1
|
Pandey B, Pandey AK, Dubey SK. Integrated omics analyses elucidate acetaminophen biodegradation by Enterobacter sp. APAP_BS8. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124215. [PMID: 39842351 DOI: 10.1016/j.jenvman.2025.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/09/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Acetaminophen (APAP) is an extensively consumed over-the-counter and prescribed medication and a constituent of many active pharmaceutical compounds as well as personal care products. Its wide-scale prevalence in the environment due to inefficient treatment technologies has classified APAP as a contaminant of emerging concern. Thus, it is imperative to explore efficient and sustainable methods for remediation of contaminated environments. Considering the need for potent microbial resources, the present study deals with the evaluation of Enterobacter sp. APAP_BS8, degrading ∼88% of APAP (300 mg kg-1) in 16 days in microcosms, and accomplishes the mechanistic perspectives of degradation through in-depth insights into genomics, proteomics, and metabolomics. Whole genome analysis of the 4.9 Mbp genome sequence revealed deaminated glutathione amidase, glucosamine-6-phosphate deaminase, LLM class flavin-dependent oxidoreductase, and oxidoreductase genes can mediate the degradation. Increased expression of proteins corresponding to these genes was observed in proteome analysis. Molecular docking and simulations presented operative interaction and binding of the degradation pathway intermediates at the catalytic site of the identified enzymes. Analysis of the metabolome identified hydroxyquinol, 4-aminophenol, and 3-hydroxy-cis, cis-muconate as intermediates. The outcomes revealed that Enterobacter sp. APAP_BS8 exhibits potential enzymatic machinery for APAP degradation, thus providing scope for formulating sustainable bioremediation technologies.
Collapse
Affiliation(s)
- Bhavana Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Chen J, Xu X, Liu W, Feng Z, Chen Q, Zhou Y, Sun M, Gan L, Zhou T, Xuan Y. Plasmodesmata Function and Callose Deposition in Plant Disease Defense. PLANTS (BASEL, SWITZERLAND) 2024; 13:2242. [PMID: 39204678 PMCID: PMC11359699 DOI: 10.3390/plants13162242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Callose, found in the cell walls of higher plants such as β-1,3-glucan with β-1,6 branches, is pivotal for both plant development and responses to biotic and abiotic stressors. Plasmodesmata (PD), membranous channels linking the cytoplasm, plasma membrane, and endoplasmic reticulum of adjacent cells, facilitate molecular transport, crucial for developmental and physiological processes. The regulation of both the structural and transport functions of PD is intricate. The accumulation of callose in the PD neck is particularly significant for the regulation of PD permeability. This callose deposition, occurring at a specific site of pathogenic incursion, decelerates the invasion and proliferation of pathogens by reducing the PD pore size. Scholarly investigations over the past two decades have illuminated pathogen-induced callose deposition and the ensuing PD regulation. This gradual understanding reveals the complex regulatory interactions governing defense-related callose accumulation and protein-mediated PD regulation, underscoring its role in plant defense. This review systematically outlines callose accumulation mechanisms and enzymatic regulation in plant defense and discusses PD's varied participation against viral, fungal, and bacterial infestations. It scrutinizes callose-induced structural changes in PD, highlighting their implications for plant immunity. This review emphasizes dynamic callose calibration in PD constrictions and elucidates the implications and potential challenges of this intricate defense mechanism, integral to the plant's immune system.
Collapse
Affiliation(s)
- Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Xiaofeng Xu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China;
| | - Wei Liu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Ziyang Feng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Quan Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - You Zhou
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Miao Sun
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Liping Gan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Tiange Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhu Xuan
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China;
| |
Collapse
|
3
|
Mélida H, Kappel L, Ullah SF, Bulone V, Srivastava V. Quantitative proteomic analysis of plasma membranes from the fish pathogen Saprolegnia parasitica reveals promising targets for disease control. Microbiol Spectr 2024; 12:e0034824. [PMID: 38888349 PMCID: PMC11302233 DOI: 10.1128/spectrum.00348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
The phylum Oomycota contains economically important pathogens of animals and plants, including Saprolegnia parasitica, the causal agent of the fish disease saprolegniasis. Due to intense fish farming and banning of the most effective control measures, saprolegniasis has re-emerged as a major challenge for the aquaculture industry. Oomycete cells are surrounded by a polysaccharide-rich cell wall matrix that, in addition to being essential for cell growth, also functions as a protective "armor." Consequently, the enzymes responsible for cell wall synthesis provide potential targets for disease control. Oomycete cell wall biosynthetic enzymes are predicted to be plasma membrane proteins. To identify these proteins, we applied a quantitative (iTRAQ) mass spectrometry-based proteomics approach to the plasma membrane of the hyphal cells of S. parasitica, providing the first complete plasma membrane proteome of an oomycete species. Of significance is the identification of 65 proteins enriched in detergent-resistant microdomains (DRMs). In silico analysis showed that DRM-enriched proteins are mainly involved in molecular transport and β-1,3-glucan synthesis, potentially contributing to pathogenesis. Moreover, biochemical characterization of the glycosyltransferase activity in these microdomains further supported their role in β-1,3-glucan synthesis. Altogether, the knowledge gained in this study provides a basis for developing disease control measures targeting specific plasma membrane proteins in S. parasitica.IMPORTANCEThe significance of this research lies in its potential to combat saprolegniasis, a detrimental fish disease, which has resurged due to intensive fish farming and regulatory restrictions. By targeting enzymes responsible for cell wall synthesis in Saprolegnia parasitica, this study uncovers potential avenues for disease control. Particularly noteworthy is the identification of several proteins enriched in membrane microdomains, offering insights into molecular mechanisms potentially involved in pathogenesis. Understanding the role of these proteins provides a foundation for developing targeted disease control measures. Overall, this research holds promise for safeguarding the aquaculture industry against the challenges posed by saprolegniasis.
Collapse
Affiliation(s)
- Hugo Mélida
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Lisa Kappel
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Sadia Fida Ullah
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, CBH School, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| |
Collapse
|
4
|
Pandey B, Pandey AK, Tripathi K, Dubey SK. Biodegradation of acetaminophen: Microcosm centric genomic-proteomic-metabolomics evidences. BIORESOURCE TECHNOLOGY 2024; 401:130732. [PMID: 38677386 DOI: 10.1016/j.biortech.2024.130732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Acetaminophen (APAP) is a frequently used, over-the-counter analgesic and antipyretic medication. Considering increase in global consumption, its ubiquity in environment with potential toxic impacts has become a cause of great concern. Hence, bioremediation of this emerging contaminant is of paramount significance. The present study incorporates a microcosm centric omics approach to gain in-depth insights into APAP degradation by Paracoccus sp. APAP_BH8. It can metabolize APAP (300 mg kg-1) within 16 days in soil microcosms. Genome analysis revealed potential genes capable of mediating degradation includes M20 aminoacylase family protein, guanidine deaminase, 4-hydroxybenzoate 3-monooxygenase, and 4-hydroxyphenylpyruvate dioxygenase. Whole proteome analysis showed differential expression of enzymes and bioinformatics provided evidence for stable binding of intermediates at the active site of considered enzymes. Metabolites identified were 4-aminophenol, hydroquinone, and 3-hydroxy-cis, cis-muconate. Therefore, Paracoccus sp. APAP_BH8 with versatile enzymatic and genetic attributes can be a promising candidate for formulating improved in situ APAP bioremediation strategies.
Collapse
Affiliation(s)
- Bhavana Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, India
| | - Kritika Tripathi
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Hsieh YSY, Kao MR, Tucker MR. The knowns and unknowns of callose biosynthesis in terrestrial plants. Carbohydr Res 2024; 538:109103. [PMID: 38555659 DOI: 10.1016/j.carres.2024.109103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Callose, a linear (1,3)-β-glucan, is an indispensable carbohydrate polymer required for plant growth and development. Advances in biochemical, genetic, and genomic tools, along with specific antibodies, have significantly enhanced our understanding of callose biosynthesis. As additional components of the callose synthase machinery emerge, the elucidation of molecular biosynthetic mechanisms is expected to follow. Short-term objectives involve defining the stoichiometry and turnover rates of callose synthase subunits. Long-term goals include generating recombinant callose synthases to elucidate their biochemical properties and molecular mechanisms, potentially culminating in the determination of callose synthase three-dimensional structure. This review delves into the structures and intricate molecular processes underlying callose biosynthesis, emphasizing regulatory elements and assembly mechanisms.
