1
|
Serrano LR, Mellors JS, Thompson JW, Lancaster NM, Robinson ML, Overmyer KA, Quarmby ST, Coon JJ. SPE-CZE-MS Quantifies Zeptomole Amounts of Phosphorylated Peptides. J Proteome Res 2025. [PMID: 40293921 DOI: 10.1021/acs.jproteome.5c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Capillary zone electrophoresis (CZE) is gaining attention in the field of single-cell proteomics for its ultralow-flow and high-resolution separation abilities. Even more sample-limited yet rich in biological information are phosphoproteomics experiments, as the phosphoproteome composes only a fraction of the whole cellular proteome. Rapid analysis, high sensitivity, and maximization of sample utilization are paramount for single-cell analysis. Some challenges of coupling CZE analysis with mass spectrometry analysis (MS) of complex mixtures include 1. sensitivity due to volume loading limitations of CZE and 2. incompatibility of MS duty cycles with electropherographic time scales. Here, we address these two challenges as applied to single-cell-equivalent phosphoproteomics experiments by interfacing a microchip-based CZE device integrated with a solid-phase-extraction (SPE) bed with the Orbitrap Astral mass spectrometer. Using 225 phosphorylated peptide standards and phosphorylated peptide-enriched mouse brain tissue, we investigate microchip-based SPE-CZE functionality, quantitative performance, and complementarity to nano-LC-MS (nLC-MS) analysis. We highlight unique SPE-CZE separation mechanisms that can empower fit-for-purpose applications in single-cell-equivalent phosphoproteomics.
Collapse
Affiliation(s)
- Lia R Serrano
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - J Scott Mellors
- 908 Devices Inc., Boston, Massachusetts 02210, United States
| | - J Will Thompson
- 908 Devices Inc., Boston, Massachusetts 02210, United States
| | - Noah M Lancaster
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Margaret Lea Robinson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Katherine A Overmyer
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| | - Scott T Quarmby
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| |
Collapse
|
2
|
Serrano LR, Mellors JS, Thompson JW, Lancaster NM, Robinson ML, Overmyer KA, Quarmby ST, Coon JJ. SPE-CZE-MS quantifies zeptomole concentrations of phosphorylated peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.07.627347. [PMID: 39713305 PMCID: PMC11661101 DOI: 10.1101/2024.12.07.627347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Capillary zone electrophoresis (CZE) is gaining attention in the field of single-cell proteomics for its ultra-low-flow and high-resolution separation abilities. Even more sample-limited yet rich in biological information are phosphoproteomics experiments, as the phosphoproteome composes only a fraction of the whole cellular proteome. Rapid analysis, high sensitivity, and maximization of sample utilization are paramount for single-cell analysis. Some challenges of coupling CZE analysis with mass spectrometry analysis (MS) of complex mixtures include 1. sensitivity due to volume loading limitations of CZE and 2. incompatibility of MS duty cycles with electrophoretic timescales. Here, we address these two challenges as applied to single-cell equivalent phosphoproteomics experiments by interfacing a microchip-based CZE device integrated with a solid-phase-extraction (SPE) bed with the Orbitrap Astral mass spectrometer. Using 225 phosphorylated peptide standards and phosphorylated peptide-enriched mouse brain tissue, we investigate microchip-based SPE-CZE functionality, quantitative performance, and complementarity to nano-LC-MS (nLC-MS) analysis. We highlight unique SPE-CZE separation mechanisms that can empower fit-for-purpose applications in single-cell-equivalent phosphoproteomics.
Collapse
|
3
|
Fang F, Xu T, Chien Hagar HT, Hovde S, Kuo MH, Sun L. Pilot Study for Deciphering Post-Translational Modifications and Proteoforms of Tau Protein by Capillary Electrophoresis-Mass Spectrometry. J Proteome Res 2024; 23:5085-5095. [PMID: 39327902 PMCID: PMC11536466 DOI: 10.1021/acs.jproteome.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Abnormal accumulation of tau protein in the brain is one pathological hallmark of Alzheimer's disease (AD). Many tau protein post-translational modifications (PTMs) are associated with the development of AD, such as phosphorylation, acetylation, and methylation. Therefore, a complete picture of the PTM landscape of tau is critical for understanding the molecular mechanisms of AD progression. Here, we offered a pilot study of combining two complementary analytical techniques, capillary zone electrophoresis (CZE)-tandem mass spectrometry (MS/MS) and reversed-phase liquid chromatography (RPLC)-MS/MS, for bottom-up proteomics of recombinant human tau-0N3R. We identified 50 phosphorylation sites of tau-0N3R in total, which is about 25% higher than that from RPLC-MS/MS alone. CZE-MS/MS provided more PTM sites (i.e., phosphorylation) and modified peptides of tau-0N3R than RPLC-MS/MS, and its predicted electrophoretic mobility helped improve the confidence of the identified modified peptides. We developed a highly efficient capillary isoelectric focusing (cIEF)-MS technique to offer a bird's-eye view of tau-0N3R proteoforms, with 11 putative tau-0N3R proteoforms carrying up to nine phosphorylation sites and lower pI values from more phosphorylated proteoforms detected. Interestingly, under native-like cIEF-MS conditions, we observed three putative tau-0N3R dimers carrying phosphate groups. The findings demonstrate that CE-MS is a valuable analytical technique for the characterization of tau PTMs, proteoforms, and even oligomerization.
Collapse
Affiliation(s)
- Fei Fang
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Tian Xu
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Hsiao-Tien Chien Hagar
- Department
of Biochemistry and Molecular Biology, Michigan
State University, 603 Wilson Road, Room 401, East Lansing, Michigan 48824, United States
| | - Stacy Hovde
- Department
of Biochemistry and Molecular Biology, Michigan
State University, 603 Wilson Road, Room 401, East Lansing, Michigan 48824, United States
| | - Min-Hao Kuo
- Department
of Biochemistry and Molecular Biology, Michigan
State University, 603 Wilson Road, Room 401, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Liu R, Lu G, Hu X, Li J, Zhang Z, Tang K. Capillary zone electrophoresis-tandem mass spectrometry for in-depth proteomics analysis via data-independent acquisition. Anal Bioanal Chem 2024; 416:5805-5814. [PMID: 39196334 DOI: 10.1007/s00216-024-05502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
A capillary zone electrophoresis (CZE) system was coupled to an Orbitrap mass spectrometer operating in a data-independent acquisition (DIA) mode for in-depth proteomics analysis. The performance of this CZE-DIA-MS system was systemically evaluated and optimized under different operating conditions. The performance of the fully optimized CZE-DIA-MS system was subsequently compared to the one by using the same CZE-MS system operating in a data-dependent acquisition (DDA) mode. The experimental results show that the numbers of identified peptides and proteins acquired in the DIA mode are much higher than the ones acquired in the DDA mode, especially with the small sample loading amount. Specifically, the numbers of identified peptides and proteins acquired in the DIA mode are 1.8-fold and 2-fold higher than the ones acquired in the DDA mode by using 12.5 ng Hela digests. The proteins identified in the DIA mode also cover almost all the proteins identified in the DDA mode. In addition, a potential cancer biomarker protein, carbohydrate antigen 125, undetected in the DDA mode, can be easily identified in the DIA mode even with 12.5 ng Hela digests. The performance of the CZE-DIA-MS system for in-depth proteomics analysis with a limited sample amount has been fully demonstrated for the first time through this study.
Collapse
Affiliation(s)
- Rong Liu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Gang Lu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, PR China
| | - Xiaozhong Hu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Junhui Li
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Zhenbin Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, PR China
| | - Keqi Tang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, PR China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, 315211, PR China.
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
5
|
Fang F, Xu T, Hagar HTC, Hovde S, Kuo MH, Sun L. A pilot study for deciphering post-translational modifications and proteoforms of tau protein by capillary electrophoresis-mass spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602093. [PMID: 39026802 PMCID: PMC11257423 DOI: 10.1101/2024.07.04.602093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Abnormal accumulation of tau proteins is one pathological hallmark of Alzheimer□s disease (AD). Many tau protein post-translational modifications (PTMs) are associated with the development of AD, such as phosphorylation, acetylation, and methylation. Therefore, a complete picture of PTM landscape of tau is critical for understanding the molecular mechanisms of AD progression. Here, we offered a pilot study of combining two complementary analytical techniques, capillary zone electrophoresis (CZE)-tandem mass spectrometry (MS/MS) and reversed-phase liquid chromatography (RPLC)-MS/MS, for bottom-up proteomics of recombinant human tau-0N3R. We identified 53 phosphorylation sites of tau-0N3R in total, which is about 30% higher than that from RPLC-MS/MS alone. CZE-MS/MS provided more PTM sites (i.e., phosphorylation) and modified peptides of tau-0N3R than RPLC-MS/MS, and its predicted electrophoretic mobility helped improve the confidence of the identified modified peptides. We developed a highly efficient capillary isoelectric focusing (cIEF)-MS technique to offer a bird's-eye view of tau-0N3R proteoforms, with 11 putative tau-0N3R proteoforms carrying up to nine phosphorylation sites and lower pI values from more phosphorylated proteoforms detected. Interestingly, under a native-like cIEF-MS condition, we observed three putative tau-0N3R dimers carrying phosphate groups. The findings demonstrate that CE-MS is a valuable analytical technique for the characterization of tau PTMs, proteoforms, and even oligomerization.
