1
|
Chen Y, Fang Z, Zhou J, Qin H, Ye M. Mirror-Cutting-Based Digestion Strategy Enables the In-Depth and Accuracy Characterization of N-Linked Protein Glycosylation. J Proteome Res 2021; 20:4948-4958. [PMID: 34636569 DOI: 10.1021/acs.jproteome.1c00333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
N-linked glycosylation plays important roles in multiple physiological and pathological processes, while the analysis coverage is still limited due to the insufficient digestion of glycoproteins, as well as incomplete ion fragments for intact glycopeptide determination. Herein, a mirror-cutting-based digestion strategy was proposed by combining two orthogonal proteases of LysargiNase and trypsin to characterize the macro- and micro-heterogeneity of protein glycosylation. Using the above two proteases, the b- or y-ion series of peptide sequences were, respectively, enhanced in MS/MS, generating the complementary spectra for peptide sequence identification. More than 27% (489/1778) of the site-specific glycoforms identified by LysargiNase digestion were not covered by trypsin digestion, suggesting the elevated coverage of protein sequences and site-specific glycoforms by the mirror-cutting method. Totally, 10,935 site-specific glycoforms were identified from mouse brain tissues in the 18 h MS analysis, which significantly enhanced the coverage of protein glycosylation. Intriguingly, 27 mannose-6-phosphate (M6P) glycoforms were determined with core fucosylation, and 23 of them were found with the "Y-HexNAc-Fuc" ions after manual checking. This is hitherto the first report of M6P and fucosylation co-modifications of glycopeptides, in which the mechanism and function still needs further exploration. The mirror-cutting digestion strategy also has great application potential in the exploration of missing glycoproteins from other complex samples to provide rich resources for glycobiology research.
Collapse
Affiliation(s)
- Yao Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahua Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| |
Collapse
|
2
|
Gaunitz S, Tjernberg LO, Schedin-Weiss S. What Can N-glycomics and N-glycoproteomics of Cerebrospinal Fluid Tell Us about Alzheimer Disease? Biomolecules 2021; 11:858. [PMID: 34207636 PMCID: PMC8226827 DOI: 10.3390/biom11060858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
Proteomics-large-scale studies of proteins-has over the last decade gained an enormous interest for studies aimed at revealing proteins and pathways involved in disease. To fully understand biological and pathological processes it is crucial to also include post-translational modifications in the "omics". To this end, glycomics (identification and quantification of glycans enzymatically or chemically released from proteins) and glycoproteomics (identification and quantification of peptides/proteins with the glycans still attached) is gaining interest. The study of protein glycosylation requires a workflow that involves an array of sample preparation and analysis steps that needs to be carefully considered. Herein, we briefly touch upon important steps such as sample preparation and preconcentration, glycan release, glycan derivatization and quantification and advances in mass spectrometry that today are the work-horse for glycomics and glycoproteomics studies. Several proteins related to Alzheimer disease pathogenesis have altered protein glycosylation, and recent glycomics studies have shown differences in cerebrospinal fluid as well as in brain tissue in Alzheimer disease as compared to controls. In this review, we discuss these techniques and how they have been used to shed light on Alzheimer disease and to find glycan biomarkers in cerebrospinal fluid.
Collapse
Affiliation(s)
- Stefan Gaunitz
- Department of Clinical Chemistry, Karolinska University Hospital, 14186 Stockholm, Sweden;
| | - Lars O. Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden;
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden;
| |
Collapse
|
3
|
Segu Z, Stone T, Berdugo C, Roberts A, Doud E, Li Y. A rapid method for relative quantification of N-glycans from a therapeutic monoclonal antibody during trastuzumab biosimilar development. MAbs 2021; 12:1750794. [PMID: 32249667 PMCID: PMC7188402 DOI: 10.1080/19420862.2020.1750794] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Glycosylation is a common post-translational modification and critical quality attribute that can modulate the efficacy of therapeutic proteins. In the production of monoclonal antibodies (mAbs), quantifying the glycoform profile is a vital characterization step. Traditional glycan analysis is time consuming and involves steps at extreme temperature or pH, which may alter glycans. Here, we describe a rapid method for glycan analysis in which glycans are released from mAb samples that are bound to protein A columns. Since host cell proteins, which may also contain glycans, were already removed, this step enables analysis of cell culture products. Glycans released from the mAb samples are then derivatized with InstantPC™ labeling agent and analyzed by HILIC-FLD-MS. To illustrate the method, the glycan profiles of six trastuzumab (Herceptin®) antibody lots and four biosimilar developmental lots were analyzed. The results derived from our novel method, which takes less than 90 min, are compared with those from a typical glycan preparation approach.
Collapse
Affiliation(s)
- Zaneer Segu
- Process Development, Catalent Biologics, Bloomington, IN, USA
| | - Todd Stone
- Process Development, Catalent Biologics, Bloomington, IN, USA
| | - Claudia Berdugo
- Process Development, Catalent Biologics, Bloomington, IN, USA
| | - Anthony Roberts
- Process Development, Catalent Biologics, Bloomington, IN, USA
| | | | - Yunsong Li
- Process Development, Catalent Biologics, Bloomington, IN, USA
| |
Collapse
|
4
|
Guan Y, Zhang M, Wang J, Schlüter H. Comparative Analysis of Different N-glycan Preparation Approaches and Development of Optimized Solid-Phase Permethylation Using Mass Spectrometry. J Proteome Res 2021; 20:2914-2922. [PMID: 33829797 DOI: 10.1021/acs.jproteome.1c00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein N-glycosylation characterization is challenging due to structural micro- and macro-heterogeneity. Although various N-glycan preparation strategies, including purification and derivatization, have been previously developed prior to mass spectrometric analysis, systematic evaluation still needs to be performed. This study compared the different N-glycan purification strategies, including filter-aided sample preparation, de-N-glycosylated protein precipitation, and trypsin digestion followed by reversed phase-based solid-phase extraction, and derivatization approaches, such as solid-phase permethylation, reductive amination, and reduction. With the comparative analysis, an optimized solid-phase permethylation (OSPP) workflow was developed for mass spectrometric N-glycomics, showing simplified analysis for N-glycan compositions and high yields using etanercept. The N-glycan samples released from trastuzumab and adalimumab were utilized to test OSPP to obtain their N-glycan profiles using mass spectrometry. Based on different standard procedures across laboratories, this study provides the reference for analysts to select an appropriate N-glycan preparation method with their research purposes.
