1
|
Skrabalak I, Rajtak A, Malachowska B, Skrzypczak N, Skalina KA, Guha C, Kotarski J, Okla K. Therapy resistance: Modulating evolutionarily conserved heat shock protein machinery in cancer. Cancer Lett 2025; 616:217571. [PMID: 39986370 DOI: 10.1016/j.canlet.2025.217571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Therapy resistance is a major barrier to achieving a cure in cancer patients, often resulting in relapses and mortality. Heat shock proteins (HSPs) are a group of evolutionarily conserved proteins that play a prominent role in the progression of cancer and drug resistance. HSP synthesis is upregulated in cancer cells, facilitating adaptation to various tumor microenvironment (TME) stressors, including nutrient deprivation, exposure to DNA-damaging agents, hypoxia, and immune responses. In this review, we present background information about HSP-mediated cancer therapy resistance. Within this context, we emphasize recent progress in the understanding of HSP machinery, exploring the therapeutic potential of HSPs in cancer treatment.
Collapse
Affiliation(s)
- Ilona Skrabalak
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Alicja Rajtak
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland; IOA, 3 Lotnicza St, 20-322 Lublin, Poland
| | - Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Natalia Skrzypczak
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI, USA
| | - Karin A Skalina
- Department of Radiation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Jan Kotarski
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Karolina Okla
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; IOA, 3 Lotnicza St, 20-322 Lublin, Poland.
| |
Collapse
|
2
|
Zhao G, Zhao L, Miao Y, Yang L, Huang L, Hu Z. HSPB1 Orchestrates the Inflammation-Associated Transcriptome Profile of Atherosclerosis in HUVECs. FRONT BIOSCI-LANDMRK 2025; 30:36306. [PMID: 40018940 DOI: 10.31083/fbl36306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Atherosclerosis (AS), with a profound inflammatory response, is the basis of cardiovascular diseases. Previous reports showed that heat shock protein family B member 1 (HSPB1) has a protective effect against AS, but the specific mechanism is still unclear. In this study, we aim to explore the functions and downstream targets of HSPB1 in human umbilical vein endothelial cells (HUVECs). METHODS Expression of the HSPB1 gene was knocked down in HUVECs. Cellular phenotype was then assessed and transcriptome data (RNA-seq) was analyzed to identify the potential targets regulated by HSPB1. Moreover, RNA-seq data for human fibroatheroma (GSE104140) from the gene expression omnibus (GEO) database was re-analyzed to verify the targets of HSPB1 in AS. RESULTS Silencing of HSPB1 significantly reduced apoptosis (p < 0.0001) and increased the proliferation (p < 0.05) of HUVECs. The 608 differentially expressed genes (DEGs) were identified after HSPB1 knockdown, including 423 upregulated genes. DEGs, including CXCL1, CXCL8, CXCL2, TRIB3, GAS5, SELE, and TNIP1, were enriched in inflammatory and immune response pathways. HSPB1 was also shown to affect alternative splicing patterns of hundreds of genes, especially those enriched in apoptotic processes, including ACIN1, IFI27, PAK4, UBE2D3, and FIS1. An overlapping gene set was found between the HSPB1-regulated and AS-induced transcriptome. This included 171 DEGs and 250 alternatively spliced genes that were also enriched in inflammatory/immune response- and apoptosis-associated pathways, respectively. CONCLUSION In summary, HSPB1 knockdown modulates the proliferation and apoptosis of HUVECs by regulating RNA levels and alternative splicing patterns. HSPB1 plays an important role in AS pathogenesis by modulating the inflammatory and immune response. This study provides novel insights for the investigation of future AS therapeutic strategies.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Li Zhao
- Department of Anesthesiology, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Yulin Miao
- Clinical Medical School, Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Lei Yang
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Lizhen Huang
- Clinical Medical School, Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Zhipeng Hu
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Paul R, Shreya S, Pandey S, Shriya S, Abou Hammoud A, Grosset CF, Prakash Jain B. Functions and Therapeutic Use of Heat Shock Proteins in Hepatocellular Carcinoma. LIVERS 2024; 4:142-163. [DOI: 10.3390/livers4010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Heat shock proteins are intracellular proteins expressed in prokaryotes and eukaryotes that help protect the cell from stress. They play an important role in regulating cell cycle and cell death, work as molecular chaperons during the folding of newly synthesized proteins, and also in the degradation of misfolded proteins. They are not only produced under stress conditions like acidosis, energy depletion, and oxidative stress but are also continuously synthesized as a result of their housekeeping functions. There are different heat shock protein families based on their molecular weight, like HSP70, HSP90, HSP60, HSP27, HSP40, etc. Heat shock proteins are involved in many cancers, particularly hepatocellular carcinoma, the main primary tumor of the liver in adults. Their deregulations in hepatocellular carcinoma are associated with metastasis, angiogenesis, cell invasion, and cell proliferation and upregulated heat shock proteins can be used as either diagnostic or prognostic markers. Targeting heat shock proteins is a relevant strategy for the treatment of patients with liver cancer. In this review, we provide insights into heat shock proteins and heat shock protein-like proteins (clusterin) in the progression of hepatocellular carcinoma and their use as therapeutic targets.