Collapse
|
6
|
Orsburn BC. Analyzing Posttranslational Modifications in Single Cells. Methods Mol Biol 2024; 2817:145-156. [PMID: 38907153 DOI: 10.1007/978-1-0716-3934-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
With the rapid expansion of capabilities in the analysis of proteins in single cells, we can now identify multiple classes of protein posttranslational modifications on some of these proteins. Each new technology that has increased the number of proteins measured per cell has likewise increased our ability to identify and quantify modified peptides. In this chapter, I will discuss our current capabilities, concerns, and challenges specific to this emerging field of study and the inevitable demand for services, providing a general review of concepts that should be considered.
Collapse
Affiliation(s)
- Benjamin C Orsburn
- The Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Abstract
Ebola virus (EBV) disease (EVD) is a highly virulent systemic disease characterized by an aggressive systemic inflammatory response and impaired vascular and coagulation systems, often leading to uncontrolled hemorrhaging and death. In this study, the proteomes of 38 sequential plasma samples from 12 confirmed EVD patients were analyzed. Of these 12 cases, 9 patients received treatment with interferon beta 1a (IFN-β-1a), 8 survived EVD, and 4 died; 2 of these 4 fatalities had received IFN-β-1a. Our analytical strategy combined three platforms targeting different plasma subproteomes: a liquid chromatography-mass spectrometry (LC-MS)-based analysis of the classical plasma proteome, a protocol that combines the depletion of abundant plasma proteins and LC-MS to detect less abundant plasma proteins, and an antibody-based cytokine/chemokine multiplex assay. These complementary platforms provided comprehensive data on 1,000 host and viral proteins. Examination of the early plasma proteomes revealed protein signatures that differentiated between fatalities and survivors. Moreover, IFN-β-1a treatment was associated with a distinct protein signature. Next, we examined those proteins whose abundances reflected viral load measurements and the disease course: resolution or progression. Our data identified a prognostic 4-protein biomarker panel (histone H1-5, moesin, kininogen 1, and ribosomal protein L35 [RPL35]) that predicted EVD outcomes more accurately than the onset viral load. IMPORTANCE As evidenced by the 2013-2016 outbreak in West Africa, Ebola virus (EBV) disease (EVD) poses a major global health threat. In this study, we characterized the plasma proteomes of 12 individuals infected with EBV, using two different LC-MS-based proteomics platforms and an antibody-based multiplexed cytokine/chemokine assay. Clear differences were observed in the host proteome between individuals who survived and those who died, at both early and late stages of the disease. From our analysis, we derived a 4-protein prognostic biomarker panel that may help direct care. Given the ease of implementation, a panel of these 4 proteins or subsets thereof has the potential to be widely applied in an emergency setting in resource-limited regions.
Collapse
|
8
|
Segl M, Stutz H. Bottom-Up Analysis of Proteins by Peptide Mass Fingerprinting with tCITP-CZE-ESI-TOF MS After Tryptic Digest. Methods Mol Biol 2022; 2531:93-106. [PMID: 35941481 DOI: 10.1007/978-1-0716-2493-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The identification of proteins in samples of moderate to complex composition is primarily done by bottom-up approaches. Therefore, proteins are enzymatically digested, mostly by trypsin, and the resulting peptides are then separated prior to their transfer to a mass spectrometer. The following protocol portrays a bottom-up method, which was optimized for the application of CZE-ESI-TOF MS. Protein denaturation is achieved by addition of 2,2,2-trifluoroethanol (TFE) and heat treatment. Afterwards, disulfide bonds are reduced with tris-(2-carboxyethyl)phosphine (TCEP) and subsequently alkylated with iodoacetamide (IAA). The tryptic digest is performed in an ammonium bicarbonate buffer at pH 8.0. The digested protein sample is then concentrated in-capillary by transient capillary isotachophoresis (tCITP) with subsequent CZE separation of tryptic peptides in an acidic background electrolyte. Hyphenation to a time-of-flight (TOF) mass spectrometer is carried out by a triple-tube coaxial sheath flow interface, which uses electrospray ionization (ESI). Peptide identification is done by peptide mass fingerprinting (PMF). The protocol is outlined exemplarily for a model protein, i.e., bovine β-lactoglobulin A.
Collapse
Affiliation(s)
- Marius Segl
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University of Salzburg, Salzburg, Austria
| | - Hanno Stutz
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
- Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
9
|
Abstract
Peptides play a crucial role in many vitally important functions of living organisms. The goal of peptidomics is the identification of the "peptidome," the whole peptide content of a cell, organ, tissue, body fluid, or organism. In peptidomic or proteomic studies, capillary electrophoresis (CE) is an alternative technique for liquid chromatography. It is a highly efficient and fast separation method requiring extremely low amounts of sample. In peptidomic approaches, CE is commonly combined with mass spectrometric (MS) detection. Most often, CE is coupled with electrospray ionization MS and less frequently with matrix-assisted laser desorption/ionization MS. CE-MS has been employed in numerous studies dealing with determination of peptide biomarkers in different body fluids for various diseases, or in food peptidomic research for the analysis and identification of peptides with special biological activities. In addition to the above topics, sample preparation techniques commonly applied in peptidomics before CE separation and possibilities for peptide identification and quantification by CE-MS or CE-MS/MS methods are discussed in this chapter.
Collapse
|
10
|
Guzman NA, Guzman DE. Immunoaffinity Capillary Electrophoresis in the Era of Proteoforms, Liquid Biopsy and Preventive Medicine: A Potential Impact in the Diagnosis and Monitoring of Disease Progression. Biomolecules 2021; 11:1443. [PMID: 34680076 PMCID: PMC8533156 DOI: 10.3390/biom11101443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
Over the years, multiple biomarkers have been used to aid in disease screening, diagnosis, prognosis, and response to therapy. As of late, protein biomarkers are gaining strength in their role for early disease diagnosis and prognosis in part due to the advancements in identification and characterization of a distinct functional pool of proteins known as proteoforms. Proteoforms are defined as all of the different molecular forms of a protein derived from a single gene caused by genetic variations, alternative spliced RNA transcripts and post-translational modifications. Monitoring the structural changes of each proteoform of a particular protein is essential to elucidate the complex molecular mechanisms that guide the course of disease. Clinical proteomics therefore holds the potential to offer further insight into disease pathology, progression, and prevention. Nevertheless, more technologically advanced diagnostic methods are needed to improve the reliability and clinical applicability of proteomics in preventive medicine. In this manuscript, we review the use of immunoaffinity capillary electrophoresis (IACE) as an emerging powerful diagnostic tool to isolate, separate, detect and characterize proteoform biomarkers obtained from liquid biopsy. IACE is an affinity capture-separation technology capable of isolating, concentrating and analyzing a wide range of biomarkers present in biological fluids. Isolation and concentration of target analytes is accomplished through binding to one or more biorecognition affinity ligands immobilized to a solid support, while separation and analysis are achieved by high-resolution capillary electrophoresis (CE) coupled to one or more detectors. IACE has the potential to generate rapid results with significant accuracy, leading to reliability and reproducibility in diagnosing and monitoring disease. Additionally, IACE has the capability of monitoring the efficacy of therapeutic agents by quantifying companion and complementary protein biomarkers. With advancements in telemedicine and artificial intelligence, the implementation of proteoform biomarker detection and analysis may significantly improve our capacity to identify medical conditions early and intervene in ways that improve health outcomes for individuals and populations.
Collapse
Affiliation(s)
| | - Daniel E. Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, USA;
- Division of Hospital Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Chen D, Yang Z, Shen X, Sun L. Capillary Zone Electrophoresis-Tandem Mass Spectrometry As an Alternative to Liquid Chromatography-Tandem Mass Spectrometry for Top-down Proteomics of Histones. Anal Chem 2021; 93:4417-4424. [PMID: 33650845 PMCID: PMC8564867 DOI: 10.1021/acs.analchem.0c04237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Top-down proteomics (TDP) is an ideal approach for deciphering the histone code and it routinely employs reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS). Because of the extreme complexity of histones regarding the number of proteoforms, new analytical tools with high-capacity separation and highly sensitive detection of proteoforms are required for TDP of histones. Here we present capillary zone electrophoresis (CZE)-MS/MS via the electro-kinetically pumped sheath-flow CE-MS interface for large-scale top-down delineation of histone proteoforms. CZE-MS/MS identified a comparable number of proteoforms to RPLC-MS/MS from a calf histone sample with more than 30-fold less sample consumption (75-ng vs. Three μg), indicating its substantially higher sensitivity. We identified about 400 histone proteoforms from the calf histone sample using two-dimensional size-exclusion chromatography (SEC)-CZE-MS/MS with less than 300-ng proteins consumed. We identified histone proteoforms carrying various tentative post-translational modifications (PTMs), for example, acetylation, methylation (mono-, di-, and tri-), phosphorylation, and succinylation. The electrophoretic mobility (μef) of unmodified histone proteoforms can be predicted accurately (R2 = 0.98) with an optimized semiempirical model based on our recent work. The results render CZE-MS/MS as a useful tool for deciphering the histone code in a proteoform-specific manner and on a global scale.