Collapse
Affiliation(s)
- Yves S Y Hsieh
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91, Stockholm, Sweden; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan.
| | - Mu-Rong Kao
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91, Stockholm, Sweden; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia.
| |
Collapse
|
6
|
Liu X, Ma Z, Tran TM, Rautengarten C, Cheng Y, Yang L, Ebert B, Persson S, Miao Y. Balanced callose and cellulose biosynthesis in Arabidopsis quorum-sensing signaling and pattern-triggered immunity. PLANT PHYSIOLOGY 2023; 194:137-152. [PMID: 37647538 PMCID: PMC10756761 DOI: 10.1093/plphys/kiad473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023]
Abstract
The plant cell wall (CW) is one of the most important physical barriers that phytopathogens must conquer to invade their hosts. This barrier is a dynamic structure that responds to pathogen infection through a complex network of immune receptors, together with CW-synthesizing and CW-degrading enzymes. Callose deposition in the primary CW is a well-known physical response to pathogen infection. Notably, callose and cellulose biosynthesis share an initial substrate, UDP-glucose, which is the main load-bearing component of the CW. However, how these 2 critical biosynthetic processes are balanced during plant-pathogen interactions remains unclear. Here, using 2 different pathogen-derived molecules, bacterial flagellin (flg22) and the diffusible signal factor (DSF) produced by Xanthomonas campestris pv. campestris, we show a negative correlation between cellulose and callose biosynthesis in Arabidopsis (Arabidopsis thaliana). By quantifying the abundance of callose and cellulose under DSF or flg22 elicitation and characterizing the dynamics of the enzymes involved in the biosynthesis and degradation of these 2 polymers, we show that the balance of these 2 CW components is mediated by the activity of a β-1,3-glucanase (BG2). Our data demonstrate balanced cellulose and callose biosynthesis during plant immune responses.
Collapse
Affiliation(s)
- Xiaolin Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Carsten Rautengarten
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44810, Germany
| | - Yingying Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- School of Medicine, Southern University of Science and Technology, Nanshan District, Shenzhen 518055, China
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum 44810, Germany
| | - Staffan Persson
- Department of Plant and Environmental Sciences (PLEN), University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
7
|
Kordyum EL, Artemenko OA, Hasenstein KH. Lipid Rafts and Plant Gravisensitivity. Life (Basel) 2022; 12:1809. [PMID: 36362962 PMCID: PMC9695138 DOI: 10.3390/life12111809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 07/24/2023] Open
Abstract
The necessity to include plants as a component of a Bioregenerative Life Support System leads to investigations to optimize plant growth facilities as well as a better understanding of the plant cell membrane and its numerous activities in the signaling, transport, and sensing of gravity, drought, and other stressors. The cell membrane participates in numerous processes, including endo- and exocytosis and cell division, and is involved in the response to external stimuli. Variable but stabilized microdomains form in membranes that include specific lipids and proteins that became known as (detergent-resistant) membrane microdomains, or lipid rafts with various subclassifications. The composition, especially the sterol-dependent recruitment of specific proteins affects endo- and exo-membrane domains as well as plasmodesmata. The enhanced saturated fatty acid content in lipid rafts after clinorotation suggests increased rigidity and reduced membrane permeability as a primary response to abiotic and mechanical stress. These results can also be obtained with lipid-sensitive stains. The linkage of the CM to the cytoskeleton via rafts is part of the complex interactions between lipid microdomains, mechanosensitive ion channels, and the organization of the cytoskeleton. These intricately linked structures and functions provide multiple future research directions to elucidate the role of lipid rafts in physiological processes.
Collapse
Affiliation(s)
- Elizabeth L. Kordyum
- Department of Cell Biology and Anatomy, Institute of Botany NASU, Tereschenkivska Str. 2, 01601 Kyiv, Ukraine
| | - Olga A. Artemenko
- Department of Cell Biology and Anatomy, Institute of Botany NASU, Tereschenkivska Str. 2, 01601 Kyiv, Ukraine
| | - Karl H. Hasenstein
- Biology Department, University of Louisiana at Lafayette, Lafayette, LA 70504-3602, USA
| |
Collapse
|
8
|
Kumar R, Kumar S, Bulone V, Srivastava V. Biochemical Characterization and Molecular Insights into Substrate Recognition of Pectin Methylesterase from Phytophthora Infestans. Comput Struct Biotechnol J 2022; 20:6023-6032. [PMID: 36382180 PMCID: PMC9647417 DOI: 10.1016/j.csbj.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Pectin methylesterases (PMEs) are a class of carbohydrate-active enzymes that act on the O6-methyl ester groups of the homogalacturonan component of pectins, resulting in de-esterification of the substrate polymers and formation of pectate and methanol. PMEs occur in higher plants and microorganisms, including fungi, oomycetes, bacteria, and archaea. Microbial PMEs play a crucial role in pathogens’ invasion of plant tissues. Here, we have determined the structural and functional properties of Pi-PME, a PME from the oomycete plant pathogen Phytophthora infestans. This enzyme exhibits maximum activity at alkaline pH (8.5) and is active over a wide temperature range (25–50 °C). In silico determination of the structure of Pi-PME reveals that the protein consists essentially of three parallel β-sheets interconnected by loops that adopt an overall β-helix organization. The loop regions in the vicinity of the active site are extended compared to plant and fungal PMEs, but they are shorter than the corresponding bacterial and insect regions. Molecular dynamic simulations revealed that Pi-PME interacts most strongly with partially de-methylated homogalacturonans, suggesting that it preferentially uses this type of substrates. The results are compared and discussed with other known PMEs from different organisms, highlighting the specific features of Pi-PME.
Collapse
Affiliation(s)
- Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Sanjiv Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
- College of Medicine and Public Health, Flinders University, Bedford Park Campus, Sturt Road, South Australia 5042, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
- Corresponding author.
| |
Collapse
|
9
|
Abstract
Proteins are intimately involved in executing and controlling virtually all cellular processes. To understand the molecular mechanisms that underlie plant phenotypes, it is essential to investigate protein expression, interactions, and modifications, to name a few. The proteome is highly dynamic in time and space, and a plethora of protein modifications, protein interactions, and network constellations are at play under specific conditions and developmental stages. Analysis of proteomes aims to characterize the entire protein complement of a particular cell type, tissue, or organism-a challenging task, given the dynamic nature of the proteome. Modern mass spectrometry-based proteomics technology can be used to address this complexity at a system-wide scale by the global identification and quantification of thousands of proteins. In this review, we present current methods and technologies employed in mass spectrometry-based proteomics and provide examples of dynamic changes in the plant proteome elucidated by proteomic approaches.
Collapse
Affiliation(s)
- Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany;
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany;
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany;
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| |
Collapse
|
10
|
Parrotta L, Faleri C, Del Casino C, Mareri L, Aloisi I, Guerriero G, Hausman JF, Del Duca S, Cai G. Biochemical and cytological interactions between callose synthase and microtubules in the tobacco pollen tube. PLANT CELL REPORTS 2022; 41:1301-1318. [PMID: 35303156 PMCID: PMC9110548 DOI: 10.1007/s00299-022-02860-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/02/2022] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE The article concerns the association between callose synthase and cytoskeleton by biochemical and ultrastructural analyses in the pollen tube. Results confirmed this association and immunogold labeling showed a colocalization. Callose is a cell wall polysaccharide involved in fundamental biological processes, from plant development to the response to abiotic and biotic stress. To gain insight into the deposition pattern of callose, it is important to know how the enzyme callose synthase is regulated through the interaction with the vesicle-cytoskeletal system. Actin filaments likely determine the long-range distribution of callose synthase through transport vesicles but the spatial/biochemical relationships between callose synthase and microtubules are poorly understood, although experimental evidence supports the association between callose synthase and tubulin. In this manuscript, we further investigated the association between callose synthase and microtubules through biochemical and ultrastructural analyses in the pollen tube model system, where callose is an essential component of the cell wall. Results by native 2-D electrophoresis, isolation of callose synthase complex and far-western blot confirmed that callose synthase is associated with tubulin and can therefore interface with cortical microtubules. In contrast, actin and sucrose synthase were not permanently associated with callose synthase. Immunogold labeling showed colocalization between the enzyme and microtubules, occasionally mediated by vesicles. Overall, the data indicate that pollen tube callose synthase exerts its activity in cooperation with the microtubular cytoskeleton.
Collapse
Affiliation(s)
- Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521, Cesena, Italy.