Collapse
Affiliation(s)
- Ramakrushna Paul
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, India
| | - Smriti Shreya
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, India
| | | | - Srishti Shriya
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, India
| | - Aya Abou Hammoud
- MIRCADE Team, U1312, Bordeaux Institute of Oncology, BRIC, INSERM, University of Bordeaux, 33000 Bordeaux, France
| | - Christophe F. Grosset
- MIRCADE Team, U1312, Bordeaux Institute of Oncology, BRIC, INSERM, University of Bordeaux, 33000 Bordeaux, France
| | - Buddhi Prakash Jain
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, India
| |
Collapse
|
4
|
Kinger S, Dubey AR, Kumar P, Jagtap YA, Choudhary A, Kumar A, Prajapati VK, Dhiman R, Mishra A. Molecular Chaperones' Potential against Defective Proteostasis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:cells12091302. [PMID: 37174703 PMCID: PMC10177248 DOI: 10.3390/cells12091302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuronal degenerative condition identified via a build-up of mutant aberrantly folded proteins. The native folding of polypeptides is mediated by molecular chaperones, preventing their pathogenic aggregation. The mutant protein expression in ALS is linked with the entrapment and depletion of chaperone capacity. The lack of a thorough understanding of chaperones' involvement in ALS pathogenesis presents a significant challenge in its treatment. Here, we review how the accumulation of the ALS-linked mutant FUS, TDP-43, SOD1, and C9orf72 proteins damage cellular homeostasis mechanisms leading to neuronal loss. Further, we discuss how the HSP70 and DNAJ family co-chaperones can act as potential targets for reducing misfolded protein accumulation in ALS. Moreover, small HSPB1 and HSPB8 chaperones can facilitate neuroprotection and prevent stress-associated misfolded protein apoptosis. Designing therapeutic strategies by pharmacologically enhancing cellular chaperone capacity to reduce mutant protein proteotoxic effects on ALS pathomechanisms can be a considerable advancement. Chaperones, apart from directly interacting with misfolded proteins for protein quality control, can also filter their toxicity by initiating strong stress-response pathways, modulating transcriptional expression profiles, and promoting anti-apoptotic functions. Overall, these properties of chaperones make them an attractive target for gaining fundamental insights into misfolded protein disorders and designing more effective therapies against ALS.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| |
Collapse
|
5
|
Rizvi SF, Hasan A, Parveen S, Mir SS. Untangling the complexity of heat shock protein 27 in cancer and metastasis. Arch Biochem Biophys 2023; 736:109537. [PMID: 36738981 DOI: 10.1016/j.abb.2023.109537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Heat shock protein 27 is a type of molecular chaperone whose expression gets up-regulated due to reaction towards different stressful triggers including anticancer treatments. It is known to be a major player of resistance development in cancer cells, whereby cells are sheltered against the therapeutics that normally activate apoptosis. Heat shock protein 27 (HSP27) is one of the highly expressed proteins during various cellular insults and is a strong tumor survival factor. HSP27 influences various cellular pathways associated with cancer cell survival and growth such as apoptosis, autophagy, metastasis, angiogenesis, epithelial to mesenchymal transition, etc. HSP27 is molecular machinery which prevents the clumping of numerous substrates or client proteins which get mutated in cancer. It has been reported in several studies that targeting HSP27 is difficult because of its dynamic structure and absence of an ATP-binding site. Here, in this review, we have summarized different modulators of HSP27 and their mechanism of action as well. Effect of deregulated HSP27 in various cancer models, limitations of targeting HSP27, resistance against the conventional drugs generated due to the overexpression of HSP27, and measures to counteract this effect have also been discussed here in detail.
Collapse
Affiliation(s)
- Suroor Fatima Rizvi
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Sana Parveen
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
6
|
Hasan A, Rizvi SF, Parveen S, Mir SS. Molecular chaperones in DNA repair mechanisms: Role in genomic instability and proteostasis in cancer. Life Sci 2022; 306:120852. [DOI: 10.1016/j.lfs.2022.120852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023]
|
7
|
α-Arrestins and Their Functions: From Yeast to Human Health. Int J Mol Sci 2022; 23:ijms23094988. [PMID: 35563378 PMCID: PMC9105457 DOI: 10.3390/ijms23094988] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
α-Arrestins, also called arrestin-related trafficking adaptors (ARTs), constitute a large family of proteins conserved from yeast to humans. Despite their evolutionary precedence over their extensively studied relatives of the β-arrestin family, α-arrestins have been discovered relatively recently, and thus their properties are mostly unexplored. The predominant function of α-arrestins is the selective identification of membrane proteins for ubiquitination and degradation, which is an important element in maintaining membrane protein homeostasis as well as global cellular metabolisms. Among members of the arrestin clan, only α-arrestins possess PY motifs that allow canonical binding to WW domains of Rsp5/NEDD4 ubiquitin ligases and the subsequent ubiquitination of membrane proteins leading to their vacuolar/lysosomal degradation. The molecular mechanisms of the selective substrate’s targeting, function, and regulation of α-arrestins in response to different stimuli remain incompletely understood. Several functions of α-arrestins in animal models have been recently characterized, including redox homeostasis regulation, innate immune response regulation, and tumor suppression. However, the molecular mechanisms of α-arrestin regulation and substrate interactions are mainly based on observations from the yeast Saccharomyces cerevisiae model. Nonetheless, α-arrestins have been implicated in health disorders such as diabetes, cardiovascular diseases, neurodegenerative disorders, and tumor progression, placing them in the group of potential therapeutic targets.
