariate Statistical Analysis. J Chromatogr Sci 2019; 58:136-143. [PMID: 31746330 DOI: 10.1093/chromsci/bmz086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/19/2019] [Accepted: 09/18/2019] [Indexed: 11/12/2022]
Abstract
Abstract
The differential constituents in leaves, stems and roots of Polygonum multiflorum Thunb. were analyzed by ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOF-MS) and by multivariate statistical analysis. The established extraction and analysis method showed relative standard deviations (RSDs) for intra-day precision of less than 3.40%, for repeatability of less than 4.06% and for stability of less than 5.10%. Principal component analysis and orthogonal projections to latent structures discriminant analysis of the UPLC/ESI-Q-TOF-MS data showed good ability to classify the leaves, stems and roots of P. multiflorum Thunb. The differential constituents, such as stilbenes, polygoacetophenoside, flavonoids and anthraquinones, accounting for variations between the leaves, stems and roots, were filtered through the variable importance in projection values and were further identified by elemental composition analysis, mass fragmentation data and retention times of available standards. Differences between the chemical compositions in the leaves, stems and roots of P. multiflorum Thunb. were closely related to their various therapeutic effects. This UPLC/ESI-Q-TOF-MS-based analytical strategy could be further utilized to evaluate the overall quality of traditional Chinese medicines and their differences of chemical constituents in different parts of the plant and/or in the plants of different geographical locations.
Collapse
Affiliation(s)
- Wen Rui
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou 510010, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wanxia Xia
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou 510010, P. R. China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wei Zhao
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou 510010, P. R. China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Bingling Li
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou 510010, P. R. China
| | - Jian Li
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou 510010, P. R. China
| | - Yifan Feng
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Hongyuan Chen
- School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Shujin Zhao
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou 510010, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
41
|
Wang J, Ma Q, Li Y, Li P, Wang M, Wang T, Wang C, Wang T, Zhao B. Research progress on Traditional Chinese Medicine syndromes of diabetes mellitus. Biomed Pharmacother 2019; 121:109565. [PMID: 31704615 DOI: 10.1016/j.biopha.2019.109565] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/05/2019] [Accepted: 10/20/2019] [Indexed: 12/22/2022] Open
Abstract
With the improvement of people's living standard and the changes of environment, the incidence of diabetes mellitus (DM) is on the rise day by day, while clinical treatment mainly aims at lowering blood glucose, instead of fundamental prevention and treatment. What's worse, the measures of prevention and treatment of DM complications remain inadequate. Both Chinese and modern medicine have advantages and disadvantages in treating DM, therefore, it would be a worthy attempt to break through the bottleneck of DM treatment by combining the advantages of both, and explore the new measures to prevent and deal with DM from the perspective of the combination of Traditional Chinese Medicine (TCM) syndrome and modern medicine. In this paper, modern research methods and possible indicators of TCM syndromes of DM were expounded from clinical and basic research aspects, aiming to find specific biomarkers of TCM syndromes, and providing experimental supports for the diagnosis and treatment of DM and the verification of TCM theory.
Collapse
Affiliation(s)
- Jingkang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Quantao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Yaqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Pengfei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Min Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China.
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North 3rd Ring East Road, Chao-Yang District, Beijing, 100029, China.