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100, Siena, Italy
| | - Cecilia Del Casino
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100, Siena, Italy
| | - Lavinia Mareri
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100, Siena, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Gea Guerriero
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Jean-Francois Hausman
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521, Cesena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
11
|
Kuběnová L, Tichá M, Šamaj J, Ovečka M. ROOT HAIR DEFECTIVE 2 vesicular delivery to the apical plasma membrane domain during Arabidopsis root hair development. PLANT PHYSIOLOGY 2022; 188:1563-1585. [PMID: 34986267 PMCID: PMC8896599 DOI: 10.1093/plphys/kiab595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) root hairs develop as long tubular extensions from the rootward pole of trichoblasts and exert polarized tip growth. The establishment and maintenance of root hair polarity is a complex process involving the local apical production of reactive oxygen species generated by A. thaliana nicotinamide adenine dinucleotide phosphate (NADPH) oxidase respiratory burst oxidase homolog protein C/ROOT HAIR-DEFECTIVE 2 (AtRBOHC/RHD2). Loss-of-function root hair defective 2 (rhd2) mutants have short root hairs that are unable to elongate by tip growth, and this phenotype is fully complemented by GREEN FLUORESCENT PROTEIN (GFP)-RHD2 expressed under the RHD2 promoter. However, the spatiotemporal mechanism of AtRBOHC/RHD2 subcellular redistribution and delivery to the plasma membrane (PM) during root hair initiation and tip growth are still unclear. Here, we used advanced microscopy for detailed qualitative and quantitative analysis of vesicular compartments containing GFP-RHD2 and characterization of their movements in developing bulges and growing root hairs. These compartments, identified by an independent molecular marker mCherry-VTI12 as the trans-Golgi network (TGN), deliver GFP-RHD2 to the apical PM domain, the extent of which corresponds with the stage of root hair formation. Movements of TGN/early endosomes, but not late endosomes, were affected in the bulging domains of the rhd2-1 mutant. Finally, we revealed that structural sterols might be involved in the accumulation, docking, and incorporation of TGN compartments containing GFP-RHD2 to the apical PM of root hairs. These results help in clarifying the mechanism of polarized AtRBOHC/RHD2 targeting, maintenance, and recycling at the apical PM domain, coordinated with different developmental stages of root hair initiation and growth.
Collapse
Affiliation(s)
- Lenka Kuběnová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michaela Tichá
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
12
|
Yu S, Wu S, Zhang J, Zhao X, Liu X, Yi X, Li X. A single dual-targeting fluorescent probe enables exploration of the correlation between the plasma membrane and lysosomes. J Mater Chem B 2022; 10:582-588. [PMID: 34985475 DOI: 10.1039/d1tb02200h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interactions between organelles can maintain normal cell activity. Lysosomes, as waste disposal systems of cells, have many important interactions with the plasma membrane, especially in the repair of cracked plasma membrane. Unfortunately, a way to study the relationship between them synchronously is still lacking. Therefore, in this work, we constructed a dual-targeting probe (Mem-Lyso) to simultaneously visualize the plasma membrane and lysosomes for the first time. Taking advantage of dual-targeting, the probe Mem-Lyso could successfully track and analyze the dynamic changes of the plasma membrane and lysosomes in different bioprocesses. The experimental results demonstrated that, compared to the normal status, there was obvious fusion between the plasma membrane and lysosomes in the apoptosis process. Furthermore, because of the sensitivity to polarity, Mem-Lyso could label the plasma membrane and lysosomes with red and yellow colors in cells, respectively. Moreover, the skeleton and gastrointestinal wall of zebrafish were visualized by dual-color imaging, respectively. More importantly, the dual-targeting property endowed Mem-Lyso with the ability to spatially distinguish the cholesterol (CL) content in the plasma membrane, which provided a potential detection tool for biological research and diagnosis of related diseases.
Collapse
Affiliation(s)
- Shimo Yu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Shining Wu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China.
| | - Jing Zhang
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xinfu Zhao
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xiaochan Liu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xibin Yi
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xuechen Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China.
| |
Collapse
|
13
|
Gouguet P, Gronnier J, Legrand A, Perraki A, Jolivet MD, Deroubaix AF, German-Retana S, Boudsocq M, Habenstein B, Mongrand S, Germain V. Connecting the dots: from nanodomains to physiological functions of REMORINs. PLANT PHYSIOLOGY 2021; 185:632-649. [PMID: 33793872 PMCID: PMC8133660 DOI: 10.1093/plphys/kiaa063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/31/2020] [Indexed: 05/11/2023]
Abstract
REMORINs (REMs) are a plant-specific protein family, proposed regulators of membrane-associated molecular assemblies and well-established markers of plasma membrane nanodomains. REMs play a diverse set of functions in plant interactions with pathogens and symbionts, responses to abiotic stresses, hormone signaling and cell-to-cell communication. In this review, we highlight the established and more putative roles of REMs throughout the literature. We discuss the physiological functions of REMs, the mechanisms underlying their nanodomain-organization and their putative role as regulators of nanodomain-associated molecular assemblies. Furthermore, we discuss how REM phosphorylation may regulate their functional versatility. Overall, through data-mining and comparative analysis of the literature, we suggest how to further study the molecular mechanisms underpinning the functions of REMs.
Collapse
Affiliation(s)
- Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
- ZMBP, Universität Tübingen, Auf der Morgenstelle 32 72076 Tübingen, Germany
| | - Julien Gronnier
- Department of Plant and Microbial Biology University of Zürich, Zollikerstrasse, Zürich, Switzerland
| | - Anthony Legrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université de Bordeaux, Institut Polytechnique de Bordeaux, A11, Geoffroy Saint-Hilaire, Pessac, France
| | - Artemis Perraki
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK
- Present address: Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Crete, Greece
| | - Marie-Dominique Jolivet
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
| | - Anne-Flore Deroubaix
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
| | - Sylvie German-Retana
- Equipe de Virologie, Institut Scientifique de Recherche Agronomique and Université de Bordeaux, BP81, 33883 Villenave d’Ornon, France
| | - Marie Boudsocq
- Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, Orsay, France
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université de Bordeaux, Institut Polytechnique de Bordeaux, A11, Geoffroy Saint-Hilaire, Pessac, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
- Author for communication: (S.M.)
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
14
|
Chen Y, Weckwerth W. Mass Spectrometry Untangles Plant Membrane Protein Signaling Networks. TRENDS IN PLANT SCIENCE 2020; 25:930-944. [PMID: 32359835 DOI: 10.1016/j.tplants.2020.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Plasma membranes (PMs) act as primary cellular checkpoints for sensing signals and controlling solute transport. Membrane proteins communicate with intracellular processes through protein interaction networks. Deciphering these signaling networks provides crucial information for elucidating in vivo cellular regulation. Large-scale proteomics enables system-wide characterization of the membrane proteome, identification of ligand-receptor pairs, and elucidation of signals originating at membranes. In this review we assess recent progress in the development of mass spectrometry (MS)-based proteomic pipelines for determining membrane signaling pathways. We focus in particular on current techniques for the analysis of membrane protein phosphorylation and interaction, and how these proteins may be connected to downstream changes in gene expression, metabolism, and physiology.
Collapse
Affiliation(s)
- Yanmei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University of Vienna, Vienna, 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
15
|
Mamenko T, Kots S. Lipid peroxidation of cell membranes in the formation and regulation of plant protective reactions. UKRAINIAN BOTANICAL JOURNAL 2020. [DOI: 10.15407/ukrbotj77.04.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Gallo V, Srivastava V, Bulone V, Zappettini A, Villani M, Marmiroli N, Marmiroli M. Proteomic Analysis Identifies Markers of Exposure to Cadmium Sulphide Quantum Dots (CdS QDs). NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1214. [PMID: 32580447 PMCID: PMC7353101 DOI: 10.3390/nano10061214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
The use of cadmium sulphide quantum dot (CdS QD)-enabled products has become increasingly widespread. The prospect of their release in the environment is raising concerns. Here we have used the yeast model Saccharomyces cerevisiae to determine the potential impact of CdS QD nanoparticles on living organisms. Proteomic analyses and cell viability assays performed after 9 h exposure revealed expression of proteins involved in oxidative stress and reduced lethality, respectively, whereas oxidative stress declined, and lethality increased after 24 h incubation in the presence of CdS QDs. Quantitative proteomics using the iTRAQ approach (isobaric tags for relative and absolute quantitation) revealed that key proteins involved in essential biological pathways were differentially regulated over the time course of the experiment. At 9 h, most of the glycolytic functions increased, and the abundance of the number of heat shock proteins increased. This contrasts with the situation at 24 h where glycolytic functions, some heat shock proteins as well as oxidative phosphorylation and ATP synthesis were down-regulated. It can be concluded from our data that cell exposure to CdS QDs provokes a metabolic shift from respiration to fermentation, comparable to the situation reported in some cancer cell lines.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
| | - Vaibhav Srivastava
- Royal Institute of Technology (KTH), Department of Chemistry, Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, SE-106 91 Stockholm, Sweden; (V.S.); (V.B.)
| | - Vincent Bulone
- Royal Institute of Technology (KTH), Department of Chemistry, Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, SE-106 91 Stockholm, Sweden; (V.S.); (V.B.)
- ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Urbrae, SA 5064, Australia
| | - Andrea Zappettini
- Department of Nanomaterials, Institute of Materials for Electronics and Magnetism (IMEM)Department of Nanomaterials, National Research Council (CNR), 43124 Parma, Italy; (A.Z.); (M.V.)
| | - Marco Villani
- Department of Nanomaterials, Institute of Materials for Electronics and Magnetism (IMEM)Department of Nanomaterials, National Research Council (CNR), 43124 Parma, Italy; (A.Z.); (M.V.)
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
- The Italian National Interuniversity Consortium for Environmental Sciences (CINSA), 43124 Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
| |
Collapse
|
17
|
Schönbichler A, Díaz-Moreno SM, Srivastava V, McKee LS. Exploring the Potential for Fungal Antagonism and Cell Wall Attack by Bacillus subtilis natto. Front Microbiol 2020; 11:521. [PMID: 32296406 PMCID: PMC7136451 DOI: 10.3389/fmicb.2020.00521] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
To develop more ecologically sustainable agricultural practices requires that we reduce our reliance on synthetic chemical pesticides for crop protection. This will likely involve optimized biocontrol approaches - the use of beneficial soil microbes to attack potential plant pathogens to protect plants from diseases. Many bacterial species, including strains of Bacillus subtilis, have been explored for their biocontrol properties, as they can control the growth of harmful fungi, often by disrupting the fungal cell wall. A strain that is not often considered for this particular application is Bacillus subtilis natto, primarily known for fermenting soybeans via cell wall degradation in the Japanese probiotic dish "natto." Because deconstruction of the fungal cell wall is considered an important biocontrol trait, we were motivated to explore the possible anti-fungal properties of the B. subtilis natto strain. We show that B. subtilis natto can use complex fungal material as a carbon source for growth, and can effectively deconstruct fungal cell walls. We found degradation of fungal cell wall proteins, and showed that growth on a mix of peptides was very strong. We also found that intact fungal cell walls can induce the secretion of chitinases and proteases. Surprisingly, we could show that chitin, the bulk component of the fungal cell wall, does not permit successful growth of the natto strain or induce the secretion of chitinolytic enzymes, although these were produced during exposure to proteins or to complex fungal material. We have further shown that protease secretion is likely a constitutively enabled mechanism for nutrient scavenging by B. subtilis natto, as well as a potent tool for the degradation of fungal cell walls. Overall, our data highlight B. subtilis natto as a promising candidate for biocontrol products, with relevant behaviors that can be optimized by altering growth conditions. Whereas it is common for bacterial biocontrol products to be supplied with chitin or chitosan as a priming polysaccharide, our data indicate that this is not a useful approach with this particular bacterium, which should instead be supplied with either glucose or attenuated fungal material.
Collapse
Affiliation(s)
- Anna Schönbichler
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Sara M Díaz-Moreno
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Lauren Sara McKee
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden.,Wallenberg Wood Science Center, Stockholm, Sweden
| |
Collapse
|
18
|
Pham TA, Schwerdt JG, Shirley NJ, Xing X, Hsieh YS, Srivastava V, Bulone V, Little A. Analysis of cell wall synthesis and metabolism during early germination of Blumeria graminis f. sp. hordei conidial cells induced in vitro. Cell Surf 2019; 5:100030. [PMID: 32743146 PMCID: PMC7389524 DOI: 10.1016/j.tcsw.2019.100030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 11/30/2022] Open
Abstract
As an obligate biotroph, Blumeria graminis f. sp. hordei (Bgh) cannot be grown in an axenic culture, and instead must be cultivated on its host species, Hordeum vulgare (barley). In this study an in vitro system utilizing n-hexacosanal, a constituent of the barley cuticle and known inducer of Bgh germination, was used to cultivate Bgh and differentiate conidia up to the appressorial germ tube stage for analysis. Transcriptomic and proteomic profiling of the appressorial germ tube stage revealed that there was a significant shift towards energy and protein production during the pre-penetrative phase of development, with an up-regulation of enzymes associated with cellular respiration and protein synthesis, modification and transport. Glycosidic linkage analysis of the cell wall polysaccharides demonstrated that during appressorial development an increase in 1,3- and 1,4-linked glucosyl residues and xylosyl residues was detected along with a significant decrease in galactosyl residues. The use of this in vitro cultivation method demonstrates that it is possible to analyse the pre-penetrative processes of Bgh development in the absence of a plant host.
Collapse
Affiliation(s)
- Trang A.T. Pham
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Julian G. Schwerdt
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Neil J. Shirley
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Xiaohui Xing
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Yves S.Y. Hsieh
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Vincent Bulone
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Alan Little
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| |
Collapse
|
19
|
Grison MS, Kirk P, Brault ML, Wu XN, Schulze WX, Benitez-Alfonso Y, Immel F, Bayer EM. Plasma Membrane-Associated Receptor-like Kinases Relocalize to Plasmodesmata in Response to Osmotic Stress. PLANT PHYSIOLOGY 2019; 181:142-160. [PMID: 31300470 PMCID: PMC6716232 DOI: 10.1104/pp.19.00473] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/02/2019] [Indexed: 05/17/2023]
Abstract
Plasmodesmata act as key elements in intercellular communication, coordinating processes related to plant growth, development, and responses to environmental stresses. While many of the developmental, biotic, and abiotic signals are primarily perceived at the plasma membrane (PM) by receptor proteins, plasmodesmata also cluster receptor-like activities; whether these two pathways interact is currently unknown. Here, we show that specific PM-located Leu-rich-repeat receptor-like-kinases, Qiān Shŏu kinase (QSK1) and inflorescence meristem kinase2, which under optimal growth conditions are absent from plasmodesmata, rapidly relocate and cluster to the pores in response to osmotic stress. This process is remarkably fast, is not a general feature of PM-associated proteins, and is independent of sterol and sphingolipid membrane composition. Focusing on QSK1, previously reported to be involved in stress responses, we show that relocalization in response to mannitol depends on QSK1 phosphorylation. Loss-of-function mutation in QSK1 results in delayed lateral root (LR) development, and the mutant is affected in the root response to mannitol stress. Callose-mediated plasmodesmata regulation is known to regulate LR development. We found that callose levels are reduced in the qsk1 mutant background with a root phenotype resembling ectopic expression of PdBG1, an enzyme that degrades callose at the pores. Both the LR and callose phenotypes can be complemented by expression of wild-type and phosphomimic QSK1 variants, but not by phosphodead QSK1 mutant, which fails to relocalize at plasmodesmata. Together, the data indicate that reorganization of receptor-like-kinases to plasmodesmata is important for the regulation of callose and LR development as part of the plant response to osmotic stress.
Collapse
Affiliation(s)
- Magali S Grison
- Laboratoire de Biogenèse Membranaire, UMR5200 Centre National de la Recherche Scientifique, Université de Bordeaux, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon cedex, France
| | - Philip Kirk
- Centre for Plant Science, School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Marie L Brault
- Laboratoire de Biogenèse Membranaire, UMR5200 Centre National de la Recherche Scientifique, Université de Bordeaux, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon cedex, France
| | - Xu Na Wu
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Yoselin Benitez-Alfonso
- Centre for Plant Science, School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Françoise Immel
- Laboratoire de Biogenèse Membranaire, UMR5200 Centre National de la Recherche Scientifique, Université de Bordeaux, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon cedex, France
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR5200 Centre National de la Recherche Scientifique, Université de Bordeaux, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon cedex, France
| |
Collapse
|
20
|
Mamode Cassim A, Gouguet P, Gronnier J, Laurent N, Germain V, Grison M, Boutté Y, Gerbeau-Pissot P, Simon-Plas F, Mongrand S. Plant lipids: Key players of plasma membrane organization and function. Prog Lipid Res 2018; 73:1-27. [PMID: 30465788 DOI: 10.1016/j.plipres.2018.11.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022]
Abstract
The plasma membrane (PM) is the biological membrane that separates the interior of all cells from the outside. The PM is constituted of a huge diversity of proteins and lipids. In this review, we will update the diversity of molecular species of lipids found in plant PM. We will further discuss how lipids govern global properties of the plant PM, explaining that plant lipids are unevenly distributed and are able to organize PM in domains. From that observation, it emerges a complex picture showing a spatial and multiscale segregation of PM components. Finally, we will discuss how lipids are key players in the function of PM in plants, with a particular focus on plant-microbe interaction, transport and hormone signaling, abiotic stress responses, plasmodesmata function. The last chapter is dedicated to the methods that the plant membrane biology community needs to develop to get a comprehensive understanding of membrane organization in plants.
