1
|
Zhong L, Zheng J, Wang Z, Lin L, Cong Q, Qiao L. Metabolomics and proteomics reveal the inhibitory effect of Lactobacillus crispatus on cervical cancer. Talanta 2025; 281:126839. [PMID: 39265423 DOI: 10.1016/j.talanta.2024.126839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Cervical cancer remains a significant global health issue due to its high morbidity and mortality rates. Recently, Lactobacillus crispatus has been recognized for its crucial role in maintaining cervical health. While some studies have explored the use of L. crispatus to mitigate cervical cancer, the underlying mechanisms remain largely unknown. In this study, we employed non-targeted proteomics and metabolomics to investigate how L. crispatus affects the growth of cervical cancer cells (SiHa) and normal cervical cells (Ect1/E6E7). Our findings indicated that the inhibitory effect of L. crispatus on SiHa cells was associated with various biological processes, notably the ferroptosis pathway. Specifically, L. crispatus was found to regulate the expression of proteins such as HMOX1, SLC39A14, VDAC2, ACSL4, and LPCAT3 by SiHa cells, which are closely related to ferroptosis. Additionally, it activated the tricarboxylic acid (TCA) cycle in SiHa cells, leading to increased levels of reactive oxygen species (ROS) and lipid peroxides (LPO). These results revealed the therapeutic potential of L. crispatus in targeting the ferroptosis pathway for cervical cancer treatment, opening new avenues for research and therapy in cervical cancer.
Collapse
Affiliation(s)
- Lingyan Zhong
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China
| | - Jianxujie Zheng
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China
| | - Zengyu Wang
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China
| | - Ling Lin
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China.
| | - Qing Cong
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China.
| | - Liang Qiao
- Department of Chemistry, Zhongshan Hospital, and Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
2
|
Zhao M, Che Y, Gao Y, Zhang X. Application of multi-omics in the study of traditional Chinese medicine. Front Pharmacol 2024; 15:1431862. [PMID: 39309011 PMCID: PMC11412821 DOI: 10.3389/fphar.2024.1431862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Traditional Chinese medicine (TCM) is playing an increasingly important role in disease treatment due to the advantages of multi-target, multi-pathway mechanisms, low adverse reactions and cost-effectiveness. However, the complexity of TCM system poses challenges for research. In recent years, there has been a surge in the application of multi-omics integrated research to explore the active components and treatment mechanisms of TCM from various perspectives, which aids in advancing TCM's integration into clinical practice and holds immense importance in promoting modernization. In this review, we discuss the application of proteomics, metabolomics, and mass spectrometry imaging in the study of composition, quality evaluation, target identification, and mechanism of action of TCM based on existing literature. We focus on the workflows and applications of multi-omics based on mass spectrometry in the research of TCM. Additionally, potential research ideas for future exploration in TCM are outlined. Overall, we emphasize the advantages and prospects of multi-omics based on mass spectrometry in the study of the substance basis and mechanism of action of TCM. This synthesis of methodologies holds promise for enhancing our understanding of TCM and driving its further integration into contemporary medical practices.
Collapse
Affiliation(s)
| | | | | | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Zhao T, Lun S, Yan M, Park J, Wang S, Chen C. 6,7-Dimethoxycoumarin, Gardenoside and Rhein combination improves non-alcoholic fatty liver disease in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117646. [PMID: 38135236 DOI: 10.1016/j.jep.2023.117646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This study explores the potential therapeutic benefits of using a three-component DGR (composed of specific compounds) to target the NLRP3 inflammasome in the context of non-alcoholic fatty liver disease (NAFLD). AIM OF THE STUDY To assess the impact of a three-component DGR on NAFLD, specifically examining its effects on liver lipid accumulation, inflammation, and the diversity of intestinal microbial communities. METHODS NAFLD was induced in 8-week-old Sprague Dawley rats by feeding them a high-fat emulsion diet every morning for 8 consecutive weeks. Oral administration of DGR or its constituent equivalents in the afternoon. The pharmacological effects of DGR were evaluated using H&E, ORO and ELISA methods to determine the changes in serum and liver tissue indexes of rat-models. Immunohistochemical staining and Western blot were used to assess the interaction between DGR, NLRP3 and IL-1β. RESULTS The induction of NAFLD resulted in elevated hepatic triglycerides (TG), total cholesterol (TC), and free fatty acids (FFA). However, these alterations were ameliorated upon administration of DGR. It is noteworthy that DGR exhibited superior efficacy in comparison to its constituent compounds, manifesting augmented antioxidant activity, diminished hepatic damage, and the attenuation of pro-inflammatory factors. Both DGR and its individual monomeric constituents exhibited the capacity to attenuate the activation of the NLRP3 inflammasome in the liver, leading to an amelioration of the pathological characteristics associated with NAFLD. An analysis of the intestinal flora unveiled an elevated abundance of p_Firmicutes (1.1-fold), p_Cyanobacteria (5.76-fold), and p_Verrucomicrobia (5.2-fold), accompanied by a heightened p_Firmicutes to p_Bacteroidetes ratio (5.49-fold). CONCLUSIONS In the non-alcoholic fatty liver disease (NAFLD) rat model, the concurrent administration of three-component DGR effectively regulated lipid deposition, suppressed liver inflammation, and restored balance in the intestinal flora, thereby improving NAFLD pathology. These findings propose a promising therapeutic strategy for NAFLD, centered on inhibiting the NLRP3 inflammasome through the use of the three-component DGR.
Collapse
Affiliation(s)
- Tianyi Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Shiyi Lun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Maoying Yan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - JongPil Park
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Shumin Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, PR China.
| | - Changbao Chen
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, PR China.
| |
Collapse
|
4
|
Yang Y, Chen Z, Yan G, Kong L, Yang L, Sun H, Han Y, Zhang J, Wang X. Mass spectrum oriented metabolomics for evaluating the efficacy and discovering the metabolic mechanism of Naoling Pian for insomnia. J Pharm Biomed Anal 2023; 236:115756. [PMID: 37776625 DOI: 10.1016/j.jpba.2023.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Insomnia is an accompanying symptom of many diseases and is closely associated with neurodegenerative diseases. Naoling Pian (NLP) is a patented Chinese medicine mainly used to treat insomnia. To evaluate the sedative and hypnotic effects of NLP and its modulatory effects on biological metabolites and metabolic pathways, rats with p-chlorophenylalanine (PCPA)-induced insomnia were given different doses of NLP by oral gavage for seven days. Diazepam (DZP) served as a positive control. Behavior was measured using the open field test, and neurotransmitter levels in the brain tissue related to sleep were measured using ELISA. The metabolic profiles and biomarkers of PCPA-induced insomnia in rats before and after NLP administration were analyzed using UPLC-Q/TOF-MS combined with multivariate data analysis. The results showed that the levels of 5-hydroxytryptamine, gamma-aminobutyric acid, norepinephrine, and dopamine in the brain tissue were significantly recovered in the NLP treatment groups, demonstrating similar or even superior therapeutic effects compared to the DZP group. The behavior of the PCPA-model rats partially recovered to normal levels after seven days of treatment. Metabolomics identified 30 metabolites in the urine as potential biomarkers of insomnia, and NLP significantly altered 25 of these, involving 21 metabolic pathways. NLP has a remarkable effect on insomnia, the therapeutic effects of which may be largely due to the rectification of metabolic disturbances. This is the first study of the sedative and hypnotic effects of NLP from a metabolomic perspective.
Collapse
Affiliation(s)
- Yu Yang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Zhe Chen
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Ling Kong
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China.
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Jie Zhang
- Wusuli River Pharmaceutical Co., Ltd., Heilongjiang, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
5
|
Zeng X, Zhou X, Zhou J, Zhou H, Hong X, Li D, Xiang Y, Zhong M, Chen Y, Liang D, Fu H. Limonin mitigates cisplatin-induced acute kidney injury through metabolic reprogramming. Biomed Pharmacother 2023; 167:115531. [PMID: 37741252 DOI: 10.1016/j.biopha.2023.115531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a known complication of cisplatin administration; currently, there are no effective ways to prevent it. Therefore, it largely limited the use of cisplatin in chemotherapy in the clinic. In this study, we reported that Limonin, a triterpenoid compound extracted from citrus, alleviated cisplatin-induced AKI through metabolic reprogramming in the diseased kidneys. METHODS Cisplatin was employed to induce AKI in mice. Three groups were set up: Sham, cisplatin + vehicle, and cisplatin + Limonin. Using UHPLC-TOF/MS, we conducted metabolomics to profile the kidneys' endogenous metabolites and metabolic pathways. A network pharmacological method was performed to identify the targets of Limonin on AKI. The human proximal tubular epithelial cell line (HK-2) was applied for in vitro studies. RESULTS Limonin preserved serum creatinine and blood urea nitrogen levels after cisplatin-induced AKI. Employing metabolomics, we identified 33 endogenous differentially expressed metabolites and 7 significantly disturbed metabolic pathways in the diseased kidneys within three groups. After AKI, Limonin significantly reduced linoleic acid and its downstream product, arachidonic acid, thus exerting a protective effect on the kidney. The network pharmacological method identified CYP3A4 as a key target of Limonin in treating AKI, while CYP3A4 also serve as a mediator of arachidonic acid metabolism. In vitro, Limonin markedly reduced the level of arachidonic acid and HK-2 cell apoptosis triggered by cisplatin, mainly related to the targeted inhibition of CYP3A4-mediated arachidonic acid metabolism. CONCLUSION Limonin ameliorates cisplatin-induced AKI by inhibiting CYP3A4 activity to regulate arachidonic acid metabolism, ultimately preserving kidney function.