| |
Collapse
|
42
|
Zhao FJ, Zhang ZB, Ma N, Teng X, Cai ZC, Liu MX. Untargeted metabolomics using liquid chromatography coupled with mass spectrometry for rapid discovery of metabolite biomarkers to reveal therapeutic effects of Psoralea corylifolia seeds against osteoporosis. RSC Adv 2019; 9:35429-35442. [PMID: 35528068 PMCID: PMC9074708 DOI: 10.1039/c9ra07382e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022] Open
Abstract
Liquid chromatography coupled with mass spectrometry has been used as metabolomics profiling tool to discover and identify the metabolites in metabolic diseases. Osteoporosis (OP) syndrome is a chronic metabolic disease characterized by bone mass reduction and changes in bone microstructure. Psoralea corylifolia Linn. seeds (PCS) have a therapeutic effect on osteoporosis, but their action mechanism and therapeutic target are still unclear. This study aims to explore the metabolic changes of the urine profile in glucocorticoid-induced OP model rats and the therapeutic effect of PCS. High-throughput metabolomics based on the liquid chromatography coupled with mass spectrometry quadrupole time-of-flight mass spectrometry and multivariate data analysis were used to analyze the urine metabolites. The results showed that has an obvious separation between model and control groups. OPLS-DA was used to further analyze and discover substances that contributed to the separation. 42 potential biomarkers and 12 related metabolic pathways were identified in combination with network databases. After the intervention of PCS, 24 biomarkers were significantly regulated, mainly with glycone, serine and threonine metabolism, glutathione metabolism and purine metabolism and other metabolic pathways are related and discovered. This study has proved that PCS has therapeutic effect against OP by regulating that metabolic pathways disturbed in the OP. It provided a basis for the research and future development of new drugs for OP treatment. Liquid chromatography coupled with mass spectrometry has been used as metabolomics profiling tool to discover and identify the metabolites in metabolic diseases.![]()
Collapse
Affiliation(s)
- Fu-Jiang Zhao
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Zhao-Bo Zhang
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Ning Ma
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Xiao Teng
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Zhen-Cheng Cai
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Ming-Xi Liu
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| |
Collapse
|
43
|
Liang L, Liu G, Yu G, Zhang F, Linhardt RJ, Li Q. Urinary metabolomics analysis reveals the anti-diabetic effect of stachyose in high-fat diet/streptozotocin-induced type 2 diabetic rats. Carbohydr Polym 2019; 229:115534. [PMID: 31826396 DOI: 10.1016/j.carbpol.2019.115534] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/28/2019] [Accepted: 10/24/2019] [Indexed: 11/29/2022]
Abstract
As a new platform of systems biology, metabolomics provides a powerful approach to discover therapeutic biomarkers and mechanism of metabolic disease. Type 2 diabetes mellitus (T2DM) is a global metabolic disease, thus, a urinary metabolomics profiling was analyzed to study the anti-diabetic effects and mechanism of stachyose (ST) on high-fat diet- and low dose streptozotocinc-induced T2DM rats. The results showed that ST treatment regulated the level of insulin, low-density lipoprotein cholesterol, and triglycerides, which demonstrates improvement in T2DM on ST treatment. Urinary samples from the ST and T2DM group were enrolled in metabolomics study, 21 differential metabolites were identified from urinary metabolomics analysis, indicating that the ST treatment partly exerted the anti-diabetes activity by regulating energy metabolism, gut microbiota changes and inflammation. A metabolomics strategy is both suitable and reliable for exploring the anti-diabetes effects and understanding the mechanisms of ST treatment against T2DM.
