1
|
Arnold ND, Paper M, Fuchs T, Ahmad N, Jung P, Lakatos M, Rodewald K, Rieger B, Qoura F, Kandawa‐Schulz M, Mehlmer N, Brück TB. High-quality genome of a novel Thermosynechococcaceae species from Namibia and characterization of its protein expression patterns at elevated temperatures. Microbiologyopen 2024; 13:e70000. [PMID: 39365014 PMCID: PMC11450739 DOI: 10.1002/mbo3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Thermophilic cyanobacteria thrive in extreme environments, making their thermoresistant enzymes valuable for industrial applications. Common habitats include hot springs, which act as evolutionary accelerators for speciation due to geographical isolation. The family Thermosynechococcaceae comprises thermophilic cyanobacteria known for their ability to thrive in high-temperature environments. These bacteria are notable for their photosynthetic capabilities, significantly contributing to primary production in extreme habitats. Members of Thermosynechococcaceae exhibit unique adaptations that allow them to perform photosynthesis efficiently at elevated temperatures, making them subjects of interest for studies on microbial ecology, evolution, and potential biotechnological applications. In this study, the genome of a thermophilic cyanobacterium, isolated from a hot spring near Okahandja in Namibia, was sequenced using a PacBio Sequel IIe long-read platform. Cultivations were performed at elevated temperatures of 40, 50, and 55°C, followed by proteome analyses based on the annotated genome. Phylogenetic investigations, informed by the 16S rRNA gene and aligned nucleotide identity (ANI), suggest that the novel cyanobacterium is a member of the family Thermosynechococcaceae. Furthermore, the new species was assigned to a separate branch, potentially representing a novel genus. Whole-genome alignments supported this finding, revealing few conserved regions and multiple genetic rearrangement events. Additionally, 129 proteins were identified as differentially expressed in a temperature-dependent manner. The results of this study broaden our understanding of cyanobacterial adaptation to extreme environments, providing a novel high-quality genome of Thermosynechococcaceae cyanobacterium sp. Okahandja and several promising candidate proteins for expression and characterization studies.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Michael Paper
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Tobias Fuchs
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Nadim Ahmad
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Patrick Jung
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Michael Lakatos
- Department of Integrative BiotechnologyUniversity of Applied Sciences KaiserslauternPirmasensGermany
| | - Katia Rodewald
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Bernhard Rieger
- Department of Chemistry, WACKER‐Chair of Macromolecular Chemistry, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Farah Qoura
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | | | - Norbert Mehlmer
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| | - Thomas B. Brück
- Department of Chemistry Werner Siemens‐Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of MunichGarchingGermany
| |
Collapse
|
2
|
Yao J, Wang ZN, Liu H, Jin H, Zhang Y. Survey of Acetylation for Thermoanaerobacter tengcongensis. Appl Biochem Biotechnol 2023; 195:6081-6097. [PMID: 36809429 DOI: 10.1007/s12010-023-04361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/23/2023]
Abstract
Non-histone protein acetylation is involved in key cellular processes both in eukaryotes and prokaryotes. Acetylation in bacteria is used to modify proteins involved in metabolism and allow the bacteria to adapt to their environment. TTE (Thermoanaerobacter tengcongensis) is an anaerobic, thermophilic saccharolytic bacterium that grows at extreme temperature range between 50 and 80 ℃. The annotated TTE proteome contains less than 3000 proteins. We analyzed the proteome and acetylome of TTE using 2DLC-MS/MS (2-dimensional liquid chromatography mass spectrum). We evaluated the ability of mass spectrometry technology to cover a relatively small proteome as much as possible. And we also observed wide spread of acetylation in TTE, which changed under different temperatures. A total of 2082 proteins were identified, which accounts for about 82% of the database. A total of 2050 (~ 98%) proteins were quantified in at least one culture condition and 1818 proteins were quantified in all 4 conditions. The result also consisted 3457 acetylation sites corresponding to 827 distinct proteins, which covered 40% of the proteins identified. Bioinformatics analysis reported that proteins related to replication, recombination, repair, and extracellular structure cell wall biogenesis had more than half members acetylated, while energy production, carbohydrate transport, and metabolism related proteins were least acetylated. Our result suggested that acetylation affects the ATP-related energy metabolism and energy-dependent biosynthesis process. Comparing the enzymes related with lysine acetylation and acetyl-CoA (acetyl-coenzyme A) metabolism, we suggested that the acetylation of TTE took a non-enzymatic mechanism and affected by abundance of acetyl-CoA.
Collapse
Affiliation(s)
- Jun Yao
- Department of Chemistry, Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Ze-Ning Wang
- Department of Chemistry, Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Hang Liu
- Department of Chemistry, Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Jin
- Department of Chemistry, Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| | - Yang Zhang
- Department of Chemistry, Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Li J, Yang Z, Yan J, Zhang K, Ning X, Wang T, Ji J, Zhang G, Yin S, Zhao C. Multi-omics analysis revealed the brain dysfunction induced by energy metabolism in Pelteobagrus vachelli under hypoxia stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114749. [PMID: 36907096 DOI: 10.1016/j.ecoenv.2023.114749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Hypoxia in water environment has become increasingly frequent and serious due to global warming and environmental pollution. Revealing the molecular mechanism of fish hypoxia adaptation will help to develop markers of environmental pollution caused by hypoxia. Here, we used a multi-omics method to identify the hypoxia-associated mRNA, miRNA, protein, and metabolite involved in various biological processes in Pelteobagrus vachelli brain. The results showed that hypoxia stress caused brain dysfunction by inhibiting energy metabolism. Specifically, the biological processes involved in energy synthesis and energy consumption are inhibited in P. vachelli brain under hypoxia, such as oxidative phosphorylation, carbohydrate metabolism and protein metabolism. Brain dysfunction is mainly manifested as blood-brain barrier injury accompanied by neurodegenerative diseases and autoimmune diseases. In addition, compared with previous studies, we found that P. vachelli has tissue specificity in response to hypoxia stress and the muscle suffers more damage than the brain. This is the first report to the integrated analysis of the transcriptome, miRNAome, proteome, and metabolome in fish brain. Our findings could provide insights into the molecular mechanisms of hypoxia, and the approach could also be applied to other fish species. DATA AVAILABILITY: The raw data of transcriptome has been uploaded to NCBI database (ID: SUB7714154 and SUB7765255). The raw data of proteome has been uploaded to ProteomeXchange database (PXD020425). The raw data of metabolome has been uploaded to Metabolight (ID: MTBLS1888).
Collapse
Affiliation(s)
- Jie Li
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Zhiru Yang
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jie Yan
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Kai Zhang
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Xianhui Ning
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Tao Wang
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Jie Ji
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Guosong Zhang
- Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze 274015, China
| | - Shaowu Yin
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China.
| | - Cheng Zhao
- College of Marine Science and Engineering, College of Life Science, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China.
| |
Collapse
|
4
|
Sahonero-Canavesi DX, Siliakus MF, Abdala Asbun A, Koenen M, von Meijenfeldt FAB, Boeren S, Bale NJ, Engelman JC, Fiege K, Strack van Schijndel L, Sinninghe Damsté JS, Villanueva L. Disentangling the lipid divide: Identification of key enzymes for the biosynthesis of membrane-spanning and ether lipids in Bacteria. SCIENCE ADVANCES 2022; 8:eabq8652. [PMID: 36525503 DOI: 10.1126/sciadv.abq8652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacterial membranes are composed of fatty acids (FAs) ester-linked to glycerol-3-phosphate, while archaea have membranes made of isoprenoid chains ether-linked to glycerol-1-phosphate. Many archaeal species organize their membrane as a monolayer of membrane-spanning lipids (MSLs). Exceptions to this "lipid divide" are the production by some bacterial species of (ether-bound) MSLs, formed by tail-to-tail condensation of FAs resulting in the formation of (iso) diabolic acids (DAs), which are the likely precursors of paleoclimatological relevant branched glycerol dialkyl glycerol tetraether molecules. However, the enzymes responsible for their production are unknown. Here, we report the discovery of bacterial enzymes responsible for the condensation reaction of FAs and for ether bond formation and confirm that the building blocks of iso-DA are branched iso-FAs. Phylogenomic analyses of the key biosynthetic genes reveal a much wider diversity of potential MSL (ether)-producing bacteria than previously thought, with importantt implications for our understanding of the evolution of lipid membranes.