Collapse
|
8
|
RNA Molecular Signature Profiling in PBMCs of Sporadic ALS Patients: HSP70 Overexpression Is Associated with Nuclear SOD1. Cells 2022; 11:cells11020293. [PMID: 35053410 PMCID: PMC8774074 DOI: 10.3390/cells11020293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Superoxide dismutase 1 (SOD1) is one of the causative genes associated with amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder. SOD1 aggregation contributes to ALS pathogenesis. A fraction of the protein is localized in the nucleus (nSOD1), where it seems to be involved in the regulation of genes participating in the oxidative stress response and DNA repair. Peripheral blood mononuclear cells (PBMCs) were collected from sporadic ALS (sALS) patients (n = 18) and healthy controls (n = 12) to perform RNA-sequencing experiments and differential expression analysis. Patients were stratified into groups with “high” and “low” levels of nSOD1. We obtained different gene expression patterns for high- and low-nSOD1 patients. Differentially expressed genes in high nSOD1 form a cluster similar to controls compared to the low-nSOD1 group. The pathways activated in high-nSOD1 patients are related to the upregulation of HSP70 molecular chaperones. We demonstrated that, in this condition, the DNA damage is reduced, even under oxidative stress conditions. Our findings highlight the importance of the nuclear localization of SOD1 as a protective mechanism in sALS patients.
Collapse
|
9
|
Cherif C, Nguyen DT, Paris C, Le TK, Sefiane T, Carbuccia N, Finetti P, Chaffanet M, Kaoutari AE, Vernerey J, Fazli L, Gleave M, Manai M, Barthélémy P, Birnbaum D, Bertucci F, Taïeb D, Rocchi P. Menin inhibition suppresses castration-resistant prostate cancer and enhances chemosensitivity. Oncogene 2021; 41:125-137. [PMID: 34711954 PMCID: PMC8724010 DOI: 10.1038/s41388-021-02039-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
Disease progression and therapeutic resistance of prostate cancer (PC) are linked to multiple molecular events that promote survival and plasticity. We previously showed that heat shock protein 27 (HSP27) acted as a driver of castration-resistant phenotype (CRPC) and developed an oligonucleotides antisense (ASO) against HSP27 with evidence of anti-cancer activity in men with CRPC. Here, we show that the tumor suppressor Menin (MEN1) is highly regulated by HSP27. Menin is overexpressed in high-grade PC and CRPC. High MEN1 mRNA expression is associated with decreased biochemical relapse-free and overall survival. Silencing Menin with ASO technology inhibits CRPC cell proliferation, tumor growth, and restores chemotherapeutic sensitivity. ChIP-seq analysis revealed differential DNA binding sites of Menin in various prostatic cells, suggesting a switch from tumor suppressor to oncogenic functions in CRPC. These data support the evaluation of ASO against Menin for CRPC. ![]()
Collapse
Affiliation(s)
- Chaïma Cherif
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.,Laboratory of Biochemistry and Molecular Biology, Science University of Tunis, 2092, El Manar, Tunis, Tunisia
| | - Dang Tan Nguyen
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Clément Paris
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Thi Khanh Le
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Thibaud Sefiane
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Nadine Carbuccia
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Max Chaffanet
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Abdessamad El Kaoutari
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Julien Vernerey
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Ladan Fazli
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Mohamed Manai
- Laboratory of Biochemistry and Molecular Biology, Science University of Tunis, 2092, El Manar, Tunis, Tunisia
| | - Philippe Barthélémy
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, University of Bordeaux, F-33076 Bordeaux, France
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - François Bertucci
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - David Taïeb
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.,Biophysics and Nuclear Medicine Department, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, F-13005 Marseille, France
| | - Palma Rocchi
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.