Collapse
Affiliation(s)
- Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Histone H1 Post-Translational Modifications: Update and Future Perspectives. Int J Mol Sci 2020; 21:ijms21165941. [PMID: 32824860 PMCID: PMC7460583 DOI: 10.3390/ijms21165941] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Histone H1 is the most variable histone and its role at the epigenetic level is less characterized than that of core histones. In vertebrates, H1 is a multigene family, which can encode up to 11 subtypes. The H1 subtype composition is different among cell types during the cell cycle and differentiation. Mass spectrometry-based proteomics has added a new layer of complexity with the identification of a large number of post-translational modifications (PTMs) in H1. In this review, we summarize histone H1 PTMs from lower eukaryotes to humans, with a particular focus on mammalian PTMs. Special emphasis is made on PTMs, whose molecular function has been described. Post-translational modifications in H1 have been associated with the regulation of chromatin structure during the cell cycle as well as transcriptional activation, DNA damage response, and cellular differentiation. Additionally, PTMs in histone H1 that have been linked to diseases such as cancer, autoimmune disorders, and viral infection are examined. Future perspectives and challenges in the profiling of histone H1 PTMs are also discussed.
Collapse
|
13
|
Demetriadou C, Koufaris C, Kirmizis A. Histone N-alpha terminal modifications: genome regulation at the tip of the tail. Epigenetics Chromatin 2020; 13:29. [PMID: 32680559 PMCID: PMC7367250 DOI: 10.1186/s13072-020-00352-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023] Open
Abstract
Histone proteins are decorated with numerous post-(PTMs) or co-(CTMs) translational modifications mainly on their unstructured tails, but also on their globular domain. For many decades research on histone modifications has been focused almost solely on the biological role of modifications occurring at the side-chain of internal amino acid residues. In contrast, modifications on the terminal N-alpha amino group of histones-despite being highly abundant and evolutionarily conserved-have been largely overlooked. This oversight has been due to the fact that these marks were being considered inert until recently, serving no regulatory functions. However, during the past few years accumulating evidence has drawn attention towards the importance of chemical marks added at the very N-terminal tip of histones and unveiled their role in key biological processes including aging and carcinogenesis. Further elucidation of the molecular mechanisms through which these modifications are regulated and by which they act to influence chromatin dynamics and DNA-based processes like transcription is expected to enlighten our understanding of their emerging role in controlling cellular physiology and contribution to human disease. In this review, we clarify the difference between N-alpha terminal (Nt) and internal (In) histone modifications; provide an overview of the different types of known histone Nt-marks and the associated histone N-terminal transferases (NTTs); and explore how they function to shape gene expression, chromatin architecture and cellular phenotypes.
Collapse
Affiliation(s)
- Christina Demetriadou
- Epigenetics Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Costas Koufaris
- Epigenetics Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Antonis Kirmizis
- Epigenetics Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus.
| |
Collapse
|
14
|
Cheng J, Morin GB, Chen DDY. Bottom‐up proteomics of envelope proteins extracted from spinach chloroplast via high organic content CE‐MS. Electrophoresis 2020; 41:370-378. [DOI: 10.1002/elps.201900452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Jianhui Cheng
- Department of ChemistryUniversity of British Columbia Vancouver BC Canada
| | - Gregg B. Morin
- Michael Smith Genome Sciences CentreBritish Columbia Cancer Agency Vancouver BC Canada
- Department of Medical GeneticsUniversity of British Columbia Vancouver BC Canada
| | - David D. Y. Chen
- Department of ChemistryUniversity of British Columbia Vancouver BC Canada
| |
Collapse
|
15
|
Application of CE-MS for the analysis of histones and histone modifications. Methods 2020; 184:125-134. [PMID: 32014606 DOI: 10.1016/j.ymeth.2020.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/02/2019] [Accepted: 01/26/2020] [Indexed: 02/02/2023] Open
Abstract
The analysis, identification and quantification of histones and their post-translational modifications plays a central role in chromatin research and in studying epigenetic regulations during physiological processes. In the last decade analytical strategies based on mass spectrometry have been greatly improved for providing a global view of single modification abundances or to determine combinatorial patterns of modifications. Presented here is a newly developed strategy for histone protein analysis and a number of applications are illustrated with an emphasis on PTM characterization. Capillary electrophoresis is coupled to mass spectrometry (CE-MS) and has proven to be a very promising concept as it enables to study intact histones (top-down proteomics) as well as the analysis of enzymatically digested proteins (bottom-up proteomics). This technology combines highly efficient low-flow CE separations with ionization in a single device and offers an orthogonal separation principle to conventional LC-MS analysis, thus expanding the existing analytical repertoire in a perfect manner.
Collapse
|
16
|
Gomes FP, Yates JR. Recent trends of capillary electrophoresis-mass spectrometry in proteomics research. MASS SPECTROMETRY REVIEWS 2019; 38:445-460. [PMID: 31407381 PMCID: PMC6800771 DOI: 10.1002/mas.21599] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Progress in proteomics research has led to a demand for powerful analytical tools with high separation efficiency and sensitivity for confident identification and quantification of proteins, posttranslational modifications, and protein complexes expressed in cells and tissues. This demand has significantly increased interest in capillary electrophoresis-mass spectrometry (CE-MS) in the past few years. This review provides highlights of recent advances in CE-MS for proteomics research, including a short introduction to top-down mass spectrometry and native mass spectrometry (native MS), as well as a detailed overview of CE methods. Both the potential and limitations of these methods for the analysis of proteins and peptides in synthetic and biological samples and the challenges of CE methods are discussed, along with perspectives about the future direction of CE-MS. @ 2019 Wiley Periodicals, Inc. Mass Spec Rev 00:1-16, 2019.
Collapse
Affiliation(s)
| | - John R. Yates
- Correspondent author: , Phone number: (858) 784-8862, Departments of Molecular Medicine and Neurobiology, 10550 North Torrey Pines Road, SR302B, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
17
|
|
18
|
Lubeckyj RA, Basharat AR, Shen X, Liu X, Sun L. Large-Scale Qualitative and Quantitative Top-Down Proteomics Using Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry with Nanograms of Proteome Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1435-1445. [PMID: 30972727 PMCID: PMC6675661 DOI: 10.1007/s13361-019-02167-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 05/03/2023]
Abstract
Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) has attracted attention recently for top-down proteomics because it can achieve highly efficient separation and very sensitive detection of proteins. However, separation window and sample loading volume of CZE need to be boosted for a better proteome coverage using CZE-MS/MS. Here, we present an improved CZE-MS/MS system that achieved a 180-min separation window and a 2-μL sample loading volume for top-down characterization of protein mixtures. The system obtained highly efficient separation of proteins with nearly one million theoretical plates for myoglobin and enabled baseline separation of three different proteoforms of myoglobin. The CZE-MS/MS system identified 797 ± 21 proteoforms and 258 ± 7 proteins (n = 2) from an Escherichia coli (E. coli) proteome sample in a single run with only 250 ng of proteins injected. The system still identified 449 ± 40 proteoforms and 173 ± 6 proteins (n = 2) from the E. coli sample when only 25 ng of proteins were injected per run. Single-shot CZE-MS/MS analyses of zebrafish brain cerebellum (Cb) and optic tectum (Teo) regions identified 1730 ± 196 proteoforms (n = 3) and 2024 ± 255 proteoforms (n = 3), respectively, with only 500-ng proteins loaded per run. Label-free quantitative top-down proteomics of zebrafish brain Cb and Teo regions revealed significant differences between Cb and Teo regarding the proteoform abundance. Over 700 proteoforms from 131 proteins had significantly higher abundance in Cb compared to Teo, and these proteins were highly enriched in several biological processes, including muscle contraction, glycolytic process, and mesenchyme migration. Graphical Abstract.