Collapse
Affiliation(s)
- Xi Zeng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xianke Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayi Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hong Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dier Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yadie Xiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Menghua Zhong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yudan Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dongning Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Chen X, Shi J, Lai Y, Xue Y, Ung COL, Hu H. Systematic analysis of randomised controlled trials of Chinese herb medicine for non-alcoholic steatohepatitis (NASH): implications for future drug development and trial design. Chin Med 2023; 18:58. [PMID: 37208742 DOI: 10.1186/s13020-023-00761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a liver disease currently lacking an approved therapy, resulting in significant clinical demand. Traditional Chinese medicines (TCMs) have been commonly used to manage NASH. This study aimed to systematically analyse the randomised controlled trials (RCTs) using TCMs for NASH management. METHODS A systematic literature review was performed by following PRISMA guidelines 2020 in six electronic databases: PubMed, Web of Science, Scopus, Embase, the Cochrane Library, and China National Knowledge Infrastructure, from inception until August 2022. RCTs using TCMs for NASH were included in the analysis, irrespective of language or blinding. RESULTS 112 RCTs were included in this review, with 10,573 NASH participants. 108 RCTs were conducted in China, and 4 RCTs were in other countries. Herbal medicine decoction was the major dosage form used for treating NASH (82/112). 11 TCMs products have been approved for NASH treatment (8 in China, 2 in Iran, and 1 in Japan). Classic prescriptions, such as "Huang Lian Jie Du decoction", "Yin Chen Hao decoction", and "Yi Guan Jian" were used in some studies. The TCMs treatment of NASH involved the use of 199 different plants, with the top 5 herbs being Salviae Miltiorrhizae Radix Et Rhizoma, Alismatis Rhizoma, Bupleuri Radix, Poria, and Curcumae Radix. "Salviae Miltiorrhizae Radix Et Rhizoma + Bupleuri Radix/Alismatis Rhizoma" were the mostly common drug-pair in the herbs network analysis. Nowadays, "Bupleuri Radix/Alismatis Rhizoma + Atractylodis Macrocephalae Rhizoma" are increasingly applied in herbal formulas for NASH. Based on the PICOS principles, the included studies varied in terms of the population, intervention, comparator, outcomes, and study design. However, some studies reported unstandardised results and failed to report diagnostic standards, inclusion or exclusion criteria, or sufficient patient information. CONCLUSION Adopting Chinese classic prescriptions or drug-pair may provide a basis for developing new drugs of NASH management. Further research is needed to refine the clinical trial design and obtain more convincing evidence for using TCMs to treat NASH.
Collapse
Affiliation(s)
- Xianwen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Junnan Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Yunfeng Lai
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Xue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa, Macao, China.
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
7
|
Jin C, Wu X, You Y, Wang Y, Wu J, Zuo A, Zheng Y, Guo J. Qianjin Wenwu decoction suppresses renal interstitial fibrosis by enhancing the degradation of extracellular matrix in mice with unilateral ureteral obstruction. Chin J Nat Med 2023; 21:253-262. [PMID: 37120244 DOI: 10.1016/s1875-5364(23)60434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 05/01/2023]
Abstract
Diabetic kidney disease (DKD) is the most common complication of diabetes mellitus (DM). Qianjin Wenwu decoction (QWD), a well-known traditional Korean medicine, has been used for the treatment of DKD, with satisfactory therapeutic effects. This study was designed to investigate the active components and mechanisms of action of QWD in the treatment of DKD. The results demonstrated that a total of 13 active components in five types were found in QWD, including flavonoids, flavonoid glycosides, phenylpropionic acids, saponins, coumarins, and lignins. Two key proteins, TGF-β1 and TIMP-1, were identified as the target proteins through molecular docking. Furthermore, QWD significantly suppressed Scr and BUN levels which increased after unilateral ureteral obstruction (UUO). Hematoxylin & eosin (H&E) and Masson staining results demonstrated that QWD significantly alleviated renal interstitial fibrosis in UUO mice. We also found that QWD promoted ECM degradation by regulating MMP-9/TIMP-1 homeostasis to improve renal tubulointerstitial fibrosis and interfere with the expression and activity of TGF- β1 in DKD treatment. These findings explain the underlying mechanism of QWD for the treatment of DKD, and also provide methodological reference for investigating the mechanism of traditional medicine in the treatment of DKD.
Collapse
Affiliation(s)
- Chengshan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; Yanbian Chaoyao Biotechnology Co., Ltd., Yanji 133002, China
| | - Xiaotian Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yue You
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yuing Wang
- Yanbian University Hospital, Yanji 133002, China
| | - Jing Wu
- Yanbian University Hospital, Yanji 133002, China
| | - Along Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; Yanbian Medical and Health Industry Pilot Base, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yan Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; Yanbian Medical and Health Industry Pilot Base, College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
8
|
Chen Z, Yan G, Yang Y, Sun H, Zhang A, Han Y, Wang S, Wang X. Rapid characterization of chemical constituents in Naoling Pian by LC-MS combined with data processing techniques. J Sep Sci 2022; 45:3431-3442. [PMID: 35855656 DOI: 10.1002/jssc.202200244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022]
Abstract
Naoling Pian is a prescription composed of 15 herbs, which is mainly used for the treatment of insomnia in clinical practice. However, the chemical constituents in Naoling Pian are numerous and unclear, which hinders the interpretation of its bioactive constituents and the subsequent research on the material basis for pharmacodynamics. The purpose of this study is to develop a rapid method for identifying the chemical constituents of Naoling Pian using high-throughput ultra-performance liquid chromatography quadrupole time of flight coupled with mass spectrometry combined with a software platform for data processing. The whole composition of Naoling Pian was characterized in positive and negative ion modes. In this experiment, an overall total of 201 constituents were identified by using reference standards, online and self-built databases matching, fragmentation rules analysis of mass spectrometry peaks with a software platform. Meanwhile, Naoling Pian was analyzed for the first time using LC-MS method, the constituents could be identified in a quick and accurate manner, and the results could provide a scientific basis for the follow-up research on the pharmacodynamic material basis and quality control of Naoling Pian. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhe Chen
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Yu Yang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Shugui Wang
- Wusuli River Pharmaceutical Co., Ltd., Heilongjiang, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| |
Collapse
|
9
|
Zhang Q, Zhang A, Wu F, Wang X. UPLC-G2Si-HDMS Untargeted Metabolomics for Identification of Yunnan Baiyao's Metabolic Target in Promoting Blood Circulation and Removing Blood Stasis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103208. [PMID: 35630682 PMCID: PMC9143197 DOI: 10.3390/molecules27103208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022]
Abstract
Yunnan Baiyao is a famous Chinese patent medicine in Yunnan Province. However, its mechanism for promoting blood circulation and removing blood stasis is not fully explained. Our study used metabonomics technology to reveal the regulatory effect of Yunnan Baiyao on small molecular metabolites in promoting blood circulation and removing blood stasis, and exploring the related urine biomarkers. The coagulation function, blood rheology, and pathological results demonstrated that after Yunnan Baiyao treatment, the pathological indexes in rats with epinephrine hydrochloride-induced blood stasis syndrome improved and returned to normal levels. This is the basis for the effectiveness of Yunnan Baiyao. UPLC-G2Si-HDMS was used in combination with multivariate statistical analysis to conduct metabonomic analysis of urine samples. Finally, using mass spectrometry technology, 28 urine biomarkers were identified, clarifying the relevant metabolic pathways that play a vital role in the Yunnan Baiyao treatment. These were used as the target for Yunnan Baiyao to promote blood circulation and remove blood stasis. This study showed that metabolomics strategies provide opportunities and conditions for a deep and systematic understanding of the mechanism of action of prescriptions.
Collapse
Affiliation(s)
- Qingyu Zhang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning 530000, China; (Q.Z.); (F.W.)
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China;
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China;
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning 530000, China; (Q.Z.); (F.W.)
| | - Xijun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning 530000, China; (Q.Z.); (F.W.)
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China;
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau
- Correspondence: ; Tel.: +86-0451-82110818
| |
Collapse
|
10
|
Li Y, Yu X, Wang Y, Zheng X, Chu Q. Kaempferol-3- O-rutinoside, a flavone derived from Tetrastigma hemsleyanum, suppresses lung adenocarcinoma via the calcium signaling pathway. Food Funct 2021; 12:8351-8365. [PMID: 34338262 DOI: 10.1039/d1fo00581b] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lung cancer has been threatening human health worldwide for a long time. However, the clinic therapies remain unsatisfactory. In this study, the anti-adenocarcinoma lung cancer A549 cell line abilities of Tetrastigma hemsleyanum tuber flavonoids (THTF) were evaluated in vivo, and isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analysis was conducted to detect the protein alterations in THTF-treated solid tumors. The differentially expressed proteins were related to the cytoskeleton and mostly accumulated in the calcium signaling pathway. The in vitro study illustrated that 80 μg mL-1 THTF significantly suppressed cellular viability to approximately 75% of the control. Further results suggested that kaempferol-3-O-rutinoside (K3R), the major component of THTF, effectively triggered cytoskeleton collapse, mitochondrial dysfunction and consequent calcium overload to achieve apoptosis, which remained consistent with proteomic results. This study uncovers a new mechanism for THTF anti-tumor ability, and suggests THTF and K3R as promising anti-cancer agents, providing new ideas and possible strategies for future anti-lung cancer prevention and therapy.
Collapse
Affiliation(s)
- Yonglu Li
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Xin Yu
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Yaxuan Wang
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Qiang Chu
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China. and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
11
|
Sakallioglu IT, Barletta RG, Dussault PH, Powers R. Deciphering the mechanism of action of antitubercular compounds with metabolomics. Comput Struct Biotechnol J 2021; 19:4284-4299. [PMID: 34429848 PMCID: PMC8358470 DOI: 10.1016/j.csbj.2021.07.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB), one of the oldest and deadliest bacterial diseases, continues to cause serious global economic, health, and social problems. Current TB treatments are lengthy, expensive, and routinely ineffective against emerging drug resistant strains. Thus, there is an urgent need for the identification and development of novel TB drugs possessing comprehensive and specific mechanisms of action (MoAs). Metabolomics is a valuable approach to elucidating the MoA, toxicity, and potency of promising chemical leads, which is a critical step of the drug discovery process. Recent advances in metabolomics methodologies for deciphering MoAs include high-throughput screening techniques, the integration of multiple omics methods, mass spectrometry imaging, and software for automated analysis. This review describes recently introduced metabolomics methodologies and techniques for drug discovery, highlighting specific applications to the discovery of new antitubercular drugs and the elucidation of their MoAs.
Collapse
Affiliation(s)
- Isin T. Sakallioglu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, Lincoln, NE 68583-0905, USA
| | - Patrick H. Dussault
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| |
Collapse
|
12
|
Screening of metabolites in the treatment of liver cancer xenografts HepG2/ADR by psoralen-loaded lipid nanoparticles. Eur J Pharm Biopharm 2021; 165:337-344. [PMID: 34062256 DOI: 10.1016/j.ejpb.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Our study aimed to find potential biomarkers for drug resistance in liver cancer cells using metabolomics and further to evaluate the potential of psoralen-loaded polymer lipid nanoparticles (PSO-PLNs) to reverse the resistance of cells to doxorubicin. METHODS We used LC-MS-based non-targeted metabolomics, also known as global metabolite profiling, to screen in serum and urine of mice engrafted with a liver cancer cell line sensitive (HepG2/S) or resistant to doxorubicin (HepG2/ADR) for differentially regulated metabolites. We subsequently quantified the abundance of these metabolites in serum and the urine of mice. The mice were engrafted with HepG2 cells resistant against doxorubicin and were treated with I) doxorubicin, II) a combination of doxorubicin and psoralen and III) a combination of doxorubicin and psoralen packed in polymer lipid nanoparticles. RESULTS Metabolites found to be differentially present in urine of mice engrafted with resistant HepG2 cells were: hippuric acid, hyaluronic acid, pantothenic acid, and betaine; retinoic acid and α-linolenic acid were found to be reduced in serum samples of mice with HepG2 cells resistant to doxorubicin. The targeted analysis showed that the degree of regression of metabolic markers in groups differed: treatment group 2 had stronger degree of regression than treatment group 1 and the negative control group had the smallest, which indicates that the PSO-PLNs have superior properties compared with other treatments. CONCLUSION Psoralen reverses drug resistance of liver cancer cells and its efficacy can be increased by encapsulation in polymer lipid nanoparticles.