Collapse
Affiliation(s)
- Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Melvin F Siliakus
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Alejandro Abdala Asbun
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - F A Bastiaan von Meijenfeldt
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, Netherlands
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Julia C Engelman
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Kerstin Fiege
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Lora Strack van Schijndel
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
- Utrecht University, Faculty of Geosciences, Department of Earth Sciences, PO Box 80.021, Utrecht 3508 TA, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
- Utrecht University, Faculty of Geosciences, Department of Earth Sciences, PO Box 80.021, Utrecht 3508 TA, Netherlands
| |
Collapse
|
5
|
Kišonaitė M, Wild K, Lapouge K, Ruppert T, Sinning I. High-resolution structures of a thermophilic eukaryotic 80S ribosome reveal atomistic details of translocation. Nat Commun 2022; 13:476. [PMID: 35079002 PMCID: PMC8789840 DOI: 10.1038/s41467-022-27967-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/02/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRibosomes are complex and highly conserved ribonucleoprotein assemblies catalyzing protein biosynthesis in every organism. Here we present high-resolution cryo-EM structures of the 80S ribosome from a thermophilic fungus in two rotational states, which due to increased 80S stability provide a number of mechanistic details of eukaryotic translation. We identify a universally conserved ‘nested base-triple knot’ in the 26S rRNA at the polypeptide tunnel exit with a bulged-out nucleotide that likely serves as an adaptable element for nascent chain containment and handover. We visualize the structure and dynamics of the ribosome protective factor Stm1 upon ribosomal 40S head swiveling. We describe the structural impact of a unique and essential m1acp3 Ψ 18S rRNA hyper-modification embracing the anticodon wobble-position for eukaryotic tRNA and mRNA translocation. We complete the eEF2-GTPase switch cycle describing the GDP-bound post-hydrolysis state. Taken together, our data and their integration into the structural landscape of 80S ribosomes furthers our understanding of protein biogenesis.
Collapse
|
6
|
Li J, Zhang G, Yin D, Li Y, Zhang Y, Cheng J, Zhang K, Ji J, Wang T, Jia Y, Yin S. Integrated application of multi-omics strategies provides insights into the environmental hypoxia response in Pelteobagrus vachelli muscle. Mol Cell Proteomics 2022; 21:100196. [PMID: 35031490 PMCID: PMC8938323 DOI: 10.1016/j.mcpro.2022.100196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/07/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022] Open
Abstract
Increasing pressures on aquatic ecosystems because of pollutants, nutrient enrichment, and global warming have severely depleted oxygen concentrations. This sudden and significant lack of oxygen has resulted in persistent increases in fish mortality rates. Revealing the molecular mechanism of fish hypoxia adaptation will help researchers to find markers for hypoxia induced by environmental stress. Here, we used a multiomics approach to identify several hypoxia-associated miRNAs, mRNAs, proteins, and metabolites involved in diverse biological pathways in the muscles of Pelteobagrus vachelli. Our findings revealed significant hypoxia-associated changes in muscles over 4 h of hypoxia exposure and discrete tissue-specific patterns. We have previously reported that P. vachelli livers exhibit increased anaerobic glycolysis, heme synthesis, erythropoiesis, and inhibit apoptosis when exposed to hypoxia for 4 h. However, the opposite was observed in muscles. According to our comprehensive analysis, fishes show an acute response to hypoxia, including activation of catabolic pathways to generate more energy, reduction of biosynthesis to decrease energy consumption, and shifting from aerobic to anaerobic metabolic contributions. Also, we found that hypoxia induced muscle dysfunction by impairing mitochondrial function, activating inflammasomes, and apoptosis. The hypoxia-induced mitochondrial dysfunction enhanced oxidative stress, apoptosis, and further triggered interleukin-1β production via inflammasome activation. In turn, interleukin-1β further impaired mitochondrial function or apoptosis by suppressing downstream mitochondrial biosynthesis–related proteins, thus resulting in a vicious cycle of inflammasome activation and mitochondrial dysfunction. Our findings contribute meaningful insights into the molecular mechanisms of hypoxia, and the methods and study design can be utilized across different fish species. First multiomics analysis of mRNA, miRNA, protein, and metabolite in fishes. Liver and muscle were tissue-specific induced by hypoxia. About 70 genes and 16 miRNAs related to hypoxia adaptation were detected. Hypoxia affects muscle function by mediating energy metabolism via HIF pathway.
Collapse
Affiliation(s)
- Jie Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze, 274015, China
| | - Guosong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze, 274015, China.
| | - Danqing Yin
- School of Computer Science, University of Sydney, Sydney, 2006, Australia
| | - Yao Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yiran Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jinghao Cheng
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yongyi Jia
- Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Proteomic perspectives on thermotolerant microbes: an updated review. Mol Biol Rep 2021; 49:629-646. [PMID: 34671903 DOI: 10.1007/s11033-021-06805-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Thermotolerant microbes are a group of microorganisms that survive in elevated temperatures. The thermotolerant microbes, which are found in geothermal heat zones, grow at temperatures of or above 45°C. The proteins present in such microbes are optimally active at these elevated temperatures. Hence, therefore, serves as an advantage in various biotechnological applications. In the last few years, scientists have tried to understand the molecular mechanisms behind the maintenance of the structural integrity of the cell and to study the stability of various thermotolerant proteins at extreme temperatures. Proteomic analysis is the solution for this search. Applying novel proteomic tools determines the proteins involved in the thermostability of microbes at elevated temperatures. METHODS Advanced proteomic techniques like Mass spectrometry, nano-LC-MS, protein microarray, ICAT, iTRAQ, and SILAC could enable the screening and identification of novel thermostable proteins. RESULTS This review provides up-to-date details on the protein signature of various thermotolerant microbes analyzed through advanced proteomic tools concerning relevant research articles. The protein complex composition from various thermotolerant microbes cultured at different temperatures, their structural arrangement, and functional efficiency of the protein was reviewed and reported. CONCLUSION This review provides an overview of thermotolerant microbes, their enzymes, and the proteomic tools implemented to characterize them. This article also reviewed a comprehensive view of the current proteomic approaches for protein profiling in thermotolerant microbes.
Collapse
|
8
|
Chen CT, Wang JH, Cheng CW, Hsu WC, Ko CL, Choong WK, Sung TY. Multi-Q 2 software facilitates isobaric labeling quantitation analysis with improved accuracy and coverage. Sci Rep 2021; 11:2233. [PMID: 33500498 PMCID: PMC7838301 DOI: 10.1038/s41598-021-81740-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mass spectrometry-based proteomics using isobaric labeling for multiplex quantitation has become a popular approach for proteomic studies. We present Multi-Q 2, an isobaric-labeling quantitation tool which can yield the largest quantitation coverage and improved quantitation accuracy compared to three state-of-the-art methods. Multi-Q 2 supports identification results from several popular proteomic data analysis platforms for quantitation, offering up to 12% improvement in quantitation coverage for accepting identification results from multiple search engines when compared with MaxQuant and PatternLab. It is equipped with various quantitation algorithms, including a ratio compression correction algorithm, and results in up to 336 algorithmic combinations. Systematic evaluation shows different algorithmic combinations have different strengths and are suitable for different situations. We also demonstrate that the flexibility of Multi-Q 2 in customizing algorithmic combination can lead to improved quantitation accuracy over existing tools. Moreover, the use of complementary algorithmic combinations can be an effective strategy to enhance sensitivity when searching for biomarkers from differentially expressed proteins in proteomic experiments. Multi-Q 2 provides interactive graphical interfaces to process quantitation and to display ratios at protein, peptide, and spectrum levels. It also supports a heatmap module, enabling users to cluster proteins based on their abundance ratios and to visualize the clustering results. Multi-Q 2 executable files, sample data sets, and user manual are freely available at http://ms.iis.sinica.edu.tw/COmics/Software_Multi-Q2.html.
Collapse
Affiliation(s)
- Ching-Tai Chen
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.
| | - Jen-Hung Wang
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, 112, Taiwan
| | - Cheng-Wei Cheng
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Wei-Che Hsu
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Chu-Ling Ko
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wai-Kok Choong
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
9
|
Wang L, Wu Y, Cai P, Huang Q. The attachment process and physiological properties of Escherichia coli O157:H7 on quartz. BMC Microbiol 2020; 20:355. [PMID: 33213384 PMCID: PMC7677791 DOI: 10.1186/s12866-020-02043-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 01/24/2023] Open
Abstract
Background Manure application and sewage irrigation release many intestinal pathogens into the soil. After being introduced into the soil matrix, pathogens are commonly found to attach to soil minerals. Although the survival of mineral-associated Escherichia coli O157:H7 has been studied, a comprehensive understanding of the attachment process and physiological properties after attachment is still lacking. Results In this study, planktonic and attached Escherichia coli O157:H7 cells on quartz were investigated using RNA sequencing (RNA-seq) and the isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic method. Based on the transcriptomic and proteomic analyses and gene knockouts, functional two-component system pathways were required for efficient attachment; chemotaxis and the Rcs system were identified to play determinant roles in E. coli O157:H7 attachment on quartz. After attachment, the pyruvate catabolic pathway shifted from the tricarboxylic acid (TCA) cycle toward the fermentative route. The survival rate of attached E. coli O157:H7 increased more than 10-fold under penicillin and vancomycin stress and doubled under alkaline pH and ferric iron stress. Conclusions These results contribute to the understanding of the roles of chemotaxis and the Rcs system in the attachment process of pathogens and indicate that the attachment of pathogens to minerals significantly elevates their resistance to antibiotics and environmental stress, which may pose a potential threat to public health. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02043-8.
