1
|
Singh H, Kirar M, Yadav M, Dahiya N, Janjoter S, Sehrawat N. Molecular characterization and bioinformatic analysis of SGU protein in Anopheles culicifacies as target for transmission blocking activity. Immunol Res 2025; 73:34. [PMID: 39810016 DOI: 10.1007/s12026-024-09561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025]
Abstract
In tropical countries, malaria transmission is the major health issue. To eradicate malaria, health communities depend on the control measure that affects economy and environment of the countries. To overcome these burdens, there is a great need to develop vaccine against malaria, but there is no vaccine to control malaria effectively. Transmission blocking vaccine (TBV) is the best alternative approach to control malaria, which inhibits the malaria transmission. Mosquito-based TBVs, blocks the transmission of Plasmodium developmental stages in mosquito. There are some potential candidate antigens for mosquito-based TBV, e.g., AgCPB1, AnAPN1, AgFREP1, etc. AcSGU is one of the most potential candidates for TBVs. AcSGU protein is glycol-anchored protein in Anopheles culicifacies which is highly expressed after blood feeding. In the present study acsgu gene was amplified from genomic DNA, sequenced (GenBank id: MN402758) and characterised. The sequence of acsgu (gene and protein) was analysed by different immuno-informatics tools to confirm its potentiality as a candidate antigen. The target protein was cloned, isolated and immunised for immunogenic response analysis. The acsgu gene is single exonic which encodes for AcSGU protein with single functional MBF2 domain. It is conserved in most of the Anopheles species. Bioinformatics analysis confirmed the stability and immunogenic nature of the protein. Protein-Protein interaction revealed effective interaction of AcSGU with Pf47 and TLR4 molecules. AcSGU protein was expressed in E. coli BL21 (DE3) by using expression vector pLATE51. The immunogenic response in AcSGU protein was remarkable in the rabbit. This study confirmed that AcSGU protein is the potential candidate for transmission blocking vaccine to generate anti-midgut immunity against plasmodium. It can be used as a candidate for the development of multistage targeting vaccines against malaria.
Collapse
Affiliation(s)
- Hitesh Singh
- Department of Life Science, PDM University, Bahadurgarh, Haryana, India
| | - Manisha Kirar
- School of Basic and Applied Sciences, Sanskaram University, Jhajjar, Haryana, India
| | - Mahima Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Nisha Dahiya
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sangeeta Janjoter
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Neelam Sehrawat
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
2
|
Bonning BC. Pathogen Binding and Entry: Molecular Interactions with the Insect Gut. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:165-184. [PMID: 39874144 DOI: 10.1146/annurev-ento-030624-014608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The point of entry for the majority of arthropod pathogens and arthropod-vectored pathogens of plant, animal, and human health importance is the arthropod midgut. Pathogen interaction with the midgut therefore represents a primary target for intervention to prevent pathogen infection and transmission. Despite this key role in pathogen invasion, relatively little is known of the specific molecular interactions between pathogens and the surface of the arthropod gut epithelium, with few pathogen receptors having been definitively identified. This article provides an overview of pathogen molecular interactions in the arthropod midgut, with a focus on gut surface proteins that mediate pathogen entry, and highlights recent methodological advances that facilitate the identification of pathogen receptor proteins.
Collapse
Affiliation(s)
- Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
3
|
Ceron-Noriega A, Almeida MV, Levin M, Butter F. Nematode gene annotation by machine-learning-assisted proteotranscriptomics enables proteome-wide evolutionary analysis. Genome Res 2023; 33:112-128. [PMID: 36653121 PMCID: PMC9977148 DOI: 10.1101/gr.277070.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/18/2022] [Indexed: 01/19/2023]
Abstract
Nematodes encompass more than 24,000 described species, which were discovered in almost every ecological habitat, and make up >80% of metazoan taxonomic diversity in soils. The last common ancestor of nematodes is believed to date back to ∼650-750 million years, generating a large and phylogenetically diverse group to be explored. However, for most species high-quality gene annotations are incomprehensive or missing. Combining short-read RNA sequencing with mass spectrometry-based proteomics and machine-learning quality control in an approach called proteotranscriptomics, we improve gene annotations for nine genome-sequenced nematode species and provide new gene annotations for three additional species without genome assemblies. Emphasizing the sensitivity of our methodology, we provide evidence for two hitherto undescribed genes in the model organism Caenorhabditis elegans Extensive phylogenetic systems analysis using this comprehensive proteome annotation provides new insights into evolutionary processes of this metazoan group.