Collapse
Affiliation(s)
- Li Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
| | - Guimei Liu
- School of Food Sciences and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Guoyong Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
| | - Fuming Zhang
- Departments of Chemical and Biological Engineering, Chemistry and Chemical Biology, Biomedical Engineering and Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Departments of Chemical and Biological Engineering, Chemistry and Chemical Biology, Biomedical Engineering and Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Quanhong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| |
Collapse
|
44
|
Tang J, Fu J, Wang Y, Luo Y, Yang Q, Li B, Tu G, Hong J, Cui X, Chen Y, Yao L, Xue W, Zhu F. Simultaneous Improvement in the Precision, Accuracy, and Robustness of Label-free Proteome Quantification by Optimizing Data Manipulation Chains. Mol Cell Proteomics 2019; 18:1683-1699. [PMID: 31097671 PMCID: PMC6682996 DOI: 10.1074/mcp.ra118.001169] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
The label-free proteome quantification (LFQ) is multistep workflow collectively defined by quantification tools and subsequent data manipulation methods that has been extensively applied in current biomedical, agricultural, and environmental studies. Despite recent advances, in-depth and high-quality quantification remains extremely challenging and requires the optimization of LFQs by comparatively evaluating their performance. However, the evaluation results using different criteria (precision, accuracy, and robustness) vary greatly, and the huge number of potential LFQs becomes one of the bottlenecks in comprehensively optimizing proteome quantification. In this study, a novel strategy, enabling the discovery of the LFQs of simultaneously enhanced performance from thousands of workflows (integrating 18 quantification tools with 3,128 manipulation chains), was therefore proposed. First, the feasibility of achieving simultaneous improvement in the precision, accuracy, and robustness of LFQ was systematically assessed by collectively optimizing its multistep manipulation chains. Second, based on a variety of benchmark datasets acquired by various quantification measurements of different modes of acquisition, this novel strategy successfully identified a number of manipulation chains that simultaneously improved the performance across multiple criteria. Finally, to further enhance proteome quantification and discover the LFQs of optimal performance, an online tool (https://idrblab.org/anpela/) enabling collective performance assessment (from multiple perspectives) of the entire LFQ workflow was developed. This study confirmed the feasibility of achieving simultaneous improvement in precision, accuracy, and robustness. The novel strategy proposed and validated in this study together with the online tool might provide useful guidance for the research field requiring the mass-spectrometry-based LFQ technique.
Collapse
Affiliation(s)
- Jing Tang
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; ¶Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Fu
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunxia Wang
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Luo
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Yang
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Bo Li
- §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gao Tu
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jiajun Hong
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuejiao Cui
- §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yuzong Chen
- ‖Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Lixia Yao
- **Department of Health Sciences Research, Mayo Clinic, Rochester MN 55905, United States
| | - Weiwei Xue
- §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- ‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; §School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
45
|
He M, Li L, Wang H, Yan S, Zhang Y. Effects of High-Grain Diet With Buffering Agent on the Hepatic Metabolism in Lactating Goats. Front Physiol 2019; 10:661. [PMID: 31191354 PMCID: PMC6548822 DOI: 10.3389/fphys.2019.00661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
To gain insight on the effects of a high-grain diet with buffering agent on liver metabolism and the changes of plasma biochemical parameters and amino acids in hepatic vein and portal vein, commercial kit and high performance liquid chromatography (HPLC) were applied to determine the concentration of amino acids of hepatic vein and portal vein blood samples, quantitative real-time PCR and comparative proteomic approach was employed to investigate proteins differentially expressed in liver in lactating dairy goats feeding high-grain diet with buffering agent or only high-grain diet. Results showed that feeding high-grain diet with buffering agent to lactating dairy goats could outstanding increase amino acid content of Gln (p < 0.01), and the amino acid contents of Arg and Tyr in BG were significantly higher (p < 0.05) than that in HG. After adding the buffering agent, the metabolism of amino acids in the liver were changed and most of the amino acids were increasingly synthesized and decreasingly consumed in the liver. In addition, 46 differentially expressed protein spots (≥1.5-fold changed) were detected in buffering group vs. control group using 2-DE technique and MALDI-TOF/TOF proteomics analyzer. Of these, 24 proteins showed increased expression and 22 proteins showed decreased expression in the buffer group vs. control group. Data on Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis reveals that the high-grain diet with buffering agent alter the expression of proteins related to amino acids metabolism and glycometabolism. In addition, the results conclude that feeding high-grain diet with buffering agent can strengthen anti-oxidant capacity, stress ability, slow down urea metabolism, and alter amino acid metabolism as well as glycometabolism in the liver through different detection methods including proteomic analysis, real-time PCR analysis and biochemical analysis.