Collapse
Affiliation(s)
- Adiilah Mamode Cassim
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nelson Laurent
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Magali Grison
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France.
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France.
| |
Collapse
|
21
|
Wang D, Aarstad OA, Li J, McKee LS, Sætrom GI, Vyas A, Srivastava V, Aachmann FL, Bulone V, Hsieh YS. Preparation of 4-Deoxy-L-erythro-5-hexoseulose Uronic Acid (DEH) and Guluronic Acid Rich Alginate Using a Unique exo-Alginate Lyase from Thalassotalea crassostreae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1435-1443. [PMID: 29363310 DOI: 10.1021/acs.jafc.7b05751] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Marine multicellular algae are considered promising crops for the production of sustainable biofuels and commodity chemicals. However, their commercial exploitation is currently limited by a lack of appropriate and efficient enzymes for converting alginate into metabolizable building blocks, such as 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH). Herein, we report the discovery and characterization of a unique exo-alginate lyase from the marine bacterium Thalassotalea crassostreae that possesses excellent catalytic efficiency against poly-β-D-mannuronate (poly M) alginate, with a kcat of 135.8 s-1, and a 5-fold lower kcat of 25 s-1 against poly-α-L-guluronate (poly G alginate). We propose that this preference for poly M is due to a structural feature of the protein's active site. The mode of action and specificity of this enzyme has made it possible to design an effective and environmentally friendly process for the production of DEH and low molecular weight guluronate-enriched alginate.
Collapse
Affiliation(s)
- Damao Wang
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm, SE-106 91, Sweden
- Wallenberg Wood Science Centre, Royal Institute of Technology (KTH) , SE-100 44, Stockholm, Sweden
| | - Olav A Aarstad
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology , N-7491 Trondheim, Norway
| | - Jing Li
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm, SE-106 91, Sweden
| | - Lauren S McKee
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm, SE-106 91, Sweden
- Wallenberg Wood Science Centre, Royal Institute of Technology (KTH) , SE-100 44, Stockholm, Sweden
| | - Gerd Inger Sætrom
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology , N-7491 Trondheim, Norway
| | - Anisha Vyas
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm, SE-106 91, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm, SE-106 91, Sweden
| | - Finn L Aachmann
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology , N-7491 Trondheim, Norway
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm, SE-106 91, Sweden
- Wallenberg Wood Science Centre, Royal Institute of Technology (KTH) , SE-100 44, Stockholm, Sweden
| | - Yves Sy Hsieh
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm, SE-106 91, Sweden
- Wallenberg Wood Science Centre, Royal Institute of Technology (KTH) , SE-100 44, Stockholm, Sweden
| |
Collapse
|
22
|
Srivastava V, Rezinciuc S, Bulone V. Quantitative Proteomic Analysis of Four Developmental Stages of Saprolegnia parasitica. Front Microbiol 2018; 8:2658. [PMID: 29375523 PMCID: PMC5768655 DOI: 10.3389/fmicb.2017.02658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/20/2017] [Indexed: 01/24/2023] Open
Abstract
Several water mold species from the Saprolegnia genus infect fish, amphibians, and crustaceans in natural ecosystems and aquaculture farms. Saprolegnia parasitica is one of the most severe fish pathogens. It is responsible for millions of dollars of losses to the aquaculture industry worldwide. Here, we have performed a proteomic analysis, using gel-based and solution (iTRAQ) approaches, of four defined developmental stages of S. parasitica grown in vitro, i.e., the mycelium, primary cysts, secondary cysts and germinated cysts, to gain greater insight into the types of proteins linked to the different stages. A relatively high number of kinases as well as virulence proteins, including the ricin B lectin, disintegrins, and proteases were identified in the S. parasitica proteome. Many proteins associated with various biological processes were significantly enriched in different life cycle stages of S. parasitica. Compared to the mycelium, most of the proteins in the different cyst stages showed similar enrichment patterns and were mainly related to energy metabolism, signal transduction, protein synthesis, and post-translational modifications. The proteins most enriched in the mycelium compared to the cyst stages were associated with amino acid metabolism, carbohydrate metabolism, and mitochondrial energy production. The data presented expand our knowledge of metabolic pathways specifically linked to each developmental stage of this pathogen.
Collapse
Affiliation(s)
- Vaibhav Srivastava
- Division of Glycoscience, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Svetlana Rezinciuc
- Division of Glycoscience, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden.,ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
23
|
Leijon F, Melzer M, Zhou Q, Srivastava V, Bulone V. Proteomic Analysis of Plasmodesmata From Populus Cell Suspension Cultures in Relation With Callose Biosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1681. [PMID: 30510561 PMCID: PMC6252348 DOI: 10.3389/fpls.2018.01681] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/29/2018] [Indexed: 05/19/2023]
Abstract
Plasmodesmata are channels that link adjacent cells in plant tissues through which molecular exchanges take place. They are involved in multiple processes vital to plant cells, such as responses to hormonal signaling or environmental challenges including osmotic stress, wounding and pathogen attack. Despite the importance of plasmodesmata, their proteome is not well-defined. Here, we have isolated fractions enriched in plasmodesmata from cell suspension cultures of Populus trichocarpa and identified 201 proteins that are enriched in these fractions, thereby providing further insight on the multiple functions of plasmodesmata. Proteomics analysis revealed an enrichment of proteins specifically involved in responses to stress, transport, metabolism and signal transduction. Consistent with the role of callose deposition and turnover in the closure and aperture of the plasmodesmata and our proteomic analysis, we demonstrate the enrichment of callose synthase activity in the plasmodesmata represented by several gene products. A new form of calcium-independent callose synthase activity was detected, in addition to the typical calcium-dependent enzyme activity, suggesting a role of calcium in the regulation of plasmodesmata through two forms of callose synthase activities. Our report provides the first proteomic investigation of the plasmodesmata from a tree species and the direct biochemical evidence for the occurrence of several forms of active callose synthases in these structures. Data are available via ProteomeXchange with identifier PXD010692.
Collapse
Affiliation(s)
- Felicia Leijon
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Qi Zhou
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
- *Correspondence: Vaibhav Srivastava, Vincent Bulone,
| | - Vincent Bulone
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
- ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Vaibhav Srivastava, Vincent Bulone,
| |
Collapse
|
24
|
Pang Z, Srivastava V, Liu X, Bulone V. Quantitative proteomics links metabolic pathways to specific developmental stages of the plant-pathogenic oomycete Phytophthora capsici. MOLECULAR PLANT PATHOLOGY 2017; 18:378-390. [PMID: 27019332 PMCID: PMC6638298 DOI: 10.1111/mpp.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 05/16/2023]
Abstract
The oomycete Phytophthora capsici is a plant pathogen responsible for important losses to vegetable production worldwide. Its asexual reproduction plays an important role in the rapid propagation and spread of the disease in the field. A global proteomics study was conducted to compare two key asexual life stages of P. capsici, i.e. the mycelium and cysts, to identify stage-specific biochemical processes. A total of 1200 proteins was identified using qualitative and quantitative proteomics. The transcript abundance of some of the enriched proteins was also analysed by quantitative real-time polymerase chain reaction. Seventy-three proteins exhibited different levels of abundance between the mycelium and cysts. The proteins enriched in the mycelium are mainly associated with glycolysis, the tricarboxylic acid (or citric acid) cycle and the pentose phosphate pathway, providing the energy required for the biosynthesis of cellular building blocks and hyphal growth. In contrast, the proteins that are predominant in cysts are essentially involved in fatty acid degradation, suggesting that the early infection stage of the pathogen relies primarily on fatty acid degradation for energy production. The data provide a better understanding of P. capsici biology and suggest potential metabolic targets at the two different developmental stages for disease control.