Collapse
Affiliation(s)
- Liliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
10
|
Zhao W, Ma X, Liu X, Jian H, Zhang Y, Xiao X. Cross-Stress Adaptation in a Piezophilic and Hyperthermophilic Archaeon From Deep Sea Hydrothermal Vent. Front Microbiol 2020; 11:2081. [PMID: 33013758 PMCID: PMC7511516 DOI: 10.3389/fmicb.2020.02081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
Hyperthermophiles, living in environments above 80°C and usually coupling with multi-extreme environmental stresses, have drawn great attention due to their application potential in biotechnology and being the primitive extant forms of life. Studies on their survival and adaptation mechanisms have extended our understanding on how lives thrive under extreme conditions. During these studies, the "cross-stress" behavior in various organisms has been observed between the extreme high temperature and other environmental stresses. Despite the broad observation, the global view of the cross-stress behavior remains unclear in hyperthermophiles, leaving a knowledge gap in our understanding of extreme adaptation. In this study, we performed a global quantitative proteomic analysis under extreme temperatures, pH, hydrostatic pressure (HP), and salinity on an archaeal strain, Thermococcus eurythermalis A501, which has outstanding growth capability on a wide range of temperatures (50-100°C), pH (4-9), and HPs (0.1-70 MPa), but a narrow range of NaCl (1.0-5.0 %, w/v). The proteomic analysis (79.8% genome coverage) demonstrated that approximately 61.5% of the significant differentially expressed proteins (DEPs) responded to multiple stresses. The responses to most of the tested stresses were closely correlated, except the responses to high salinity and low temperature. The top three enriched universal responding processes include the biosynthesis and protection of macromolecules, biosynthesis and metabolism of amino acids, ion transport, and binding activities. In addition, this study also revealed that the specific dual-stress responding processes, such as the membrane lipids for both cold and HP stresses and the signal transduction for both hyperosmotic and heat stresses, as well as the sodium-dependent energetic processes might be the limiting factor of the growth range in salinity. The present study is the first to examine the global cross-stress responses in a piezophilic hyperthermophile at the proteomic level. Our findings provide direct evidences of the cross-stress adaptation strategy (33.5% of coding-genes) to multiple stresses and highlight the specific and unique responding processes (0.22-0.63% of coding genes for each) to extreme temperature, pH, salinity, and pressure, which are highly relevant to the fields of evolutionary biology as well as next generation industrial biotechnology (NGIB).
Collapse
Affiliation(s)
- Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaopan Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhang
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Cao W, Lee H, Wu W, Zaman A, McCorkle S, Yan M, Chen J, Xing Q, Sinnott-Armstrong N, Xu H, Sailani MR, Tang W, Cui Y, Liu J, Guan H, Lv P, Sun X, Sun L, Han P, Lou Y, Chang J, Wang J, Gao Y, Guo J, Schenk G, Shain AH, Biddle FG, Collisson E, Snyder M, Bivona TG. Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma. Nat Commun 2020; 11:3675. [PMID: 32699215 PMCID: PMC7376194 DOI: 10.1038/s41467-020-17227-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Epigenetic landscapes can shape physiologic and disease phenotypes. We used integrative, high resolution multi-omics methods to delineate the methylome landscape and characterize the oncogenic drivers of esophageal squamous cell carcinoma (ESCC). We found 98% of CpGs are hypomethylated across the ESCC genome. Hypo-methylated regions are enriched in areas with heterochromatin binding markers (H3K9me3, H3K27me3), while hyper-methylated regions are enriched in polycomb repressive complex (EZH2/SUZ12) recognizing regions. Altered methylation in promoters, enhancers, and gene bodies, as well as in polycomb repressive complex occupancy and CTCF binding sites are associated with cancer-specific gene dysregulation. Epigenetic-mediated activation of non-canonical WNT/β-catenin/MMP signaling and a YY1/lncRNA ESCCAL-1/ribosomal protein network are uncovered and validated as potential novel ESCC driver alterations. This study advances our understanding of how epigenetic landscapes shape cancer pathogenesis and provides a resource for biomarker and target discovery.
Collapse
Grants
- U01 CA217882 NCI NIH HHS
- R01 CA239604 NCI NIH HHS
- K22 CA217997 NCI NIH HHS
- R01 CA227807 NCI NIH HHS
- U54 CA224081 NCI NIH HHS
- R01 CA211052 NCI NIH HHS
- S10 OD020141 NIH HHS
- U24 CA210974 NCI NIH HHS
- R01 CA222862 NCI NIH HHS
- R01 CA230263 NCI NIH HHS
- R01 CA169338 NCI NIH HHS
- R01 CA204302 NCI NIH HHS
- R01 CA178015 NCI NIH HHS
- the National Natural Science Foundation of China (Grants 81171992, 31570899), the Natural Science Foundation of Henan (Grants 182102310328, 162300410279, 182300410374, 192102310096); the Education Department of Henan Province(18B310022,19A320037).
- National Natural Science Foundation of China (National Science Foundation of China)
- the Natural Science Foundation of Henan (Grants 182102310328, 162300410279, 182300410374, 192102310096); the Education Department of Henan Province(18B310022,19A320037). This work used the Genome Sequencing Service Center by Stanford Center for Genomics and Personalized Medicine Sequencing Center, supported by the grant award NIH S10OD020141. E.A.C acknowledge funding support from NCI Grants R01 [CA178015, CA222862, CA227807, CA239604, CA230263] and U24 [CA210974]. T.G.B acknowledges funding support from NIH / NCI U01CA217882, NIH / NCI U54CA224081, NIH / NCI R01CA204302, NIH / NCI R01CA211052, NIH / NCI R01CA169338, and the Pew-Stewart Foundations.
Collapse
Affiliation(s)
- Wei Cao
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China.
| | - Hayan Lee
- Department of Genetics, School of Medicine, Stanford University, CA, USA
| | - Wei Wu
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| | - Aubhishek Zaman
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Sean McCorkle
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, USA
| | - Ming Yan
- Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Justin Chen
- Department of Genetics, School of Medicine, Stanford University, CA, USA
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | | | - Hongen Xu
- Precision Medicine Center, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - M Reza Sailani
- Department of Genetics, School of Medicine, Stanford University, CA, USA
| | - Wenxue Tang
- Precision Medicine Center, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanbo Cui
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Jia Liu
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Hongyan Guan
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Pengju Lv
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Sun
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Lei Sun
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Pengli Han
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Yanan Lou
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Jing Chang
- Jiangsu Mai Jian Biotechnology Development Company, Wuxi, China
| | - Jinwu Wang
- Department of Pathology, Linzhou Cancer Hospital, Linzhou, China
| | - Yuchi Gao
- Annoroad Gene Company, Beijing, China
| | - Jiancheng Guo
- Precision Medicine Center, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Gundolf Schenk
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Alan Hunter Shain
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Fred G Biddle
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Eric Collisson
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, CA, USA.
| | - Trever G Bivona
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Deng Y, Ren Z, Pan Q, Qi D, Wen B, Ren Y, Yang H, Wu L, Chen F, Liu S. pClean: An Algorithm To Preprocess High-Resolution Tandem Mass Spectra for Database Searching. J Proteome Res 2019; 18:3235-3244. [PMID: 31364357 DOI: 10.1021/acs.jproteome.9b00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Database searches of MS/MS spectra are the main approach to peptide/protein identification in proteomics. Since most database search engines only utilize a small portion of the original MS/MS signals for peptide detection, how to improve the quality of MS/MS signals is a primary concern for enhancement of the peptide/protein identification rate. A fundamental issue is that some noise MS signals, informative or uninformative, have to be filtered out prior to database searching. Herein, an integrative preprocessing algorithm was designed, termed pClean, which incorporates three modules to preprocess MS/MS spectra, such as the removal of isobaric-labeling related ions, the reduction in isotopic peaks, the deconvolution of ions with higher charges, and the clearance of uninformative MS/MS signals. In contrast to the currently available approaches to MS/MS data preprocessing, pClean enables treatment of MS/MS spectra with high mass accuracy and favors filtering for the labeling or nonlabeling of peptides. Data sets at various scales gained from mass spectrometers with high resolution were used to assess the quality of peptides identified after pClean treatment and to compare the pClean improvement with those of other software programs. On the basis of the analysis of peptides identified and the Mascot ion score, pClean was proven to be effective in the removal of mass spectral noise and the reduction of random matching. Compared with other software programs, pClean appeared to be beneficial in terms of preprocessing performances for the enhancement of confidence scores and the increase in peptides identified. pClean is available at https://github.com/AimeeD90/pClean_release .