Collapse
Affiliation(s)
| | | | - Michal Levin
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
4
|
Proteotranscriptomics - A facilitator in omics research. Comput Struct Biotechnol J 2022; 20:3667-3675. [PMID: 35891789 PMCID: PMC9293588 DOI: 10.1016/j.csbj.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
Abstract
Applications in omics research, such as comparative transcriptomics and proteomics, require the knowledge of the species-specific gene sequence and benefit from a comprehensive high-quality annotation of the coding genes to achieve high coverage. While protein-coding genes can in simple cases be detected by scanning the genome for open reading frames, in more complex genomes exonic sequences are separated by introns. Despite advances in sequencing technologies that allow for ever-growing numbers of genomes, the quality of many of the provided genome assemblies do not reach reference quality. These non-contiguous assemblies with gaps and the necessity to predict splice sites limit accurate gene annotation from solely genomic data. In contrast, the transcriptome only contains transcribed gene regions, is devoid of introns and thus provides the optimal basis for the identification of open reading frames. The additional integration of proteomics data to validate predicted protein-coding genes further enriches for accurate gene models. This review outlines the principles of the proteotranscriptomics approach, discusses common challenges and suggests methods for improvement.
Collapse
|
5
|
Fancello L, Burger T. An analysis of proteogenomics and how and when transcriptome-informed reduction of protein databases can enhance eukaryotic proteomics. Genome Biol 2022; 23:132. [PMID: 35725496 PMCID: PMC9208142 DOI: 10.1186/s13059-022-02701-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Proteogenomics aims to identify variant or unknown proteins in bottom-up proteomics, by searching transcriptome- or genome-derived custom protein databases. However, empirical observations reveal that these large proteogenomic databases produce lower-sensitivity peptide identifications. Various strategies have been proposed to avoid this, including the generation of reduced transcriptome-informed protein databases, which only contain proteins whose transcripts are detected in the sample-matched transcriptome. These were found to increase peptide identification sensitivity. Here, we present a detailed evaluation of this approach. RESULTS We establish that the increased sensitivity in peptide identification is in fact a statistical artifact, directly resulting from the limited capability of target-decoy competition to accurately model incorrect target matches when using excessively small databases. As anti-conservative false discovery rates (FDRs) are likely to hamper the robustness of the resulting biological conclusions, we advocate for alternative FDR control methods that are less sensitive to database size. Nevertheless, reduced transcriptome-informed databases are useful, as they reduce the ambiguity of protein identifications, yielding fewer shared peptides. Furthermore, searching the reference database and subsequently filtering proteins whose transcripts are not expressed reduces protein identification ambiguity to a similar extent, but is more transparent and reproducible. CONCLUSIONS In summary, using transcriptome information is an interesting strategy that has not been promoted for the right reasons. While the increase in peptide identifications from searching reduced transcriptome-informed databases is an artifact caused by the use of an FDR control method unsuitable to excessively small databases, transcriptome information can reduce the ambiguity of protein identifications.