Collapse
|
13
|
Cheng M, Yao C, Li Y, Li Z, Li H, Yao S, Qu H, Li J, Wei W, Zhang J, Guo DA. A strategy for practical authentication of medicinal plants in traditional Chinese medicine prescription, paeony root in ShaoYao-GanCao decoction as a case study. J Sep Sci 2021; 44:2427-2437. [PMID: 33885223 DOI: 10.1002/jssc.202100028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022]
Abstract
Authentication of Chinese medicine materials in prescriptions is extremely difficult due to the complicated chemical matrix. A strategy integrating in-depth profiling, chemical marker selection, and selected detection was established and exemplarily applied to authenticate paeony root in ShaoYao-GanCao decoction. First, an ultra-performance liquid chromatography/linear trap quadrupole-Orbitrap method was developed to probe the chemical compositions of the decoction. Second, 20 batches of decoctions prepared from white paeony root and red paeony root were compared by a metabolomics method, and multistep chemometrics analysis distinguished the chemical markers. Third, an ultra-performance liquid chromatography/QDa-selected ion monitoring method was developed to authenticate the paeony root in decoctions. As a result, 161 compounds were characterized, including 84 triterpene saponins, 42 flavonoids, and 10 monoterpenes. Four chemical markers and paeoniflorin were successfully screened out as chemical markers for white paeony root. The selected ion monitoring method easily differentiated authentic decoction (prepared from white paeony root) from fraud decoction (prepared from red paeony root) by monitoring the above five chemical markers. In conclusion, the strategy was proved effective in authentication of paeony root in ShaoYao-GanCao decoction, and it can also be applied to authenticate other Chinese medicine materials in prescriptions, which will greatly avail the quality enhancement of prescriptions.
Collapse
Affiliation(s)
- Mengzhen Cheng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yun Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhenwei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Haojv Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Shuai Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Hua Qu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Jiayuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - De-An Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
14
|
Zhou Q, Hu H, Zhao G, Liu P, Wang Y, Zhang H. Effect and related mechanism of Yinchenhao decoction on mice with lithogenic diet-induced cholelithiasis. Exp Ther Med 2021; 21:316. [PMID: 33717259 PMCID: PMC7885065 DOI: 10.3892/etm.2021.9747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the effects and the underlying mechanisms of Yinchenhao Decoction (YCHD), a traditional Chinese medicine formulation, on C57BL/6 mice with lithogenic diet (LD)-induced cholelithiasis. The condition of cholelithiasis was evaluated using a six-level criteria. Levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) in the serum and liver tissue were measured using enzyme colorimetry. Concentrations of TC, phospholipids (PL) and total bile acids (TBA) in the bile were measured to calculate the cholesterol saturation index. Liver histopathology was microscopically observed and mRNA expression levels of ABCG5, ABCG8, SRBI, ABCB4, ABCB11 and NPC1L1 involved in cholesterol metabolism were measured using reverse transcription-quantitative PCR. The results showed that feeding mice the LD induced cholelithiasis, along with abnormal serum biochemical indices and imbalances in biliary cholesterol homeostasis. Increased ALT and ALP levels in the serum and ALT, ALP, TC and LDL-C levels in the serum and liver indicated the existence of hepatocyte injury, which were consistent with the pathological changes. YCHD treatment ameliorated the serum and hepatic biochemical abnormalities and adjusted the biliary imbalance. In addition, elevated expression of ATP-binding cassette subfamily G member 5/8, scavenger receptor class B type I and Niemann-Pick C1 Like 1 in the liver and small intestine were observed at the onset of cholelithiasis but were reversed by YCHD. Taken together, results from the present study suggest that YCHD ameliorated LD-induced cholelithiasis mice, which may be caused by improvements in biliary cholesterol supersaturation and regulation of cholesterol metabolism.
Collapse
Affiliation(s)
- Qun Zhou
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Clinical Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hai Hu
- Department of Cholelithiasis, East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Gang Zhao
- Department of Cholelithiasis, East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Ping Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Clinical Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yixing Wang
- Department of Traditional Chinese Medicine, East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Hua Zhang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Clinical Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
15
|
Functional metabolomics innovates therapeutic discovery of traditional Chinese medicine derived functional compounds. Pharmacol Ther 2021; 224:107824. [PMID: 33667524 DOI: 10.1016/j.pharmthera.2021.107824] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Traditional Chinese medicines (TCMs) produce chemically diverse functional compounds that are importantly chemical resource for facilitating new drug discovery and development against a diversity of diseases. However, modern exploration of TCM derived functional compounds is significantly hindered by the inefficient elucidation of pharmacological functions over past decades, because conventional research methods are incapable of efficiently elucidating therapeutic potential of TCM conferred by multiple functional compounds. Functional metabolomics has the priority-capacity to characterize systems therapeutic actions of TCM by precisely capturing molecular interactions between disease response metabolite biomarkers (DRMB) and functional compounds (secondary metabolites), which underline pharmacological efficiency and associated therapeutic mechanisms. In this critical review, we innovatively summarize systems therapeutic feature of TCM derived functional compounds from a functional-metabolism perspective, then systems metabolic targets (SMT) identified by functional metabolomics method are strategically proposed to better understanding of therapeutic discovery of TCM derived functional compounds. In addition, we propose the perspective strategy as Spatial Temporal Operative Real Metabolomics (STORM) to considerably improve analytical capacity of functional metabolomics method by selectively incorporating the cutting edge technologies of mass spectrometry imaging, isotope-metabolic fluxomics, synthetic and biosynthetic chemistry, which could considerably enhance the precision and resolution of elucidating pharmacological efficiency and associated therapeutic mechanisms of TCM derived functional compounds. Collectively, such critical review is expected to provide novel perspective-strategy that could significantly improve modern exploration and exploitation of TCM derived functional compounds that further promote new drug discovery and development against the complex diseases.
Collapse
|
16
|
Xiang Z, Xie H, Tong Q, Pan J, Wan L, Fang J, Chen J. Revealing hypoglycemic and hypolipidemic mechanism of Xiaokeyinshui extract combination on streptozotocin-induced diabetic mice in high sucrose/high fat diet by metabolomics and lipidomics. Biomed Pharmacother 2021; 135:111219. [PMID: 33433360 DOI: 10.1016/j.biopha.2021.111219] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetic mellitus (T2DM), often accompanied by disorders of glucose and lipid metabolism, has troubled hundreds of millions of people. Xiaokeyinshui extract combination (XEC), derived from traditional Chinese medicines formula, has exerted hypoglycemic effects against T2DM. However, its mechanism of metabolic level is still unclear. In this study, a T2DM mice model, induced by a high sucrose/high fat diet combined with low-dose streptozotocin (STZ) injections, was adopted. The biochemical index was determined and a combination of metabolomics and lipidomics analyses of plasma were performed. The results showed that XEC increased secretion of insulin and level of HDL-C, decreased levels of FBG, HbA1c, TC, TG, LDL-C and repaired islet structure in diabetic mice. In addition, the metabolic profiles of plasma were analyzed and 54 potential biomarkers were screened out, mainly including carbohydrates, lipids and amino acids. These potential biomarkers were found to be correlated with the following pathways: galactose metabolism, fructose and mannose metabolism, TCA cycle, arachidonic acid metabolism, glycerolipid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and amino acid metabolism. In conclusion, we speculated that carbohydrate metabolism, lipid metabolism and amino acid metabolism played roles in the therapeutic mechanisms of XEC on T2DM.
Collapse
Affiliation(s)
- Zhinan Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Haifei Xie
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Qilin Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Jun Pan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China
| | - Luosheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China.
| | - Jinbo Fang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China.
| | - Jiachun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
17
|
Hui Y, Wang X, Yu Z, Fan X, Cui B, Zhao T, Mao L, Feng H, Lin L, Yu Q, Zhang J, Wang B, Chen X, Zhao X, Sun C. Scoparone as a therapeutic drug in liver diseases: Pharmacology, pharmacokinetics and molecular mechanisms of action. Pharmacol Res 2020; 160:105170. [DOI: 10.1016/j.phrs.2020.105170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
|
18
|
Zhou Q, Meng P, Zhang Y, Chen P, Wang H, Tan G. The compatibility effects of sini decoction against doxorubicin-induced heart failure in rats revealed by mass spectrometry-based serum metabolite profiling and computational analysis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112618. [PMID: 32006632 DOI: 10.1016/j.jep.2020.112618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sini decoction (SND) is a famous Traditional Chinese Medicine (TCM) formula composed of Acontium carmichaeli, Zingiber officinale and Glycyrrhiza uralensis, which is considered as an efficient formula against doxorubicin (DOX)-induced heart failure. But the compatibility mechanism of SND remains unclear. AIM OF THE STUDY The present study aimed to investigate the compatibility mechanism of SND against DOX-induced heart failure in rats. MATERIALS AND METHODS Mass spectrometry-based serum metabolomics were performed. The relative distance values (RDVs) of SND, A. carmichaeli-free decoction (ACFD), Z. officinale-free decoction (ZOFD) and G. uralensis-free decoction (GUFD) treated groups from the control/DOX groups in multidimensional space were calculated to provide a measure of compatibility effect of SND. SND, ACFD, ZOFD, GUFD-targeted metabolic pathways were identified and compared to investigate the synergistic mechanism of SND by computational systems analysis. Real-time quantitative PCR was further employed to validate the key metabolic pathways at the level of the gene. RESULTS The RDVs combined with the hemodynamic and biochemical analysis showed that the protection effects were sorted as SND > GUFD > ZOFD > ACFD. It revealed that DOX-induced heart failure perturbed 16 metabolic pathways, and SND, GUFD, ZOFD and ACFD-treated groups could significantly reversed 12, 10, 7 and 6 metabolic pathways of these 16 metabolic pathways, respectively. Metabolic pathway and RT-PCR analysis indicated that both SND and GUFD could protect DOX-induced heart failure mainly by regulating PLA2-COX pathway and PLA2-CYP pathway. CONCLUSION It can be concluded that A. carmichaeli played an essential role in attenuation of DOX-induced heart failure among the three herb constituents of SND and the constituent herbs mutually reinforced each other. This work demonstrated that metabolomics combined with computational systems analysis was a promising tool for uncovering the compatibility effects of TCM.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ping Meng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya Zhang
- School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Chen
- School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Haibo Wang
- School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Guangguo Tan
- School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
19
|
Ren L, Guo XY, Gao F, Jin ML, Song XN. Identification of the Perturbed Metabolic Pathways Associating With Renal Fibrosis and Evaluating Metabolome Changes of Pretreatment With Astragalus polysaccharide Through Liquid Chromatography Quadrupole Time-Of-Flight Mass Spectrometry. Front Pharmacol 2020; 10:1623. [PMID: 32063847 PMCID: PMC7000425 DOI: 10.3389/fphar.2019.01623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Renal fibrosis is glomerulosclerosis and renal tubulointerstitial fibrosis caused by the increase of interstitial cells and intercellular substances and the accumulation of extracellular matrix, and is a common pathological manifestation of renal disease progressing to end-stage renal failure. It has proved that Astragalus polysaccharide (AP) has curative effect on renal disease; however, its therapeutic mechanism on renal fibrosis is still unclear. Metabolomics approach provides an opportunity to identify novel molecular biomarkers. The purpose of this study is to study the changes of serum metabolic profile of rats with unilateral tubal ligation and replication of renal fibrosis model and the therapeutic effect of AP on it. The blood samples of rats in the control group, renal fibrosis model group, and AP treatment group collected on the 21st day were analyzed by metabolomics method based on UPLC-Q-TOF-MS. Principal component analysis (PCA) showed that clustering was obvious and significantly separated, and paired partial least squares discriminant analysis (OPLS-DA) was used for further analysis. Combined with the network databases such as HMDB and KEGG and a large number of literatures, 32 potential biomarkers related to renal fibrosis were preliminarily screened out and further verified by MS/MS secondary debris information. After pretreatment with AP, 20 biomarkers were significantly regulated, and correlated with phenylalanine, tyrosine, and tryptophan biosynthesis, phenylalanine metabolism, arachidonic acid metabolism, etc. It also revealed the metabolic changes of renal fibrosis and intervention effect of AP. These data uncover a link between metabolism and the molecular mechanism with potential implications in the understanding of the intervention effect of AP. Conclusively, UPLC-Q-TOF-MS-based metabolomics can be valuable and promising strategy to understand the disease mechanism and natural drug pretreatment.