Collapse
Affiliation(s)
- Rachele A Lubeckyj
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, 48824, USA
| | - Abdul Rehman Basharat
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, 48824, USA
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, 48824, USA.
| |
Collapse
|
19
|
Gahoual R, Leize-Wagner E, Houzé P, François YN. Revealing the potential of capillary electrophoresis/mass spectrometry: the tipping point. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:11-19. [PMID: 30022554 DOI: 10.1002/rcm.8238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/04/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
The hyphenation of capillary electrophoresis and mass spectrometry (CE/MS) remains a minor technique compared with liquid chromatography/mass spectrometry (LC/MS), which represents nowadays the standard instrumentation, regardless of its introduction thirty years ago. However, from a theoretical point of view, CE coupling should be quite favorable especially with electrospray ionization mass spectrometry (ESI-MS). At the time, the sensitivity provided by CE/MS was often limited, due to hyphenation requirements, which at some point appeared to disqualify CE/MS from benefiting from the performance gain driving the evolution of MS instruments. However, this context has been significantly modified in a matter of a few years. The development of innovative CE/MS interfacing systems has enabled an important improvement regarding sensitivity and reinforced robustness in order to provide an instrumentation accessible to the largest scientific community. Because of the unique selectivity delivered by the electrophoretic separation, CE/MS has proved to be particularly relevant for the analysis of biological molecules. The conjunction of these aspects is motivating the interest in CE/MS analysis and shows that CE/MS is mature enough to enrich the toolbox of analytical techniques for the analysis of complex biological samples. Here we discuss the characteristics of the major types of high-sensitivity CE/ESI-MS instrumentation and emphasize the late evolution and future positioning of CE/MS analysis for the characterization of biological molecules like peptides and proteins, through some pertinent applications.
Collapse
Affiliation(s)
- Rabah Gahoual
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de spectrométrie de masse des interactions et des systèmes (LSMIS), Unistra-CNRS UMR7140, Université de Strasbourg, Strasbourg, France
| | - Pascal Houzé
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
- Laboratoire de Biochimie, Hôpital Universitaire Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Yannis-Nicolas François
- Laboratoire de spectrométrie de masse des interactions et des systèmes (LSMIS), Unistra-CNRS UMR7140, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
20
|
Chen D, Ludwig KR, Krokhin OV, Spicer V, Yang Z, Shen X, Hummon AB, Sun L. Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Large-Scale Phosphoproteomics with the Production of over 11,000 Phosphopeptides from the Colon Carcinoma HCT116 Cell Line. Anal Chem 2019; 91:2201-2208. [PMID: 30624053 DOI: 10.1021/acs.analchem.8b04770] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphoproteomics requires better separation of phosphopeptides to boost the coverage of the phosphoproteome. We argue that an alternative separation method that produces orthogonal phosphopeptide separation to the widely used LC needs to be considered. Capillary zone electrophoresis (CZE) is one important alternative because CZE and LC are orthogonal for phosphopeptide separation and because the migration time of peptides in CZE can be accurately predicted. In this work, we coupled strong cation exchange (SCX)-reversed-phase LC (RPLC) to CZE-MS/MS for large-scale phosphoproteomics of the colon carcinoma HCT116 cell line. The CZE-MS/MS-based platform identified 11,555 phosphopeptides. The phosphopeptide data set is at least 100% larger than that from previous CZE-MS/MS studies and will be a valuable resource for building a model for predicting the migration time of phosphopeptides in CZE. Phosphopeptides migrate significantly slower than corresponding unphosphopeptides under acidic conditions of CZE separations and in a normal polarity. According to our modeling data, phosphorylation decreases peptide's charge roughly by one charge unit, resulting in dramatic decrease in electrophoretic mobility. Preliminary investigations demonstrate that electrophoretic mobility of phosphopeptides containing one phosphoryl group can be predicted with the same accuracy as for nonmodified peptides ( R2 ≈ 0.99). The CZE-MS/MS and LC-MS/MS were complementary in large-scale phosphopeptide identifications and produced different phosphosite motifs from the HCT116 cell line. The data highlight the value of CZE-MS/MS for phosphoproteomics as a complementary separation approach for not only improving the phosphoproteome coverage but also providing more insight into the phosphosite motifs.
Collapse
Affiliation(s)
- Daoyang Chen
- Department of Chemistry , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Katelyn R Ludwig
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | | | | | - Zhichang Yang
- Department of Chemistry , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Xiaojing Shen
- Department of Chemistry , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center , The Ohio State University , 414 Biomedical Research Tower , Columbus , Ohio 43201 , United States
| | - Liangliang Sun
- Department of Chemistry , Michigan State University , 578 South Shaw Lane , East Lansing , Michigan 48824 , United States
| |
Collapse
|
21
|
Yang Z, Shen X, Chen D, Sun L. Microscale Reversed-Phase Liquid Chromatography/Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Deep and Highly Sensitive Bottom-Up Proteomics: Identification of 7500 Proteins with Five Micrograms of an MCF7 Proteome Digest. Anal Chem 2018; 90:10479-10486. [PMID: 30102516 PMCID: PMC6156779 DOI: 10.1021/acs.analchem.8b02466] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) has been well recognized for bottom-up proteomics. It has approached 4000-8000 protein identifications (IDs) from a human cell line, mouse brains, or Xenopus embryos via coupling with liquid chromatography (LC) prefractionation. However, at least 500 μg of complex proteome digests were required for the LC/CZE-MS/MS studies. This requirement of a large amount of initial peptide material impedes the application of CZE-MS/MS for deep bottom-up proteomics of mass-limited samples. In this work, we coupled microscale reversed-phase LC (μRPLC)-based peptide prefractionation to dynamic pH-junction-based CZE-MS/MS for deep bottom-up proteomics of the MCF7 breast cancer cell proteome starting with only 5 μg of peptides. The dynamic pH-junction-based CZE enabled a 500 nL sample injection from as low as a 1.5 μL peptide sample, using up to 33% of the available peptide material for an analysis. Two kinds of μRPLC prefractionation were investigated, C18 ZipTip and nanoflow RPLC. C18 ZipTip/CZE-MS/MS identified 4453 proteins from 5 μg of the MCF7 proteome digest and showed good qualitative and quantitative reproducibility. Nanoflow RPLC/CZE-MS/MS produced over 7500 protein IDs and nearly 60 000 peptide IDs from the 5 μg of MCF7 proteome digest. The nanoflow RPLC/CZE-MS/MS platform reduced the required amount of complex proteome digests for LC/CZE-MS/MS-based deep bottom-up proteomics by 2 orders of magnitude. Our work provides the proteomics community with a powerful tool for deep and highly sensitive proteomics.
Collapse
Affiliation(s)
- Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824 USA
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824 USA
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824 USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824 USA
| |
Collapse
|
22
|
Chen CH, Feng H, Guo R, Li P, Laserna AKC, Ji Y, Ng BH, Li SFY, Khan SH, Paulus A, Chen SM, Karger AE, Wenz M, Ferrer DL, Huhmer AF, Krupke A. Intact NIST monoclonal antibody characterization—Proteoforms, glycoforms—Using CE-MS and CE-LIF. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/23312009.2018.1480455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Chien-Hsun Chen
- Thermo Fisher Scientific, Chromatography and Mass Spectrometry, 355 River Oaks Parkway, San Jose, CA 95134, USA
- Thermo Fisher Scientific, Life Science Solutions, 180 Oyster Point Parkway, South San Francisco, CA 94080, USA
| | - Huatao Feng
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore S117543, Singapore
| | - Rui Guo
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore S117543, Singapore
| | - Pingjing Li
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore S117543, Singapore
| | - Anna Karen C. Laserna
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore S117543, Singapore
| | - Ya Ji
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore S117543, Singapore
| | - Bao Hui Ng
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore S117543, Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore S117543, Singapore
| | - Shaheer H. Khan
- Thermo Fisher Scientific, Life Science Solutions, 180 Oyster Point Parkway, South San Francisco, CA 94080, USA
| | - Aran Paulus
- Thermo Fisher Scientific, Chromatography and Mass Spectrometry, 355 River Oaks Parkway, San Jose, CA 95134, USA
| | - Shiaw-Min Chen
- Thermo Fisher Scientific, Life Science Solutions, 180 Oyster Point Parkway, South San Francisco, CA 94080, USA
| | - Achim E. Karger
- Thermo Fisher Scientific, Life Science Solutions, 180 Oyster Point Parkway, South San Francisco, CA 94080, USA
| | - Michael Wenz
- Thermo Fisher Scientific, Life Science Solutions, 180 Oyster Point Parkway, South San Francisco, CA 94080, USA
| | - Daniel Lopez Ferrer
- Thermo Fisher Scientific, Chromatography and Mass Spectrometry, 355 River Oaks Parkway, San Jose, CA 95134, USA
| | - Andreas F. Huhmer
- Thermo Fisher Scientific, Chromatography and Mass Spectrometry, 355 River Oaks Parkway, San Jose, CA 95134, USA
| | - Andreas Krupke
- Thermo Fisher Scientific, Life Science Solutions, 180 Oyster Point Parkway, South San Francisco, CA 94080, USA
| |
Collapse
|
23
|
Faserl K, Sarg B, Gruber P, Lindner HH. Investigating capillary electrophoresis-mass spectrometry for the analysis of common post-translational modifications. Electrophoresis 2018; 39:1208-1215. [PMID: 29389038 PMCID: PMC6001557 DOI: 10.1002/elps.201700437] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Capillary electrophoresis coupled to mass spectrometry is a very efficient analytical method for the analysis of post-translational modifications because of its high separation efficiency and high detection sensitivity. Here we applied CE-MS using three differently coated separation capillaries for in-depth analysis of a set of 70 synthetic post-translationally modified peptides (including phosphorylation, acetylation, methylation, and nitration). We evaluated the results in terms of peptide detection and separation characteristics and found that the use of a neutrally coated capillary resulted in highest overall signal intensity of singly modified peptides. In contrast, the use of a bare-fused silica capillary was superior in the identification of multi-phosphorylated peptides (12 out of 15 were identified). Fast separations of approximately 12 min could be achieved using a positively coated capillary, however, at the cost of separation efficiency. A comparison to nanoLC-MS revealed that multi-phosphorylated peptides interact with the RP material very poorly so that these peptides were either washed out or elute as very broad peaks from the nano column which results in a reduced peptide identification rate (7 out of 15). Moreover, the methods applied were found to be very well suited for the analysis of the acetylated, nitrated and methylated peptides. All 36 synthetic peptides, which exhibit one of those modifications, could be identified regardless of the method applied. As a final step in this study and as a proof of principle, the phosphoproteome enriched from PC-12 pheochromocytoma cells was analyzed by CE-MS resulting in 5686 identified and 4088 quantified phosphopeptides. We compared the characterized analytes to those identified by a nanoLC-MS proteomics study and found that less than one third of the phosphopeptides were identical, which demonstrates the benefit by combining different approaches quite impressively.