Collapse
Affiliation(s)
- Laura Fancello
- CNRS, CEA, Inserm, BioSanté U1292, Profi FR2048, Université Grenoble Alpes, Grenoble, France
| | - Thomas Burger
- CNRS, CEA, Inserm, BioSanté U1292, Profi FR2048, Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
6
|
Hugo RLE, Birrell GW. Proteomics of Anopheles Vectors of Malaria. Trends Parasitol 2018; 34:961-981. [DOI: 10.1016/j.pt.2018.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
|
7
|
Affiliation(s)
- Robert E. Sinden
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Lecona-Valera AN, Tao D, Rodríguez MH, López T, Dinglasan RR, Rodríguez MC. An antibody against an Anopheles albimanus midgut myosin reduces Plasmodium berghei oocyst development. Parasit Vectors 2016; 9:274. [PMID: 27165123 PMCID: PMC4863318 DOI: 10.1186/s13071-016-1548-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/27/2016] [Indexed: 11/13/2022] Open
Abstract
Background Malaria parasites are transmitted by Anopheles mosquitoes. Although several studies have identified mosquito midgut surface proteins that are putatively important for Plasmodium ookinete invasion, only a few have characterized these protein targets and demonstrated transmission-blocking activity. Molecular information about these proteins is essential for the development of transmission-blocking vaccines (TBV). The aim of the present study was to test three monoclonal antibodies (mAbs), A-140, A-78 and A-10, for their ability to recognize antigens and block oocyst infection of the midgut of Anopheles albimanus, a major malaria vector in Latin America. Method Western-blot of mAbs on antigens from midgut brush border membrane vesicles was used to select antibodies. Three mAbs were tested by membrane feeding assays to evaluate their potential transmission-blocking activity against Plasmodium berghei. The cognate antigens recognized by mAbs with oocyst-reducing activity were determined by immunoprecipitation followed by liquid chromatography tandem mass spectrometry. Results Only one mAb, A-140, significantly reduced oocyst infection intensity. Hence, its probable protein target in the Anopheles albimanus midgut was identified and characterized. It recognized three high-molecular mass proteins from a midgut brush border microvilli vesicle preparation. Chemical deglycosylation assays confirmed the peptide nature of the epitope recognized by mAb A-140. Immunoprecipitation followed by proteomic identification with tandem mass spectrometry revealed five proteins, presumably extracted together as a complex. Of these, AALB007909 had the highest mascot score and corresponds to a protein with a myosin head motor domain, indicating that the target of mAb A-140 is probably myosin located on the microvilli of the mosquito midgut. Conclusion These results provide support for the participation of myosin in mosquito midgut invasion by Plasmodium ookinetes. The potential inclusion of this protein in the design of new multivalent vaccine strategies for blocking Plasmodium transmission is discussed. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1548-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alba N Lecona-Valera
- Center of Research on Infectious Diseases, National Institute of Public Health, Av. Universidad 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, C. P. 62508, Mexico
| | - Dingyin Tao
- W. Harry Feinstone Department of Molecular Microbiology & Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland, 21205, USA
| | - Mario H Rodríguez
- Center of Research on Infectious Diseases, National Institute of Public Health, Av. Universidad 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, C. P. 62508, Mexico
| | - Tomás López
- Instituto de Biotecnología, Universidad Nacional Autónoma de Méxic006F, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Rhoel R Dinglasan
- W. Harry Feinstone Department of Molecular Microbiology & Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland, 21205, USA
| | - María C Rodríguez
- Center of Research on Infectious Diseases, National Institute of Public Health, Av. Universidad 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, C. P. 62508, Mexico.
| |
Collapse
|
9
|
Zickmann F, Renard BY. MSProGene: integrative proteogenomics beyond six-frames and single nucleotide polymorphisms. Bioinformatics 2015; 31:i106-15. [PMID: 26072472 PMCID: PMC4765881 DOI: 10.1093/bioinformatics/btv236] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Summary: Ongoing advances in high-throughput technologies have facilitated accurate proteomic measurements and provide a wealth of information on genomic and transcript level. In proteogenomics, this multi-omics data is combined to analyze unannotated organisms and to allow more accurate sample-specific predictions. Existing analysis methods still mainly depend on six-frame translations or reference protein databases that are extended by transcriptomic information or known single nucleotide polymorphisms (SNPs). However, six-frames introduce an artificial sixfold increase of the target database and SNP integration requires a suitable database summarizing results from previous experiments. We overcome these limitations by introducing MSProGene, a new method for integrative proteogenomic analysis based on customized RNA-Seq driven transcript databases. MSProGene is independent from existing reference databases or annotated SNPs and avoids large six-frame translated databases by constructing sample-specific transcripts. In addition, it creates a network combining RNA-Seq and peptide information that is optimized by a maximum-flow algorithm. It thereby also allows resolving the ambiguity of shared peptides for protein inference. We applied MSProGene on three datasets and show that it facilitates a database-independent reliable yet accurate prediction on gene and protein level and additionally identifies novel genes. Availability and implementation: MSProGene is written in Java and Python. It is open source and available at http://sourceforge.net/projects/msprogene/. Contact:renardb@rki.de