Collapse
Affiliation(s)
- Yudong Guan
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Zhang
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jigang Wang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
5
|
Li H, Patel V, DiMartino SE, Froehlich JW, Lee RS. An in-depth Comparison of the Pediatric and Adult Urinary N-glycomes. Mol Cell Proteomics 2020; 19:1767-1776. [PMID: 32737218 DOI: 10.1074/mcp.ra120.002225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
We performed an in-depth characterization and comparison of the pediatric and adult urinary glycomes using a nanoLC-MS/MS based glycomics method, which included normal healthy pediatric (1-10 years, n = 21) and adult (21-50 years, n = 22) individuals. A total of 116 N-glycan compositions were identified, and 46 of them could be reproducibly quantified. We performed quantitative comparisons of the 46 glycan compositions between different age and sex groups. The results showed significant quantitative changes between the pediatric and adult cohorts. The pediatric urinary N-glycome was found to contain a higher level of high-mannose (HM), asialylated/afucosylated glycans (excluding HM), neutral fucosylated and agalactosylated glycans, and a lower level of trisialylated glycans compared with the adult. We further analyzed gender-associated glycan changes in the pediatric and adult group, respectively. In the pediatric group, there was almost no difference of glycan levels between males and females. In adult, the majority of glycans were more abundant in males than females, except the high-mannose and tetrasialylated glycans. These findings highlight the importance to consider age-matching and adult sex-matching for urinary glycan studies. The identified normal pediatric and adult urinary glycomes can serve as a baseline reference for comparisons to other disease states affected by glycosylation.
Collapse
Affiliation(s)
- Haiying Li
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Viral Patel
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shannon E DiMartino
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John W Froehlich
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | - Richard S Lee
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Pace CL, Muddiman DC. Direct Analysis of Native N-Linked Glycans by IR-MALDESI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:10.1021/jasms.0c00176. [PMID: 32603137 PMCID: PMC8285077 DOI: 10.1021/jasms.0c00176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glycan analysis by mass spectrometry has rapidly progressed due to the interest in understanding the role of glycans in disease and tumor progression. Glycans are complex molecules that pose analytical challenges due to their isomeric compositions, labile character, and ionization preferences. This study sought to demonstrate infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) as a novel approach for the direct analysis of N-linked glycans. The glycoprotein bovine fetuin was chosen for this analysis as its glycome is well-characterized and heavily composed of sialylated glycans. Native N-linked glycans produced by enzymatic cleavage (via PNGase F) of bovine fetuin were analyzed directly by IR-MALDESI in both positive and negative ionization mode. In this study, we detected 12 N-linked glycans in negative mode and 4 N-linked glycans in positive mode, a significant increase in the amount of underivatized glycans detected by other ionization sources. Importantly, all N-linked glycans detected contained at least one sialic acid residue, which are known to be labile. This work represents a critical first step for N-linked glycan analysis by IR-MALDESI with future efforts directed at mass spectrometry imaging.
Collapse
Affiliation(s)
- Crystal L. Pace
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, USA 27695
| | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, USA 27695
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, USA 27695
| |
Collapse
|
7
|
Vitko D, Cho PS, Kostel SA, DiMartino SE, Cabour LD, Migliozzi MA, Logvinenko T, Warren PG, Froehlich JW, Lee RS. Characterizing Patients with Recurrent Urinary Tract Infections in Vesicoureteral Reflux: A Pilot Study of the Urinary Proteome. Mol Cell Proteomics 2020; 19:456-466. [PMID: 31896675 PMCID: PMC7050111 DOI: 10.1074/mcp.ra119.001873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/25/2019] [Indexed: 01/23/2023] Open
Abstract
Recurrent urinary tract infections (UTIs) pose a significant burden on the health care system. Underlying mechanisms predisposing children to UTIs and associated changes in the urinary proteome are not well understood. We aimed to investigate the urinary proteome of a subset of children who have vesicoureteral reflux (VUR) and recurrent UTIs because of their risk of developing infection-related renal damage. Improving diagnostic modalities to identify UTI risk factors would significantly alter the clinical management of children with VUR. We profiled the urinary proteomes of 22 VUR patients with low grade VUR (1-3 out of 5), a history of recurrent UTIs, and renal scarring, comparing them to those obtained from 22 age-matched controls. Urinary proteins were analyzed by mass spectrometry followed by protein quantitation based on spectral counting. Of the 2,551 proteins identified across both cohorts, 964 were robustly quantified, as defined by meeting criteria with spectral count (SC) ≥2 in at least 7 patients in either VUR or control cohort. Eighty proteins had differential expression between the two cohorts, with 44 proteins significantly up-regulated and 36 downregulated (q <0.075, FC ≥1.2). Urinary proteins involved in inflammation, acute phase response (APR), modulation of extracellular matrix (ECM), and carbohydrate metabolism were altered among the study cohort.