Collapse
Affiliation(s)
- Klaus Faserl
- Division of Clinical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| | - Bettina Sarg
- Division of Clinical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| | - Peter Gruber
- Division of Medical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| | - Herbert H. Lindner
- Division of Clinical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| |
Collapse
|
24
|
McCool EN, Lubeckyj RA, Shen X, Chen D, Kou Q, Liu X, Sun L. Deep Top-Down Proteomics Using Capillary Zone Electrophoresis-Tandem Mass Spectrometry: Identification of 5700 Proteoforms from the Escherichia coli Proteome. Anal Chem 2018; 90:5529-5533. [PMID: 29620868 DOI: 10.1021/acs.analchem.8b00693] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Capillary zone electrophoresis (CZE)-tandem mass spectrometry (MS/MS) has been recognized as a useful tool for top-down proteomics. However, its performance for deep top-down proteomics is still dramatically lower than widely used reversed-phase liquid chromatography (RPLC)-MS/MS. We present an orthogonal multidimensional separation platform that couples size exclusion chromatography (SEC) and RPLC based protein prefractionation to CZE-MS/MS for deep top-down proteomics of Escherichia coli. The platform generated high peak capacity (∼4000) for separation of intact proteins, leading to the identification of 5700 proteoforms from the Escherichia coli proteome. The data represents a 10-fold improvement in the number of proteoform identifications compared with previous CZE-MS/MS studies and represents the largest bacterial top-down proteomics data set reported to date. The performance of the CZE-MS/MS based platform is comparable to the state-of-the-art RPLC-MS/MS based systems in terms of the number of proteoform identifications and the instrument time.
Collapse
Affiliation(s)
- Elijah N McCool
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Rachele A Lubeckyj
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Xiaojing Shen
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Daoyang Chen
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Qiang Kou
- Department of BioHealth Informatics , Indiana University-Purdue University Indianapolis , 719 Indiana Avenue , Indianapolis , Indiana 46202 , United States
| | - Xiaowen Liu
- Department of BioHealth Informatics , Indiana University-Purdue University Indianapolis , 719 Indiana Avenue , Indianapolis , Indiana 46202 , United States.,Center for Computational Biology and Bioinformatics , Indiana University School of Medicine , 410 W. 10th Street , Indianapolis , Indiana 46202 , United States
| | - Liangliang Sun
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| |
Collapse
|
25
|
Lubeckyj RA, McCool EN, Shen X, Kou Q, Liu X, Sun L. Single-Shot Top-Down Proteomics with Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry for Identification of Nearly 600 Escherichia coli Proteoforms. Anal Chem 2017; 89:12059-12067. [PMID: 29064224 DOI: 10.1021/acs.analchem.7b02532] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) has been recognized as an invaluable platform for top-down proteomics. However, the scale of top-down proteomics using CZE-MS/MS is still limited due to the low loading capacity and narrow separation window of CZE. In this work, for the first time we systematically evaluated the dynamic pH junction method for focusing of intact proteins during CZE-MS. The optimized dynamic pH junction-based CZE-MS/MS approached a 1 μL loading capacity, 90 min separation window, and high peak capacity (∼280) for characterization of an Escherichia coli proteome. The results represent the largest loading capacity and the highest peak capacity of CZE for top-down characterization of complex proteomes. Single-shot CZE-MS/MS identified about 2800 proteoform-spectrum matches, nearly 600 proteoforms, and 200 proteins from the Escherichia coli proteome with spectrum-level false discovery rate (FDR) less than 1%. The number of identified proteoforms in this work is over three times higher than that in previous single-shot CZE-MS/MS studies. Truncations, N-terminal methionine excision, signal peptide removal, and some post-translational modifications including oxidation and acetylation were detected.
Collapse
Affiliation(s)
- Rachele A Lubeckyj
- Department of Chemistry, Michigan State University , 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Elijah N McCool
- Department of Chemistry, Michigan State University , 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University , 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Qiang Kou
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis , 719 Indiana Avenue, Indianapolis, Indiana 46202, United States
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis , 719 Indiana Avenue, Indianapolis, Indiana 46202, United States.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine , 410 W. 10th Street, Indianapolis, Indiana 46202, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University , 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
26
|
Dada OO, Zhao Y, Jaya N, Salas-Solano O. High-Resolution Capillary Zone Electrophoresis with Mass Spectrometry Peptide Mapping of Therapeutic Proteins: Improved Separation with Mixed Aqueous–Aprotic Dipolar Solvents (N,N-Dimethylacetamide and N,N-Dimethylformamide) as the Background Electrolyte. Anal Chem 2017; 89:11227-11235. [DOI: 10.1021/acs.analchem.7b03405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Oluwatosin O. Dada
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Yimeng Zhao
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Nomalie Jaya
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Oscar Salas-Solano
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| |
Collapse
|
27
|
Sarg B, Faserl K, Lindner HH. Identification of Novel Site-Specific Alterations in the Modification Level of Myelin Basic Protein Isolated from Mouse Brain at Different Ages Using Capillary Electrophoresis-Mass Spectrometry. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/07/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Bettina Sarg
- Division of Clinical Biochemistry, Biocenter; Medical University of Innsbruck; Innsbruck Austria
| | - Klaus Faserl
- Division of Clinical Biochemistry, Biocenter; Medical University of Innsbruck; Innsbruck Austria
| | - Herbert H. Lindner
- Division of Clinical Biochemistry, Biocenter; Medical University of Innsbruck; Innsbruck Austria
| |
Collapse
|
28
|
Moreno-González D, Haselberg R, Gámiz-Gracia L, García-Campaña AM, de Jong GJ, Somsen GW. Fully compatible and ultra-sensitive micellar electrokinetic chromatography-tandem mass spectrometry using sheathless porous-tip interfacing. J Chromatogr A 2017; 1524:283-289. [PMID: 28992989 DOI: 10.1016/j.chroma.2017.09.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 11/26/2022]
Abstract
The on-line coupling of micellar electrokinetic chromatography and mass spectrometry (MEKC-MS) is often hampered by incompatibility problems leading to reduced separation performance and unfavorable limits of detection (LODs). Here we propose a new selective and highly sensitive MEKC-MS/MS method employing a sheathless porous-tip interface in combination with a micellar phase comprised of semi-volatile surfactant molecules. Carbamate pesticides (CRBs) were selected as representative model compounds being neutral toxic pollutants potentially present at trace levels in environmental water samples. A background electrolyte of 75mM perfluorooctanoic acid adjusted to pH 9.0 with ammonium hydroxide allowed efficient separation of 15 CRBs and appeared fully compatible with electrospray ionization (ESI)-MS. Interfacing parameters, such as the distance between the capillary tip and mass-spectrometer inlet, ESI voltage, and dry gas temperature and flow were optimized in order to attain good spray stability and high analyte signal-to-noise ratios. For CRBs the LODs ranged from 0.2 to 3.9ngL-1 (13nL injected, i.e., 2% of capillary volume), representing an improvement for certain CRBs of more than 300-fold when compared with conventional sheath-liquid interfacing. Good linearity (R2>0.99) and satisfactory reproducibility were obtained for all CRBs with interday RSD values for peak area and migration time of 4.0-11.3% and below 1.5%, respectively. Analysis of spiked mineral water showed that the new MEKC-MS/MS method allows selective and quantitative determination of CRB concentrations below the maximum residue limit of 100ngL-1 without the need for sample preconcentration.