Collapse
Affiliation(s)
- Franziska Zickmann
- Research Group Bioinformatics (NG4), Robert Koch Institute, 13353 Berlin, Germany
| | - Bernhard Y Renard
- Research Group Bioinformatics (NG4), Robert Koch Institute, 13353 Berlin, Germany
| |
Collapse
|
10
|
Han JH, Li J, Wang B, Lee SK, Nyunt MH, Na S, Park JH, Han ET. Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:403-11. [PMID: 26323838 PMCID: PMC4566507 DOI: 10.3347/kjp.2015.53.4.403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 11/23/2022]
Abstract
Plasmodium falciparum can invade all stages of red blood cells, while Plasmodium vivax can invade only reticulocytes. Although many P. vivax proteins have been discovered, their functions are largely unknown. Among them, P. vivax reticulocyte binding proteins (PvRBP1 and PvRBP2) recognize and bind to reticulocytes. Both proteins possess a C-terminal hydrophobic transmembrane domain, which drives adhesion to reticulocytes. PvRBP1 and PvRBP2 are large (> 326 kDa), which hinders identification of the functional domains. In this study, the complete genome information of the P. vivax RBP family was thoroughly analyzed using a prediction server with bioinformatics data to predict B-cell epitope domains. Eleven pvrbp family genes that included 2 pseudogenes and 9 full or partial length genes were selected and used to express recombinant proteins in a wheat germ cell-free system. The expressed proteins were used to evaluate the humoral immune response with vivax malaria patients and healthy individual serum samples by protein microarray. The recombinant fragments of 9 PvRBP proteins were successfully expressed; the soluble proteins ranged in molecular weight from 16 to 34 kDa. Evaluation of the humoral immune response to each recombinant PvRBP protein indicated a high antigenicity, with 38-88% sensitivity and 100% specificity. Of them, N-terminal parts of PvRBP2c (PVX_090325-1) and PvRBP2 like partial A (PVX_090330-1) elicited high antigenicity. In addition, the PvRBP2-like homologue B (PVX_116930) fragment was newly identified as high antigenicity and may be exploited as a potential antigenic candidate among the PvRBP family. The functional activity of the PvRBP family on merozoite invasion remains unknown.
Collapse
Affiliation(s)
- Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | - Jian Li
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea.,Department of Parasitology, College of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Bo Wang
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea.,Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | - Myat Htut Nyunt
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea.,Department of Medical Research, Yangon, Myanmar
| | - Sunghun Na
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | - Jeong-Hyun Park
- Department of Anatomy, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
11
|
Fuzita FJ, Pinkse MWH, Patane JSL, Juliano MA, Verhaert PDEM, Lopes AR. Biochemical, transcriptomic and proteomic analyses of digestion in the scorpion Tityus serrulatus: insights into function and evolution of digestion in an ancient arthropod. PLoS One 2015; 10:e0123841. [PMID: 25875018 PMCID: PMC4398375 DOI: 10.1371/journal.pone.0123841] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/25/2015] [Indexed: 01/29/2023] Open
Abstract
Scorpions are among the oldest terrestrial arthropods and they have passed through small morphological changes during their evolutionary history on land. They are efficient predators capable of capturing and consuming large preys and due to envenomation these animals can become a human health challenge. Understanding the physiology of scorpions can not only lead to evolutionary insights but also is a crucial step in the development of control strategies. However, the digestive process in scorpions has been scarcely studied. In this work, we describe the combinatory use of next generation sequencing, proteomic analysis and biochemical assays in order to investigate the digestive process in the yellow scorpion Tityus serrulatus, mainly focusing in the initial protein digestion. The transcriptome generated database allowed the quantitative identification by mass spectrometry of different enzymes and proteins involved in digestion. All the results suggested that cysteine cathepsins play an important role in protein digestion. Two digestive cysteine cathepsins were isolated and characterized presenting acidic characteristics (pH optima and stability), zymogen conversion to the mature form after acidic activation and a cross-class inhibition by pepstatin. A more elucidative picture of the molecular mechanism of digestion in a scorpion was proposed based on our results from Tityus serrulatus. The midgut and midgut glands (MMG) are composed by secretory and digestive cells. In fasting animals, the secretory granules are ready for the next predation event, containing enzymes needed for alkaline extra-oral digestion which will compose the digestive fluid, such as trypsins, astacins and chitinase. The digestive vacuoles are filled with an acidic proteolytic cocktail to the intracellular digestion composed by cathepsins L, B, F, D and legumain. Other proteins as lipases, carbohydrases, ctenitoxins and a chitolectin with a perithrophin domain were also detected. Evolutionarily, a large gene duplication of cathepsin L occurred in Arachnida with the sequences from ticks being completely divergent from other arachnids probably due to the particular selective pressures over this group.