Collapse
Affiliation(s)
- Dijana Vitko
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts
| | - Patricia S Cho
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts; Department of Urology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Stephen A Kostel
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Lily D Cabour
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Tanya Logvinenko
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts
| | - Peter G Warren
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts
| | - John W Froehlich
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts
| | - Richard S Lee
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts.
| |
Collapse
|
8
|
Sun S, Hu Y, Ao M, Shah P, Chen J, Yang W, Jia X, Tian Y, Thomas S, Zhang H. N-GlycositeAtlas: a database resource for mass spectrometry-based human N-linked glycoprotein and glycosylation site mapping. Clin Proteomics 2019; 16:35. [PMID: 31516400 PMCID: PMC6731604 DOI: 10.1186/s12014-019-9254-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND N-linked glycoprotein is a highly interesting class of proteins for clinical and biological research. The large-scale characterization of N-linked glycoproteins accomplished by mass spectrometry-based glycoproteomics has provided valuable insights into the interdependence of glycoprotein structure and protein function. However, these studies focused mainly on the analysis of specific sample type, and lack the integration of glycoproteomic data from different tissues, body fluids or cell types. METHODS In this study, we collected the human glycosite-containing peptides identified through their de-glycosylated forms by mass spectrometry from over 100 publications and unpublished datasets generated from our laboratory. A database resource termed N-GlycositeAtlas was created and further used for the distribution analyses of glycoproteins among different human cells, tissues and body fluids. Finally, a web interface of N-GlycositeAtlas was created to maximize the utility and value of the database. RESULTS The N-GlycositeAtlas database contains more than 30,000 glycosite-containing peptides (representing > 14,000 N-glycosylation sites) from more than 7200 N-glycoproteins from different biological sources including human-derived tissues, body fluids and cell lines from over 100 studies. CONCLUSIONS The entire human N-glycoproteome database as well as 22 sub-databases associated with individual tissues or body fluids can be downloaded from the N-GlycositeAtlas website at http://nglycositeatlas.biomarkercenter.org.
Collapse
Affiliation(s)
- Shisheng Sun
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
- College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Minghui Ao
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Jing Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Xingwang Jia
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Stefani Thomas
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| |
Collapse
|
9
|
Qin H, Dong X, Mao J, Chen Y, Dong M, Wang L, Guo Z, Liang X, Ye M. Highly Efficient Analysis of Glycoprotein Sialylation in Human Serum by Simultaneous Quantification of Glycosites and Site-Specific Glycoforms. J Proteome Res 2019; 18:3439-3446. [PMID: 31380653 DOI: 10.1021/acs.jproteome.9b00332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aberrant sialylation of glycoproteins is closely related to many malignant diseases, and analysis of sialylation has great potential to reveal the status of these diseases. However, in-depth analysis of sialylation is still challenging because of the high microheterogeneity of protein glycosylation, as well as the low abundance of sialylated glycopeptides (SGPs). Herein, an integrated strategy was fabricated for the detailed characterization of glycoprotein sialylation on the levels of glycosites and site-specific glycoforms by employing the SGP enrichment method. This strategy enabled the identification of up to 380 glycosites, as well as 414 intact glycopeptides corresponding to 383 site-specific glycoforms from only initial 6 μL serum samples, indicating the high sensitivity of the method for the detailed analysis of glycoprotein sialylation. This strategy was further employed to the differential analysis of glycoprotein sialylation between hepatocellular carcinoma patients and control samples, leading to the quantification of 344 glycosites and 405 site-specific glycoforms, simultaneously. Among these, 43 glycosites and 55 site-specific glycoforms were found to have significant change on the glycosite and site-specific glycoform levels, respectively. Interestingly, several glycoforms attached onto the same glycosite were found with different change tendencies. This strategy was demonstrated to be a powerful tool to reveal subtle differences of the macro- and microheterogeneity of glycoprotein sialylation.
Collapse
Affiliation(s)
- Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Xuefang Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yao Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Mingming Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Liming Wang
- The Second Affiliated Hospital of Dalian Medical University , Dalian 116027 , China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| |
Collapse
|
10
|
Dang L, Jia L, Zhi Y, Li P, Zhao T, Zhu B, Lan R, Hu Y, Zhang H, Sun S. Mapping human N-linked glycoproteins and glycosylation sites using mass spectrometry. Trends Analyt Chem 2019; 114:143-150. [PMID: 31831916 PMCID: PMC6907083 DOI: 10.1016/j.trac.2019.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N-linked glycoprotein is a highly interesting class of proteins for clinical and biological research. Over the last decade, large-scale profiling of N-linked glycoproteins and glycosylation sites from biological and clinical samples has been achieved through mass spectrometry-based glycoproteomic approaches. In this paper, we reviewed the human glycoproteomic profiles that have been reported in more than 80 individual studies, and mainly focused on the N-glycoproteins and glycosylation sites identified through their deglycosylated forms of glycosite-containing peptides. According to our analyses, more than 30,000 glycosite-containing peptides and 7,000 human glycoproteins have been identified from five different body fluids, twelve human tissues (or related cell lines), and four special cell types. As the glycoproteomic data is still missing for many organs and tissues, a systematical glycoproteomic analysis of various human tissues and body fluids using a uniform platform is still needed for an integrated map of human N-glycoproteomes.