Collapse
Affiliation(s)
- Lei Ren
- Department of Clinical Laboratory, Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Xiao-Ying Guo
- Department of Clinical Laboratory, Daqing Oilfield General Hospital, Daqing, China
| | - Fei Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mei-Li Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiang-Nan Song
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Wu YL, Li ZL, Zhang XB, Liu H. Yinchenhao decoction attenuates obstructive jaundice-induced liver injury and hepatocyte apoptosis by suppressing protein kinase RNA-like endoplasmic reticulum kinase-induced pathway. World J Gastroenterol 2019; 25:6205-6221. [PMID: 31749592 PMCID: PMC6848016 DOI: 10.3748/wjg.v25.i41.6205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/26/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic biliary obstruction results in ischemia and hypoxia of hepatocytes, and leads to apoptosis. Apoptosis is very important in regulating the homeostasis of the hepatobiliary system. Endoplasmic reticulum (ER) stress is one of the signaling pathways that induce apoptosis. Moreover, the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-induced apoptotic pathway is the main way; but its role in liver injury remains unclear. Yinchenhao decoction (YCHD) is a traditional Chinese medicine formula that alleviates liver injury and apoptosis, yet its mechanism is unknown. We undertook this study to investigate the effects of YCHD on the expression of ER stress proteins and hepatocyte apoptosis in rats with obstructive jaundice (OJ). AIM To investigate whether YCHD can attenuate OJ-induced liver injury and hepatocyte apoptosis by inhibiting the PERK-CCAAT/enhancer-binding protein homologous protein (CHOP)-growth arrest and DNA damage-inducible protein 34 (GADD34) pathway and B cell lymphoma/leukemia-2 related X protein (Bax)/B cell lymphoma/leukemia-2 (Bcl-2) ratio. METHODS For in vivo experiments, 30 rats were divided into three groups: control group, OJ model group, and YCHD-treated group. Blood was collected to detect the indicators of liver function, and liver tissues were used for histological analysis. For in vitro experiments, 30 rats were divided into three groups: G1, G2, and G3. The rats in group G1 had their bile duct exposed without ligation, the rats in group G2 underwent total bile duct ligation, and the rats in group G3 were given a gavage of YCHD. According to the serum pharmacology, serum was extracted and centrifuged from the rat blood to cultivate the BRL-3A cells. Terminal deoxynucleotidyl transferase mediated dUTP nick end-labelling (TUNEL) assay was used to detect BRL-3A hepatocyte apoptosis. Alanine aminotransferase (ALT) and aspartate transaminase (AST) levels in the medium were detected. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to detect protein and gene expression levels of PERK, CHOP, GADD34, Bax, and Bcl-2 in the liver tissues and BRL-3A cells. RESULTS Biochemical assays and haematoxylin and eosin staining suggested severe liver function injury and liver tissue structure damage in the OJ model group. The TUNEL assay showed that massive BRL-3A rat hepatocyte apoptosis was induced by OJ. Elevated ALT and AST levels in the medium also demonstrated that hepatocytes could be destroyed by OJ. Western blot or qRT-PCR analyses showed that the protein and mRNA expression levels of PERK, CHOP, and GADD34 were significantly increased both in the rat liver tissue and BRL-3A rat hepatocytes by OJ. The Bax and Bcl-2 levels were increased, and the Bax/Bcl-2 ratio was also increased. When YCHD was used, the PERK, CHOP, GADD34, and Bax levels quickly decreased, while the Bcl-2 levels increased, and the Bax/Bcl-2 ratio decreased. CONCLUSION OJ-induced liver injury and hepatocyte apoptosis are associated with the activation of the PERK-CHOP-GADD34 pathway and increased Bax/Bcl-2 ratio. YCHD can attenuate these changes.
Collapse
Affiliation(s)
- Yan-Li Wu
- Graduate School of Tianjin Medical University, Tianjin 300070, China
| | - Zhong-Lian Li
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Xi-Bo Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Hao Liu
- Graduate School of Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
21
|
Buhlmann E, Horváth C, Houriet J, Kiehlmann E, Radtke J, Marcourt L, Wolfender JL, Wolfrum C, Schröder S. Puerariae lobatae root extracts and the regulation of brown fat activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153075. [PMID: 31476558 DOI: 10.1016/j.phymed.2019.153075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Obesity is one of the major health problems worldwide. The induction of brown adipocyte formation and activity represents a promising therapeutic option by increasing energy expenditure. Asian herbs have the potential to treat obesity, however, pharmacological effects should be well documented at the molecular level first. HYPOTHESIS A novel hypothesis-driven screening approach identified the root of Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep (PLR) to have potential effects on obesity by stimulating brown adipocytes. STUDY DESIGN This study explored the metabolic effects of PLR water extract (PLRE) in a high-fat diet-induced obesity mouse model and characterized its secondary metabolite composition. METHODS Animals were orally treated daily for two weeks and the bioactivity of PLRE evaluated by measuring various parameters including body weight, circulating metabolites, energy expenditure and insulin sensitivity. The chemical composition of the mains components was obtained by HPLC-MS-ELSD-PDA. Based on the dereplication results and semi-quantitative estimation, pure molecules were selected for tests on adipocytes in vitro. RESULTS PLRE induces brown adipocyte activity and triggers the formation of brown-like cells in inguinal fat tissue, weight loss, and improved glucose metabolism. These effects are primarily caused by cell-autonomous activation of brown adipocytes and not by autonomic nervous system regulation. Even though the analysis of PLRE revealed puerarin as the most abundant secondary metabolite, it showed no effect on brown adipocyte formation and function. Brown adipocyte activity was induced dose-dependently by two other isoflavones, daidzein, and genistein. Daidzein is present in a very small amount in PLRE, but various glycosidic isoflavones, including puerarin, may release daidzein after metabolism. CONCLUSION This approach demonstrated the positive effects of PLRE on a diet-induced obesity mouse model and provided clues on the mode of action of PLRE at the molecular level.
Collapse
Affiliation(s)
- Elisabeth Buhlmann
- HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center Hamburg-Eppendorf, Breitenfelder Straße 15, D-20251 Hamburg, Germany
| | - Carla Horváth
- Swiss Federal Institute of Technology, ETH Zürich, Institute of Food Nutrition and Health, Schorenstr. 16, CH-8603 Schwerzenbach, Switzerland
| | - Joëlle Houriet
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel Servet 1, 1206 Genève, Switzerland
| | - Elke Kiehlmann
- Swiss Federal Institute of Technology, ETH Zürich, Institute of Food Nutrition and Health, Schorenstr. 16, CH-8603 Schwerzenbach, Switzerland
| | - Janine Radtke
- HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center Hamburg-Eppendorf, Breitenfelder Straße 15, D-20251 Hamburg, Germany
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel Servet 1, 1206 Genève, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel Servet 1, 1206 Genève, Switzerland
| | - Christian Wolfrum
- Swiss Federal Institute of Technology, ETH Zürich, Institute of Food Nutrition and Health, Schorenstr. 16, CH-8603 Schwerzenbach, Switzerland
| | - Sven Schröder
- HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center Hamburg-Eppendorf, Breitenfelder Straße 15, D-20251 Hamburg, Germany.
| |
Collapse
|
22
|
Wu G, Zhang W, Li H. Application of metabolomics for unveiling the therapeutic role of traditional Chinese medicine in metabolic diseases. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112057. [PMID: 31279867 DOI: 10.1016/j.jep.2019.112057] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/12/2019] [Accepted: 07/03/2019] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional medicine has been practiced for thousands of years in China and some Asian countries. Traditional Chinese Medicine (TCM) is characterized as multi-component and multiple targets in disease therapy, and it is a great challenge for elucidating the mechanisms of TCM. AIM OF THE REVIEW Comprehensively summarize the application of metabolomics in biomarker discovery, stratification of TCM syndromes, and mechanism underlying TCM therapy on metabolic diseases. METHODS This review systemically searched the publications with key words such as metabolomics, traditional Chinese medicine, metabolic diseases, obesity, cardiovascular disease, diabetes mellitus in "Title OR Abstract" in major databases including PubMed, the Web of Science, Google Scholar, Science Direct, CNKI from 2010 to 2019. RESULTS A total of 135 papers was searched and included in this review. An overview of articles indicated that metabolic characteristics may be a hallmark of different syndromes/models of metabolic diseases, which provides a new perspective for disease diagnosis and therapeutic optimization. Moreover, TCM treatment has significantly altered the metabolic perturbations associated with metabolic diseases, which may be an important mechanism for the therapeutic effect of TCM. CONCLUSIONS Until now, many metabolites and differential biomarkers related to the pathogenesis of metabolic diseases and TCM therapy have been discovered through metabolomics research. Unfortunately, the biological role and mechanism of disease-related metabolites were largely unclarified so far, which warrants further investigation.