Collapse
Affiliation(s)
- Felipe J. Fuzita
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, Brazil
- Biotechnology Program, University of São Paulo, São Paulo, Brazil
| | - Martijn W. H. Pinkse
- Laboratory of Analytical Biotechnology & Innovative Peptide Biology, Delft University of Technology, Delft, The Netherlands
| | - José S. L. Patane
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Peter D. E. M. Verhaert
- Laboratory of Analytical Biotechnology & Innovative Peptide Biology, Delft University of Technology, Delft, The Netherlands
| | - Adriana R. Lopes
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
12
|
Shrinet J, Nandal UK, Adak T, Bhatnagar RK, Sunil S. Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection. PLoS One 2014; 9:e114461. [PMID: 25474020 PMCID: PMC4256432 DOI: 10.1371/journal.pone.0114461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/07/2014] [Indexed: 01/05/2023] Open
Abstract
Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway.
Collapse
Affiliation(s)
- Jatin Shrinet
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Umesh Kumar Nandal
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, the Netherlands
| | - Tridibes Adak
- National Institute of Malaria Research, New Delhi, India
| | - Raj K. Bhatnagar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sujatha Sunil
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail:
| |
Collapse
|
13
|
Wang X, Liu Q, Zhang B. Leveraging the complementary nature of RNA-Seq and shotgun proteomics data. Proteomics 2014; 14:2676-87. [PMID: 25266668 DOI: 10.1002/pmic.201400184] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/22/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022]
Abstract
RNA sequencing (RNA-Seq) and MS-based shotgun proteomics are powerful high-throughput technologies for identifying and quantifying RNA transcripts and proteins, respectively. With the increasing affordability of these technologies, many projects have started to apply both to the same samples to achieve a more comprehensive understanding of biological systems. A major analytical challenge for such integrative projects is how to effectively leverage the complementary nature of RNA-Seq and shotgun proteomics data. RNA-Seq provides comprehensive information on mRNA abundance, alternative splicing, nucleotide variation, and structure alteration. Sample-specific protein databases derived from RNA-Seq data can better approximate the real protein pools in cell and tissue samples and thus improve protein identification. Meanwhile, proteomics data provide essential confirmation of the validity and functional relevance of novel findings from RNA-Seq data. At the quantitative level, mRNA and protein levels are only modestly correlated, suggesting strong involvement of posttranscriptional regulation in controlling gene expression. Here, we review recent studies at the interface of RNA-Seq and proteomics data. We discuss goals, accomplishments, and challenges in RNA-Seq-based proteogenomics. We also examine the current status and future potential of parallel transcriptome and proteome quantification in revealing posttranscriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN
| | | | | |
Collapse
|
14
|
Kelkar DS, Provost E, Chaerkady R, Muthusamy B, Manda SS, Subbannayya T, Selvan LDN, Wang CH, Datta KK, Woo S, Dwivedi SB, Renuse S, Getnet D, Huang TC, Kim MS, Pinto SM, Mitchell CJ, Madugundu AK, Kumar P, Sharma J, Advani J, Dey G, Balakrishnan L, Syed N, Nanjappa V, Subbannayya Y, Goel R, Prasad TSK, Bafna V, Sirdeshmukh R, Gowda H, Wang C, Leach SD, Pandey A. Annotation of the zebrafish genome through an integrated transcriptomic and proteomic analysis. Mol Cell Proteomics 2014; 13:3184-98. [PMID: 25060758 DOI: 10.1074/mcp.m114.038299] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accurate annotation of protein-coding genes is one of the primary tasks upon the completion of whole genome sequencing of any organism. In this study, we used an integrated transcriptomic and proteomic strategy to validate and improve the existing zebrafish genome annotation. We undertook high-resolution mass-spectrometry-based proteomic profiling of 10 adult organs, whole adult fish body, and two developmental stages of zebrafish (SAT line), in addition to transcriptomic profiling of six organs. More than 7,000 proteins were identified from proteomic analyses, and ∼ 69,000 high-confidence transcripts were assembled from the RNA sequencing data. Approximately 15% of the transcripts mapped to intergenic regions, the majority of which are likely long non-coding RNAs. These high-quality transcriptomic and proteomic data were used to manually reannotate the zebrafish genome. We report the identification of 157 novel protein-coding genes. In addition, our data led to modification of existing gene structures including novel exons, changes in exon coordinates, changes in frame of translation, translation in annotated UTRs, and joining of genes. Finally, we discovered four instances of genome assembly errors that were supported by both proteomic and transcriptomic data. Our study shows how an integrative analysis of the transcriptome and the proteome can extend our understanding of even well-annotated genomes.