Collapse
Affiliation(s)
- Liuyi Dang
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| | - Li Jia
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| | - Yuan Zhi
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| | - Pengfei Li
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| | - Ting Zhao
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| | - Bojing Zhu
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| | - Rongxia Lan
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi’an, Shaanxi province 710069, China
| |
Collapse
|
11
|
Qin H, Chen Y, Mao J, Cheng K, Sun D, Dong M, Wang L, Wang L, Ye M. Proteomics analysis of site-specific glycoforms by a virtual multistage mass spectrometry method. Anal Chim Acta 2019; 1070:60-68. [PMID: 31103168 DOI: 10.1016/j.aca.2019.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023]
Abstract
Determination of site-specific glycoforms is the key to reveal the micro-heterogeneity of protein glycosylation at proteome level. Herein, we presented an integrated virtual multistage MS strategy to identify intact glycopeptides, which allowed the determination of site-specific glycoforms. In this strategy, the enzymatically de-glycosylated peptides and intact glycopeptides were mixed and analyzed in the same LC-MS/MS run. The acquired MS2 spectra of intact glycopeptides allowed determination of the glycans, and the MS2 spectra of the de-glycosylated peptides enabled the identification of peptide backbone sequences. Compared with the conventional multistage strategy, the peptide backbones could be directly identified by the MS2 of the de-glycopeptides with higher sensitivity. This strategy was first validated by analyzing the glycosites and site-specific glycoforms of mouse liver tissues. Then, it was applied to differential analysis of the glycoproteomes of hepatocellular carcinoma (HCC) and adjacent liver tissues. Compared with the identification scheme using only MS2 spectra of intact glycopeptides or glycosites, this approach enabled quantitative analysis on two levels, i.e. glycosites and site-specific glycoforms, simultaneously. Thus, it could be a powerful tool to characterize the subtle differences in the macro- and micro-heterogeneity of protein glycosylation for different samples.
Collapse
Affiliation(s)
- Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yao Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Cheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Deguang Sun
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Mingming Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lu Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Liming Wang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
12
|
Abstract
Even if a consensus sequence has been identified for a posttranslational modification, the presence of such a sequence motif only indicates the possibility, not the certainty that the modification actually occurs. Proteins can be glycosylated on certain amino acid side chains, and these modifications are designated as C-, N-, and O-glycosylation. C-mannosylation occurs on Trp residues within a relatively loosely defined consensus motif. N-glycosylated species are modified at Asn residues of Asn-Xxx-Ser/Thr/Cys sequons (where Xxx can be any amino acid except proline). N-linked oligosaccharides share a common core structure of GlcNAc2Man3. In addition, an enzyme, peptide N-glycosidase F (PNGase F), removes most of the common N-linked carbohydrates unaltered from proteins while hydrolyzing the originally glycosylated Asn residue to Asp. O-glycosylation occurs at Ser, Thr, and Tyr residues, usually in sequence stretches rich in hydroxy-amino acids. O-glycosylation lacks a common core structure. Mammalian proteins have been reported bearing O-linked N-acetylgalactosamine, fucose, glucose, xylose, mannose, and corresponding elongated structures, as well as N-acetylglucosamine. Chemical methods are used to liberate these oligosaccharides because no enzyme would remove all the different O-linked carbohydrates. Characterization of both N- and O-glycosylation is complicated by the fact that the same positions within a population of protein molecules may feature an array of different carbohydrate structures, or remain unmodified. This site-specific heterogeneity may vary by species and tissue, and may also be affected by physiological changes. For addressing site-specific carbohydrate heterogeneity mass spectrometry has become the method of choice. Reversed-phase HPLC directly coupled with electrospray ionization mass spectrometry (LC/ESI-MS/MS) offers the best solution. Using a mass spectrometer as online detector not only assures the analysis of every component eluting (mass mapping), but also at the same time diagnostic carbohydrate ions can be generated by collisional activation that permits the selective and specific detection of glycopeptides. In addition, ESI-compatible alternative MS/MS techniques, electron-capture and electron-transfer dissociation, aid glycopeptide identification as well as modification site assignments.
Collapse
|
13
|
Zhu R, Zhou S, Peng W, Huang Y, Mirzaei P, Donohoo K, Mechref Y. Enhanced Quantitative LC-MS/MS Analysis of N-linked Glycans Derived from Glycoproteins Using Sodium Deoxycholate Detergent. J Proteome Res 2018; 17:2668-2678. [PMID: 29745666 DOI: 10.1021/acs.jproteome.8b00127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein glycosylation is a common protein post-translational modification (PTM) in living organisms and has been shown to associate with multiple diseases, and thus may potentially be a biomarker of such diseases. Efficient protein/glycoprotein extraction is a crucial step in the preparation of N-glycans derived from glycoproteins prior to LC-MS analysis. Convenient, efficient and unbiased sample preparation protocols are needed. Herein, we evaluated the use of sodium deoxycholate (SDC) acidic labile detergent to release N-glycans of glycoproteins derived from biological samples such as cancer cell lines. Compared to the filter-aided sample preparation approach, the sodium deoxycholate (SDC) assisted approach was determined to be more efficient and unbiased. SDC removal was determined to be more efficient when using acidic precipitation rather than ethyl acetate phase transfer. Efficient extraction of proteins/glycoproteins from biological samples was achieved by combining SDC lysis buffer and beads beating cell disruption. This was suggested by a significant overall increase in the intensities of N-glycans released from cancer cell lines. Additionally, the use of SDC approach was also shown to be more reproducible than those methods that do not use SDC.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Shiyue Zhou
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Wenjing Peng
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Parvin Mirzaei
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| |
Collapse
|
14
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
15
|
Darula Z, Medzihradszky KF. Analysis of Mammalian O-Glycopeptides-We Have Made a Good Start, but There is a Long Way to Go. Mol Cell Proteomics 2018; 17:2-17. [PMID: 29162637 PMCID: PMC5750848 DOI: 10.1074/mcp.mr117.000126] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Glycosylation is perhaps the most common post-translational modification. Recently there has been growing interest in cataloging the glycan structures, glycoproteins, and specific sites modified and deciphering the biological functions of glycosylation. Although the results are piling up for N-glycosylation, O-glycosylation is seriously trailing behind. In our review we reiterate the difficulties researchers have to overcome in order to characterize O-glycosylation. We describe how an ingenious cell engineering method delivered exciting results, and what could we gain from "wild-type" samples. Although we refer to the biological role(s) of O-glycosylation, we do not provide a complete inventory on this topic.