Collapse
Affiliation(s)
- Meilin He
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lin Li
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Huanhuan Wang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shuping Yan
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yuanshu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
46
|
Zhao Y, Hou Y, Ji J, Khan F, Thundat T, Harrison DJ. Sample Preparation in Centrifugal Microfluidic Discs for Human Serum Metabolite Analysis by Surface Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 2019; 91:7570-7577. [DOI: 10.1021/acs.analchem.8b05756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yufeng Zhao
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Yuting Hou
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Jing Ji
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Faheem Khan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Thomas Thundat
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - D. Jed Harrison
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
47
|
Lin L, Yan H, Chen J, Xie H, Peng L, Xie T, Zhao X, Wang S, Shan J. Application of metabolomics in viral pneumonia treatment with traditional Chinese medicine. Chin Med 2019; 14:8. [PMID: 30911327 PMCID: PMC6417174 DOI: 10.1186/s13020-019-0229-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/05/2019] [Indexed: 01/08/2023] Open
Abstract
Nowadays, traditional Chinese medicines (TCMs) have been reported to provide reliable therapies for viral pneumonia, but the therapeutic mechanism remains unknown. As a systemic approach, metabolomics provides an opportunity to clarify the action mechanism of TCMs, TCM syndromes or after TCM treatment. This review aims to provide the metabolomics evidence available on TCM-based therapeutic measures against viral pneumonia. Metabolomics has been gradually applied to the efficacy evaluation of TCMs in treatment of viral pneumonia and the metabolomics analysis exhibits a systemic metabolic shift in lipid, amino acids, and energy metabolism. Currently, most studies of TCM in treatment of viral pneumonia are untargeted metabolomics and further validations on targeted metabolomics should be carried out together with molecular biology technologies.
Collapse
Affiliation(s)
- Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Hua Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Jiabin Chen
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310006 China
| | - Huihui Xie
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310006 China
| | - Linxiu Peng
- School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing, 210023 China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| |
Collapse
|
48
|
Sun H, Zhang AH, Yang L, Li MX, Fang H, Xie J, Wang XJ. High-throughput chinmedomics strategy for discovering the quality-markers and potential targets for Yinchenhao decoction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:328-338. [PMID: 30340940 DOI: 10.1016/j.phymed.2018.04.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/25/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Yinchenhao decoction (YCHD) has been widely applied in the clinic for various kinds of liver disease, especially for the therapy of dampness-heat jaundice syndrome (DHJS). Some studies have investigated the pharmacological activity and compositions of YCHD. However, its Q-markers and the action targets are still unrevealed. PURPOSE This work aims to clarify the therapeutic effect of YCHD against DHJS and discover the quality-markers (Q-markers) of YCHD based on the high-throughput chinmedomics strategy and then predict the potential targets and action mechanism of YCHD against DHJS. METHODS Ultra-high performance liquid chromatography/mass spectrometry (UPLC-MS) combined with pattern recognition method was utilized to analyze serum samples and urine samples. Multivariate data analysis and network pharmacology technology were used to identify the effective components and biomarkers associated with therapeutic effects. RESULTS With the high sensitivity UPLC-MS technology, a total of 69 compounds from YCHD were identified and 41 of them were absorbed in blood. Besides, 34 urine biomarkers from DHJS were identified. Of note, we utilized chinmedomics technology on the correlation analysis of urine biomarkers and absorbed components to determine 9 core-compounds as the Q-markers responsible for the efficacy of YCHD. Finally, a total of 12 potential targets were discovered. CONCLUSION This work provides a powerful method for clarifying the efficacy of TCM and discovering the effective ingredients as Q-markers.