Collapse
Affiliation(s)
- Yamei Deng
- CAS Key Laboratory of Genome Sciences and Information , Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101 , China.,University of the Chinese Academy of Sciences , Beijing 100049 , China.,BGI-Shenzhen , Shenzhen 518083 , China
| | - Zhe Ren
- BGI-Shenzhen , Shenzhen 518083 , China.,China National GeneBank, BGI-Shenzhen , Shenzhen 518120 , China
| | - Qingfei Pan
- CAS Key Laboratory of Genome Sciences and Information , Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101 , China.,University of the Chinese Academy of Sciences , Beijing 100049 , China.,BGI-Shenzhen , Shenzhen 518083 , China
| | - Da Qi
- BGI-Shenzhen , Shenzhen 518083 , China.,China National GeneBank, BGI-Shenzhen , Shenzhen 518120 , China
| | | | - Yan Ren
- BGI-Shenzhen , Shenzhen 518083 , China.,China National GeneBank, BGI-Shenzhen , Shenzhen 518120 , China
| | - Huanming Yang
- BGI-Shenzhen , Shenzhen 518083 , China.,China National GeneBank, BGI-Shenzhen , Shenzhen 518120 , China.,James D. Watson Institute of Genome Sciences , Hangzhou 310058 , China
| | - Lin Wu
- CAS Key Laboratory of Genome Sciences and Information , Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101 , China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information , Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101 , China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information , Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101 , China.,BGI-Shenzhen , Shenzhen 518083 , China.,China National GeneBank, BGI-Shenzhen , Shenzhen 518120 , China
| |
Collapse
|
13
|
Zhang G, Li J, Zhang J, Liang X, Zhang X, Wang T, Yin S. Integrated Analysis of Transcriptomic, miRNA and Proteomic Changes of a Novel Hybrid Yellow Catfish Uncovers Key Roles for miRNAs in Heterosis. Mol Cell Proteomics 2019; 18:1437-1453. [PMID: 31092672 PMCID: PMC6601203 DOI: 10.1074/mcp.ra118.001297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/09/2019] [Indexed: 01/14/2023] Open
Abstract
Heterosis is a complex biological phenomenon in which hybridization produces offspring that exhibit superior phenotypic characteristics compared with the parents. Heterosis is widely utilized in agriculture, for example in fish farming; however, its underlying molecular basis remains elusive. To gain a comprehensive and unbiased molecular understanding of fish heterosis, we analyzed the mRNA, miRNA, and proteomes of the livers of three catfish species, Pelteobagrus fulvidraco, P. vachelli, and their hybrid, the hybrid yellow catfish "Huangyou-1" (P. fulvidraco ♀ × P. vachelli ♂). Using next-generation sequencing and mass spectrometry, we show that the nonadditive, homoeolog expression bias and expression level dominance pattern were readily identified at the transcriptional, post-transcriptional, or protein levels, providing the evidence for the widespread presence of dominant models during hybridization. A number of predicted miRNA-mRNA-protein pairs were found and validated by qRT-PCR and PRM assays. Furthermore, several diverse key pathways were identified, including immune defense, metabolism, digestion and absorption, and cell proliferation and development, suggesting the vital mechanisms involved in the generation of the heterosis phenotype in progenies. We propose that the high parental expression of genes/proteins (growth, nutrition, feeding, and disease resistance) coupled with low parental miRNAs of the offspring, are inherited from the mother or father, thus indicating that the offspring were enriched with the advantages of the father or mother. We provide new and important information about the molecular mechanisms of heterosis, which represents a significant step toward a more complete elucidation of this phenomenon.
Collapse
Affiliation(s)
- Guosong Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; §Key Laboratory for Physiology Biochemistry and Application, School of Agriculture and Bioengineering, Heze University, Heze, Shandong 274015, China
| | - Jie Li
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Jiajia Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Xia Liang
- §Key Laboratory for Physiology Biochemistry and Application, School of Agriculture and Bioengineering, Heze University, Heze, Shandong 274015, China
| | - Xinyu Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Tao Wang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Shaowu Yin
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China.
| |
Collapse
|
14
|
Sun QL, Sun YY, Zhang J, Luan ZD, Lian C, Liu SQ, Yu C. High temperature-induced proteomic and metabolomic profiles of a thermophilic Bacillus manusensis isolated from the deep-sea hydrothermal field of Manus Basin. J Proteomics 2019; 203:103380. [PMID: 31102757 DOI: 10.1016/j.jprot.2019.103380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 12/23/2022]
Abstract
Thermophiles are organisms that grow optimally at 50 °C-80 °C and studies on the survival mechanisms of thermophiles have drawn great attention. Bacillus manusensis S50-6 is the type strain of a new thermophilic species isolated from hydrothermal vent in Manus Basin. In this study, we examined the growth and global responses of S50-6 to high temperature on molecular level using multi-omics method (genomics, proteomics, and metabolomics). S50-6 grew optimally at 50 °C (Favorable, F) and poorly at 65 °C (Non-Favorable, NF); it formed spores at F but not at NF condition. At NF condition, S50-6 formed long filaments containing undivided cells. A total of 1621 proteins were identified at F and NF conditions, and 613 proteins were differentially expressed between F and NF. At NF condition, proteins of glycolysis, rRNA mature and modification, and DNA/protein repair were up-regulated, whereas proteins of sporulation and amino acid/nucleotide metabolism were down-regulated. Consistently, many metabolites associated with amino acid and nucleotide metabolic processes were down-regulated at NF condition. Our results revealed molecular strategies of deep-sea B. manusensis to survive at unfavorable high temperature and provided new insights into the thermotolerant mechanisms of thermophiles. SIGNIFICANCE: In this study, we systematically characterized the genomic, proteomic and metabolomic profiles of a thermophilic deep-sea Bacillus manusensis under different temperatures. Based on these analysis, we propose a model delineating the global responses of B. manusensis to unfavorable high temperature. Under unfavorable high temperature, glycolysis is a more important energy supply pathway; protein synthesis is subjected to more stringent regulation by increased tRNA modification; protein and DNA repair associated proteins are enhanced in production to promote heat survival. In contrast, energy-costing pathways, such as sporulation, are repressed, and basic metabolic pathways, such as amino acid and nucleotide metabolisms, are slowed down. Our results provide new insights into the thermotolerant mechanisms of thermophilic Bacillus.
Collapse
Affiliation(s)
- Qing-Lei Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuan-Yuan Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhen-Dong Luan
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Chao Lian
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shi-Qi Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Huang L, Zhao L, Liu W, Xu X, Su Y, Qin Y, Yan Q. Dual RNA-Seq Unveils Pseudomonas plecoglossicida htpG Gene Functions During Host-Pathogen Interactions With Epinephelus coioides. Front Immunol 2019; 10:984. [PMID: 31130962 PMCID: PMC6509204 DOI: 10.3389/fimmu.2019.00984] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas plecoglossicida is a temperature-dependent opportunistic pathogen which is associated with a variety of diseases in fish. During the development of "white nodules" disease, the expression of htpG in P. plecoglossicida was found to be significantly up-regulated at its virulent temperature of 18°C. The infection of htpG-RNAi strain resulted in the onset time delay, reduction in mortality and infection symptoms in spleen of Epinephelus coioides, and affected the bacterial tissue colonization. In order to reveal the effect of htpG silencing of P. plecoglossicida on the virulence regulation in P. plecoglossicida and immune response in E. coioides, dual RNA-seq was performed and a pathogen-host integration network was constructed. Our results showed that infection induced the expression of host genes related to immune response, but attenuated the expression of bacterial virulence genes. Novel integration was found between host immune genes and bacterial virulence genes, while IL6, IL1R2, IL1B, and TLR5 played key roles in the network. Further analysis with GeneMANIA indicated that flgD and rplF might play key roles during the htpG-dependent virulence regulation, which was in accordance with the reduced biofilm production, motility and virulence in htpG-RNAi strain. Meanwhile, IL6 and IL1B were found to play key roles during the defense against P. plecoglossicida, while CELA2, TRY, CPA1, CPA2, and CPB1 were important targets for P. plecoglossicida attacking to the host.