Collapse
Affiliation(s)
- Zsuzsanna Darula
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary
| | - Katalin F Medzihradszky
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary;
- §Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, Genentech Hall, N472A, MC 2240, 600 16th Street, San Francisco, California 94158-2517
| |
Collapse
|
16
|
Harpole M, Davis J, Espina V. Current state of the art for enhancing urine biomarker discovery. Expert Rev Proteomics 2017; 13:609-26. [PMID: 27232439 DOI: 10.1080/14789450.2016.1190651] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Urine is a highly desirable biospecimen for biomarker analysis because it can be collected recurrently by non-invasive techniques, in relatively large volumes. Urine contains cellular elements, biochemicals, and proteins derived from glomerular filtration of plasma, renal tubule excretion, and urogenital tract secretions that reflect, at a given time point, an individual's metabolic and pathophysiologic state. AREAS COVERED High-resolution mass spectrometry, coupled with state of the art fractionation systems are revealing the plethora of diagnostic/prognostic proteomic information existing within urinary exosomes, glycoproteins, and proteins. Affinity capture pre-processing techniques such as combinatorial peptide ligand libraries and biomarker harvesting hydrogel nanoparticles are enabling measurement/identification of previously undetectable urinary proteins. Expert commentary: Future challenges in the urinary proteomics field include a) defining either single or multiple, universally applicable data normalization methods for comparing results within and between individual patients/data sets, and b) defining expected urinary protein levels in healthy individuals.
Collapse
Affiliation(s)
- Michael Harpole
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Justin Davis
- b Department of Chemistry/Biochemistry , George Mason University , Manassas , VA , USA
| | - Virginia Espina
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| |
Collapse
|
17
|
Shen B, Zhang W, Shi Z, Tian F, Deng Y, Sun C, Wang G, Qin W, Qian X. A novel strategy for global mapping of O-GlcNAc proteins and peptides using selective enzymatic deglycosylation, HILIC enrichment and mass spectrometry identification. Talanta 2017; 169:195-202. [PMID: 28411811 DOI: 10.1016/j.talanta.2017.03.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 01/07/2023]
Abstract
O-GlcNAcylation is a kind of dynamic O-linked glycosylation of nucleocytoplasmic and mitochondrial proteins. It serves as a major nutrient sensor to regulate numerous biological processes including transcriptional regulation, cell metabolism, cellular signaling, and protein degradation. Dysregulation of cellular O-GlcNAcylated levels contributes to the etiologies of many diseases such as diabetes, neurodegenerative disease and cancer. However, deeper insight into the biological mechanism of O-GlcNAcylation is hampered by its extremely low stoichiometry and the lack of efficient enrichment approaches for large-scale identification by mass spectrometry. Herein, we developed a novel strategy for the global identification of O-GlcNAc proteins and peptides using selective enzymatic deglycosylation, HILIC enrichment and mass spectrometry analysis. Standard O-GlcNAc peptides can be efficiently enriched even in the presence of 500-fold more abundant non-O-GlcNAc peptides and identified by mass spectrometry with a low nanogram detection sensitivity. This strategy successfully achieved the first large-scale enrichment and characterization of O-GlcNAc proteins and peptides in human urine. A total of 474 O-GlcNAc peptides corresponding to 457 O-GlcNAc proteins were identified by mass spectrometry analysis, which is at least three times more than that obtained by commonly used enrichment methods. A large number of unreported O-GlcNAc proteins related to cell cycle, biological regulation, metabolic and developmental process were found in our data. The above results demonstrated that this novel strategy is highly efficient in the global enrichment and identification of O-GlcNAc peptides. These data provide new insights into the biological function of O-GlcNAcylation in human urine, which is correlated with the physiological states and pathological changes of human body and therefore indicate the potential of this strategy for biomarker discovery from human urine.
Collapse
Affiliation(s)
- Bingquan Shen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China; National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, BPRC-Tianjin Baodi Hospital Joint Center, Beijing 102206, PR China
| | - Wanjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, BPRC-Tianjin Baodi Hospital Joint Center, Beijing 102206, PR China
| | - Zhaomei Shi
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, BPRC-Tianjin Baodi Hospital Joint Center, Beijing 102206, PR China
| | - Fang Tian
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, BPRC-Tianjin Baodi Hospital Joint Center, Beijing 102206, PR China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | | | | | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, BPRC-Tianjin Baodi Hospital Joint Center, Beijing 102206, PR China.
| | - Xiaohong Qian
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China; National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, BPRC-Tianjin Baodi Hospital Joint Center, Beijing 102206, PR China.
| |
Collapse
|
18
|
Wu ZL, Zhou H, Ethen CM, N Reinhold V. Core-6 fucose and the oligomerization of the 1918 pandemic influenza viral neuraminidase. Biochem Biophys Res Commun 2016; 473:524-9. [PMID: 27012207 DOI: 10.1016/j.bbrc.2016.03.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/19/2016] [Indexed: 12/09/2022]
Abstract
The 1918 H1N1 influenza virus was responsible for one of the most deadly pandemics in human history. Yet to date, the structure component responsible for its virulence is still a mystery. In order to search for such a component, the neuraminidase (NA) antigen of the virus was expressed, which led to the discovery of an active form (tetramer) and an inactive form (dimer and monomer) of the protein due to different glycosylation. In this report, the N-glycans from both forms were released and characterized by mass spectrometry. It was found that the glycans from the active form had 26% core-6 fucosylated, while the glycans from the inactive form had 82% core-6 fucosylated. Even more surprisingly, the stalk region of the active form was almost completely devoid of core-6-linked fucose. These findings were further supported by the results obtained from in vitro incorporation of azido fucose and (3)H-labeled fucose using core-6 fucosyltransferase, FUT8. In addition, the incorporation of fucose did not change the enzymatic activity of the active form, implying that core-6 fucose is not directly involved in the enzymatic activity. It is postulated that core-6 fucose prohibits the oligomerization and subsequent activation of the enzyme.