Collapse
Affiliation(s)
- Gaosong Wu
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weidong Zhang
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Houkai Li
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
23
|
Liu T, Li XG, Wang JY, Liu DL, Wei YJ. Time-resolved fluorescence and chemometrics-assisted excitation-emission fluorescence for qualitative and quantitative analysis of scopoletin and scopolin in Erycibe obtusifolia Benth. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:96-103. [PMID: 31030053 DOI: 10.1016/j.saa.2019.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
This paper presents a new strategy for qualitative identification of scopoletin and scopolin in Erycibe obtusifolia Benth using time-resolved (lifetimes) fluorescence and quantitative analysis with chemometrics-assisted excitation-emission matrix (EEM) fluorescence. Due to the significant spectral overlapping among analytes and interference, the use of the more selective time-resolved fluorescence is proposed for qualitative identification in quality control of traditional Chinese medicine (TCM) for the first time. Using the strategy of combining EEM fluorescence with second-order calibration method, i.e. parallel factor analysis (PARAFAC), the simultaneous quantification of scopoletin and scopolin in the complex system of Erycibe obtusifolia Benth was achieved successfully. The predicted concentrations were compared with the values obtained using high performance liquid chromatography-coupled to fluorimetric detector (HPLC-FLD), and no significant differences between them were observed. Therefore, the proposed methods using time-resolved fluorescence for qualitative analysis and EEMs coupled with second-order calibration for quantitative analysis in TCM are comparable and provide a suitable alternative to the chromatography-based method.
Collapse
Affiliation(s)
- Tie Liu
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Xin-Ge Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Ji-Ye Wang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - De-Long Liu
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China.
| | - Yong-Ju Wei
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
24
|
Wang XJ, Ren JL, Zhang AH, Sun H, Yan GL, Han Y, Liu L. Novel applications of mass spectrometry-based metabolomics in herbal medicines and its active ingredients: Current evidence. MASS SPECTROMETRY REVIEWS 2019; 38:380-402. [PMID: 30817039 DOI: 10.1002/mas.21589] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Current evidence shows that herbal medicines could be beneficial for the treatment of various diseases. However, the complexities present in chemical compositions of herbal medicines are currently an obstacle for the progression of herbal medicines, which involve unclear bioactive compounds, mechanisms of action, undetermined targets for therapy, non-specific features for drug metabolism, etc. To overcome those issues, metabolomics can be a great to improve and understand herbal medicines from the small-molecule metabolism level. Metabolomics could solve scientific difficulties with herbal medicines from a metabolic perspective, and promote drug discovery and development. In recent years, mass spectrometry-based metabolomics was widely applied for the analysis of herbal constituents in vivo and in vitro. In this review, we highlight the value of mass spectrometry-based metabolomics and metabolism to address the complexity of herbal medicines in systems pharmacology, and to enhance their biomedical value in biomedicine, to shed light on the aid that mass spectrometry-based metabolomics can offer to the investigation of its active ingredients, especially, to link phytochemical analysis with the assessment of pharmacological effect and therapeutic potential. © 2019 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi, China
| | - Jun-Ling Ren
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| |
Collapse
|
25
|
Lu F, Zhang N, Ye T, Zhao H, Pang M, Liu SM. High throughput metabolomics-proteomics investigation on metabolic phenotype changes in rats caused by Radix Scrophulariae using ultra-performance liquid chromatography with mass spectrometry. RSC Adv 2019; 9:17791-17800. [PMID: 35520561 PMCID: PMC9064686 DOI: 10.1039/c8ra10443c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/31/2019] [Indexed: 11/21/2022] Open
Abstract
Radix Scrophulariae, a traditional Chinese herb, is used to treat various diseases, including H2O2-induced apoptosis in cardiomyocytes, HaCaT cells, hyperuricaemia, and depression. This study screened metabolites, proteins and common pathways to better understand both the therapeutic effects and side effects of this herb. Methods: Untargeted metabolomics based on UPLC-TOF-MS, coupled with proteomics based on nano-UPLC-Q-Exactive-MS/MS, were used to investigate the effects of R. Scrophulariae in rats. Fifty-one identified metabolites in urine samples and 76 modulated proteins in liver tissue were potential biomarkers for R. Scrophulariae treatment. The biomarkers and common pathways involved were steroid hormone biosynthesis, drug metabolism-cytochrome p450, drug metabolism-other enzymes, pentose and glucuronate interconversions, and starch and sucrose metabolism. Some biomarkers were beneficial for treating diseases such as cancer, tuberculosis and isovaleric acidaemia, while other biomarkers caused side effects. Metabolomic and proteomic analyses of R. Scrophulariae-treated rats provided valuable information on the biological safety and efficacy of using R. Scrophulariae clinically. Radix Scrophulariae, a traditional Chinese herb, is used to treat various diseases, including H2O2-induced apoptosis in cardiomyocytes, HaCaT cells, hyperuricaemia, and depression.![]()
Collapse
Affiliation(s)
- Fang Lu
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine Harbin P. R. China
| | - Ning Zhang
- Fist Affiliated Hospital of Guiyang University of Traditional Chinese Medicine Guizhou Guiyang P. R. China
| | - Tao Ye
- Fist Affiliated Hospital of Guiyang University of Traditional Chinese Medicine Guizhou Guiyang P. R. China
| | - Hongwei Zhao
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine Harbin P. R. China
| | - Mu Pang
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine Harbin P. R. China
| | - Shu-Min Liu
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine Harbin P. R. China.,Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine He Ping Road 24 Harbin 150040 P. R. China +86 45182193278 +86 45182193278
| |
Collapse
|
26
|
Dang Z, Li Q, Sun S, Wang Y, Lin R, Zhang Y, Dai J, Zheng N. The Medicinal Plant Pair Bupleurum chinense- Scutellaria baicalensis - Metabolomics and Metallomics Analysis in a Model for Alcoholic Liver Injury. Front Pharmacol 2019; 10:254. [PMID: 30971921 PMCID: PMC6445227 DOI: 10.3389/fphar.2019.00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/28/2019] [Indexed: 12/31/2022] Open
Abstract
Traditional Chinese Medicine (TCM), a complex natural herbal medicine system, has increasingly attracted attention from all over the world. Most research has illustrated the mechanism of TCM based on the active components or single herbs. It was fruitful and effective but far from satisfactory as it failed to gain insights into the interactivity and combined effects of TCM. In this work, we used Bupleurum chinense (B. chinense DC, a species in the genus Bupleurum, family Apiaceae) and Scutellaria baicalensis (S. baicalensis Georgi, a species in the genus Scutellaria, family Lamiaceae), an herbal pair in TCM, to illustrate the combined effect. We compared the diverse effects between the B. chinense-S. baicalensis herbal pair and its compositions in an animal model of Alcoholic Liver Injury to highlight the advantages of the formula. Biochemical and histological indicators revealed that the effect of B. chinense-S. baicalensis was better than its individual parts. Furthermore, metabolite profiling of the serum, liver tissue, and feces were conducted to reveal that the herbal pair largely presented its effects through enhanced tissue penetration to maintain liver-located intervention with less global and symbiotic disturbance. Furthermore, we analyzed the distribution of the metal elements in extracts of the serum and liver tissue and found that the herbal pair significantly regulated the distribution of endogenous selenium in liver tissue. As selenium plays an important role in the anti-oxidative and hepatoprotective effects, it may be the reason for combined effects in BS formula. This research could open new perspectives for exploring the material basis of combined effects in natural herbal medicine.
Collapse
Affiliation(s)
- Zefang Dang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianhua Li
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shujun Sun
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Lin
- Frontier Medical Service Brigade, Army Medical University, Hutubi, China
| | - Yongyu Zhang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, China
| | - Jianye Dai
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ningning Zheng
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
27
|
Tian Q, Liu F, Xu Z, Liu H, Yin H, Sun Z, Chen M, Li Z, Ma L, Huang C. Evaluation of the chemical consistency of Yin‐Chen‐Hao‐Tang prepared by combined and separated decoction methods using high‐performance liquid chromatography and quadrupole time‐of‐flight mass spectrometry coupled with multivariate statistical analysis. J Sep Sci 2019; 42:1664-1675. [DOI: 10.1002/jssc.201800961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Qiang Tian
- School of Life Science and EngineeringSouthwest University of Science and Technology Mianyang Sichuan P. R. China
| | - Fang Liu
- Shanghai Research Center for Modernization of Traditional Chinese MedicineShanghai Institute of Material Medica Pudong Shanghai P. R. China
| | - Zhou Xu
- Shanghai Research Center for Modernization of Traditional Chinese MedicineShanghai Institute of Material Medica Pudong Shanghai P. R. China
| | - Huan Liu
- Shanghai Research Center for Modernization of Traditional Chinese MedicineShanghai Institute of Material Medica Pudong Shanghai P. R. China
| | - Hao Yin
- Shanghai Research Center for Modernization of Traditional Chinese MedicineShanghai Institute of Material Medica Pudong Shanghai P. R. China
| | - Zhaolin Sun
- Shanghai Research Center for Modernization of Traditional Chinese MedicineShanghai Institute of Material Medica Pudong Shanghai P. R. China
| | - Mingcang Chen
- Shanghai Research Center for Modernization of Traditional Chinese MedicineShanghai Institute of Material Medica Pudong Shanghai P. R. China
| | - Zhixiong Li
- Shanghai Research Center for Modernization of Traditional Chinese MedicineShanghai Institute of Material Medica Pudong Shanghai P. R. China
| | - Lin Ma
- School of Life Science and EngineeringSouthwest University of Science and Technology Mianyang Sichuan P. R. China
| | - Chenggang Huang
- Shanghai Research Center for Modernization of Traditional Chinese MedicineShanghai Institute of Material Medica Pudong Shanghai P. R. China
| |
Collapse
|
28
|
Metabolomics profiling provides valuable insights into the underlying mechanisms of Morinda officinalis on protecting glucocorticoid-induced osteoporosis. J Pharm Biomed Anal 2019; 166:336-346. [DOI: 10.1016/j.jpba.2019.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/27/2018] [Accepted: 01/12/2019] [Indexed: 11/21/2022]
|
29
|
Sun H, Zhang AH, Yang L, Li MX, Fang H, Xie J, Wang XJ. High-throughput chinmedomics strategy for discovering the quality-markers and potential targets for Yinchenhao decoction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:328-338. [PMID: 30340940 DOI: 10.1016/j.phymed.2018.04.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/25/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Yinchenhao decoction (YCHD) has been widely applied in the clinic for various kinds of liver disease, especially for the therapy of dampness-heat jaundice syndrome (DHJS). Some studies have investigated the pharmacological activity and compositions of YCHD. However, its Q-markers and the action targets are still unrevealed. PURPOSE This work aims to clarify the therapeutic effect of YCHD against DHJS and discover the quality-markers (Q-markers) of YCHD based on the high-throughput chinmedomics strategy and then predict the potential targets and action mechanism of YCHD against DHJS. METHODS Ultra-high performance liquid chromatography/mass spectrometry (UPLC-MS) combined with pattern recognition method was utilized to analyze serum samples and urine samples. Multivariate data analysis and network pharmacology technology were used to identify the effective components and biomarkers associated with therapeutic effects. RESULTS With the high sensitivity UPLC-MS technology, a total of 69 compounds from YCHD were identified and 41 of them were absorbed in blood. Besides, 34 urine biomarkers from DHJS were identified. Of note, we utilized chinmedomics technology on the correlation analysis of urine biomarkers and absorbed components to determine 9 core-compounds as the Q-markers responsible for the efficacy of YCHD. Finally, a total of 12 potential targets were discovered. CONCLUSION This work provides a powerful method for clarifying the efficacy of TCM and discovering the effective ingredients as Q-markers.