Collapse
Affiliation(s)
- Zhili Pang
- Department of Plant Pathology, College of Agriculture and BiotechnologyChina Agricultural UniversityBeijing100193China
- Division of GlycoscienceRoyal Institute of Technology (KTH), AlbaNova University CentreStockholmSE‐10691Sweden
| | - Vaibhav Srivastava
- Division of GlycoscienceRoyal Institute of Technology (KTH), AlbaNova University CentreStockholmSE‐10691Sweden
| | - Xili Liu
- Department of Plant Pathology, College of Agriculture and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Vincent Bulone
- Division of GlycoscienceRoyal Institute of Technology (KTH), AlbaNova University CentreStockholmSE‐10691Sweden
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and WineUniversity of Adelaide, Waite CampusUrrbraeSA5064Australia
| |
Collapse
|
25
|
Minami A, Takahashi D, Kawamura Y, Uemura M. Isolation of Plasma Membrane and Plasma Membrane Microdomains. Methods Mol Biol 2017; 1511:199-212. [PMID: 27730613 DOI: 10.1007/978-1-4939-6533-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The plasma membrane surrounds the cytoplasm of a cell and functions as a barrier to separate the intracellular compartment from the extracellular environment. Protein and lipid components distribute nonuniformly and the components form clusters with various functions in the plasma membrane. These clusters are called as "microdomains." In plant cells, microdomains have been studied extensively because they play important roles in biotic/abiotic stress responses, cellular trafficking, and cell wall metabolism. Here we describe a standard protocol for the isolation of the plasma membrane and microdomains from plant cells, Arabidopsis and oat.
Collapse
Affiliation(s)
- Anzu Minami
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences and Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences and Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences and Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan.
| |
Collapse
|
26
|
Schneider R, Hanak T, Persson S, Voigt CA. Cellulose and callose synthesis and organization in focus, what's new? CURRENT OPINION IN PLANT BIOLOGY 2016; 34:9-16. [PMID: 27479608 DOI: 10.1016/j.pbi.2016.07.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 05/02/2023]
Abstract
Plant growth and development are supported by plastic but strong cell walls. These walls consist largely of polysaccharides that vary in content and structure. Most of the polysaccharides are produced in the Golgi apparatus and are then secreted to the apoplast and built into the growing walls. However, the two glucan polymers cellulose and callose are synthesized at the plasma membrane by cellulose or callose synthase complexes, respectively. Cellulose is the most common cell wall polymer in land plants and provides strength to the walls to support directed cell expansion. In contrast, callose is integral to specialized cell walls, such as the cell plate that separates dividing cells and growing pollen tube walls, and maintains important functions during abiotic and biotic stress responses. The last years have seen a dramatic increase in our understanding of how cellulose and callose are manufactured, and new factors that regulate the synthases have been identified. Much of this knowledge has been amassed via various microscopy-based techniques, including various confocal techniques and super-resolution imaging. Here, we summarize and synthesize recent findings in the fields of cellulose and callose synthesis in plant biology.
Collapse
Affiliation(s)
- René Schneider
- School of BioSciences, University of Melbourne, 3010 Parkville, Melbourne, Australia
| | - Tobias Hanak
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Staffan Persson
- School of BioSciences, University of Melbourne, 3010 Parkville, Melbourne, Australia.
| | - Christian A Voigt
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
27
|
Dahlin P, Srivastava V, Bulone V, McKee LS. The Oxidosqualene Cyclase from the Oomycete Saprolegnia parasitica Synthesizes Lanosterol as a Single Product. Front Microbiol 2016; 7:1802. [PMID: 27881978 PMCID: PMC5101207 DOI: 10.3389/fmicb.2016.01802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/27/2016] [Indexed: 11/29/2022] Open
Abstract
The first committed step of sterol biosynthesis is the cyclisation of 2,3-oxidosqualene to form either lanosterol (LA) or cycloartenol (CA). This is catalyzed by an oxidosqualene cyclase (OSC). LA and CA are subsequently converted into various sterols by a series of enzyme reactions. The specificity of the OSC therefore determines the final composition of the end sterols of an organism. Despite the functional importance of OSCs, the determinants of their specificity are not well understood. In sterol-synthesizing oomycetes, recent bioinformatics, and metabolite analysis suggest that LA is produced. However, this catalytic activity has never been experimentally demonstrated. Here, we show that the OSC of the oomycete Saprolegnia parasitica, a severe pathogen of salmonid fish, has an uncommon sequence in a conserved motif important for specificity. We present phylogenetic analysis revealing that this sequence is common to sterol-synthesizing oomycetes, as well as some plants, and hypothesize as to the evolutionary origin of some microbial sequences. We also demonstrate for the first time that a recombinant form of the OSC from S. parasitica produces LA exclusively. Our data pave the way for a detailed structural characterization of the protein and the possible development of specific inhibitors of oomycete OSCs for disease control in aquaculture.
Collapse
Affiliation(s)
- Paul Dahlin
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of TechnologyStockholm, Sweden; Department of Ecology, Environment and Plant Sciences, Stockholm UniversityStockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of TechnologyStockholm, Sweden; ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, The University of Adelaide, UrrbraeSA, Australia
| | - Lauren S McKee
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of TechnologyStockholm, Sweden; Wallenberg Wood Science Centre, KTH Royal Institute of TechnologyStockholm, Sweden
| |
Collapse
|
28
|
Brown C, Szpryngiel S, Kuang G, Srivastava V, Ye W, McKee LS, Tu Y, Mäler L, Bulone V. Structural and functional characterization of the microtubule interacting and trafficking domains of two oomycete chitin synthases. FEBS J 2016; 283:3072-88. [PMID: 27363606 DOI: 10.1111/febs.13794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/31/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Chitin synthases (Chs) are responsible for the synthesis of chitin, a key structural cell wall polysaccharide in many organisms. They are essential for growth in certain oomycete species, some of which are pathogenic to diverse higher organisms. Recently, a microtubule interacting and trafficking (MIT) domain, which is not found in any fungal Chs, has been identified in some oomycete Chs proteins. Based on experimental data relating to the binding specificity of other eukaryotic MIT domains, there was speculation that this domain may be involved in the intracellular trafficking of Chs proteins. However, there is currently no evidence for this or any other function for the MIT domain in these enzymes. To attempt to elucidate their function, MIT domains from two Chs enzymes from the oomycete Saprolegnia monoica were cloned, expressed, and characterized. Both were shown to interact strongly with the plasma membrane component, phosphatidic acid, and to have additional putative interactions with proteins thought to be involved in protein transport and localization. Aiding our understanding of these data, the structure of the first MIT domain from a carbohydrate-active enzyme (MIT1) was solved by NMR, and a model structure of a second MIT domain (MIT2) was built by homology modeling. Our results suggest a potential function for these MIT domains in the intracellular transport and/or regulation of Chs enzymes in the oomycetes. DATABASE Structural data are available in the Biological Magnetic Resonance Bank (BMRB) database under the accession number 19987 and the PDB database under the accession number 2MPK.
Collapse
Affiliation(s)
- Christian Brown
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Scarlett Szpryngiel
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, Sweden
| | - Guanglin Kuang
- Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Weihua Ye
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, Sweden
| | - Lauren S McKee
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
| | - Yaoquan Tu
- Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, Sweden
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden.,ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia
| |
Collapse
|
29
|
Zhang S, Zhang Y, Cao Y, Lei Y, Jiang H. Quantitative Proteomic Analysis Reveals Populus cathayana Females Are More Sensitive and Respond More Sophisticatedly to Iron Deficiency than Males. J Proteome Res 2016; 15:840-50. [PMID: 26842668 DOI: 10.1021/acs.jproteome.5b00750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder to nitrogen and phosphorus deficiencies, but little is known about the sex-specific differences in responses to iron deficiency. In this study, the effects of iron deficiency on the morphology, physiology, and proteome of P. cathayana males and females were investigated. The results showed that iron deficiency (25 days) significantly decreased height growth, photosynthetic rate, chlorophyll content, and tissue iron concentration in both sexes. A comparison between the sexes indicated that iron-deficient males had less height inhibition and photosynthesis system II or chloroplast ultrastructural damage than iron-deficient females. iTRAQ-based quantitative proteomic analysis revealed that 144 and 68 proteins were decreased in abundance (e.g., proteins involved in photosynthesis, carbohydrate and energy metabolism, and gene expression regulation) and 78 and 39 proteins were increased in abundance (e.g., proteins involved in amino acid metabolism and stress response) according to the criterion of ratio ≥1.5 in females and males, respectively. A comparison between the sexes indicated that iron-deficient females exhibited a greater change in the proteins involved in photosynthesis, carbon and energy metabolism, the redox system, and stress responsive proteins. This study reveals females are more sensitive and have a more sophisticated response to iron deficiency compared with males and provides new insights into differential sexual responses to nutrient deficiency.