Collapse
Affiliation(s)
- Zhengliang L Wu
- Bio-Techne Inc., 614 McKinley Place NE, Minneapolis, MN 55413, USA.
| | - Hui Zhou
- Gregg Hall, UNH Glycomics Center, University of New Hampshire, USA
| | - Cheryl M Ethen
- Bio-Techne Inc., 614 McKinley Place NE, Minneapolis, MN 55413, USA
| | | |
Collapse
|
19
|
Zhou H, Morley S, Kostel S, Freeman MR, Joshi V, Brewster D, Lee RS. Universal Solid-Phase Reversible Sample-Prep for Concurrent Proteome and N-Glycome Characterization. J Proteome Res 2016; 15:891-9. [PMID: 26791391 DOI: 10.1021/acs.jproteome.5b00865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a novel solid-phase reversible sample-prep (SRS) platform that enables rapid sample preparation for concurrent proteome and N-glycome characterization for nearly all protein samples. SRS utilizes a uniquely functionalized, silica-based bead that has strong affinity toward proteins with minimal to no affinity for peptides and other small molecules. By leveraging this inherent size difference between proteins and peptides, SRS permits high-capacity binding of proteins, rapid removal of small molecules (detergents, metabolites, salts, peptides, etc.), extensive manipulation including enzymatic and chemical treatments on bead-bound proteins, and easy recovery of N-glycans and peptides. SRS was evaluated in a wide range of samples including glycoproteins, cell lysate, murine tissues, and human urine. SRS was also coupled to a quantitative strategy to investigate the differences between DU145 prostate cancer cells and its DIAPH3-silenced counterpart. Previous studies suggested that DIAPH3 silencing in DU145 induced transition to an amoeboid phenotype that correlated with tumor progression and metastasis. In this pilot study we identified distinct proteomic and N-glycomic alterations between them. A metastasis-associated tyrosine kinase receptor ephrin-type-A receptor (EPHA2) was highly up-regulated in DIAPH3-silenced cells, indicating a possible connection between EPHA2 and DIAPH3. Moreover, distinct alterations in the N-glycome were identified, suggesting cross-links between DIAPH3 and glycosyltransferase networks.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Urology, Boston Children's Hospital and Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Samantha Morley
- Department of Urology, Boston Children's Hospital and Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Stephen Kostel
- Department of Urology, Boston Children's Hospital and Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center , Los Angeles, California 90048, United States
| | - Vivek Joshi
- EMD Millipore Corporation , Billerica, Massachusetts 01821, United States
| | - David Brewster
- EMD Millipore Corporation , Billerica, Massachusetts 01821, United States
| | - Richard S Lee
- Department of Urology, Boston Children's Hospital and Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
20
|
de Fátima MenegociEugênio P, Assunção NA, Sciandra F, Aquino A, Brancaccio A, Carrilho E. Quantification, 2DE analysis and identification of enriched glycosylated proteins from mouse muscles: Difficulties and alternatives. Electrophoresis 2015; 37:321-34. [PMID: 26542084 DOI: 10.1002/elps.201500362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 08/02/2015] [Accepted: 10/22/2015] [Indexed: 11/11/2022]
Abstract
One of the problems with 2DE is that proteins present in low amounts in a sample are usually not detected, since their signals are masked by the predominant proteins. The elimination of these abundant proteins is not a guaranteed solution to achieve the desired results. The main objective of this study was the comparison of common and simple methodologies employed for 2DE analysis followed by MS identification, focusing on a pre-purified sample using a wheat germ agglutinin (WGA) column. Adult male C57Black/Crj6 (C57BL/6) mice were chosen as the model animal in this study; the gastrocnemius muscles were collected and processed for the experiments. The initial fractionation with succinylated WGA was successful for the elimination of the most abundant proteins. Two quantification methods were employed for the purified samples, and bicinchoninic acid (BCA) was proven to be most reliable for the quantification of glycoproteins. The gel staining method, however, was found to be decisive for the detection of specific proteins, since their structures affect the interaction of the dye with the peptide backbone. The Coomassie Blue R-250 dye very weakly stained the gel with the WGA purified sample. When the same gel was stained with silver nitrate, however, MS could positively assign 12 new spots. The structure of the referred proteins was not found to be prone to interaction with Coomassie blue.