| |
Collapse
|
10
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
11
|
Heat Shock Proteins 27, 70, and 110: Expression and Prognostic Significance in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13174407. [PMID: 34503216 PMCID: PMC8431468 DOI: 10.3390/cancers13174407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022] Open
Abstract
Heat shock proteins (HSPs) are evolutionarily conserved chaperones occurring in virtually all living organisms playing a key role in the maintenance of cellular homeostasis. They are constitutively expressed to prevent and repair protein damage following various physiological and environmental stressors. HSPs are overexpressed in various types of cancers to provide cytoprotective function, and they have been described to influence prognosis and response to therapy. Moreover, they have been used as a tumor marker in blood serum biochemistry and they represent a potentially promising therapeutic target. To clarify prognostic significance of two canonical HSPs (27 and 70) and less known HSP110 (previously known as HSP105) in colorectal carcinoma (CRC), we retrospectively performed HSP immunohistochemistry on tissue microarrays from formalin-fixed paraffin-embedded tumor tissue from 297 patients with known follow-up. Survival analysis (univariate Kaplan-Meier analysis with the log-rank test and multivariate Cox regression) revealed significantly shorter overall survival (OS, mean 5.54 vs. 7.07, p = 0.033) and borderline insignificantly shorter cancer specific survival (CSS, mean 6.3 vs. 7.87 years, p = 0.066) in patients with HSP70+ tumors. In the case of HSP27+ tumors, there was an insignificantly shorter OS (mean 6.36 vs. 7.13 years, p = 0.2) and CSS (mean 7.17 vs. 7.95 years, p = 0.2). HSP110 showed no significant impact on survival. Using Pearson's chi-squared test, there was a significant association of HSP27 and HSP70 expression with advanced cancer stage. HSP27+ tumors were more frequently mismatch-repair proficient and vice versa (p = 0.014), and they occurred more often in female patients and vice versa (p = 0.015). There was an enrichment of left sided tumors with HSP110+ compared to the right sided (p = 0.022). In multivariate Cox regression adjusted on the UICC stage, grade and right/left side; both HSPs 27 and 70 were not independent survival predictors (p = 0.616 & p = 0.586). In multivariate analysis, only advanced UICC stage (p = 0) and right sided localization (p = 0.04) were independent predictors of worse CSS. In conclusion, from all three HSPs examined in our study, only HSP70 expression worsened CRC prognosis, although stage-dependent. The contribution of this article may be seen as a large survival analysis of HSPs 27 and 70 and the largest analysis of HSP110 described in CRC.
Collapse
|
12
|
Makley LN, Johnson OT, Ghanakota P, Rauch JN, Osborn D, Wu TS, Cierpicki T, Carlson HA, Gestwicki JE. Chemical validation of a druggable site on Hsp27/HSPB1 using in silico solvent mapping and biophysical methods. Bioorg Med Chem 2021; 34:115990. [PMID: 33549906 PMCID: PMC7968374 DOI: 10.1016/j.bmc.2020.115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 11/26/2022]
Abstract
Destabilizing mutations in small heat shock proteins (sHsps) are linked to multiple diseases; however, sHsps are conformationally dynamic, lack enzymatic function and have no endogenous chemical ligands. These factors render sHsps as classically "undruggable" targets and make it particularly challenging to identify molecules that might bind and stabilize them. To explore potential solutions, we designed a multi-pronged screening workflow involving a combination of computational and biophysical ligand-discovery platforms. Using the core domain of the sHsp family member Hsp27/HSPB1 (Hsp27c) as a target, we applied mixed solvent molecular dynamics (MixMD) to predict three possible binding sites, which we confirmed using NMR-based solvent mapping. Using this knowledge, we then used NMR spectroscopy to carry out a fragment-based drug discovery (FBDD) screen, ultimately identifying two fragments that bind to one of these sites. A medicinal chemistry effort improved the affinity of one fragment by ~50-fold (16 µM), while maintaining good ligand efficiency (~0.32 kcal/mol/non-hydrogen atom). Finally, we found that binding to this site partially restored the stability of disease-associated Hsp27 variants, in a redox-dependent manner. Together, these experiments suggest a new and unexpected binding site on Hsp27, which might be exploited to build chemical probes.
Collapse
Affiliation(s)
- Leah N Makley
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, United States; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Oleta T Johnson
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, United States
| | - Phani Ghanakota
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jennifer N Rauch
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, United States
| | - Delaney Osborn
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, United States
| | - Taia S Wu
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Heather A Carlson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, United States.
| |
Collapse
|
13
|
Raafat N, Zaher TI, Etewa RL, El-gerby KM, Rezk NA. Heat shock protein-27 and MiR-17-5p are novel diagnostic and prognostic biomarkers for hepatocellular carcinoma in Egyptian patients. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Advances in DNA Repair-Emerging Players in the Arena of Eukaryotic DNA Repair. Int J Mol Sci 2020; 21:ijms21113934. [PMID: 32486270 PMCID: PMC7313471 DOI: 10.3390/ijms21113934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA is constantly damaged by factors produced during natural metabolic processes as well as agents coming from the external environment. Considering such a wide array of damaging agents, eukaryotic cells have evolved a DNA damage response (DRR) that opposes the influence of deleterious factors. Despite the broad knowledge regarding DNA damage and repair, new areas of research are emerging. New players in the field of DDR are constantly being discovered. The aim of this study is to review current knowledge regarding the roles of sirtuins, heat shock proteins, long-noncoding RNAs and the circadian clock in DDR and distinguish new agents that may have a prominent role in DNA damage response and repair.