Collapse
Affiliation(s)
- David Moreno-González
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva, E-18071 Granada, Spain
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, AIMMS research group BioMolecular Analysis, Faculty of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Laura Gámiz-Gracia
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva, E-18071 Granada, Spain
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva, E-18071 Granada, Spain
| | - Gerhardus J de Jong
- Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, AIMMS research group BioMolecular Analysis, Faculty of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
29
|
Harauz G. And Yet it is Modified-Holding a Candle to the Dark Matter of White Matter. Proteomics 2017; 17. [PMID: 28851044 DOI: 10.1002/pmic.201700299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 11/08/2022]
Abstract
The multilamellar membrane myelin sheath of the CNS, that enwraps axons to facilitate saltatory conduction in higher vertebrates, is held together by myelin basic protein (MBP). Yet this generalization masks how enigmatic MBP is, much like cosmological "dark matter." First, the casual use of the singular form for "protein" distracts that there are multiple, developmentally regulated "classic" splice isoforms ranging from 14 to 21.5 kDa, each with extensive PTMs. Second, the static image of MBP adhering two cytoplasmic leaflets of the oligodendrocyte membrane together in close apposition, suggests it to be inaccessible to modifying enzymes. And yet it is modified (to paraphrase Galileo's phrase on the earth's motion). In this issue of Proteomics, Sarg et al. apply an integrated CE-MS approach to investigate the PTMs of 18.5 kDa MBP from mouse brains of different ages. They identify new sites and types of modification, as well as confirming previously known PTMs. Innovative tools for unraveling the intricacies of the myelin basic proteome and how it organizes CNS myelin (much like basic histones organize chromatin), will help us understand white matter development and plasticity in health, during ageing, and in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| |
Collapse
|
30
|
Abstract
INTRODUCTION Analysis of histone post-translational modifications (PTMs) by mass spectrometry (MS) has become a fundamental tool for the characterization of chromatin composition and dynamics. Histone PTMs benchmark several biological states of chromatin, including regions of active enhancers, active/repressed gene promoters and damaged DNA. These complex regulatory mechanisms are often defined by combinatorial histone PTMs; for instance, active enhancers are commonly occupied by both marks H3K4me1 and H3K27ac. The traditional bottom-up MS strategy identifies and quantifies short (aa 4-20) tryptic peptides, and it is thus not suitable for the characterization of combinatorial PTMs. Areas covered: Here, we review the advancement of the middle-down MS strategy applied to histones, which consists in the analysis of intact histone N-terminal tails (aa 50-60). Middle-down MS has reached sufficient robustness and reliability, and it is far less technically challenging than PTM quantification on intact histones (top-down). However, the very few chromatin biology studies applying middle-down MS resulting from PubMed searches indicate that it is still very scarcely exploited, potentially due to the apparent high complexity of method and analysis. Expert commentary: We will discuss the state-of-the-art workflow and examples of existing studies, aiming to highlight its potential and feasibility for studies of cell biologists interested in chromatin and epigenetics.
Collapse
Affiliation(s)
- Simone Sidoli
- a Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Benjamin A Garcia
- a Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
31
|
Dominguez-Vega E, De Vijlder T, Romijn EP, Somsen GW. Capillary electrophoresis-tandem mass spectrometry as a highly selective tool for the compositional and site-specific assessment of multiple peptide-deamidation. Anal Chim Acta 2017; 982:122-130. [PMID: 28734351 DOI: 10.1016/j.aca.2017.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/06/2017] [Accepted: 06/11/2017] [Indexed: 12/20/2022]
Abstract
Site-specific mapping of multiple deamidations in peptides is a challenging analytical task. In this work, capillary electrophoresis-tandem mass spectrometry (CE-MS/MS) is presented as a high-resolution tool for the detailed characterization of these subtle modifications in peptides. The 4.5-kDa peptide drug TRI-1144, which contains five closely-positioned potential deamidation sites, was selected as model compound. TRI-1144 was exposed to acidic conditions and/or elevated temperatures for 1-14 h. Stressed samples were analyzed using a background electrolyte (BGE) of 150 mM ammonium formate (pH 6.0) in combination with a capillary coated with a bilayer of Polybrene-dextran sulfate. Separation of deamidated and deacetylated TRI-1144 species, including several positional isomers, was greatly enhanced by adding up to 40 vol% of acetonitrile-isopropanol (87.5:12.5, v/v) to the BGE, allowing reliable determination of the number of deamidations/deacetylations per degradation product. Collision-induced dissociation MS/MS was conducted on the separated peptide components in order to reveal the exact position of deamidation on the peptide chain. Obtained fragment ions showed overlapping isotopic distributions in their MS/MS spectra resulting from the comigration of different isomeric deamidated species. Comparison of theoretical and measured isotope distributions for specific y ions of peptide fragments yielded the identity and relative abundance of isomeric deamidated products. The developed CE-MS/MS methodology was used for the highly selective evaluation of TRI-1144 stability under different stress conditions, providing detailed qualitative and semi-quantitative degradation maps of the peptide drug.
Collapse
Affiliation(s)
- Elena Dominguez-Vega
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Thomas De Vijlder
- Pharmaceutical Development and Manufacturing Sciences, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Edwin P Romijn
- Pharmaceutical Development and Manufacturing Sciences, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
32
|
Hajba L, Guttman A. Recent advances in column coatings for capillary electrophoresis of proteins. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Faserl K, Sarg B, Maurer V, Lindner HH. Exploiting charge differences for the analysis of challenging post-translational modifications by capillary electrophoresis-mass spectrometry. J Chromatogr A 2017; 1498:215-223. [DOI: 10.1016/j.chroma.2017.01.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 12/27/2022]
|
34
|
Morbioli GG, Mazzu-Nascimento T, Aquino A, Cervantes C, Carrilho E. Recombinant drugs-on-a-chip: The usage of capillary electrophoresis and trends in miniaturized systems – A review. Anal Chim Acta 2016; 935:44-57. [DOI: 10.1016/j.aca.2016.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 01/09/2023]
|
35
|
Štěpánová S, Kašička V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta 2016; 933:23-42. [DOI: 10.1016/j.aca.2016.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
36
|
A simple sheathless CE-MS interface with a sub-micrometer electrical contact fracture for sensitive analysis of peptide and protein samples. Anal Chim Acta 2016; 936:157-67. [PMID: 27566351 DOI: 10.1016/j.aca.2016.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
Online coupling of capillary electrophoresis (CE) to electrospray ionization mass spectrometry (MS) has shown considerable potential, however, technical challenges have limited its use. In this study, we have developed a simple and sensitive sheathless CE-MS interface based on the novel concept of forming a sub-micrometer fracture directly in the capillary. The simple interface design allowed the generation of a stable ESI spray capable of ionization at low nanoliter flow-rates (45-90 nL/min) for high sensitivity MS analysis of challenging samples like those containing proteins and peptides. By analysis of a model peptide (leucine enkephalin), a limit of detection (LOD) of 0.045 pmol/μL (corresponding to 67 attomol in a sample volume of ∼15 nL) was obtained. The merit of the CE-MS approach was demonstrated by analysis of bovine serum albumin (BSA) tryptic peptides. A well-resolved separation profile was achieved and comparable sequence coverage was obtained by the CE-MS method (73%) compared to a representative UPLC-MS method (77%). The CE-MS interface was subsequently used to analyse a more complex sample of pharmaceutically relevant human proteins including insulin, tissue factor and α-synuclein. Efficient separation and protein ESI mass spectra of adequate quality could be achieved using only a small amount of sample (30 fmol). In addition, analysis of ubiquitin samples under both native and denatured conditions, indicate that the CE-MS setup can facilitate native MS applications to probe the conformational properties of proteins. Thus, the described CE-MS setup should be useful for a wide range of high-sensitivity applications in protein research.
Collapse
|
37
|
Önder Ö, Sidoli S, Carroll M, Garcia BA. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev Proteomics 2016; 12:499-517. [PMID: 26400466 DOI: 10.1586/14789450.2015.1084231] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin biology and epigenetics are scientific fields that are rapid expanding due to their fundamental role in understanding cell development, heritable characters and progression of diseases. Histone post-translational modifications (PTMs) are major regulators of the epigenetic machinery due to their ability to modulate gene expression, DNA repair and chromosome condensation. Large-scale strategies based on mass spectrometry have been impressively improved in the last decade, so that global changes of histone PTM abundances are quantifiable with nearly routine proteomics analyses and it is now possible to determine combinatorial patterns of modifications. Presented here is an overview of the most utilized and newly developed proteomics strategies for histone PTM characterization and a number of case studies where epigenetic mechanisms have been comprehensively characterized. Moreover, a number of current epigenetic therapies are illustrated, with an emphasis on cancer.