Collapse
Affiliation(s)
- Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Wenjia Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
16
|
An Integrated Transcriptome and Proteome Analysis Reveals Putative Regulators of Adventitious Root Formation in Taxodium 'Zhongshanshan'. Int J Mol Sci 2019; 20:ijms20051225. [PMID: 30862088 PMCID: PMC6429173 DOI: 10.3390/ijms20051225] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Adventitious root (AR) formation from cuttings is the primary manner for the commercial vegetative propagation of trees. Cuttings is also the main method for the vegetative reproduction of Taxodium ‘Zhongshanshan’, while knowledge of the molecular mechanisms regulating the processes is limited. Here, we used mRNA sequencing and an isobaric tag for relative and absolute quantitation-based quantitative proteomic (iTRAQ) analysis to measure changes in gene and protein expression levels during AR formation in Taxodium ‘Zhongshanshan’. Three comparison groups were established to represent the three developmental stages in the AR formation process. At the transcript level, 4743 genes showed an expression difference in the comparison groups as detected by RNA sequencing. At the protein level, 4005 proteins differed in their relative abundance levels, as indicated by the quantitative proteomic analysis. A comparison of the transcriptome and proteome data revealed regulatory aspects of metabolism during AR formation and development. In summary, hormonal signal transduction is different at different developmental stages during AR formation. Other factors related to carbohydrate and energy metabolism and protein degradation and some transcription factor activity levels, were also correlated with AR formation. Studying the identified genes and proteins will provide further insights into the molecular mechanisms controlling AR formation.
Collapse
|
17
|
Yang Y, Ma L, Zeng H, Chen LY, Zheng Y, Li CX, Yang ZP, Wu N, Mu X, Dai CY, Guan HL, Cui XM, Liu Y. iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress. Gene 2018; 675:301-311. [DOI: 10.1016/j.gene.2018.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022]
|
18
|
Liu C, Mao L, Zheng X, Yuan J, Hu B, Cai Y, Xie H, Peng X, Ding X. Comparative proteomic analysis of Methanothermobacter thermautotrophicus reveals methane formation from H 2 and CO 2 under different temperature conditions. Microbiologyopen 2018; 8:e00715. [PMID: 30260585 PMCID: PMC6528648 DOI: 10.1002/mbo3.715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 11/22/2022] Open
Abstract
The growth of all methanogens is limited to a specific temperature range. However, Methanothermobacter thermautotrophicus can be found in a variety of natural and artificial environments, the temperatures of which sometimes even exceed the temperature growth ranges of thermophiles. As a result, the extent to which methane production and survival are affected by temperature remains unclear. To investigate the mechanisms of methanogenesis that Archaea have evolved to cope with drastic temperature shifts, the responses of Methanothermobacter thermautotrophicus to temperature were investigated under a high temperature growth (71°C) and cold shock (4°C) using Isobaric tags for relative and absolute quantitation (iTRAQ). The results showed that methane formation is decreased and that protein folding and degradation are increased in both high‐ and low‐temperature treatments. In addition, proteins predicted to be involved in processing environmental information processing and in cell membrane/wall/envelope biogenesis may play key roles in affecting methane formation and enhancing the response of M. thermautotrophicus to temperature stress. Analysis of the genomic locations of the genes corresponding to these temperature‐dependent proteins predicted that 77 of the genes likely to form 32 gene clusters. Here, we assess the response of M. thermautotrophicus to different temperatures and provide a new level of understanding of methane formation and cellular putative adaptive responses.
Collapse
Affiliation(s)
- Cong Liu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Lihui Mao
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xiongmin Zheng
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jiangan Yuan
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Beijuan Hu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Yaohui Cai
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Hongwei Xie
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Xiaojue Peng
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xia Ding
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Biology Experimental Teaching Demonstration, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
19
|
Huang L, Liu W, Jiang Q, Zuo Y, Su Y, Zhao L, Qin Y, Yan Q. Integration of Transcriptomic and Proteomic Approaches Reveals the Temperature-Dependent Virulence of Pseudomonas plecoglossicida. Front Cell Infect Microbiol 2018; 8:207. [PMID: 29977868 PMCID: PMC6021524 DOI: 10.3389/fcimb.2018.00207] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/05/2018] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas plecoglossicida is a facultative pathogen that is associated with diseases of multiple fish, mainly at 15–20°C. Although fish disease caused by P. plecoglossicida has led to significant economic losses, the mechanisms of the temperature-dependent virulence are unclear. Here, we identify potential pathogenicity mechanisms and demonstrate the direct regulation of several virulence factors by temperature with transcriptomic and proteomic analyses, quantitative real-time PCR (qRT-PCR), RNAi, pyoverdine (PVD) quantification, the chrome azurol S (CAS) assay, growth curve measurements, a biofilm assay, and artificial infection. The principal component analysis, the heat map generation and hierarchical clustering, together with the functional annotations of the differentially expressed genes (DEGs) demonstrated that, under different growth temperatures, the animation and focus of P. plecoglossicida are quite different, which may be the key to pathogenicity. Genes involved in PVD synthesis and in the type VI secretion system (T6SS) are specifically upregulated at the virulent temperature of 18°C. Silencing of the PVD-synthesis-related genes reduces the iron acquisition, growth, biofilm formation, distribution in host organs and virulence of the bacteria. Silencing of the T6SS genes also leads to the reduction of biofilm formation, distribution in host organs and virulence. These findings reveal that temperature regulates multiple virulence mechanisms in P. plecoglossicida, especially through iron acquisition and T6SS secretion. Meanwhile, integration of transcriptomic and proteomic data provide us with a new perspective into the pathogenesis of P. plecoglossicida, which would not have been easy to catch at either the protein or mRNA differential analyses alone, thus illustrating the power of multi-omics analyses in microbiology.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Wenjia Liu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingling Jiang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yanfei Zuo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
20
|
Li K, Sun J, Yang J, Roberts SM, Zhang X, Cui X, Wei S, Ma LQ. Molecular Mechanisms of Perfluorooctanoate-Induced Hepatocyte Apoptosis in Mice Using Proteomic Techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11380-11389. [PMID: 28885018 DOI: 10.1021/acs.est.7b02690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The stability of perfluorooctanoate (PFOA) coupled with its wide use cause serious concerns regarding its potential risk to human health. The molecular mechanisms of PFOA-induced hepatotoxicity relevant to human health was investigated using both in vivo (mouse model) and in vitro (human hepatocyte cells, HL-7702) techniques. Both male and female Balb/c mice were administered PFOA at 0.05, 0.5, or 2.5 mg/kg-d for 28-d, with serum PFOA concentrations after exposure being found at environmentally relevant levels. Liver samples were examined for histology and proteomic change using iTRAQ and Western Blotting, showing dose-dependent hepatocyte apoptosis and peroxisome proliferation. At high doses, genotoxicity resulting from ROS hypergeneration was due to suppression of Complex I subunits in the electron transport chain and activation of PPARα in both genders. However, at 0.05 mg/kg-d, Complex I suppression occurred only in females, making them more sensitive to PFOA-induced apoptosis. In vitro assays using HL-7702 cells confirmed that apoptosis was also induced through a similar mechanism. The dose/gender-dependent toxicity mechanisms help to explain some epidemiological phenomena, i.e., liver cancer is not often associated with PFOA exposure in professional workers. Our results demonstrated that a proteomic approach is a robust tool to explore molecular mechanisms of toxic chemicals at environmentally relevant levels.
Collapse
Affiliation(s)
- Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Jingping Yang
- School of the Medicine, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Stephen M Roberts
- Center for Environmental and Human Toxicology, University of Florida , Gainesville, Florida 32611, United States
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210046, China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210046, China
- Soil and Water Science Department, University of Florida , Gainesville, Florida 32611, United States
| |
Collapse
|
21
|
Fan M, Sun X, Xu N, Liao Z, Li Y, Wang J, Fan Y, Cui D, Li P, Miao Z. Integration of deep transcriptome and proteome analyses of salicylic acid regulation high temperature stress in Ulva prolifera. Sci Rep 2017; 7:11052. [PMID: 28887495 PMCID: PMC5591278 DOI: 10.1038/s41598-017-11449-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/21/2017] [Indexed: 01/17/2023] Open
Abstract
To investigate changes in transcript and relative protein levels in response to salicylic acid regulation of the thermotolerance in U. prolifera, complementary transcriptome and proteome analyses were performed with U. prolifera grown at 35 °C (UpHT) and with the addition of SA at high temperature (UpSHT). At mRNA level,12,296 differentially expressed genes (DEGs) were obtained from the comparison of UpSHT with UpHT. iTRAQ-labeling proteome analysis showed that a total of 4,449 proteins were identified and reliably quantified. At mRNA level, the up-regulated genes involved in antioxidant activity were thioredoxin,peroxiredoxin,FeSOD, glutathione peroxidase, partion catalase and MnSOD. The down-regulated genes were ascorbate peroxidase, glutathione S-transferase, catalase and MnSOD. In addition, the DEGs involved in plant signal transduction pathway (such as auxin response factors, BRI1 and JAZ) were down-regulated. At protein level, the up-regulated proteins involved in carbon fixation and the down-regulated protein mainly were polyubiquitin, ascorbate peroxidase. The expression of Ca2+-binding protein, heat shock protein and photosynthesis-related proteins, EDS1 were also significantly regulated both at mRNA and protein level. The results indicated that SA alleviated the high-temperature stimulus through partion antioxidant related proteins up-regulated, JA signal pathway enchanced, Ca2+-binding proteins, photosynthesis-related proteins significantly changed, antioxidant enzyme activities increased and photosynthesis index changed.