Collapse
|
15
|
Liu L, Shao Z, Lv J, Xu F, Ren S, Jin Q, Yang J, Ma W, Xie H, Zhang D, Chen X. Identification of Early Warning Signals at the Critical Transition Point of Colorectal Cancer Based on Dynamic Network Analysis. Front Bioeng Biotechnol 2020; 8:530. [PMID: 32548109 PMCID: PMC7272579 DOI: 10.3389/fbioe.2020.00530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Due to the lack of early diagnosis methods and warning signals of CRC and its strong heterogeneity, the determination of accurate treatments for CRC and the identification of specific early warning signals are still urgent problems for researchers. In this study, the expression profiles of cancer tissues and the expression profiles of tumor-adjacent tissues in 28 CRC patients were combined into a human protein–protein interaction (PPI) network to construct a specific network for each patient. A network propagation method was used to obtain a mutant giant cluster (GC) containing more than 90% of the mutation information of one patient. Next, mutation selection rules were applied to the GC to mine the mutation sequence of driver genes in each CRC patient. The mutation sequences from patients with the same type CRC were integrated to obtain the mutation sequences of driver genes of different types of CRC, which provide a reference for the diagnosis of clinical CRC disease progression. Finally, dynamic network analysis was used to mine dynamic network biomarkers (DNBs) in CRC patients. These DNBs were verified by clinical staging data to identify the critical transition point between the pre-disease state and the disease state in tumor progression. Twelve known drug targets were found in the DNBs, and 6 of them have been used as targets for anticancer drugs for clinical treatment. This study provides important information for the prognosis, diagnosis and treatment of CRC, especially for pre-emptive treatments. It is of great significance for reducing the incidence and mortality of CRC.
Collapse
Affiliation(s)
- Lei Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhuo Shao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiaxuan Lv
- School of Stomatology, Harbin Medical University, Harbin, China
| | - Fei Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Sibo Ren
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qing Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jingbo Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Weifang Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongbo Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Denan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiujie Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
17
|
Dubrez L, Causse S, Borges Bonan N, Dumétier B, Garrido C. Heat-shock proteins: chaperoning DNA repair. Oncogene 2019; 39:516-529. [DOI: 10.1038/s41388-019-1016-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
|
18
|
Targeting Heat Shock Protein 27 in Cancer: A Druggable Target for Cancer Treatment? Cancers (Basel) 2019; 11:cancers11081195. [PMID: 31426426 PMCID: PMC6721579 DOI: 10.3390/cancers11081195] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein 27 (HSP27), induced by heat shock, environmental, and pathophysiological stressors, is a multi-functional protein that acts as a protein chaperone and an antioxidant. HSP27 plays a significant role in the inhibition of apoptosis and actin cytoskeletal remodeling. HSP27 is upregulated in many cancers and is associated with a poor prognosis, as well as treatment resistance, whereby cells are protected from therapeutic agents that normally induce apoptosis. This review highlights the most recent findings and role of HSP27 in cancer, as well as the strategies for using HSP27 inhibitors for therapeutic purposes.
Collapse
|
19
|
Haidar M, Asselbergh B, Adriaenssens E, De Winter V, Timmermans JP, Auer-Grumbach M, Juneja M, Timmerman V. Neuropathy-causing mutations in HSPB1 impair autophagy by disturbing the formation of SQSTM1/p62 bodies. Autophagy 2019; 15:1051-1068. [PMID: 30669930 PMCID: PMC6526868 DOI: 10.1080/15548627.2019.1569930] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/08/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
HSPB1 (heat shock protein family B [small] member 1) is a ubiquitously expressed molecular chaperone. Most mutations in HSPB1 cause axonal Charcot-Marie-Tooth neuropathy and/or distal hereditary motor neuropathy. In this study we show that mutations in HSPB1 lead to impairment of macroautophagic/autophagic flux. In HSPB1 knockout cells, we demonstrate that HSPB1 is necessary for autophagosome formation, which was rescued upon re-expression of HSPB1. Employing a label-free LC-MS/MS analysis on the various HSPB1 variants (wild type and mutants), we identified autophagy-specific interactors. We reveal that the wild-type HSPB1 protein binds to the autophagy receptor SQSTM1/p62 and that the PB1 domain of SQSTM1 is essential for this interaction. Mutations in HSPB1 lead to a decrease in the formation of SQSTM1/p62 bodies, and subsequent impairment of phagophore formation, suggesting a regulatory role for HSPB1 in autophagy via interaction with SQSTM1. Remarkably, autophagy deficits could also be confirmed in patient-derived motor neurons thereby indicating that the impairment of autophagy might be one of the pathomechanisms by which mutations in HSPB1 lead to peripheral neuropathy. Abbreviations: ACD: alpha-crystallin domain; ALS: amyotrophic lateral sclerosis; ATG14: autophagy related 14; BAG1/3: BCL2 associated athanogene 1/3; CMT: Charcot-Marie-Tooth; dHMN: distal hereditary motor neuropathy; GFP: green fluorescent protein; HSPA8: heat shock protein family A (Hsp70) member 8; HSPB1/6/8: heat shock protein family B (small) member 1/6/8; LIR: LC3-interacting region; LC3B: microtubule associated protein 1 light chain 3 beta; PB1: Phox and Bem1; SQSTM1: sequestosome 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; UBA: ubiquitin-associated; WIPI1: WD repeat domain, phosphoinositide interacting 1; WT: wild-type.