Collapse
Affiliation(s)
- Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ai-Hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Meng-Xi Li
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Heng Fang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Jing Xie
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xi-Jun Wang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| |
Collapse
|
30
|
Xu L, Li M, Zhou H, Zhang B, Zhang Z, Han N, Wu T. Rapid characterization of the chemical constituents and rat metabolites of the Wen‐Jing decoction by ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry. J Sep Sci 2019; 42:1174-1193. [DOI: 10.1002/jssc.201801020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Liu Xu
- Department of PharmacognosySchool of PharmacyFudan University Shanghai P. R. China
- Innovation Center of Chinese MedicineChina State Institute of Pharmaceutical Industry Shanghai P. R. China
| | - Moying Li
- Innovation Center of Chinese MedicineChina State Institute of Pharmaceutical Industry Shanghai P. R. China
| | - Haifeng Zhou
- Innovation Center of Chinese MedicineChina State Institute of Pharmaceutical Industry Shanghai P. R. China
| | - Bei Zhang
- Innovation Center of Chinese MedicineChina State Institute of Pharmaceutical Industry Shanghai P. R. China
| | | | - Nina Han
- Beijing Tcmages Pharmaceutical Co., Ltd
| | - Tong Wu
- Innovation Center of Chinese MedicineChina State Institute of Pharmaceutical Industry Shanghai P. R. China
| |
Collapse
|
31
|
Comparative analysis of the compatibility effects of Danggui-Sini Decoction on a blood stasis syndrome rat model using untargeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1105:164-175. [DOI: 10.1016/j.jchromb.2018.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
|
32
|
Hao M, Ji D, Li L, Su L, Gu W, Gu L, Wang Q, Lu T, Mao C. Mechanism of Curcuma wenyujin Rhizoma on Acute Blood Stasis in Rats Based on a UPLC-Q/TOF-MS Metabolomics and Network Approach. Molecules 2018; 24:molecules24010082. [PMID: 30591632 PMCID: PMC6337646 DOI: 10.3390/molecules24010082] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022] Open
Abstract
Rhizome of Curcuma wenyujin, which is called EZhu in China, is a traditional Chinese medicine used to treat blood stasis for many years. However, the underlying mechanism of EZhu is not clear at present. In this study, plasma metabolomics combined with network pharmacology were used to elucidate the therapeutic mechanism of EZhu in blood stasis from a metabolic perspective. The results showed that 26 potential metabolite markers of acute blood stasis were screened, and the levels were all reversed to different degrees by EZhu preadministration. Metabolic pathway analysis showed that the improvement of blood stasis by Curcuma wenyujin rhizome was mainly related to lipid metabolism (linoleic acid metabolism, ether lipid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and arachidonic acid metabolism) and amino acid metabolisms (tryptophan metabolism, lysine degradation). The component-target-pathway network showed that 68 target proteins were associated with 21 chemical components in EZhu. Five metabolic pathways of the network, including linoleic acid metabolism, sphingolipid metabolism, glycerolipid metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis, were consistent with plasma metabolomics results. In conclusion, plasma metabolomics combined with network pharmacology can be helpful to clarify the mechanism of EZhu in improving blood stasis and to provide a literature basis for further research on the therapeutic mechanism of EZhu in clinical practice.
Collapse
Affiliation(s)
- Min Hao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - De Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lianlin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Liya Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qiaohan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunqin Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
33
|
Mancuso L, Manis C, Murgia A, Isola M, Salis A, Piras F, Caboni P, Cao G. Effect of ZnO Nanoparticles on Human Bone Marrow Mesenchymal Stem Cells: Viability, Morphology, Particles Uptake, Cell Cycle and Metabolites. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bbra/2684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the growing interest in nanoparticles (NPs), the evaluation of their safety use has to be deeply considered, but standardized procedures for the evaluation of their toxicity have not been defined. In vitro methods are ideal in toxicology research because they can rapidly provide reproducible results while preventing the use of animals. Primary cells are considered a better option as model systems for predicting toxicological behavior, although several cell types do not survive enough in culture and isolated cells can have substantial variability when obtained from different donors. Recently, a new test for acute toxicity based on the use of human bone marrow mesenchymal stem cells (hBMMSCs) has been developed and successfully tested in our laboratory following the ICCVAM (Interagency Coordinating Committee on the Validation of Alternative Methods) guidelines [1]. Along these lines, the aim of this study is to evaluate the acute cytotoxicity of ZnO nanoparticles using the new toxicity test based on hBMMSCs, while comparing their behavior with respect to the toxicity of ZnO micrometer ones. For this reason, we assessed the citotoxicity by performing Neutral Red assay, the cellular uptake by transmission electron microscopy and the effects on hBMMSCs cycle by FACS analysis. Furthermore, we also analyzed by means of GC-MS the polar metabolite profile of hBMMSCs samples treated with ZnO micro- and nanoparticles. Our results show that despite the slight differences in terms of cytotoxicity, nano and microparticles show a very different behavior with respect to their effects on hBMMSCs cycle, metabolite profile and cellular uptake.
Collapse
Affiliation(s)
- Luisa Mancuso
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d'Armi, Cagliari, Italy
| | - Cristina Manis
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale, 72, Cagliari, Italy
| | - Antonio Murgia
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale, 72, Cagliari, Italy
| | - Michela Isola
- Department of Biomedical Sciences, University Citadel of Monserrato - University of Cagliari, S.S. 554 - Bivio for Sestu, 09042-Monserrato-Cagliari- Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University Citadel of Monserrato - University of Cagliari -CSGI and CNBS, S.S. 554 - Bivio for Sestu, 09042-Monserrato-Cagliari- Italy
| | - Federica Piras
- P.O. Armando Businco. Servizio di diagnistica citofluorimetrica e trattamento delle cellule staminali. SC Ematologia e Centro Trapianti Midollo Osseo; Via Edward Jenner 09121 Cagliari
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale, 72, Cagliari, Italy
| | - Giacomo Cao
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d'Armi, Cagliari, Italy
| |
Collapse
|
34
|
Wei PL, Gu H, Liu J, Wang Z. Development of Fangjiomics for Systems Elucidation of Synergistic Mechanism Underlying Combination Therapy. Comput Struct Biotechnol J 2018; 16:565-572. [PMID: 30546857 PMCID: PMC6279955 DOI: 10.1016/j.csbj.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023] Open
Abstract
The rapid development of omics technology provides an opportunity for fulfilling the understanding of the synergistic mechanism of combination therapy. However, a systems theory to analyze synergy remains an ongoing challenge. Fangjiomics is a novel systems science based on a holistic theory integrated with reductionism which has been utilized to systematically elucidate the synergistic mechanisms underlying combination therapy using multi-target-, pathway- or network-based quantitative methods. Besides, our ability to understand the polyhierarchical structure in synergy is driven based on multi-level omics data fusion in Fangjiomics. According to the basic principle of “Jun-Chen-Zuo-Shi”, further global integration across various omics platforms and phenotype-driven quantitative multi-scale modeling would accelerate development in Fangjiomics-based dissection of synergy in multi-drug combination therapies. Fangjiomics is a novel systems science based on a holistic theory integrated with reductionism. We developed the pathway-based analysis of synergistic mechanisms in Fangjiomics. The theory of network-based synergistic targets is proposed in Fangjiomics. The hierarchical relationship of synergy in multilevel omics is dissected in Fangjiomics. The principle of “Jun-Chen-Zuo-Shi” is proposed to accelerate the development in Fangjiomics-based dissection of synergy.
Collapse
Affiliation(s)
- Peng-Lu Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Gu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
35
|
van Hasselt JGC, Iyengar R. Systems Pharmacology: Defining the Interactions of Drug Combinations. Annu Rev Pharmacol Toxicol 2018; 59:21-40. [PMID: 30260737 DOI: 10.1146/annurev-pharmtox-010818-021511] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of diseases are associated with alterations in multiple molecular pathways and complex interactions at the cellular and organ levels. Single-target monotherapies therefore have intrinsic limitations with respect to their maximum therapeutic benefits. The potential of combination drug therapies has received interest for the treatment of many diseases and is well established in some areas, such as oncology. Combination drug treatments may allow us to identify synergistic drug effects, reduce adverse drug reactions, and address variability in disease characteristics between patients. Identification of combination therapies remains challenging. We discuss current state-of-the-art systems pharmacology approaches to enable rational identification of combination therapies. These approaches, which include characterization of mechanisms of disease and drug action at a systems level, can enable understanding of drug interactions at the molecular, cellular, physiological, and organismal levels. Such multiscale understanding can enable precision medicine by promoting the rational development of combination therapy at the level of individual patients for many diseases.