Collapse
Affiliation(s)
- Sheng Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences , Chengdu 610041, China
| | - Yunxiang Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences , Chengdu 610041, China.,University of Chinese Academy of Sciences , Beijing 100039, China
| | | | - Yanbao Lei
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences , Chengdu 610041, China
| | - Hao Jiang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences , Chengdu 610041, China
| |
Collapse
|
30
|
Fukuyama Y, Nakajima C, Izumi S, Tanaka K. Membrane Protein Analyses Using Alkylated Trihydroxyacetophenone (ATHAP) as a MALDI Matrix. Anal Chem 2016; 88:1688-95. [DOI: 10.1021/acs.analchem.5b03700] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuko Fukuyama
- Koichi
Tanaka Laboratory of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
- Koichi
Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Chihiro Nakajima
- Koichi
Tanaka Laboratory of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shunsuke Izumi
- Department
of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Koichi Tanaka
- Koichi
Tanaka Laboratory of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
- Koichi
Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
31
|
Srivastava V, Weber JR, Malm E, Fouke BW, Bulone V. Proteomic Analysis of a Poplar Cell Suspension Culture Suggests a Major Role of Protein S-Acylation in Diverse Cellular Processes. FRONTIERS IN PLANT SCIENCE 2016; 7:477. [PMID: 27148305 PMCID: PMC4828459 DOI: 10.3389/fpls.2016.00477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/24/2016] [Indexed: 05/03/2023]
Abstract
S-acylation is a reversible post-translational modification of proteins known to be involved in membrane targeting, subcellular trafficking, and the determination of a great variety of functional properties of proteins. The aim of this work was to identify S-acylated proteins in poplar. The use of an acyl-biotin exchange method and mass spectrometry allowed the identification of around 450 S-acylated proteins, which were subdivided into three major groups of proteins involved in transport, signal transduction, and response to stress, respectively. The largest group of S-acylated proteins was the protein kinase superfamily. Soluble N-ethylmaleimide-sensitive factor-activating protein receptors, band 7 family proteins and tetraspanins, all primarily related to intracellular trafficking, were also identified. In addition, cell wall related proteins, including cellulose synthases and other glucan synthases, were found to be S-acylated. Twenty four of the identified S-acylated proteins were also enriched in detergent-resistant membrane microdomains, suggesting S-acylation plays a key role in the localization of proteins to specialized plasma membrane subdomains. This dataset promises to enhance our current understanding of the various functions of S-acylated proteins in plants.
Collapse
Affiliation(s)
- Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University CentreStockholm, Sweden
- *Correspondence: Vincent Bulone, ; Vaibhav Srivastava,
| | - Joseph R. Weber
- Roy J. Carver Biotechnology Centre, Institute for Genomic Biology, University of Illinois Urbana–ChampaignUrbana, IL, USA
| | - Erik Malm
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University CentreStockholm, Sweden
| | - Bruce W. Fouke
- Roy J. Carver Biotechnology Centre, Institute for Genomic Biology, University of Illinois Urbana–ChampaignUrbana, IL, USA
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University CentreStockholm, Sweden
- ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Waite CampusUrrbrae, SA, Australia
- *Correspondence: Vincent Bulone, ; Vaibhav Srivastava,
| |
Collapse
|
32
|
Zhang S, Zhou R, Zhao H, Korpelainen H, Li C. iTRAQ-based quantitative proteomic analysis gives insight into sexually different metabolic processes of poplars under nitrogen and phosphorus deficiencies. Proteomics 2015; 16:614-28. [PMID: 26698923 DOI: 10.1002/pmic.201500197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/19/2015] [Accepted: 12/17/2015] [Indexed: 11/10/2022]
Abstract
Male and female poplars (Populus cathayana Rehd.) respond differently to nitrogen (N) and phosphorus (P) deficiencies. In this study, an iTRAQ-based quantitative proteomic analysis was performed. N and P deficiencies caused 189 and 144 proteins to change in abundance in males and 244 and 464 in females, respectively. Compared to N- and P-deficient males, both N- and P-deficient females showed a wider range of changes in proteins that are involved in amino acid, carbohydrate and protein metabolism, and the sexual differences were significant. When comparing the effects of N- and P-deficiencies, N-deficient females expressed more changes in proteins that are involved in stress responses and gene expression regulation, while P-deficient females showed more changes in proteins that are involved in energy and lipid metabolism, stress responses and gene expression regulation. The quantitative RT-PCR analysis of stress-related proteins showed that males have a better expression correlation between mRNA and protein levels than do females. This study shows that P. cathayana females are more sensitive and have more rapid metabolic mechanisms when responding to N and P deficiencies than do males, and P deficiency has a wider range of effects on females than does N deficiency.
Collapse
Affiliation(s)
- Sheng Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, P. R. China
| | - Rong Zhou
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongxia Zhao
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, P. R. China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Chunyang Li
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, P. R. China.,The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang, P. R. China
| |
Collapse
|
33
|
Grison MS, Brocard L, Fouillen L, Nicolas W, Wewer V, Dörmann P, Nacir H, Benitez-Alfonso Y, Claverol S, Germain V, Boutté Y, Mongrand S, Bayer EM. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. THE PLANT CELL 2015; 27:1228-50. [PMID: 25818623 PMCID: PMC4558693 DOI: 10.1105/tpc.114.135731] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/18/2015] [Accepted: 03/05/2015] [Indexed: 05/18/2023]
Abstract
Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes.
Collapse
Affiliation(s)
- Magali S Grison
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Lysiane Brocard
- Plant Imaging Platform, Bordeaux Imaging Centre, INRA, 33883 Villenave-d'Ornon Cedex, France University of Bordeaux/CNRS/UMS3420 and University of Bordeaux/Institut National de la Santé et de la Recherche Médicale/US004, 33000 Bordeaux, France
| | - Laetitia Fouillen
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France Functional Genomic Centre, Métabolome/Lipidome Platform, INRA-CNRS-University of Bordeaux, 33883 Villenave-d'Ornon Cedex, France
| | - William Nicolas
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Vera Wewer
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Houda Nacir
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Yoselin Benitez-Alfonso
- Centre for Plant Sciences, School of Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Stéphane Claverol
- Functional Genomic Centre, Métabolome/Lipidome Platform, INRA-CNRS-University of Bordeaux, 33883 Villenave-d'Ornon Cedex, France
| | - Véronique Germain
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Yohann Boutté
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Sébastien Mongrand
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Emmanuelle M Bayer
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
34
|
Faulkner C. A cellular backline: specialization of host membranes for defence. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1565-71. [PMID: 25716696 DOI: 10.1093/jxb/erv021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In plant-pathogen interactions, the host plasma membrane serves as a defence front for pathogens that invade from the extracellular environment. As such, the lipid bilayer acts as a scaffold that targets and delivers defence responses to the site of attack. During pathogen infection, numerous changes in plasma membrane composition, organization, and structure occur. There is increasing evidence that this facilitates the execution of a variety of responses, highlighting the regulatory role membranes play in cellular responses. Membrane microdomains such as lipid rafts are hypothesized to create signalling platforms for receptor signalling in response to pathogen perception and for callose synthesis. Further, the genesis of pathogen-associated structures such as papillae and the extra-haustorial membrane necessitates polarization of membranes and membrane trafficking pathways. Unlocking the mechanisms by which this occurs will enable greater understanding of how targeted defences, some of which result in resistance, are executed. This review will survey some of the changes that occur in host membranes during pathogen attack and how these are associated with the generation of defence responses.
Collapse
Affiliation(s)
- Christine Faulkner
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
35
|
Tapken W, Murphy AS. Membrane nanodomains in plants: capturing form, function, and movement. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1573-86. [PMID: 25725094 DOI: 10.1093/jxb/erv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains.