Collapse
Affiliation(s)
- Mansour Haidar
- Peripheral Neuropathy Research Group, Institute Born Bunge and University of Antwerp, Antwerp, Belgium
| | - Bob Asselbergh
- VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium
| | - Elias Adriaenssens
- Peripheral Neuropathy Research Group, Institute Born Bunge and University of Antwerp, Antwerp, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Institute Born Bunge and University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology & Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium
| | | | - Manisha Juneja
- Peripheral Neuropathy Research Group, Institute Born Bunge and University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Institute Born Bunge and University of Antwerp, Antwerp, Belgium
| |
Collapse
|
20
|
Wang S, Zhang X, Hao F, Li Y, Sun C, Zhan R, Wang Y, He W, Li H, Luo G. Reconstruction and Functional Annotation of P311 Protein-Protein Interaction Network Reveals Its New Functions. Front Genet 2019; 10:109. [PMID: 30838032 PMCID: PMC6390203 DOI: 10.3389/fgene.2019.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
P311 is a highly conserved multifunctional protein. However, it does not belong to any established family of proteins, and its biological function has not been entirely determined. This study aims to reveal the unknown molecular and cellular function of P311. OCG (Overlapping Cluster Generator) is a clustering method used to partition a protein-protein network into overlapping clusters. Multifunctional proteins are at the intersection of relevant clusters. DAVID is an analytic tool used to extract biological meaning from a large protein list. Here we presented OD2 (OCG + DAVID + 2 human PPI datasets), a novel strategy to increase the likelihood to identify biological functions most pertinent to the multifunctional proteins. The principle of OD2 is that OCG prepares the protein lists from multifunctional protein relevant overlapping clusters, for a functional enrichment analysis by DAVID, and the similar functional enrichments, which occurs simultaneously when analyzing two human PPI datasets, are supposed to be the predicted functions. By applying OD2 to two reconstructed human PPI datasets, we supposed the function of the P311 in inflammatory responses, cell proliferation and coagulation, which were confirmed by the following biological experiments. Collectively, our study preliminarily found that P311 could play a role in inflammatory responses, cell proliferation and coagulation. Further studies are required to validate and elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Song Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fen Hao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yan Li
- Laboratory Center of Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Sun
- The Sixth Resignation Cadre Sanatorium of Shandong Province Military Region, Qingdao, China
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ying Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.,The 324th Hospital of Chinese People's Liberation Army, Chongqing, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
21
|
Malitan HS, Cohen AM, MacRae TH. Knockdown of the small heat-shock protein p26 by RNA interference modifies the diapause proteome of Artemia franciscana. Biochem Cell Biol 2019; 97:471-479. [PMID: 30620618 DOI: 10.1139/bcb-2018-0231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Embryos of the crustacean Artemia franciscana may arrest as gastrulae, forming cysts that enter diapause, which is a state of reduced metabolism and enhanced stress tolerance. Diapausing cysts survive physiological stresses for years due, in part, to molecular chaperones. p26, a small heat-shock protein, is an abundant diapause-specific molecular chaperone in cysts, and it affects embryo development and stress tolerance. p26 is therefore thought to influence many proteins in cysts, and this study was undertaken to determine how the loss of p26 by RNA interference (RNAi) affects the diapause proteome of A. franciscana. The proteome was analyzed by shot-gun proteomics coupled to differential isotopic labeling and tandem mass spectrometry. Proteins in the diapause proteome included metabolic enzymes, antioxidants, binding proteins, structural proteins, transporters, translation factors, receptors, and signal transducers. Proteins within the diapause proteome either disappeared or were reduced in amount when p26 was knocked down, or conversely, proteins appeared or increased in amount. Those proteins that disappeared may be p26 substrates, whereas the synthesis of those proteins that appeared or increased may be regulated by p26. This study provides the first global characterization of the diapause proteome of A. franciscana and demonstrates that the sHsp p26 influences proteome composition.
Collapse
Affiliation(s)
| | - Alejandro M Cohen
- b Proteomics and Mass Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Thomas H MacRae
- a Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
22
|
Higareda-Almaraz JC, Karbiener M, Giroud M, Pauler FM, Gerhalter T, Herzig S, Scheideler M. Norepinephrine triggers an immediate-early regulatory network response in primary human white adipocytes. BMC Genomics 2018; 19:794. [PMID: 30390616 PMCID: PMC6215669 DOI: 10.1186/s12864-018-5173-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/16/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Norepinephrine (NE) signaling has a key role in white adipose tissue (WAT) functions, including lipolysis, free fatty acid liberation and, under certain conditions, conversion of white into brite (brown-in-white) adipocytes. However, acute effects of NE stimulation have not been described at the transcriptional network level. RESULTS We used RNA-seq to uncover a broad transcriptional response. The inference of protein-protein and protein-DNA interaction networks allowed us to identify a set of immediate-early genes (IEGs) with high betweenness, validating our approach and suggesting a hierarchical control of transcriptional regulation. In addition, we identified a transcriptional regulatory network with IEGs as master regulators, including HSF1 and NFIL3 as novel NE-induced IEG candidates. Moreover, a functional enrichment analysis and gene clustering into functional modules suggest a crosstalk between metabolic, signaling, and immune responses. CONCLUSIONS Altogether, our network biology approach explores for the first time the immediate-early systems level response of human adipocytes to acute sympathetic activation, thereby providing a first network basis of early cell fate programs and crosstalks between metabolic and transcriptional networks required for proper WAT function.