Collapse
Affiliation(s)
- Meihua Fan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China. .,Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China.
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Zhi Liao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Yahe Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Yingping Fan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Dalian Cui
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Peng Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| | - Zengliang Miao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
| |
Collapse
|
22
|
Zhang G, Zhang J, Wen X, Zhao C, Zhang H, Li X, Yin S. Comparative iTRAQ-Based Quantitative Proteomic Analysis ofPelteobagrus vachelliLiver under Acute Hypoxia: Implications in Metabolic Responses. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Guosong Zhang
- College of Life Sciences; Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province; Nanjing Normal University; Nanjing Jiangsu P. R. China
- Department of Life Science; Heze University; Heze Shandong P. R. China
| | - Jiajia Zhang
- College of Life Sciences; Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province; Nanjing Normal University; Nanjing Jiangsu P. R. China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province; Lianyungang Jiangsu P. R. China
| | - Xin Wen
- College of Life Sciences; Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province; Nanjing Normal University; Nanjing Jiangsu P. R. China
| | - Cheng Zhao
- College of Life Sciences; Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province; Nanjing Normal University; Nanjing Jiangsu P. R. China
| | - Hongye Zhang
- College of Life Sciences; Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province; Nanjing Normal University; Nanjing Jiangsu P. R. China
| | - Xinru Li
- College of Life Sciences; Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province; Nanjing Normal University; Nanjing Jiangsu P. R. China
| | - Shaowu Yin
- College of Life Sciences; Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province; Nanjing Normal University; Nanjing Jiangsu P. R. China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province; Lianyungang Jiangsu P. R. China
| |
Collapse
|
23
|
Zhang P, Zhao Y, Yu S, Liu J, Hao Y, Zhang H, Ge W, Min L, Shen W, Li Q, Kou X, Ma H, Li L. Proteome analysis of egg yolk after exposure to zinc oxide nanoparticles. Theriogenology 2017; 95:154-162. [PMID: 28460670 DOI: 10.1016/j.theriogenology.2017.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 01/07/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are promising candidates as animal diet additive. However, several studies have reported that ZnO NPs cause adverse effects on organisms. Hen egg yolk proteins play vital roles during embryonic development. Although we found ZnO NPs altered the function of the ovary and liver, the effects of ZnO NPs on egg yolk proteins are not as yet understood. In this report, egg yolk proteome was investigated after ZnO NPs treatment. A total of 37 proteins were specifically regulated just by ZnO-NP-50 mg/kg, and 22 proteins were changed solely by ZnSO4-50 mg/kg. Seventeen proteins were regulated by both ZnO-NP-50 mg/kg and ZnSO4-50 mg/kg treatments. Furthermore, the proteins changed by ZnO NPs or ZnSO4 were enriched into different functional groups, respectively, by GO analysis and KEGG pathway enrichment. For the first time, this investigation reports that intact NPs produce a different impact on the egg yolk proteome compared to that of Zn2+. The changes in protein levels by ZnO NPs in egg yolk might influence the value of egg yolk as nutrient and the embryonic development.
Collapse
Affiliation(s)
- Pengfei Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Yong Zhao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Shuai Yu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Jing Liu
- Core Laboratories of Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanan Hao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Wei Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Lingjing Min
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Qunjie Li
- Shouguan Veterinary and Livestock Administration, Weifang, 261000, PR China
| | - Xin Kou
- Shouguan Veterinary and Livestock Administration, Weifang, 261000, PR China
| | - Huanfa Ma
- Shouguan Veterinary and Livestock Administration, Weifang, 261000, PR China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China.
| |
Collapse
|
24
|
Shi Q, Chen LN, Lv Y, Zhang BY, Xiao K, Zhou W, Chen C, Sun J, Yang XD, Dong XP. Comparative proteomics analyses for 139A and ME7 scrapie infected mice brains in the middle and terminal stages. Proteomics Clin Appl 2017; 11. [PMID: 27991723 DOI: 10.1002/prca.201600113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/27/2016] [Accepted: 12/12/2016] [Indexed: 11/06/2022]
Abstract
PURPOSE To analyze the proteomics patterns in the cortex regions of scrapie strains 139A- and ME7-infected mice collected in the middle and terminal stages. EXPERIMENTAL DESIGN Western Blot and immunohistochemistry methods are used to analyze the pathological changes in mice collected in the middle and terminal stages. The technique of iTRAQ and multidimensional LC and MS are used to analyze the proteomics patterns of mice in different stages. RESULTS In total, 2891 with 95% confidence interval are identified. The study here also demonstrates a similar protein expressions in the CNS tissues of two scrapie strains infected mice at the terminal stages, but markedly different one between the middle and terminal samples, not only in the numbers of differentially expressed proteins and involved gene ontologies and pathways but also in the relevant functional constitutions. CONCLUSIONS It may provide useful clue in exploring the abnormalities of biological functions at different time points of prion infections and in searching for potential therapeutic and diagnostic biomarkers for prion diseases.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li-Na Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Lv
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Dong Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Su Y, Xu L, Wang Z, Peng Q, Yang Y, Chen Y, Que Y. Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane. BMC Genomics 2016; 17:800. [PMID: 27733120 PMCID: PMC5062822 DOI: 10.1186/s12864-016-3146-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Sugarcane smut, which is caused by Sporisorium scitamineum, has been threatening global sugarcane production. Breeding smut resistant sugarcane varieties has been proven to be the most effective method of controlling this particular disease. However, a lack of genome information of sugarcane has hindered the development of genome-assisted resistance breeding programs. Furthermore, the molecular basis of sugarcane response to S. scitamineum infection at the proteome level was incomplete and combining proteomic and transcriptional analysis has not yet been conducted. RESULTS We identified 273 and 341 differentially expressed proteins in sugarcane smut-resistant (Yacheng05-179) and susceptible (ROC22) genotypes at 48 h after inoculation with S. scitamineum by employing an isobaric tag for relative and absolute quantification (iTRAQ). The proteome quantitative data were then validated by multiple reaction monitoring (MRM). The integrative analysis showed that the correlations between the quantitative proteins and the corresponding genes that was obtained in our previous transcriptome study were poor, which were 0.1502 and 0.2466 in Yacheng05-179 and ROC22, respectively, thereby revealing a post-transcriptional event during Yacheng05-179-S. scitamineum incompatible interaction and ROC22-S. scitamineum compatible interaction. Most differentially expressed proteins were closely related to sugarcane smut resistance such as beta-1,3-glucanase, peroxidase, pathogenesis-related protein 1 (PR1), endo-1,4-beta-xylanase, heat shock protein, and lectin. Ethylene and gibberellic acid pathways, phenylpropanoid metabolism and PRs, such as PR1, PR2, PR5 and PR14, were more active in Yacheng05-179, which suggested of their possible roles in sugarcane smut resistance. However, calcium signaling, reactive oxygen species, nitric oxide, and abscisic acid pathways in Yacheng05-179 were repressed by S. scitamineum and might not be crucial for defense against this particular pathogen. CONCLUSIONS These results indicated complex resistance-related events in sugarcane-S. scitamineum interaction, and provided novel insights into the molecular mechanism underlying the response of sugarcane to S. scitamineum infection.
Collapse
Affiliation(s)
- Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhuqing Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qiong Peng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuting Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yun Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Guangxi Collaborative Innovation Center of Sugarcane Industry, Guangxi University, Nanning, 530005 China
| |
Collapse
|
26
|
Guo J, Ren Y, Hou G, Wen B, Xian F, Chen Z, Cui P, Xie Y, Zi J, Lin L, Wu S, Li Z, Wu L, Lou X, Liu S. A Comprehensive Investigation toward the Indicative Proteins of Bladder Cancer in Urine: From Surveying Cell Secretomes to Verifying Urine Proteins. J Proteome Res 2016; 15:2164-77. [PMID: 27265680 DOI: 10.1021/acs.jproteome.6b00106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Urine is an ideal material to study the cancer-related protein biomarkers in bladder, whereas exploration to these candidates is confronting technique challenges. Herein, we propose a comprehensive strategy of searching the urine proteins related with bladder cancer. The strategy consists of three core combinations, screening the biomarker candidates in the secreted proteins derived from the bladder cancer cell lines and verifying them in patient urines, defining the differential proteins through two-dimensional electrophoresis (2DE) and isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS, and implementing quantitative proteomics of profiling and targeting analysis. With proteomic survey, a total of 700 proteins were found with their abundance of secreted proteins in cancer cell lines different from normal, while 87 proteins were identified in the urine samples. The multiple reaction monitoring (MRM)-based quantification was adapted in verifying the bladder cancer related proteins in individual urine samples, resulting in 10 differential urine proteins linked with the cancer. Of these candidates, receiver operating characteristic analysis revealed that the combination of CO3 and LDHB was more sensitive as the cancer indicator than other groups. The discovery of the bladder cancer indicators through our strategy has paved an avenue to further biomarker validation.