Collapse
Affiliation(s)
- Dhanashree S Kelkar
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ‡Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Elayne Provost
- §Department of Surgery, Johns Hopkins University, Baltimore, Maryland 21205
| | - Raghothama Chaerkady
- ¶McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Babylakshmi Muthusamy
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ‖Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Srikanth S Manda
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ‖Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India; **Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Tejaswini Subbannayya
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ‡Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Lakshmi Dhevi N Selvan
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ‡Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Chieh-Huei Wang
- ¶McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Keshava K Datta
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ‡‡School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sunghee Woo
- §§Department of Computer Science, University of California, San Diego, California 92093
| | - Sutopa B Dwivedi
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ‡Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Santosh Renuse
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ‡Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Derese Getnet
- ¶McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Tai-Chung Huang
- ¶McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Min-Sik Kim
- ¶McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205; **Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Sneha M Pinto
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ¶McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205; ¶¶Manipal University, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Christopher J Mitchell
- ¶McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Anil K Madugundu
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Praveen Kumar
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Jyoti Sharma
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ¶¶Manipal University, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Jayshree Advani
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Gourav Dey
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ¶¶Manipal University, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Lavanya Balakrishnan
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ‖‖Department of Biotechnology, Kuvempu University, Shimoga 577 451, India
| | - Nazia Syed
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605 014, India
| | - Vishalakshi Nanjappa
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ‡Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Yashwanth Subbannayya
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Renu Goel
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - T S Keshava Prasad
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ‡Amrita School of Biotechnology, Amrita University, Kollam 690 525, India; ‖Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India; ¶¶Manipal University, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Vineet Bafna
- §§Department of Computer Science, University of California, San Diego, California 92093
| | - Ravi Sirdeshmukh
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Harsha Gowda
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Charles Wang
- The Center for Genomics and Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350;
| | - Steven D Leach
- §Department of Surgery, Johns Hopkins University, Baltimore, Maryland 21205; ¶McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Akhilesh Pandey
- From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ¶McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205; **Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
15
|
Tao D, Ubaida-Mohien C, Mathias DK, King JG, Pastrana-Mena R, Tripathi A, Goldowitz I, Graham DR, Moss E, Marti M, Dinglasan RR. Sex-partitioning of the Plasmodium falciparum stage V gametocyte proteome provides insight into falciparum-specific cell biology. Mol Cell Proteomics 2014; 13:2705-24. [PMID: 25056935 PMCID: PMC4188997 DOI: 10.1074/mcp.m114.040956] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
One of the critical gaps in malaria transmission biology and surveillance is our lack of knowledge about Plasmodium falciparum gametocyte biology, especially sexual dimorphic development and how sex ratios that may influence transmission from the human to the mosquito. Dissecting this process has been hampered by the lack of sex-specific protein markers for the circulating, mature stage V gametocytes. The current evidence suggests a high degree of conservation in gametocyte gene complement across Plasmodium, and therefore presumably for sex-specific genes as well. To better our understanding of gametocyte development and subsequent infectiousness to mosquitoes, we undertook a Systematic Subtractive Bioinformatic analysis (filtering) approach to identify sex-specific P. falciparum NF54 protein markers based on a comparison with the Dd2 strain, which is defective in producing males, and with syntenic male and female proteins from the reanalyzed and updated P. berghei (related rodent malaria parasite) gametocyte proteomes. This produced a short list of 174 male- and 258 female-enriched P. falciparum stage V proteins, some of which appear to be under strong diversifying selection, suggesting ongoing adaptation to mosquito vector species. We generated antibodies against three putative female-specific gametocyte stage V proteins in P. falciparum and confirmed either conserved sex-specificity or the lack of cross-species sex-partitioning. Finally, our study provides not only an additional resource for mass spectrometry-derived evidence for gametocyte proteins but also lays down the foundation for rational screening and development of novel sex-partitioned protein biomarkers and transmission-blocking vaccine candidates.