Collapse
Affiliation(s)
- J G Coen van Hasselt
- Department of Pharmacological Sciences, Systems Biology Center, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; .,Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, 2333 Leiden, Netherlands;
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Systems Biology Center, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
36
|
Protective Effects of Yinchenhao Decoction on Cholesterol Gallstone in Mice Fed a Lithogenic Diet by Regulating LXR, CYP7A1, CYP7B1, and HMGCR Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8134918. [PMID: 30310412 PMCID: PMC6166389 DOI: 10.1155/2018/8134918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/28/2018] [Accepted: 07/22/2018] [Indexed: 12/16/2022]
Abstract
The study attempted to elucidate whether lipid genes are closely associated with lipid metabolic abnormalities during the lithogenic time and how Yinchenhao Decoction (YCHD) works on the transcriptions of lipid genes against cholesterol gallstone model. C57BL/6J mice fed on lithogenic diet (LD) were used for model establishment and randomized into 5 groups. All groups received LD for different weeks with isometrically intragastric administration of YCHD or NS. Biochemical tests were measured and liver tissues were harvested for histological and genetic detection. It was found that all groups with increasing LD showed a following tendency of gallstone incidence, bile cholesterol, phospholipids, total bile acid, and cholesterol saturation index (CSI). Conversely, YCHD could significantly normalize the levels of gallstone incidence, bile lipids, and CSI (CSI<1). As lithogenic time progressed, ABCG5, ABCG8, PPAR-α, and ABCB4 were upregulated, and SREBP2, CYP7A1, and CYP7B1 were downregulated, while CYP7A1, CYP7B1, LXR, and HMGCR mRNA were increased 3-fold under the administration of YCHD. It was concluded that abnormal expressions of the mentioned genes may eventually progress to cholesterol gallstone. CYP7A1, CYP7B1, LXR, and HMGCR mRNA may be efficient targets of YCHD, which may be a preventive drug to reverse liver injury, normalize bile lipids, facilitate gallstone dissolution, and attenuate gallstone formation.
Collapse
|
37
|
Zheng Y, Feng G, Sun Y, Liu S, Pi Z, Song F, Liu Z. Study on the compatibility interactions of formula Ding-Zhi-Xiao-Wan based on their main components transport characteristics across Caco-2 monolayers model. J Pharm Biomed Anal 2018; 159:179-185. [DOI: 10.1016/j.jpba.2018.06.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/25/2018] [Accepted: 06/30/2018] [Indexed: 01/04/2023]
|
38
|
Wei X, Tao J, Shen Y, Xiao S, Jiang S, Shang E, Zhu Z, Qian D, Duan J. Sanhuang Xiexin Tang Ameliorates Type 2 Diabetic Rats via Modulation of the Metabolic Profiles and NF-κB/PI-3K/Akt Signaling Pathways. Front Pharmacol 2018; 9:955. [PMID: 30210342 PMCID: PMC6121076 DOI: 10.3389/fphar.2018.00955] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023] Open
Abstract
Sanhuang Xiexin Tang (SXT), a classic prescription, has been clinically used to cure diabetes for thousands of years, but its mechanism remains unclear. Here, a systematic in-depth research was performed to unravel how it worked by the signaling pathway and metabonomics analysis. Our studies were conducted using high-fat diets (HFD) and streptozocin (STZ)-induced type 2 diabetes mellitus (T2DM) rats. The blood glucose was measured by a glucose-meter. Protein contents were determined by western blotting or ELISA and mRNA expression was identified by RT-PCR analysis. The pathological status of pancreas was assessed by histopathological analysis. Furthermore, Ultra Performance Liquid Chromatography-Quadrupole-Time of Flight/Mass Spectrometry (UPLC-Q-TOF/MS) coupled with multivariate statistical analysis was performed to discover potential biomarkers and the associated pathways. Hyperglycaemia, insulin resistance, dyslipidemia and inflammation in T2DM rats were significantly ameliorated after 7-week oral administration of SXT. The expressions of phosphatidylinositol-3-kinase (PI-3K), protein kinase B (Akt), glucose transporters-4 (GLUT4) Mrna, and p-PI-3K, p-Akt, GLUT4 protein involved in the PI-3K/Akt signaling pathway of T2DM were markedly up-regulated. Further investigation indicated that the perturbance of metabolic profiling in T2DM rats was obviously reversed by SXT and 38 potential biomarkers were screened and identified. Our study might help clarify the mechanism of SXT and provide some evidences for its clinical application in the future.
Collapse
Affiliation(s)
- Xiaoyan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinhua Tao
- School of Pharmacy, Nantong University, Nantong, China
| | - Yumeng Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suwei Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
39
|
Zhang A, Sun H, Wang X. Mass spectrometry-driven drug discovery for development of herbal medicine. MASS SPECTROMETRY REVIEWS 2018; 37:307-320. [PMID: 28009933 DOI: 10.1002/mas.21529] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Herbal medicine (HM) has made a major contribution to the drug discovery process with regard to identifying products compounds. Currently, more attention has been focused on drug discovery from natural compounds of HM. Despite the rapid advancement of modern analytical techniques, drug discovery is still a difficult and lengthy process. Fortunately, mass spectrometry (MS) can provide us with useful structural information for drug discovery, has been recognized as a sensitive, rapid, and high-throughput technology for advancing drug discovery from HM in the post-genomic era. It is essential to develop an efficient, high-quality, high-throughput screening method integrated with an MS platform for early screening of candidate drug molecules from natural products. We have developed a new chinmedomics strategy reliant on MS that is capable of capturing the candidate molecules, facilitating their identification of novel chemical structures in the early phase; chinmedomics-guided natural product discovery based on MS may provide an effective tool that addresses challenges in early screening of effective constituents of herbs against disease. This critical review covers the use of MS with related techniques and methodologies for natural product discovery, biomarker identification, and determination of mechanisms of action. It also highlights high-throughput chinmedomics screening methods suitable for lead compound discovery illustrated by recent successes.
Collapse
Affiliation(s)
- Aihua Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of TCM State Administration, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of TCM State Administration, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of TCM State Administration, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
40
|
Wang Y, Feng Q, He P, Zhu L, Chen G. Genomics Approach of the Natural Product Pharmacology for High Impact Diseases. Int J Genomics 2018; 2018:9468912. [PMID: 29850479 PMCID: PMC5911340 DOI: 10.1155/2018/9468912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yong Wang
- Lifescience School, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Feng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peijian He
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, Department of Pediatrics, the State University of New York at Buffalo, Buffalo, NY, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
41
|
Sun H, Yang L, Li MX, Fang H, Zhang AH, Song Q, Liu XY, Su J, Yu MD, Makino T, Wang XJ. UPLC-G2Si-HDMS untargeted metabolomics for identification of metabolic targets of Yin-Chen-Hao-Tang used as a therapeutic agent of dampness-heat jaundice syndrome. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1081-1082:41-50. [PMID: 29502028 DOI: 10.1016/j.jchromb.2018.02.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/17/2018] [Accepted: 02/24/2018] [Indexed: 12/25/2022]
Abstract
Yin-Chen-Hao-Tang (YCHT), the classic formulae of traditional Chinese medicine (TCM), is widely used to treat dampness-heat jaundice syndrome (DHJS) and various liver diseases. However, the therapeutic mechanism of YCHT is yet to have an integrated biological interpretation. In this work, we used metabolomics technology to reveal the adjustment of small molecule metabolites in body during the treatment of YCHT. Aim to discover the serum biomarkers which are associated with the treatment of DHJS against YCHT. Pathological results and biochemical indicators showed that the hepatic injury and liver index abnormalities caused by DHJS was effectively improve after treatment with YCHT. On the basis of effective treatment, ultra-high performance liquid chromatography (UPLC-G2Si-HDMS) combined with the multivariate statistical analysis method was utilized to analyze the serum samples. Finally, 22 biomarkers were identified by using mass spectrometry and illuminated the correlative metabolic pathways which play a significant role and as therapeutic targets in the treatment of DHJS. This work demonstrated that mass spectrometry metabolomics provides a new insight to elucidate the action mechanism of formulae.
Collapse
Affiliation(s)
- Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Le Yang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Meng-Xi Li
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Heng Fang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Ai-Hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Qi Song
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Xing-Yuan Liu
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Jing Su
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Meng-Die Yu
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 4678603, Japan
| | - Xi-Jun Wang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China.
| |
Collapse
|
42
|
Sun H, Zhang AH, Song Q, Fang H, Liu XY, Su J, Yang L, Yu MD, Wang XJ. Functional metabolomics discover pentose and glucuronate interconversion pathways as promising targets for Yang Huang syndrome treatment with Yinchenhao Tang. RSC Adv 2018; 8:36831-36839. [PMID: 35558940 PMCID: PMC9089300 DOI: 10.1039/c8ra06553e] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Yinchenhao Tang (YCHT), a classic traditional Chinese medicine (TCM) formulae, plays an important role in the treatment of Yang Huang syndrome (YHS). With the emergence of new biomarkers of YHS uncovered via metabonomics, the underlying functional mechanisms are still not clear. Functional metabolomics aims at converting biomarkers derived from metabonomics into disease mechanisms. Here, an integrated non-target metabolomics and IPA strategy were used to investigate the YCHT intervention on YHS. Our metabolomics study has shown that the potential protective effect of YCHT on YHS mice leads to significant changes in the metabolic profile by modulating the biomarkers and regulating the metabolic disorders. Twenty two differential metabolite biomarkers and fifteen involved metabolic pathways were correlated with the regulation of YCHT treatment on YHS. Functional metabolomics identified a core biomarker, d-glucuronic acid in pentose and glucuronate interconversion pathways, which was directly related to the target prediction of UDP-glucuronosyltransferase 1A1 and eventually leaded to a series of disturbances. In conclusion, this study shows that functional metabolomics can discover metabolic pathways as promising targets. Yinchenhao Tang (YCHT), a classic traditional Chinese medicine (TCM) formulae, plays an important role in the treatment of Yang Huang syndrome (YHS).![]()
Collapse
Affiliation(s)
- Hui Sun
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Ai-hua Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Qi Song
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Heng Fang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Xing-yuan Liu
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Jing Su
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Le Yang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Meng-die Yu
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Xi-jun Wang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| |
Collapse
|
43
|
Liu XY, Zhang AH, Fang H, Li MX, Song Q, Su J, Yu MD, Yang L, Wang XJ. Serum metabolomics strategy for understanding the therapeutic effects of Yin-Chen-Hao-Tang against Yanghuang syndrome. RSC Adv 2018; 8:7403-7413. [PMID: 35539139 PMCID: PMC9078382 DOI: 10.1039/c7ra11048k] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/28/2018] [Indexed: 01/10/2023] Open
Abstract
Yin-Chen-Hao-Tang (YCHT), a classic Chinese herbal formula, is characterized by its strong therapeutic effects of liver regulation and relief of jaundice, especially Yanghuang syndrome (YHS). YHS is a type of jaundice with damp-heat pathogenesis, and it is considered a complicated Chinese medicine syndrome (CMS). The accurate mechanism for healing YHS has not yet been completely reported. The purpose of the current research is to investigate the expression of endogenous biomarkers in YHS mice and evaluate the clinical therapeutic effect of YCHT. Serum samples were analyzed using UPLC-Q/TOF-MS techniques in order to determine differential metabolites to elucidate the functional mechanism of YCHT on YHS through metabolite profiling combined with multivariate analysis. Simultaneously, the exact diversification of YHS mice was elucidated using blood biochemistry indexes and histopathological examination, and the results indicated that YHS is markedly improved by YCHT. Unsupervised principal component analysis (PCA) patterns were constructed to dissect the variances of metabolic profiling. Overall, 22 potential biomarkers were identified using a metabolomics approach based on an accurate MS/MS approach, clustering and distinguishing analysis. The present work demonstrates that the effectiveness of YCHT against YHS prompts distinct discrepancies in metabolic profiles by adjusting biomarkers and regulating metabolic disorders. A total of 15 metabolic pathways were involved in biological disturbance. This demonstrates that metabolomic techniques are powerful means to explore the pathogenesis of CMS and the therapeutic effects of traditional Chinese formulae. The purpose of the current research is to investigate the expression of endogenous biomarkers in Yanghuang syndrome mice and evaluate the clinical therapeutic effect of Yin-Chen-Hao-Tang.![]()
Collapse
Affiliation(s)
- Xing-yuan Liu
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ai-hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Heng Fang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Meng-xi Li
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Qi Song
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Jing Su
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Meng-die Yu
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Le Yang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Xi-jun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| |
Collapse
|
44
|
Qiu S, Zhang A, Zhang T, Sun H, Guan Y, Yan G, Wang X. Dissect new mechanistic insights for geniposide efficacy on the hepatoprotection using multiomics approach. Oncotarget 2017; 8:108760-108770. [PMID: 29312565 PMCID: PMC5752478 DOI: 10.18632/oncotarget.21897] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
A multi-omics approach could yield in-depth mechanistic insights. Here, we performed an integrated analysis of miRNAome, proteome and metabolome, aimed to investigate the underlying mechanism of active product geniposide in ethanol-induced apoptosis. We found that integrative meta-analysis identified 28 miRNAs, 20 proteins and 7 metabolites significantly differentially expressed, respectively. Further analysis identified geniposide extensively regulated multiple metabolism pathways and the most important related pathway was citrate cycle (TCA cycle). In addition, geniposide can improve energy metabolism benefits using the Extracellular Flux Analyzer. Of particular significance, miR-144-5p exhibits a high positive correlation with oxoglutaric acid, isocitrate dehydrogenase (IDH) 1 and 2 that involved in the TCA cycle. Furthermore,we discovered that miR-144-5p regulates TCA cycle metabolism through IDH1 and IDH2. Collectively, we describe for the first time the hepatoprotective effect of geniposide decreased miR-144-5p level, capable of regulating TCA cycle by directly targeting IDH1 and IDH2 and promoting functional consequences in cells. Integrating metabolomics, miRNAomics and proteomics approach and thereby analyzing microRNAs and proteins as well as metabolites can give valuable information about the functional regulation pattern and action mechanism of natural products.