Collapse
Affiliation(s)
- Jiao Guo
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing, 100101, China.,University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Yan Ren
- Proteomics Division, BGI-Shenzhen , Shenzhen, Guangdong 518083, China
| | - Guixue Hou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing, 100101, China.,University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Bo Wen
- Proteomics Division, BGI-Shenzhen , Shenzhen, Guangdong 518083, China
| | - Feng Xian
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing, 100101, China.,University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Zhen Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing, 100101, China
| | - Ping Cui
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing, 100101, China
| | - Yingying Xie
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing, 100101, China.,University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Jin Zi
- Proteomics Division, BGI-Shenzhen , Shenzhen, Guangdong 518083, China
| | - Liang Lin
- Proteomics Division, BGI-Shenzhen , Shenzhen, Guangdong 518083, China
| | - Song Wu
- Shenzhen Second People's Hospital , Shenzhen, Guangdong 518028, China
| | - Zesong Li
- Shenzhen Second People's Hospital , Shenzhen, Guangdong 518028, China
| | - Lin Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing, 100101, China.,University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing, 100101, China.,University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing, 100101, China.,University of Chinese Academy of Sciences , Beijing, 100049, China.,Proteomics Division, BGI-Shenzhen , Shenzhen, Guangdong 518083, China
| |
Collapse
|
27
|
Gatto L, Breckels LM, Naake T, Gibb S. Visualization of proteomics data using R and bioconductor. Proteomics 2016; 15:1375-89. [PMID: 25690415 PMCID: PMC4510819 DOI: 10.1002/pmic.201400392] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 12/30/2022]
Abstract
Data visualization plays a key role in high-throughput biology. It is an essential tool for data exploration allowing to shed light on data structure and patterns of interest. Visualization is also of paramount importance as a form of communicating data to a broad audience. Here, we provided a short overview of the application of the R software to the visualization of proteomics data. We present a summary of R's plotting systems and how they are used to visualize and understand raw and processed MS-based proteomics data.
Collapse
Affiliation(s)
- Laurent Gatto
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Department of Biochemistry, Computational Proteomics Unit, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
28
|
Wang Q, Cen Z, Zhao J. The survival mechanisms of thermophiles at high temperatures: an angle of omics. Physiology (Bethesda) 2015; 30:97-106. [PMID: 25729055 DOI: 10.1152/physiol.00066.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thermophiles are referred to as microorganisms with optimal growth temperatures of >60 °C. Over the past few years, a number of studies have been conducted regarding thermophiles, especially using the omics strategies. This review provides a systematic view of the survival physiology of thermophiles from an "omics" perspective, which suggests that the adaptive ability of thermophiles is based on a cooperative mode with multi-dimensional regulations integrating genomics, transcriptomics, and proteomics.
Collapse
Affiliation(s)
- Quanhui Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and BGI-Shenzhen, Shenzhen, China
| | - Zhen Cen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| | - Jingjing Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| |
Collapse
|
29
|
Wang C, Jin C, Zhang J, Bao Q, Liu B, Tan H. Transcriptomic analysis of Thermoanaerobacter tengcongensis grown at different temperatures by RNA sequencing. J Genet Genomics 2015; 42:335-8. [PMID: 26165500 DOI: 10.1016/j.jgg.2015.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/26/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Chuan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunlei Jin
- School of Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiyu Bao
- School of Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
30
|
Shi Q, Chen LN, Zhang BY, Xiao K, Zhou W, Chen C, Zhang XM, Tian C, Gao C, Wang J, Han J, Dong XP. Proteomics analyses for the global proteins in the brain tissues of different human prion diseases. Mol Cell Proteomics 2015; 14:854-69. [PMID: 25616867 PMCID: PMC4390265 DOI: 10.1074/mcp.m114.038018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 01/28/2023] Open
Abstract
Proteomics changes of brain tissues have been described in different neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. However, the brain proteomics of human prion disease remains less understood. In the study, the proteomics patterns of cortex and cerebellum of brain tissues of sporadic Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD were analyzed with isobaric tags for relative and absolute quantitation combined with multidimensional liquid chromatography and MS analysis, with the brains from three normal individuals as controls. Global protein profiling, significant pathway, and functional categories were analyzed. In total, 2287 proteins were identified with quantitative information both in cortex and cerebellum regions. Cerebellum tissues appeared to contain more up- and down-regulated proteins (727 proteins) than cortex regions (312 proteins) of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD. Viral myocarditis, Parkinson's disease, Alzheimer's disease, lysosome, oxidative phosphorylation, protein export, and drug metabolism-cytochrome P450 were the most commonly affected pathways of the three kinds of diseases. Almost coincident biological functions were identified in the brain tissues of the three diseases. In all, data here demonstrate that the brain tissues of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD have obvious proteomics changes at their terminal stages, which show the similarities not only among human prion diseases but also with other neurodegeneration diseases. This is the first study to provide a reference proteome map for human prion diseases and will be helpful for future studies focused on potential biomarkers for the diagnosis and therapy of human prion diseases.
Collapse
Affiliation(s)
- Qi Shi
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Li-Na Chen
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Bao-Yun Zhang
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Kang Xiao
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Wei Zhou
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Cao Chen
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Xiao-Mei Zhang
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Chan Tian
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Chen Gao
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Jing Wang
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Jun Han
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Xiao-Ping Dong
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China; §Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
31
|
Dai LL, Gao JX, Zou CG, Ma YC, Zhang KQ. mir-233 modulates the unfolded protein response in C. elegans during Pseudomonas aeruginosa infection. PLoS Pathog 2015; 11:e1004606. [PMID: 25569229 PMCID: PMC4287614 DOI: 10.1371/journal.ppat.1004606] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023] Open
Abstract
The unfolded protein response (UPR), which is activated by perturbations of the endoplasmic reticulum homeostasis, has been shown to play an important role in innate immunity and inflammation. However, little is known about the molecular mechanisms underlying activation of the UPR during immune responses. Using small RNA deep sequencing and reverse genetic analysis, we show that the microRNA mir-233 is required for activation of the UPR in Caenorhabditis elegans exposed to Pseudomonas aeruginosa PA14. P. aeruginosa infection up-regulates the expression of mir-233 in a p38 MAPK-dependent manner. Quantitative proteomic analysis identifies SCA-1, a C. elegans homologue of the sarco/endoplasmic reticulum Ca2+-ATPase, as a target of mir-233. During P. aeruginosa PA14 infection, mir-233 represses the protein levels of SCA-1, which in turn leads to activation of the UPR. Whereas mir-233 mutants are more sensitive to P. aeruginosa infection, knockdown of sca-1 leads to enhanced resistance to the killing by P. aeruginosa. Our study indicates that microRNA-dependent pathways may have an impact on innate immunity by activating the UPR. In the model organism Caenorhabditis elegans, the IRE1–XBP1 pathway, a major branch of the unfolded protein response (UPR), is required for host defense against pathogens. However, how innate immune responses activate the UPR is not fully understood. In this report, we find that Pseudomonas aeruginosa PA14 infection up-regulates the expression of the microRNA mir-233 in C. elegans. The response of mir-233 to P. aeruginosa PA14 infection is dependent on a major pathway of innate immunity, the p38 MAPK signaling cascade. The up-regulation of mir-233 is functionally important since a mutation in mir-233 leads to hypersensitivity of the nematode to the killing by P. aeruginosa PA14. Furthermore, we demonstrate that mir-233 contributes to the activation of the UPR by repressing the protein levels of its target SCA-1, a C. elegans homologue of the sarco/endoplasmic reticulum Ca2+-ATPase. Thus, mir-233 is an important regulator of the UPR during the innate immune response.
Collapse
Affiliation(s)
- Li-Li Dai
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Jin-Xia Gao
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Cheng-Gang Zou
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
- * E-mail: (CGZ); (KQZ)
| | - Yi-Cheng Ma
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
- * E-mail: (CGZ); (KQZ)
| |
Collapse
|
32
|
Wen B, Zhou R, Feng Q, Wang Q, Wang J, Liu S. IQuant: an automated pipeline for quantitative proteomics based upon isobaric tags. Proteomics 2014; 14:2280-5. [PMID: 25069810 DOI: 10.1002/pmic.201300361] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 07/12/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022]
Abstract
Quantitative proteomics technology based on isobaric tags is playing an important role in proteomic investigation. In this paper, we present an automated software, named IQuant, which integrates a postprocessing tool of protein identification and advanced statistical algorithms to process the MS/MS signals generated from the peptides labeled by isobaric tags and aims at proteomics quantification. The software of IQuant, which is freely downloaded at http://sourceforge.net/projects/iquant/, can run from a graphical user interface and a command-line interface, and can work on both Windows and Linux systems.