Collapse
Affiliation(s)
- Dingyin Tao
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland, USA
| | - Ceereena Ubaida-Mohien
- §Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland, USA
| | - Derrick K Mathias
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland, USA
| | - Jonas G King
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland, USA
| | - Rebecca Pastrana-Mena
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland, USA
| | - Abhai Tripathi
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland, USA
| | - Ilana Goldowitz
- ¶Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts, USA
| | - David R Graham
- §Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland, USA
| | - Eli Moss
- ‖The Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - Matthias Marti
- ¶Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts, USA
| | - Rhoel R Dinglasan
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland, USA;
| |
Collapse
|
16
|
Mathias DK, Jardim JG, Parish LA, Armistead JS, Trinh HV, Kumpitak C, Sattabongkot J, Dinglasan RR. Differential roles of an Anopheline midgut GPI-anchored protein in mediating Plasmodium falciparum and Plasmodium vivax ookinete invasion. INFECTION GENETICS AND EVOLUTION 2014; 28:635-47. [PMID: 24929123 DOI: 10.1016/j.meegid.2014.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022]
Abstract
Novel strategies to directly thwart malaria transmission are needed to maintain the gains achieved by current control measures. Transmission-blocking interventions (TBIs), namely vaccines and drugs targeting parasite or mosquito molecules required for vector-stage parasite development, have been recognized as promising approaches for preventing malaria transmission. However, the number of TBI targets is limited and their degree of conservation among the major vector-parasite systems causing human disease is unclear. Therefore, discovery and characterization of novel proteins involved in vector-stage parasite development of Plasmodium falciparum and Plasmodium vivax is paramount. We mined the recent Anopheles gambiae midgut lipid raft proteome for putative mosquito-derived TBI targets and characterized a secreted glycoconjugate of unknown function, AgSGU. We analyzed molecular variation in this protein among a range of anopheline mosquitoes, determined its transcriptomic and proteomic profiles, and conducted both standard and direct membrane feeding assays with P. falciparum (lab/field) and P. vivax (field) in An. gambiae and Anopheles dirus. We observed that α-AgSGU antibodies significantly reduced midgut infection intensity for both lab and field isolates of P. falciparum in An. gambiae and An. dirus. However, no transmission-reducing effects were noted when comparable concentrations of antibodies were included in P. vivax-infected blood meals. Although antibodies against AgSGU exhibit transmission-reducing activity, the high antibody titer required for achieving 80% reduction in oocyst intensity precludes its consideration as a malaria mosquito-based TBI candidate. However, our results suggest that P. falciparum and P. vivax ookinetes use a different repertoire of midgut surface glycoproteins for invasion and that α-AgSGU antibodies, as well as antibodies to other mosquito-midgut microvillar surface proteins, may prove useful as tools for interrogating Plasmodium-mosquito interactions.
Collapse
Affiliation(s)
- Derrick K Mathias
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & Malaria Research Institute, Baltimore, MD 21205, USA.
| | - Juliette G Jardim
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & Malaria Research Institute, Baltimore, MD 21205, USA.
| | - Lindsay A Parish
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & Malaria Research Institute, Baltimore, MD 21205, USA.
| | - Jennifer S Armistead
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & Malaria Research Institute, Baltimore, MD 21205, USA.
| | - Hung V Trinh
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & Malaria Research Institute, Baltimore, MD 21205, USA.