Collapse
Affiliation(s)
- Özlem Önder
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA.,b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin Carroll
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA
| | - Benjamin A Garcia
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
38
|
Kammeijer GSM, Kohler I, Jansen BC, Hensbergen PJ, Mayboroda OA, Falck D, Wuhrer M. Dopant Enriched Nitrogen Gas Combined with Sheathless Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry for Improved Sensitivity and Repeatability in Glycopeptide Analysis. Anal Chem 2016; 88:5849-56. [PMID: 27119460 DOI: 10.1021/acs.analchem.6b00479] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last years, numerous strategies have been proposed to enhance both ionization efficiency and spray stability in electrospray ionization (ESI), in particular for nanospray applications. In nano-liquid chromatography-mass spectrometry (nano-LC-ESI-MS), a better ESI performance has been observed when a coaxial gas flow is added around the ESI emitter. Moreover, enrichment of the gas with an organic dopant has led to an improved desolvation and ionization efficiency with an overall enhanced sensitivity. In this study, the use of a dopant enriched nitrogen (DEN)-gas combined with sheathless capillary electrophoresis (CE)-ESI-MS was evaluated for glycopeptide analysis. Using acetonitrile as a dopant, an increased sensitivity was observed compared to conventional sheathless CE-ESI-MS. Up to 25-fold higher sensitivities for model glycopeptides were obtained, allowing for limits of detection unachieved by state-of-the-art nano-LC-ESI-MS. The effect of DEN-gas on the repeatability and intermediate precision was also investigated. When compared to previously reported nano-LC-ESI-MS measurements, similar values were found for CE-ESI-MS with DEN-gas. The enhanced repeatability fosters the use of DEN-gas sheathless CE-ESI-MS in protein glycosylation analysis, where precision is essential. The use of DEN-gas opens new avenues for highly sensitive sheathless CE-ESI-MS approaches in glycoproteomics research, by significantly improving sensitivity and precision.
Collapse
Affiliation(s)
- Guinevere S M Kammeijer
- Leiden University Medical Center , Center for Proteomics and Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Isabelle Kohler
- Leiden University Medical Center , Center for Proteomics and Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Bas C Jansen
- Leiden University Medical Center , Center for Proteomics and Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Paul J Hensbergen
- Leiden University Medical Center , Center for Proteomics and Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Oleg A Mayboroda
- Leiden University Medical Center , Center for Proteomics and Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - David Falck
- Leiden University Medical Center , Center for Proteomics and Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center , Center for Proteomics and Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
39
|
Guo X, Fillmore TL, Gao Y, Tang K. Capillary Electrophoresis-Nanoelectrospray Ionization-Selected Reaction Monitoring Mass Spectrometry via a True Sheathless Metal-Coated Emitter Interface for Robust and High-Sensitivity Sample Quantification. Anal Chem 2016; 88:4418-25. [PMID: 27028594 DOI: 10.1021/acs.analchem.5b04912] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new sheathless transient capillary isotachophoresis (CITP)/capillary zone electrophoresis (CZE)-MS interface, based on a commercially available capillary with an integrated metal-coated ESI emitter, was developed in this study aiming at overcoming the reproducibility and ruggedness problems suffered to a certain degree by almost all the available CE-MS interfaces, and pushing the CE-MS technology suitable for routine sample analysis with high sensitivity. The new CITP/CZE-MS interface allows the electric contact between ESI voltage power supply and the CE separation liquid by using a conductive liquid that comes in contact with the metal-coated surface of the ESI emitter, making it a true sheathless CE-MS interface. Stable electrospray was established by avoiding the formation of gas bubbles from electrochemical reaction inside the CE capillary. Crucial operating parameters, such as sample loading volume, flow rate, and separation voltage, were systematically evaluated for their effects on both CITP/CZE separation efficiency and MS detection sensitivity. Around one hundred CITP/CZE-MS analyses can be easily achieved by using the new sheathless CITP/CZE interface without a noticeable loss of metal coating on the ESI emitter surface, or degrading of the ESI emitter performance. The reproducibility in analyte migration time and quantitative performance of the new interface was experimentally evaluated to demonstrate a LOQ below 5 attomole.
Collapse
Affiliation(s)
- Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University , Nanjing 210029, China
| | - Thomas L Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| |
Collapse
|
40
|
Ibrahim M, Gahoual R, Enkler L, Becker HD, Chicher J, Hammann P, François YN, Kuhn L, Leize-Wagner E. Improvement of Mitochondria Extract from Saccharomyces cerevisiae Characterization in Shotgun Proteomics Using Sheathless Capillary Electrophoresis Coupled to Tandem Mass Spectrometry. J Chromatogr Sci 2016; 54:653-63. [PMID: 26860395 PMCID: PMC4885408 DOI: 10.1093/chromsci/bmw005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/11/2015] [Indexed: 12/16/2022]
Abstract
In this work, we describe the characterization of a quantity-limited sample (100 ng) of yeast mitochondria by shotgun bottom-up proteomics. Sample characterization was carried out by sheathless capillary electrophoresis, equipped with a high sensitivity porous tip and coupled to tandem mass spectrometry (CESI-MS-MS) and concomitantly with a state-of-art nano flow liquid chromatography coupled to a similar mass spectrometry (MS) system (nanoLC-MS-MS). With single injections, both nanoLC-MS-MS and CESI-MS-MS 60 min-long separation experiments allowed us to identify 271 proteins (976 unique peptides) and 300 proteins (1,765 unique peptides) respectively, demonstrating a significant specificity and complementarity in identification depending on the physicochemical separation employed. Such complementary, maximizing the number of analytes detected, presents a powerful tool to deepen a biological sample's proteomic characterization. A comprehensive study of the specificity provided by each separating technique was also performed using the different properties of the identified peptides: molecular weight, mass-to-charge ratio (m/z), isoelectric point (pI), sequence coverage or MS-MS spectral quality enabled to determine the contribution of each separation. For example, CESI-MS-MS enables to identify larger peptides and eases the detection of those having extreme pI without impairing spectral quality. The addition of peptides, and therefore proteins identified by both techniques allowed us to increase significantly the sequence coverages and then the confidence of characterization. In this study, we also demonstrated that the two yeast enolase isoenzymes were both characterized in the CESI-MS-MS data set. The observation of discriminant proteotypic peptides is facilitated when a high number of precursors with high-quality MS-MS spectra are generated.
Collapse
Affiliation(s)
- Marianne Ibrahim
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, 67008 Strasbourg, France
| | - Rabah Gahoual
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, 67008 Strasbourg, France
| | - Ludovic Enkler
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Hubert Dominique Becker
- Unité Mixte de Recherche 7156 Génétique Moléculaire Génomique Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FRC 1589, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FRC 1589, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, 67008 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FRC 1589, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, 67008 Strasbourg, France
| |
Collapse
|
41
|
Heemskerk AAM, Deelder AM, Mayboroda OA. CE-ESI-MS for bottom-up proteomics: Advances in separation, interfacing and applications. MASS SPECTROMETRY REVIEWS 2016; 35:259-271. [PMID: 24852088 DOI: 10.1002/mas.21432] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
With the development of more sensitive hyphenation strategies for capillary electrophoresis-electrospray-mass spectrometry the technique has reemerged as technique with high separation power combined with high sensitivity in the analysis of peptides and protein digests. This review will discuss the newly developed hyphenation strategies for CE-ESI-MS and their application in bottom-up proteomics as well as the applications in the same time span, 2009 to present, using co-axial sheathliquid. Subsequently all separate aspects in the development of a CE-ESI-MS method for bottom-up proteomics shall be discussed, highlighting certain applications and discussing pros and cons of the various choices. The separation of peptides in a capillary electrophoresis system is discussed including the great potential for modeling of this migration of peptides due to the simple electrophoretic separation process. Furthermore, the technical aspects of method development are discussed, namely; background electrolyte choice, coating of the separation capillary and chosen loading method. Finally, conclusions and an outlook on future developments in the field of bottom-up proteomics by CE-ESI-MS will be provided.