Collapse
Affiliation(s)
- Juan Carlos Higareda-Almaraz
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Metabolic Control, Medical Faculty, Technical University, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- NMR laboratory, Institute of Myology, Hopital Universitaire Pitie Salpetriere, Paris, France
| | - Michael Karbiener
- Department of Phoniatrics, ENT University Hospital, Medical University of Graz, Graz, Austria
| | - Maude Giroud
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Metabolic Control, Medical Faculty, Technical University, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Florian M. Pauler
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Present Address: Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Teresa Gerhalter
- Present Address: Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Metabolic Control, Medical Faculty, Technical University, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Metabolic Control, Medical Faculty, Technical University, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- NMR laboratory, Institute of Myology, Hopital Universitaire Pitie Salpetriere, Paris, France
| |
Collapse
|
23
|
Valdeolivas A, Tichit L, Navarro C, Perrin S, Odelin G, Levy N, Cau P, Remy E, Baudot A. Random walk with restart on multiplex and heterogeneous biological networks. Bioinformatics 2018; 35:497-505. [DOI: 10.1093/bioinformatics/bty637] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 07/16/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Alberto Valdeolivas
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
- ProGeLife, Marseille
| | - Laurent Tichit
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
| | - Claire Navarro
- ProGeLife, Marseille
- Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Sophie Perrin
- ProGeLife, Marseille
- Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Gaëlle Odelin
- ProGeLife, Marseille
- Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Nicolas Levy
- Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Pierre Cau
- ProGeLife, Marseille
- Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Elisabeth Remy
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
| | - Anaïs Baudot
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
| |
Collapse
|
24
|
Some Biological Consequences of the Inhibition of Na,K-ATPase by Translationally Controlled Tumor Protein (TCTP). Int J Mol Sci 2018; 19:ijms19061657. [PMID: 29867020 PMCID: PMC6032315 DOI: 10.3390/ijms19061657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
Na,K-ATPase is an ionic pump that regulates the osmotic equilibrium and membrane potential of cells and also functions as a signal transducer. The interaction of Na,K-ATPase with translationally controlled tumor protein (TCTP) results, among others, in the inhibition of the former's pump activity and in the initiation of manifold biological and pathological phenomena. These phenomena include hypertension and cataract development in TCTP-overexpressing transgenic mice, as well as the induction of tumorigenesis signaling pathways and the activation of Src that ultimately leads to cell proliferation and migration. This review attempts to collate the biological effects of Na,K-ATPase and TCTP interaction and suggests that this interaction has the potential to serve as a possible therapeutic target for selected diseases.
Collapse
|
25
|
Sottile ML, Nadin SB. Heat shock proteins and DNA repair mechanisms: an updated overview. Cell Stress Chaperones 2018; 23:303-315. [PMID: 28952019 PMCID: PMC5904076 DOI: 10.1007/s12192-017-0843-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/13/2017] [Indexed: 02/02/2023] Open
Abstract
Heat shock proteins (HSPs), also known as molecular chaperones, participate in important cellular processes, such as protein aggregation, disaggregation, folding, and unfolding. HSPs have cytoprotective functions that are commonly explained by their antiapoptotic role. Their involvement in anticancer drug resistance has been the focus of intense research efforts, and the relationship between HSP induction and DNA repair mechanisms has been in the spotlight during the past decades. Because DNA is permanently subject to damage, many DNA repair pathways are involved in the recognition and removal of a diverse array of DNA lesions. Hence, DNA repair mechanisms are key to maintain genome stability. In addition, the interactome network of HSPs with DNA repair proteins has become an exciting research field and so their use as emerging targets for cancer therapy. This article provides a historical overview of the participation of HSPs in DNA repair mechanisms as part of their molecular chaperone capabilities.