Collapse
Affiliation(s)
- Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ai-Hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Meng-Xi Li
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Heng Fang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Jing Xie
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xi-Jun Wang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| |
Collapse
|
49
|
Peng M, He Q, Li S, Li L, Ma H. Integrated analysis of proteomics-delineated and metabolomics-delineated hepatic metabolic responses to (-)-hydroxycitric acid in chick embryos. J Cell Biochem 2019; 120:1258-1270. [PMID: 30317645 DOI: 10.1002/jcb.27085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/26/2018] [Indexed: 01/24/2023]
Abstract
(-)-Hydroxycitric acid [(-)-HCA] is widely used as a nutritional supplement to control body weight and fat accumulation in animals and humans, whereas the underlying biochemical mechanism is unclear. Broiler chicken was used as a model for studies of obesity due to its natural hyperglycemia and being insulin resistant. The current study aimed to obtain a systematic view of serum metabolites and hepatic proteins and well understand the mechanism of hepatic metabolic response to (-)-HCA treatment in chick embryos. The results showed that 22, 90, and 82 of differentially expressed proteins were identified at E14d, E19d, and H1d in chick embryos treated with (-)-HCA, respectively. Meanwhile, 5, 83, and 88 of serum metabolites significantly changed at E14d, E19d, and H1d in chick embryos after (-)-HCA treatment. Bioinformatics analysis showed that the key proteins and metabolites, which were significantly altered in chick embryos treated with (-)-HCA, were mainly involved in the citrate cycle, glycolysis/gluconeogenesis, fatty acid metabolism, and pyruvate metabolism. Our data indicated that (-)-HCA treatment might promote fat metabolism via regulating the key protein expression levels and metabolite contents in the citrate cycle, glycolysis/gluconeogenesis, and oxidative phosphorylation during chicken embryonic development. These results will deepen our understanding of the mechanism of fat reduction by (-)-HCA and provide substantial information for (-)-HCA as a nutritional supplement to control body weight gain and curb obesity-related diseases.
Collapse
Affiliation(s)
- Mengling Peng
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, China
| | - Qianqian He
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, China
| | - Shengnan Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
50
|
Zhang Y, Yuan XM, Wang YF, Jiang MM, Bi YN, Liu Y, Pu WL, Song L, Huang JY, Sun LK, Zhou ZX, Zhou K. Isopsoralen induces different subchronic toxicities and metabolomic outcomes between male and female Wistar rats. Regul Toxicol Pharmacol 2019; 103:1-9. [PMID: 30634019 DOI: 10.1016/j.yrtph.2019.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 10/19/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Abstract
Isopsoralen is a major active and quality-control component of Fructus Psoraleae, but lacks a full safety evaluation. We evaluated the oral toxicity of isopsoralen in Wistar rats treated for 3 months at doses of 0, 3.5, 7.0, and 14 mg/kg. Additionally, the plasma metabolomics of isopsoralen in male and female rats treated for 3 months at doses of 0 and 14 mg/kg were investigated by gas chromatography-mass spectrometry. Many abnormalities were observed in the isopsoralen-treated rats, including suppression of body weight gain, and changes in serum biochemical parameters and visceral coefficients. Histopathological changes in liver, pancreatic, and reproductive system tissues were also observed in the isopsoralen-treated rats. The metabolomic analyses showed alterations in many metabolites (19 in female rats; 28 in male rats) after isopsoralen administration. The significant changes in these metabolites revealed metabolomic alterations in the isopsoralen-treated rats, especially in amino acid metabolism regardless of sex, including phenylalanine, tyrosine, and tryptophan biosynthesis and glycine, serine, and threonine metabolism. Furthermore, fatty acid metabolism comprised the main affected pathways in female rats, while lipid metabolism and energy metabolism were the main affected pathways in male rats.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 300193, China; Ministry of Education Key Laboratory of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xiao-Mei Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yue-Fei Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 300193, China
| | - Miao-Miao Jiang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 300193, China
| | - Ya-Nan Bi
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wei-Ling Pu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lei Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Ministry of Education Key Laboratory of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ju-Yang Huang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Ministry of Education Key Laboratory of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Li-Kang Sun
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 300193, China
| | - Zhi-Xing Zhou
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 300193, China; Ministry of Education Key Laboratory of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|