Collapse
Affiliation(s)
- Bo Wen
- BGI-Shenzhen, Shenzhen, P. R. China
| | | | | | | | | | | |
Collapse
|
33
|
Zi J, Zhang S, Zhou R, Zhou B, Xu S, Hou G, Tan F, Wen B, Wang Q, Lin L, Liu S. Expansion of the Ion Library for Mining SWATH-MS Data through Fractionation Proteomics. Anal Chem 2014; 86:7242-6. [PMID: 24969961 DOI: 10.1021/ac501828a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jin Zi
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Shenyan Zhang
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Ruo Zhou
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Baojin Zhou
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Shaohang Xu
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Guixue Hou
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Fengji Tan
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Bo Wen
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Quanhui Wang
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
- CAS
Key Laboratory of Genome Sciences and Information, Beijing Institutes
of Genomics, Chinese Academy of Sciences, No. 1, Beichen West Rd., Chaoyang District, Beijing,100101, China
| | - Liang Lin
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
| | - Siqi Liu
- Proteomics
Division, BGI-Shenzhen, Beishan Industrial Zone, Yantian, Shenzhen, Guangdong 518083, China
- CAS
Key Laboratory of Genome Sciences and Information, Beijing Institutes
of Genomics, Chinese Academy of Sciences, No. 1, Beichen West Rd., Chaoyang District, Beijing,100101, China
| |
Collapse
|
34
|
Liu B, Zhang Y, Zhang W. RNA-Seq-based analysis of cold shock response in Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein encoding gene. PLoS One 2014; 9:e93289. [PMID: 24667527 PMCID: PMC3965559 DOI: 10.1371/journal.pone.0093289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although cold shock responses and the roles of cold shock proteins in microorganisms containing multiple cold shock protein genes have been well characterized, related studies on bacteria possessing a single cold shock protein gene have not been reported. Thermoanaerobacter tengcongensis MB4, a thermophile harboring only one known cold shock protein gene (TtescpC), can survive from 50° to 80 °C, but has poor natural competence under cold shock at 50 °C. We therefore examined cold shock responses and their effect on natural competence in this bacterium. RESULTS The transcriptomes of T. tengcongensis before and after cold shock were analyzed by RNA-seq and over 1200 differentially expressed genes were successfully identified. These genes were involved in a wide range of biological processes, including modulation of DNA replication, recombination, and repair; energy metabolism; production of cold shock protein; synthesis of branched amino acids and branched-chain fatty acids; and sporulation. RNA-seq analysis also suggested that T. tengcongensis initiates cell wall and membrane remodeling processes, flagellar assembly, and sporulation in response to low temperature. Expression profiles of TtecspC and failed attempts to produce a TtecspC knockout strain confirmed the essential role of TteCspC in the cold shock response, and also suggested a role of this protein in survival at optimum growth temperature. Repression of genes encoding ComEA and ComEC and low energy metabolism levels in cold-shocked cells are the likely basis of poor natural competence at low temperature. CONCLUSION Our study demonstrated changes in global gene expression under cold shock and identified several candidate genes related to cold shock in T. tengcongensis. At the same time, the relationship between cold shock response and poor natural competence at low temperature was preliminarily elucidated. These findings provide a foundation for future studies on genetic and molecular mechanisms associated with cold shock and acclimation at low temperature.
Collapse
Affiliation(s)
- Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
35
|
Wang B, Lu L, Lv H, Jiang H, Qu G, Tian C, Ma Y. The transcriptome landscape of Prochlorococcus MED4 and the factors for stabilizing the core genome. BMC Microbiol 2014; 14:11. [PMID: 24438106 PMCID: PMC3898218 DOI: 10.1186/1471-2180-14-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/14/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gene gain and loss frequently occurs in the cyanobacterium Prochlorococcus, a phototroph that numerically dominates tropical and subtropical open oceans. However, little is known about the stabilization of its core genome, which contains approximately 1250 genes, in the context of genome streamlining. Using Prochlorococcus MED4 as a model organism, we investigated the constraints on core genome stabilization using transcriptome profiling. RESULTS RNA-Seq technique was used to obtain the transcriptome map of Prochlorococcus MED4, including operons, untranslated regions, non-coding RNAs, and novel genes. Genome-wide expression profiles revealed that three factors contribute to core genome stabilization. First, a negative correlation between gene expression levels and protein evolutionary rates was observed. Highly expressed genes were overrepresented in the core genome but not in the flexible genome. Gene necessity was determined as a second powerful constraint on genome evolution through functional enrichment analysis. Third, quick mRNA turnover may increase corresponding proteins' fidelity among genes that were abundantly expressed. Together, these factors influence core genome stabilization during MED4 genome evolution. CONCLUSIONS Gene expression, gene necessity, and mRNA turnover contribute to core genome maintenance during cyanobacterium Prochlorococcus genus evolution.
Collapse
Affiliation(s)
| | | | | | | | | | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | | |
Collapse
|
36
|
Huang H, Han Y, Gao J, Feng J, Zhu L, Qu L, Shen L, Shou C. High level of serum AMBP is associated with poor response to paclitaxel-capecitabine chemotherapy in advanced gastric cancer patients. Med Oncol 2013; 30:748. [PMID: 24135868 DOI: 10.1007/s12032-013-0748-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/02/2013] [Indexed: 12/13/2022]
Abstract
Gastric cancer is one of the most common human cancers and ranks the second in the global cancer-related mortality. The clinical outcome of patients with advanced gastric cancer (AGC) is markedly dependent on their response to the chemotherapy. Paclitaxel plus capecitabine, as a first-line regimen, is widely administrated in AGC patients, but more than a half of the patients have a poor response, possibly due to their resistance to the treatment. Therefore, it is important to identify potential responders to improve the efficacy of the chemotherapy. In the present study, we used an isobaric tag approach for relative and absolute quantification combined with ESI-QUAD-TOF/MS to identify potential predictive biomarkers for the chemotherapy. We found 211 serum proteins, and confirmed 17 candidates that were differentially present in the progression of disease (PD) group and the partial response (PR) group to the treatment of paclitaxel plus capecitabine. In further validation of the 17 candidates in the set of 12 PD and 12 PR AGC patients, we identified a higher level of AMBP (Alpha-1-Microglobulin/Bikunin Precursor) in the sera of PD patients than of the PR patients assayed by ELISA (9.13 ± 0.45 vs. 8.11 ± 0.26 μg/mL, p = 0.06) and by the Western blotting (relative gray value 396.4 ± 39.1 vs. 275.0 ± 34.76, p = 0.03), respectively. The receiver operating characteristics curve showed 75% sensitivity and 75% specificity of AMBP in AGC patients treated with the chemotherapy. Our data indicated that the high level of serum AMBP could predict the poor response of the AGC patients treated with the paclitaxel-capecitabine chemotherapy, which could be used as a potential biomarker to identify patients who would benefit from this chemotherapeutic regimen.
Collapse
Affiliation(s)
- Hao Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Thermal stability of glucokinases in Thermoanaerobacter tengcongensis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:646539. [PMID: 24058911 PMCID: PMC3766608 DOI: 10.1155/2013/646539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022]
Abstract
In the genome of Thermoanaerobacter tengcongensis, three genes belonging to ROK (Repressor, ORF, and Kinase) family are annotated as glucokinases (GLKs). Using enzyme assays, the three GLKs were identified as ATP-dependent GLK (ATP-GLK), ADP-dependent GLK (ADP-GLK), and N-acetyl-glucosamine/mannosamine kinase (glu/man-NacK). The kinetic properties of the three GLKs such as Km, Vmax, optimal pH, and temperature were characterized, demonstrating that these enzymes performed the specific functions against varied substrates and under different temperatures. The abundance of ATP-GLK was attenuated when culture temperature was elevated and was almost undetectable at 80°C, whereas the ADP-GLK abundance was insensitive to temperature changes. Using degradation assays, ATP-GLK was found to have significantly faster degradation than ADP-GLK at 80°C. Co-immunoprecipitation results revealed that heat shock protein 60 (HSP60) could interact with ATP-GLK and ADP-GLK at 60 and 75°C, whereas at 80°C, the interaction was only effectively with ADP-GLK but not ATP-GLK. The functions of GLKs in T. tengcongensis are temperature dependent, likely regulated through interactions with HSP60.
Collapse
|