Collapse
Affiliation(s)
- Shi Qiu
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Heilongjiang University of Chinese Medicine, Harbin, China.,Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Aihua Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Heilongjiang University of Chinese Medicine, Harbin, China.,Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianlei Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Heilongjiang University of Chinese Medicine, Harbin, China.,Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Heilongjiang University of Chinese Medicine, Harbin, China.,Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Guan
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Heilongjiang University of Chinese Medicine, Harbin, China.,Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guangli Yan
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Heilongjiang University of Chinese Medicine, Harbin, China.,Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Heilongjiang University of Chinese Medicine, Harbin, China.,Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| |
Collapse
|
45
|
Recent developments and emerging trends of mass spectrometry for herbal ingredients analysis. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Pharmacokinetic Comparison of 20(R)- and 20(S)-Ginsenoside Rh1 and 20(R)- and 20(S)-Ginsenoside Rg3 in Rat Plasma following Oral Administration of Radix Ginseng Rubra and Sheng-Mai-San Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6451963. [PMID: 28620420 PMCID: PMC5460445 DOI: 10.1155/2017/6451963] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/19/2017] [Accepted: 03/28/2017] [Indexed: 01/16/2023]
Abstract
Ginsenosides Rh1 and Rg3, as the main bioactive components from Ginseng, are effective for prevention and treatment of cardiovascular diseases. Sheng-Mai-San (SMS), a classical complex prescription of traditional Chinese medicines, is composed of Radix Ginseng Rubra, Fructus Schisandrae, and Radix Ophiopogonis. In this research, a sensitive and specific liquid chromatography-mass spectrometric method was developed and validated for stereoselective determination and pharmacokinetic studies of 20(R)- and 20(S)-ginsenoside Rh1 and 20(R)- and 20(S)-ginsenoside Rg3 epimers in rat plasma after oral administration of Radix Ginseng Rubra or SMS extracts. The main pharmacokinetic parameters including Tmax, Cmax, t1/2, and AUC were calculated by noncompartment model. Compared with Radix Ginseng Rubra, SMS could significantly increase the content of ginsenosides Rh1 and Rg3 in the decocting process. Ginsenosides Rh1 and Rg3 following SMS treatment displayed higher Cmax, AUC(0–t), and AUC(0–∞) and longer t1/2 and tmax except for 20(R)-Rh1 in rat plasma. The results indicated SMS compound compatibility could influence the dissolution in vitro and the pharmacokinetic behaviors in vivo of ginsenosides Rh1 and Rg3, suggesting pharmacokinetic drug-drug interactions between ginsenosides Rh1 and Rg3 and other ingredients from Fructus Schisandrae and Radix Ophiopogonis. This study would provide valuable information for drug development and clinical application of SMS.
Collapse
|
47
|
Metabolomic mechanisms of gypenoside against liver fibrosis in rats: An integrative analysis of proteomics and metabolomics data. PLoS One 2017; 12:e0173598. [PMID: 28291813 PMCID: PMC5349658 DOI: 10.1371/journal.pone.0173598] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 02/23/2017] [Indexed: 01/04/2023] Open
Abstract
Aims To investigate mechanisms and altered pathways of gypenoside against carbon tetrachloride (CCl4)-induced liver fibrosis based on integrative analysis of proteomics and metabolomics data. Methods CCl4-induced liver fibrosis rats were administrated gypenoside. The anti-fibrosis effects were evaluated by histomorphology and liver hydroxyproline (Hyp) content. Protein profiling and metabolite profiling of rats liver tissues were examined by isobaric tags for relative and absolute quantitation (iTRAQ) approach and gas chromatography-mass spectrometer (GC-MS) technology. Altered pathways and pivotal proteins and metabolites were searched by integrative analysis of proteomics and metabolomics data. The levels of some key proteins in altered pathways were determined by western blot. Results Histopathological changes and Hyp content in gypenoside group had significant improvements (P<0.05). Compared to liver fibrosis model group, we found 301 up-regulated and 296 down-regulated proteins, and 9 up-regulated and 8 down-regulated metabolites in gypenoside group. According to integrative analysis, some important pathways were found, including glycolysis or gluconeogenesis, fructose and mannose metabolism, glycine, serine and threonine metabolism, lysine degradation, arginine and proline metabolism, glutathione metabolism, and sulfur metabolism. Furthermore, the levels of ALDH1B1, ALDH2 and ALDH7A1 were found increased and restored to normal levels after gypenoside treated (P<0.05). Conclusions Gypenoside inhibited CCl4-induced liver fibrosis, which may be involved in the alteration of glycolysis metabolism and the protection against the damage of aldehydes and lipid peroxidation by up-regulating ALDH.
Collapse
|
48
|
Li JY, Cao HY, Sun L, Sun RF, Wu C, Bian YQ, Dong S, Liu P, Sun MY. Therapeutic mechanism of Yīn-Chén-Hāo decoction in hepatic diseases. World J Gastroenterol 2017; 23:1125-1138. [PMID: 28275293 PMCID: PMC5323438 DOI: 10.3748/wjg.v23.i7.1125] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023] Open
Abstract
Yīn-Chén-Hāo decoction (YCHD) is a traditional Chinese medicine formula composed of capillaris (Artemisia capillaris), gardenia (Gardenia jasminoides), and rhubarb (Rheum rhabarbarum) that is used for the treatment of damp-heat jaundice. In modern clinics, YCHD is mostly used for hepatic diseases. This review summarizes the biological activities of YCHD and its medical applications. The main active compounds of YCHD are chlorogenic acid, rhein, geniposide, emodin, and scoparone. The pharmacological actions of YCHD include inhibition of hepatic steatosis, apoptosis, necrosis, anti-inflammation, and immune regulation. YCHD could be developed as a new therapeutic strategy for the treatment of hepatic diseases.
Collapse
|
49
|
Fang L, Gu C, Liu X, Xie J, Hou Z, Tian M, Yin J, Li A, Li Y. Metabolomics study on primary dysmenorrhea patients during the luteal regression stage based on ultra performance liquid chromatography coupled with quadrupole‑time‑of‑flight mass spectrometry. Mol Med Rep 2017; 15:1043-1050. [PMID: 28098892 PMCID: PMC5367332 DOI: 10.3892/mmr.2017.6116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/02/2016] [Indexed: 12/28/2022] Open
Abstract
Primary dysmenorrhea (PD) is a common gynecological disorder which, while not life‑threatening, severely affects the quality of life of women. Most patients with PD suffer ovarian hormone imbalances caused by uterine contraction, which results in dysmenorrhea. PD patients may also suffer from increases in estrogen levels caused by increased levels of prostaglandin synthesis and release during luteal regression and early menstruation. Although PD pathogenesis has been previously reported on, these studies only examined the menstrual period and neglected the importance of the luteal regression stage. Therefore, the present study used urine metabolomics to examine changes in endogenous substances and detect urine biomarkers for PD during luteal regression. Ultra performance liquid chromatography coupled with quadrupole‑time‑of‑flight mass spectrometry was used to create metabolomic profiles for 36 patients with PD and 27 healthy controls. Principal component analysis and partial least squares discriminate analysis were used to investigate the metabolic alterations associated with PD. Ten biomarkers for PD were identified, including ornithine, dihydrocortisol, histidine, citrulline, sphinganine, phytosphingosine, progesterone, 17‑hydroxyprogesterone, androstenedione, and 15‑keto‑prostaglandin F2α. The specificity and sensitivity of these biomarkers was assessed based on the area under the curve of receiver operator characteristic curves, which can be used to distinguish patients with PD from healthy controls. These results provide novel targets for the treatment of PD.
Collapse
Affiliation(s)
- Ling Fang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Caiyun Gu
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Xinyu Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Jiabin Xie
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Zhiguo Hou
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Meng Tian
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Jia Yin
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Aizhu Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yubo Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
50
|
Zhang K, Yan G, Zhang A, Sun H, Wang X. Recent advances in pharmacokinetics approach for herbal medicine. RSC Adv 2017. [DOI: 10.1039/c7ra02369c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traditional Chinese Medicine (TCM), an indispensable part of herbal medicine, has been used for treating many diseases and/or symptoms for thousands of years.
Collapse
Affiliation(s)
- Kunming Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| | - Guangli Yan
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| | - Aihua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| | - Xijun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Pharmacokinetics Laboratory
- Laboratory of Metabolomics
| |
Collapse
|