| | | | | | - Rhoel R Dinglasan
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & Malaria Research Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Wang X, Zhang B. Integrating genomic, transcriptomic, and interactome data to improve Peptide and protein identification in shotgun proteomics. J Proteome Res 2014; 13:2715-23. [PMID: 24792918 PMCID: PMC4059263 DOI: 10.1021/pr500194t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Mass spectrometry (MS)-based shotgun
proteomics is an effective
technology for global proteome profiling. The ultimate goal is to
assign tandem MS spectra to peptides and subsequently infer proteins
and their abundance. In addition to database searching and protein
assembly algorithms, computational approaches have been developed
to integrate genomic, transcriptomic, and interactome information
to improve peptide and protein identification. Earlier efforts focus
primarily on making databases more comprehensive using publicly available
genomic and transcriptomic data. More recently, with the increasing
affordability of the Next Generation Sequencing (NGS) technologies,
personalized protein databases derived from sample-specific genomic
and transcriptomic data have emerged as an attractive strategy. In
addition, incorporating interactome data not only improves protein
identification but also puts identified proteins into their functional
context and thus facilitates data interpretation. In this paper, we
survey the major integrative bioinformatics approaches that have been
developed during the past decade and discuss their merits and demerits.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Biomedical Informatics, ‡Vanderbilt-Ingram Cancer Center, and §Department of Cancer Biology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | | |
Collapse
|
18
|
Antibodies to a single, conserved epitope in Anopheles APN1 inhibit universal transmission of Plasmodium falciparum and Plasmodium vivax malaria. Infect Immun 2013; 82:818-29. [PMID: 24478095 DOI: 10.1128/iai.01222-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria transmission-blocking vaccines (TBVs) represent a promising approach for the elimination and eradication of this disease. AnAPN1 is a lead TBV candidate that targets a surface antigen on the midgut of the obligate vector of the Plasmodium parasite, the Anopheles mosquito. In this study, we demonstrated that antibodies targeting AnAPN1 block transmission of Plasmodium falciparum and Plasmodium vivax across distantly related anopheline species in countries to which malaria is endemic. Using a biochemical and immunological approach, we determined that the mechanism of action for this phenomenon stems from antibody recognition of a single protective epitope on AnAPN1, which we found to be immunogenic in murine and nonhuman primate models and highly conserved among anophelines. These data indicate that AnAPN1 meets the established target product profile for TBVs and suggest a potential key role for an AnAPN1-based panmalaria TBV in the effort to eradicate malaria.
Collapse
|
19
|
Linde ME, Colquhoun DR, Ubaida Mohien C, Kole T, Aquino V, Cotter R, Edwards N, Hildreth JEK, Graham DR. The conserved set of host proteins incorporated into HIV-1 virions suggests a common egress pathway in multiple cell types. J Proteome Res 2013; 12:2045-54. [PMID: 23432411 DOI: 10.1021/pr300918r] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-1 incorporates a large array of host proteins into virions. Determining the host protein composition in HIV virions has technical difficulties, including copurification of microvesicles. We developed an alternative purification technique using cholesterol that differentially modulates the density of virions and microvesicles (density modification, DM) allowing for high-yield virion purification that is essential for tandem mass spectrometric and quantitative proteomic (iTRAQ) analysis. DM purified virions were analyzed using iTRAQ and validated against Optiprep (60% iodixanol) purified virions. We were able to characterize host protein incorporation in DM-purified HIV particles derived from CD4+ T-cell lines; we compared this data set to a reprocessed data set of monocyte-derived macrophages (MDM) derived HIV-1 using the same bioinformatics pipeline. Seventy-nine clustered proteins were shared between the MDM derived and T-cell derived data set. These clusters included an extensive collection of actin isoforms, HLA proteins, chaperones, and a handful of other proteins, many of which have previously been documented to interact with viral proteins. Other proteins of note were ERM proteins, the dynamin domain containing protein EH4, a phosphodiesterase, and cyclophilin A. As these proteins are incorporated in virions produced in both cell types, we hypothesize that these proteins may have direct interactions with viral proteins or may be important in the viral life cycle. Additionally, identified common set proteins are predicted to interact with >1000 related human proteins. Many of these secondary interacting proteins are reported to be incorporated into virions, including ERM proteins and adhesion molecules. Thus, only a few direct interactions between host and viral proteins may dictate the host protein composition in virions. Ultimately, interaction and expression differences in host proteins between cell types may drive virion phenotypic diversity, despite conserved viral protein-host protein interactions between cell types.
Collapse
Affiliation(s)
- Michael E Linde
- Graduate Program in Immunology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|