Collapse
Affiliation(s)
- Patrícia de Fátima MenegociEugênio
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP, Brazil
| | - Nilson Antonio Assunção
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare (CNR), c/o Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Adriano Aquino
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP, Brazil
| | - Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare (CNR), c/o Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP, Brazil
| |
Collapse
|
21
|
Yang S, Rubin A, Eshghi ST, Zhang H. Chemoenzymatic method for glycomics: Isolation, identification, and quantitation. Proteomics 2015; 16:241-56. [PMID: 26390280 DOI: 10.1002/pmic.201500266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/15/2015] [Accepted: 09/15/2015] [Indexed: 01/03/2023]
Abstract
Over the past decade, considerable progress has been made with respect to the analytical methods for analysis of glycans from biological sources. Regardless of the specific methods that are used, glycan analysis includes isolation, identification, and quantitation. Derivatization is indispensable to increase their identification. Derivatization of glycans can be performed by permethylation or carbodiimide coupling/esterification. By introducing a fluorophore or chromophore at their reducing end, glycans can be separated by electrophoresis or chromatography. The fluorogenically labeled glycans can be quantitated using fluorescent detection. The recently developed approaches using solid-phase such as glycoprotein immobilization for glycan extraction and on-tissue glycan mass spectrometry imaging demonstrate advantages over methods performed in solution. Derivatization of sialic acids is favorably implemented on the solid support using carbodiimide coupling, and the released glycans can be further modified at the reducing end or permethylated for quantitative analysis. In this review, methods for glycan isolation, identification, and quantitation are discussed.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pathology, Johns Hopkins University, Baltimore, USA
| | - Abigail Rubin
- Department of Pathology, Johns Hopkins University, Baltimore, USA
| | | | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
22
|
Shah AK, Cao KAL, Choi E, Chen D, Gautier B, Nancarrow D, Whiteman DC, Saunders NA, Barbour AP, Joshi V, Hill MM. Serum Glycoprotein Biomarker Discovery and Qualification Pipeline Reveals Novel Diagnostic Biomarker Candidates for Esophageal Adenocarcinoma. Mol Cell Proteomics 2015; 14:3023-39. [PMID: 26404905 DOI: 10.1074/mcp.m115.050922] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 12/31/2022] Open
Abstract
We report an integrated pipeline for efficient serum glycoprotein biomarker candidate discovery and qualification that may be used to facilitate cancer diagnosis and management. The discovery phase used semi-automated lectin magnetic bead array (LeMBA)-coupled tandem mass spectrometry with a dedicated data-housing and analysis pipeline; GlycoSelector (http://glycoselector.di.uq.edu.au). The qualification phase used lectin magnetic bead array-multiple reaction monitoring-mass spectrometry incorporating an interactive web-interface, Shiny mixOmics (http://mixomics-projects.di.uq.edu.au/Shiny), for univariate and multivariate statistical analysis. Relative quantitation was performed by referencing to a spiked-in glycoprotein, chicken ovalbumin. We applied this workflow to identify diagnostic biomarkers for esophageal adenocarcinoma (EAC), a life threatening malignancy with poor prognosis in the advanced setting. EAC develops from metaplastic condition Barrett's esophagus (BE). Currently diagnosis and monitoring of at-risk patients is through endoscopy and biopsy, which is expensive and requires hospital admission. Hence there is a clinical need for a noninvasive diagnostic biomarker of EAC. In total 89 patient samples from healthy controls, and patients with BE or EAC were screened in discovery and qualification stages. Of the 246 glycoforms measured in the qualification stage, 40 glycoforms (as measured by lectin affinity) qualified as candidate serum markers. The top candidate for distinguishing healthy from BE patients' group was Narcissus pseudonarcissus lectin (NPL)-reactive Apolipoprotein B-100 (p value = 0.0231; AUROC = 0.71); BE versus EAC, Aleuria aurantia lectin (AAL)-reactive complement component C9 (p value = 0.0001; AUROC = 0.85); healthy versus EAC, Erythroagglutinin Phaseolus vulgaris (EPHA)-reactive gelsolin (p value = 0.0014; AUROC = 0.80). A panel of 8 glycoforms showed an improved AUROC of 0.94 to discriminate EAC from BE. Two biomarker candidates were independently verified by lectin magnetic bead array-immunoblotting, confirming the validity of the relative quantitation approach. Thus, we have identified candidate biomarkers, which, following large-scale clinical evaluation, can be developed into diagnostic blood tests. A key feature of the pipeline is the potential for rapid translation of the candidate biomarkers to lectin-immunoassays.
Collapse
Affiliation(s)
- Alok K Shah
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Kim-Anh Lê Cao
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Eunju Choi
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia; §School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - David Chen
- ¶School of Information and Communication Technology, Griffith University, Brisbane, Queensland, Australia
| | - Benoît Gautier
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Derek Nancarrow
- ‖QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - David C Whiteman
- ‖QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicholas A Saunders
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Andrew P Barbour
- **School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Virendra Joshi
- ‡‡Ochsner Health System, Gastroenterology, New Orleans, Louisiana
| | - Michelle M Hill
- From the ‡The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia;
| |
Collapse
|
23
|
Lazar IM, Deng J, Ikenishi F, Lazar AC. Exploring the glycoproteomics landscape with advanced MS technologies. Electrophoresis 2014; 36:225-37. [PMID: 25311661 DOI: 10.1002/elps.201400400] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022]
Abstract
The advance of glycoproteomic technologies has offered unique insights into the importance of glycosylation in determining the functional roles of a protein within a cell. Biologically active glycoproteins include the categories of enzymes, hormones, proteins involved in cell proliferation, cell membrane proteins involved in cell-cell recognition, and communication events or secreted proteins, just to name a few. The recent progress in analytical instrumentation, methodologies, and computational approaches has enabled a detailed exploration of glycan structure, connectivity, and heterogeneity, underscoring the staggering complexity of the glycome repertoire in a cell. A variety of approaches involving the use of spectroscopy, MS, separation, microfluidic, and microarray technologies have been used alone or in combination to tackle the glycoproteome challenge, the research results of these efforts being captured in an overwhelming number of annual publications. This work is aimed at reviewing the major developments and accomplishments in the field of glycoproteomics, with focus on the most recent advancements (2012-2014) that involve the use of capillary separations and MS detection.