Collapse
Affiliation(s)
- Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
36
|
Chou YH, Pogorelko G, Young ZT, Zabotina OA. Protein-protein interactions among xyloglucan-synthesizing enzymes and formation of Golgi-localized multiprotein complexes. PLANT & CELL PHYSIOLOGY 2015; 56:255-67. [PMID: 25392066 DOI: 10.1093/pcp/pcu161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana xyloglucan has an XXXG structure, with branches of xylosyl residues, β-D-galacosyl-(1,2)-α-d-xylosyl motifs and fucosylated β-D-galactosyl-(1,2)-α-D-xylosyl motifs. Most of the enzymes involved in xyloglucan biosynthesis in Arabidopsis have been identified, including the glucan synthase CSLC4 (cellulose synthase-like C4), three xylosyltransferases (XXT1, XXT2 and XXT5), two galactosyltransferases (MUR3 and XLT2) and the fucosyltransferase FUT1. The XXTs and CSLC4 form homo- and heterocomplexes and were proposed to co-localize in the same complex, but the organization of the other xyloglucan-synthesizing enzymes remains unclear. Here we investigate whether the glycosyltransferases MUR3, XLT2 and FUT1 interact with the XXT-CSLC4 complexes in the Arabidopsis Golgi. We used co-immunoprecipitation and bimolecular fluorescence complementation, with signal quantification by flow cytometry, to demonstrate that CSLC4 interacts with MUR3, XLT2 and FUT1. FUT1 forms homocomplexes and interacts with MUR3, XLT2, XXT2 and XXT5. XLT2 interacts with XXT2 and XXT5, but MUR3 does not. Co-immunoprecipitation assays showed that FUT1 forms a homocomplex through disulfide bonds, and formation of the heterocomplexes does not involve covalent interactions. In vitro pull-down assays indicated that interactions in the FUT1-MUR3 and FUT1-XXT2 complexes occur through the protein catalytic domains. We propose that enzymes involved in xyloglucan biosynthesis are functionally organized in multiprotein complexes localized in the Golgi.
Collapse
Affiliation(s)
- Yi-Hsiang Chou
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Gennady Pogorelko
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Zachary T Young
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Olga A Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
37
|
Malm EK, Srivastava V, Sundqvist G, Bulone V. APP: an Automated Proteomics Pipeline for the analysis of mass spectrometry data based on multiple open access tools. BMC Bioinformatics 2014; 15:441. [PMID: 25547515 PMCID: PMC4314934 DOI: 10.1186/s12859-014-0441-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mass spectrometry analyses of complex protein samples yield large amounts of data and specific expertise is needed for data analysis, in addition to a dedicated computer infrastructure. Furthermore, the identification of proteins and their specific properties require the use of multiple independent bioinformatics tools and several database search algorithms to process the same datasets. In order to facilitate and increase the speed of data analysis, there is a need for an integrated platform that would allow a comprehensive profiling of thousands of peptides and proteins in a single process through the simultaneous exploitation of multiple complementary algorithms. RESULTS We have established a new proteomics pipeline designated as APP that fulfills these objectives using a complete series of tools freely available from open sources. APP automates the processing of proteomics tasks such as peptide identification, validation and quantitation from LC-MS/MS data and allows easy integration of many separate proteomics tools. Distributed processing is at the core of APP, allowing the processing of very large datasets using any combination of Windows/Linux physical or virtual computing resources. CONCLUSIONS APP provides distributed computing nodes that are simple to set up, greatly relieving the need for separate IT competence when handling large datasets. The modular nature of APP allows complex workflows to be managed and distributed, speeding up throughput and setup. Additionally, APP logs execution information on all executed tasks and generated results, simplifying information management and validation.
Collapse
Affiliation(s)
- Erik K Malm
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden.
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden.
| | - Gustav Sundqvist
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden.
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden.
| |
Collapse
|
38
|
Ellinger D, Voigt CA. Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. ANNALS OF BOTANY 2014; 114:1349-58. [PMID: 24984713 PMCID: PMC4195556 DOI: 10.1093/aob/mcu120] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/16/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND (1,3)-β-Glucan callose is a cell wall polymer that is involved in several fundamental biological processes, ranging from plant development to the response to abiotic and biotic stresses. Despite its importance in maintaining plant integrity and plant defence, knowledge about the regulation of callose biosynthesis at its diverse sites of action within the plant is still limited. The moderately sized family of GSL (GLUCAN SYNTHASE-LIKE) genes is predicted to encode callose synthases with a specific biological function and subcellular localization. Phosphorylation and directed translocation of callose synthases seem to be key post-translational mechanisms of enzymatic regulation, whereas transcriptional control of GSL genes might only have a minor function in response to biotic or abiotic stresses. SCOPE AND CONCLUSIONS Among the different sites of callose biosynthesis within the plant, particular attention has been focused on the formation of callose in response to pathogen attack. Here, callose is deposited between the plasma membrane and the cell wall to act as a physical barrier to stop or slow invading pathogens. Arabidopsis (Arabidopsis thaliana) is one of the best-studied models not only for general plant defence responses but also for the regulation of pathogen-induced callose biosynthesis. Callose synthase GSL5 (GLUCAN SYNTHASE-LIKE5) has been shown to be responsible for stress-induced callose deposition. Within the last decade of research into stress-induced callose, growing evidence has been found that the timing of callose deposition in the multilayered system of plant defence responses could be the key parameter for optimal effectiveness. This timing seems to be achieved through co-ordinated transport and formation of the callose synthase complex.
Collapse
Affiliation(s)
- Dorothea Ellinger
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Christian A Voigt
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| |
Collapse
|
39
|
Zhao Q, Fang F, Liang Y, Yuan H, Yang K, Wu Q, Liang Z, Zhang L, Zhang Y. 1-Dodecyl-3-Methylimidazolium Chloride-Assisted Sample Preparation Method for Efficient Integral Membrane Proteome Analysis. Anal Chem 2014; 86:7544-50. [DOI: 10.1021/ac5013267] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qun Zhao
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fei Fang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yu Liang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Huiming Yuan
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Kaiguang Yang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Qi Wu
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhen Liang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yukui Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| |
Collapse
|
40
|
Ellinger D, Voigt CA. The use of nanoscale fluorescence microscopic to decipher cell wall modifications during fungal penetration. FRONTIERS IN PLANT SCIENCE 2014; 5:270. [PMID: 24995012 PMCID: PMC4061529 DOI: 10.3389/fpls.2014.00270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 05/25/2014] [Indexed: 05/08/2023]
Abstract
Plant diseases are one of the most studied subjects in the field of plant science due to their impact on crop yield and food security. Our increased understanding of plant-pathogen interactions was mainly driven by the development of new techniques that facilitated analyses on a subcellular and molecular level. The development of labeling technologies, which allowed the visualization and localization of cellular structures and proteins in live cell imaging, promoted the use of fluorescence and laser-scanning microscopy in the field of plant-pathogen interactions. Recent advances in new microscopic technologies opened their application in plant science and in the investigation of plant diseases. In this regard, in planta Förster/Fluorescence resonance energy transfer has demonstrated to facilitate the measurement of protein-protein interactions within the living tissue, supporting the analysis of regulatory pathways involved in plant immunity and putative host-pathogen interactions on a nanoscale level. Localization microscopy, an emerging, non-invasive microscopic technology, will allow investigations with a nanoscale resolution leading to new possibilities in the understanding of molecular processes.
Collapse
Affiliation(s)
| | - Christian A. Voigt
- *Correspondence: Christian A. Voigt, Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany e-mail:
| |
Collapse
|
41
|
De Storme N, Geelen D. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. FRONTIERS IN PLANT SCIENCE 2014; 5:138. [PMID: 24795733 PMCID: PMC4001042 DOI: 10.3389/fpls.2014.00138] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/23/2014] [Indexed: 05/18/2023]
Abstract
Plasmodesmata are membrane-lined channels that are located in the plant cell wall and that physically interconnect the cytoplasm and the endoplasmic reticulum (ER) of adjacent cells. Operating as controllable gates, plasmodesmata regulate the symplastic trafficking of micro- and macromolecules, such as endogenous proteins [transcription factors (TFs)] and RNA-based signals (mRNA, siRNA, etc.), hence mediating direct cell-to-cell communication and long distance signaling. Besides this physiological role, plasmodesmata also form gateways through which viral genomes can pass, largely facilitating the pernicious spread of viral infections. Plasmodesmatal trafficking is either passive (e.g., diffusion) or active and responses both to developmental and environmental stimuli. In general, plasmodesmatal conductivity is regulated by the controlled build-up of callose at the plasmodesmatal neck, largely mediated by the antagonistic action of callose synthases (CalSs) and β-1,3-glucanases. Here, in this theory and hypothesis paper, we outline the importance of callose metabolism in PD SEL control, and highlight the main molecular factors involved. In addition, we also review other proteins that regulate symplastic PD transport, both in a developmental and stress-responsive framework, and discuss on their putative role in the modulation of PD callose turn-over. Finally, we hypothesize on the role of structural sterols in the regulation of (PD) callose deposition and outline putative mechanisms by which this regulation may occur.
Collapse
Affiliation(s)
| | - Danny Geelen
- *Correspondence: Danny Geelen, Laboratory for In Vitro Biology and Horticulture, Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium e-mail:
| |
Collapse
|