Collapse
Affiliation(s)
- Anthonius A M Heemskerk
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, The Netherlands
| | - André M Deelder
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, The Netherlands
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, The Netherlands
| |
Collapse
|
42
|
Gahoual R, Beck A, François YN, Leize-Wagner E. Independent highly sensitive characterization of asparagine deamidation and aspartic acid isomerization by sheathless CZE-ESI-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:150-158. [PMID: 26889931 DOI: 10.1002/jms.3735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/02/2015] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
Amino acids residues are commonly submitted to various physicochemical modifications occurring at physiological pH and temperature. Post-translational modifications (PTMs) require comprehensive characterization because of their major influence on protein structure and involvement in numerous in vivo process or signaling. Mass spectrometry (MS) has gradually become an analytical tool of choice to characterize PTMs; however, some modifications are still challenging because of sample faint modification levels or difficulty to separate an intact peptide from modified counterparts before their transfer to the ionization source. Here, we report the implementation of capillary zone electrophoresis coupled to electrospray ionization tandem mass spectrometry (CZE-ESI-MS/MS) by the intermediate of a sheathless interfacing for independent and highly sensitive characterization of asparagine deamidation (deaN) and aspartic acid isomerization (isoD). CZE selectivity regarding deaN and isoD was studied extensively using different sets of synthetic peptides based on actual tryptic peptides. Results demonstrated CZE ability to separate the unmodified peptide from modified homologous exhibiting deaN, isoD or both independently with a resolution systematically superior to 1.29. Developed CZE-ESI-MS/MS method was applied for the characterization of monoclonal antibodies and complex protein mixture. Conserved CZE selectivity could be demonstrated even for complex samples, and foremost results obtained showed that CZE selectivity is similar regardless of the composition of the peptide. Separation of modified peptides prior to the MS analysis allowed to characterize and estimate modification levels of the sample independently for deaN and isoD even for peptides affected by both modifications and, as a consequence, enables to distinguish the formation of l-aspartic acid or d-aspartic acid generated from deaN. Separation based on peptide modification allowed, as supported by the ESI efficiency provided by CZE-ESI-MS/MS properties, and enabled to characterize and estimate studied PTMs with an unprecedented sensitivity and proved the relevance of implementing an electrophoretic driven separation for MS-based peptide analysis.
Collapse
Affiliation(s)
- Rabah Gahoual
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (UdS-CNRS), Université de Strasbourg, Strasbourg, France
- Division of BioAnalytical Chemistry, AIMMS Research Group BioMolecular Analysis, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (UdS-CNRS), Université de Strasbourg, Strasbourg, France
| | - Emmanuelle Leize-Wagner
- Division of BioAnalytical Chemistry, AIMMS Research Group BioMolecular Analysis, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
44
|
Sun L, Zhu G, Yan X, Zhang Z, Wojcik R, Champion MM, Dovichi NJ. Capillary zone electrophoresis for bottom-up analysis of complex proteomes. Proteomics 2015; 16:188-96. [PMID: 26508368 DOI: 10.1002/pmic.201500339] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/30/2015] [Accepted: 10/22/2015] [Indexed: 12/22/2022]
Abstract
Capillary zone electrophoresis (CZE) is emerging as a useful tool in proteomic analysis. Interest arises from dramatic improvements in performance that result from improvements in the background electrolyte used for the separation, the incorporation of advanced sample injection methods, the development of robust and sensitive electrospray interfaces, and the coupling with Orbitrap mass spectrometers with high resolution and sensitivity. The combination of these technologies produces performance that is rapidly approaching the performance of UPLC-based methods for microgram samples and exceeds the performance of UPLC-based methods for mid- to low nanogram samples. These systems now produce over 10 000 peptide IDs in a single 100-min analysis of the HeLa proteome.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Xiaojing Yan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Roza Wojcik
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
45
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis 2015; 37:162-88. [DOI: 10.1002/elps.201500329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
46
|
Liao R, Mizzen CA. Interphase H1 phosphorylation: Regulation and functions in chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:476-85. [PMID: 26657617 DOI: 10.1016/j.bbagrm.2015.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022]
Abstract
Many metazoan cell types differentially express multiple non-allelic amino acid sequence variants of histone H1. Although early work revealed that H1 variants, collectively, are phosphorylated during interphase and mitosis, differences between individual H1 variants in the sites they possess for mitotic and interphase phosphorylation have been elucidated only relatively recently. Here, we review current knowledge on the regulation and function of interphase H1 phosphorylation, with a particular emphasis on how differences in interphase phosphorylation among the H1 variants of mammalian cells may enable them to have differential effects on transcription and other chromatin processes.
Collapse
Affiliation(s)
- Ruiqi Liao
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, USA
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, USA; Institute for Genomic Biology, University of Illinois at Urbana Champaign, USA.
| |
Collapse
|
47
|
Štěpánová S, Kašička V. Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses. J Sep Sci 2015; 39:198-211. [DOI: 10.1002/jssc.201500973] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
48
|
Einfinger K, Badrnya S, Furtmüller M, Handschuh D, Lindner H, Geiger M. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo. PLoS One 2015; 10:e0143137. [PMID: 26580551 PMCID: PMC4651509 DOI: 10.1371/journal.pone.0143137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles.
Collapse
Affiliation(s)
- Katrin Einfinger
- Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Sigrun Badrnya
- Center of Physiology and Pharmacology, Department of Physiology, Medical University of Vienna, Vienna, Austria
| | - Margareta Furtmüller
- Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Handschuh
- Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Herbert Lindner
- Biocenter, Division of Clinical Biochemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Margarethe Geiger
- Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
49
|
Ludwig KR, Sun L, Zhu G, Dovichi NJ, Hummon AB. Over 2300 phosphorylated peptide identifications with single-shot capillary zone electrophoresis-tandem mass spectrometry in a 100 min separation. Anal Chem 2015; 87:9532-7. [PMID: 26399161 PMCID: PMC4605816 DOI: 10.1021/acs.analchem.5b02457] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ultraperformance liquid chromatography (UPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) is typically employed for phosphoproteome analysis. Alternatively, capillary zone electrophoresis (CZE)-ESI-MS/MS has great potential for phosphoproteome analysis due to the significantly different migration times of phosphorylated and unphosphorylated forms of peptides. In this work, we systematically compared UPLC-MS/MS and CZE-MS/MS for phosphorylated peptide identifications (IDs) using an enriched phosphoproteome from the MCF-10A cell line. When the sample loading amount of UPLC was 10 times higher than that of CZE (2 μg vs 200 ng), UPLC generated more phosphorylated peptide IDs than CZE (3313 vs 1783). However, when the same sample loading amounts were used for CZE and UPLC (2-200 ng), CZE-MS/MS consistently and significantly outperformed UPLC-MS/MS in terms of phosphorylated peptide and total peptide IDs. This superior performance is most likely due to the higher peptide intensity generated by CZE-MS/MS. More importantly, compared with UPLC data from a 2 μg sample, CZE-MS/MS can identify over 500 unique phosphorylated peptides from a 200 ng sample, suggesting that CZE and UPLC are complementary for phosphorylated peptide IDs. With further improved loading capacity via a dynamic pH junction method, 2313 phosphorylated peptides were identified with single-shot CZE-MS/MS in a 100 min analysis. This number of phosphorylated peptide IDs is over 1 order of magnitude higher than the number of phosphorylated peptide IDs previously reported by single-shot CZE-MS/MS.
Collapse
Affiliation(s)
- Katelyn R. Ludwig
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J. Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
50
|
Olszowy P, Donnelly MR, Lee C, Ciborowski P. Profiling post-translational modifications of histones in human monocyte-derived macrophages. Proteome Sci 2015; 13:24. [PMID: 26412985 PMCID: PMC4582717 DOI: 10.1186/s12953-015-0080-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/17/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Histones and their post-translational modifications impact cellular function by acting as key regulators in the maintenance and remodeling of chromatin, thus affecting transcription regulation either positively (activation) or negatively (repression). In this study we describe a comprehensive, bottom-up proteomics approach to profiling post-translational modifications (acetylation, mono-, di- and tri-methylation, phosphorylation, biotinylation, ubiquitination, citrullination and ADP-ribosylation) in human macrophages, which are primary cells of the innate immune system. As our knowledge expands, it becomes more evident that macrophages are a heterogeneous population with potentially subtle differences in their responses to various stimuli driven by highly complex epigenetic regulatory mechanisms. METHODS To profile post-translational modifications (PTMs) of histones in macrophages we used two platforms of liquid chromatography and mass spectrometry. One platform was based on Sciex5600 TripleTof and the second one was based on VelosPro Orbitrap Elite ETD mass spectrometers. RESULTS We provide side-by-side comparison of profiling using two mass spectrometric platforms, ion trap and qTOF, coupled with the application of collisional induced and electron transfer dissociation. We show for the first time methylation of a His residue in macrophages and demonstrate differences in histone PTMs between those currently reported for macrophage cell lines and what we identified in primary cells. We have found a relatively low level of histone PTMs in differentiated but resting human primary monocyte derived macrophages. CONCLUSIONS This study is the first comprehensive profiling of histone PTMs in primary human MDM. Our study implies that epigenetic regulatory mechanisms operative in transformed cell lines and primary cells are overlapping to a limited extent. Our mass spectrometric approach provides groundwork for the investigation of how histone PTMs contribute to epigenetic regulation in primary human macrophages.
Collapse
Affiliation(s)
- Pawel Olszowy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA ; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7 Street, 87-100 Torun, Poland
| | - Maire Rose Donnelly
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Chanho Lee
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| |
Collapse
|