Collapse
Affiliation(s)
- Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | | | | |
Collapse
|
24
|
Zhou H, Warren PG, Froehlich JW, Lee RS. Dual modifications strategy to quantify neutral and sialylated N-glycans simultaneously by MALDI-MS. Anal Chem 2014; 86:6277-84. [PMID: 24766348 PMCID: PMC4082391 DOI: 10.1021/ac500298a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Differences
in ionization efficiency among neutral and sialylated
glycans prevent direct quantitative comparison by their respective
mass spectrometric signals. To overcome this challenge, we developed
an integrated chemical strategy, Dual Reactions for Analytical Glycomics
(DRAG), to quantitatively compare neutral and sialylated glycans simultaneously
by MALDI-MS. Initially, two glycan samples to be compared undergo
reductive amination with 2-aminobenzoic acid and 2-13[C6]-aminobenzoic acid, respectively. The different isotope-incorporated
glycans are then combined and subjected to the methylamidation of
the sialic acid residues in one mixture, homogenizing the ionization
responses for all neutral and sialylated glycans. By this approach,
the expression change of relevant glycans between two samples is proportional
to the ratios of doublet signals with a static 6 Da mass difference
in MALDI-MS and the change in relative abundance of any glycan within
samples can also be determined. The strategy was chemically validated
using well-characterized N-glycans from bovine fetuin and IgG from
human serum. By comparing the N-glycomes from a first morning (AM)
versus an afternoon (PM) urine sample obtained from a single donor,
we further demonstrated the ability of DRAG strategy to measure subtle
quantitative differences in numerous urinary N-glycans.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | | | |
Collapse
|
25
|
Raimondo F, Corbetta S, Chinello C, Pitto M, Magni F. The urinary proteome and peptidome of renal cell carcinoma patients: a comparison of different techniques. Expert Rev Proteomics 2014; 11:503-14. [PMID: 24890767 DOI: 10.1586/14789450.2014.926222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Renal cell carcinomas, originating from the renal cortex, account for about 80% of kidney primary malignancies. Small localized tumors rarely produce symptoms and diagnosis is often delayed until the disease is advanced. In contrast to other urological cancers, renal cell carcinomas are associated with a high degree of metastases and a low 5-year survival rate. The identification of diagnostic and prognostic markers, especially in the urine, remains an area of intense investigation. Different proteomic strategies have been applied so far to biomarker discovery in urine at the proteome or the peptidome level. Gel-based and gel-free strategies combined with mass spectrometry are the most-used strategies, have different success rates, and will be depicted here. We also prefigure a scenario in which the limitations of a single approach are overcome by applying new and complementary research strategies, relying on the excellent availability coupled to the intrinsic richness typical of urine samples.
Collapse
Affiliation(s)
- Francesca Raimondo
- Department of Health Sciences, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | | | | | | | | |
Collapse
|
26
|
Zhu Z, Go EP, Desaire H. Absolute quantitation of glycosylation site occupancy using isotopically labeled standards and LC-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1012-7. [PMID: 24671695 PMCID: PMC4458369 DOI: 10.1007/s13361-014-0859-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/07/2014] [Accepted: 02/15/2014] [Indexed: 05/06/2023]
Abstract
N-linked glycans are required to maintain appropriate biological functions on proteins. Underglycosylation leads to many diseases in plants and animals; therefore, characterizing the extent of glycosylation on proteins is an important step in understanding, diagnosing, and treating diseases. To determine the glycosylation site occupancy, protein N-glycosidase F (PNGase F) is typically used to detach the glycan from the protein, during which the formerly glycosylated asparagine undergoes deamidation to become an aspartic acid. By comparing the abundance of the resulting peptide containing aspartic acid against the one containing non-glycosylated asparagine, the glycosylation site occupancy can be evaluated. However, this approach can give inaccurate results when spontaneous chemical deamidation of the non-glycosylated asparagine occurs. To overcome this limitation, we developed a new method to measure the glycosylation site occupancy that does not rely on converting glycosylated peptides to their deglycosylated forms. Specifically, the overall protein concentration and the non-glycosylated portion of the protein are quantified simultaneously by using heavy isotope-labeled internal standards coupled with LC-MS analysis, and the extent of site occupancy is accurately determined. The efficacy of the method was demonstrated by quantifying the occupancy of a glycosylation site on bovine fetuin. The developed method is the first work that measures the glycosylation site occupancy without using PNGase F, and it can be done in parallel with glycopeptide analysis because the glycan remains intact throughout the workflow.
Collapse
Affiliation(s)
- Zhikai Zhu
- The Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Eden P. Go
- The Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Heather Desaire
- The Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| |
Collapse
|
27
|
Pernemalm M, Lehtiö J. Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev Proteomics 2014; 11:431-48. [PMID: 24661227 DOI: 10.1586/14789450.2014.901157] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mass spectrometry-based plasma proteomics is a field where intense research has been performed during the last decade. Being closely linked to biomarker discovery, the field has received a fair amount of criticism, mostly due to the low number of novel biomarkers reaching the clinic. However, plasma proteomics is under gradual development with improvements on fractionation methods, mass spectrometry instrumentation and analytical approaches. These recent developments have contributed to the revival of plasma proteomics. The goal of this review is to summarize these advances, focusing in particular on fractionation methods, both for targeted and global mass spectrometry-based plasma analysis.
Collapse
Affiliation(s)
- Maria Pernemalm
- Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23, 171 65, Solna, Sweden
| | | |
Collapse
|
28
|
Sun Z, Dong J, Zhang S, Hu Z, Cheng K, Li K, Xu B, Ye M, Nie Y, Fan D, Zou H. Identification of chemoresistance-related cell-surface glycoproteins in leukemia cells and functional validation of candidate glycoproteins. J Proteome Res 2014; 13:1593-601. [PMID: 24467213 DOI: 10.1021/pr4010822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemoresistance remains the most significant obstacle to successful chemotherapy for leukemia, and its exact mechanism is still unknown. In this work, we used the cell-surface capturing method together with quantitative proteomics to investigate differences in the glycoproteomes of adriamycin-sensitive and adriamycin-resistant leukemia cells. Two quantitative methods, isotopic dimethyl labeling and SWATH, were used to quantify glycoproteins, and 35 glycoproteins were quantified by both methods. High correlation was observed between the glycoproteins quantified by the above two methods, and 15 glycoproteins displayed a consistent significant change trend in both sets of quantitative results. These 15 proteins included classical multidrug resistance-related glycoproteins such as ABCB1 as well as a set of novel glycoproteins that have not previously been reported to be associated with chemoresistance in leukemia cells. Further validation with quantitative real-time PCR and Western blotting confirmed the proteomic screening results. Subsequent functional experiments based on RNA interference technology showed that CTSD, FKBP10, and SLC2A1 are novel genes that participate in the acquisition and maintenance of the adriamycin-resistant phenotype in leukemia cells.
Collapse
Affiliation(s)
- Zhen Sun
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|