Collapse
Affiliation(s)
- Mayra L Sottile
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Adrián Ruiz Leal s/n Parque Gral. San Martín, 5500, Mendoza, Argentina
| | - Silvina B Nadin
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Adrián Ruiz Leal s/n Parque Gral. San Martín, 5500, Mendoza, Argentina.
| |
Collapse
|
26
|
Koronowicz AA, Drozdowska M, Wielgos B, Piasna-Słupecka E, Domagała D, Dulińska-Litewka J, Leszczyńska T. The effect of "NutramilTM Complex," food for special medical purpose, on breast and prostate carcinoma cells. PLoS One 2018; 13:e0192860. [PMID: 29444163 PMCID: PMC5812662 DOI: 10.1371/journal.pone.0192860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/31/2018] [Indexed: 11/18/2022] Open
Abstract
NutramilTM Complex is a multicomponent food product that meets the requirements of a food for special medical purpose. As a complete, high-energy diet it consists of properly balanced nutrients, vitamins and minerals. The aim of this study was to assess the effect of NutramilTM Complex on breast and prostate carcinoma cells. Our results showed that NutramilTM Complex reduced the viability and proliferation of breast and prostate cancer cells and that this process was associated with the induction of apoptosis via activation of caspase signalling. Data showed elevated levels of p53 tumour suppressor, up-regulation of p38 MAPK and SAPK / JNK proteins and downregulation of anti-apoptotic ERK1/2, AKT1 and HSP27. Treatment with NutramilTM Complex also affected the expression of the BCL2 family genes. Results also showed down-regulation of anti-apoptotic BCL-2 and up-regulation of pro-apoptotic members such as BAX, BAD, BID. In addition, we also observed regulation of many other genes, including Iκβα, Chk1 and Chk2, associated with apoptotic events. Taken together, our results suggest activation of the mitochondrial apoptotic pathway as most likely mechanism of anti-carcinogenic activity of NutramilTM Complex.
Collapse
Affiliation(s)
- Aneta A. Koronowicz
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Mariola Drozdowska
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | | | - Ewelina Piasna-Słupecka
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Dominik Domagała
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | | | - Teresa Leszczyńska
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| |
Collapse
|
27
|
Kennedy D, Mnich K, Oommen D, Chakravarthy R, Almeida-Souza L, Krols M, Saveljeva S, Doyle K, Gupta S, Timmerman V, Janssens S, Gorman AM, Samali A. HSPB1 facilitates ERK-mediated phosphorylation and degradation of BIM to attenuate endoplasmic reticulum stress-induced apoptosis. Cell Death Dis 2017; 8:e3026. [PMID: 29048431 PMCID: PMC5596589 DOI: 10.1038/cddis.2017.408] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 01/11/2023]
Abstract
BIM, a pro-apoptotic BH3-only protein, is a key regulator of the intrinsic (or mitochondrial) apoptosis pathway. Here, we show that BIM induction by endoplasmic reticulum (ER) stress is suppressed in rat PC12 cells overexpressing heat shock protein B1 (HSPB1 or HSP27) and that this is due to enhanced proteasomal degradation of BIM. HSPB1 and BIM form a complex that immunoprecipitates with p-ERK1/2. We found that HSPB1-mediated proteasomal degradation of BIM is dependent on MEK-ERK signaling. Other studies have shown that several missense mutations in HSPB1 cause the peripheral neuropathy, Charcot-Marie-Tooth (CMT) disease, which is associated with nerve degeneration. Here we show that cells overexpressing CMT-related HSPB1 mutants exhibited increased susceptibility to ER stress-induced cell death and high levels of BIM. These findings identify a novel function for HSPB1 as a negative regulator of BIM protein stability leading to protection against ER stress-induced apoptosis, a function that is absent in CMT-associated HSPB1 mutants.
Collapse
Affiliation(s)
- Donna Kennedy
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Deepu Oommen
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Reka Chakravarthy
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Leonardo Almeida-Souza
- Peripheral Neuropathy Research Group, University of Antwerp, Antwerpen, Belgium.,Institute Born Bunge, Antwerpen, Belgium
| | - Michiel Krols
- Peripheral Neuropathy Research Group, University of Antwerp, Antwerpen, Belgium.,Institute Born Bunge, Antwerpen, Belgium
| | - Svetlana Saveljeva
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Karen Doyle
- Discipline of Physiology, NUI Galway, Galway, Ireland
| | - Sanjeev Gupta
- Discipline of Pathology, School of Medicine, NUI Galway, Galway, Ireland
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, University of Antwerp, Antwerpen, Belgium.,Institute Born Bunge, Antwerpen, Belgium
| | - Sophie Janssens
- Unit Immunoregulation and Mucosal Immunology, VIB Inflammation Research Centre, Ghent University, Gent, Belgium.,Department of Internal Medicine, Ghent University, Gent, Belgium
| | - Adrienne M Gorman
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, Biomedical Sciences, NUI Galway, Galway, Ireland
| |
Collapse
|
28
|
Li Y, Sun H, Zhang C, Liu J, Zhang H, Fan F, Everley RA, Ning X, Sun Y, Hu J, Liu J, Zhang J, Ye W, Qiu X, Dai S, Liu B, Xu H, Fu S, Gygi SP, Zhou C. Identification of translationally controlled tumor protein in promotion of DNA homologous recombination repair in cancer cells by affinity proteomics. Oncogene 2017; 36:6839-6849. [PMID: 28846114 PMCID: PMC5735297 DOI: 10.1038/onc.2017.289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/09/2017] [Accepted: 07/13/2017] [Indexed: 01/21/2023]
Abstract
Translationally controlled tumor protein(TCTP) has been implicated in the regulation of apoptosis, DNA repair and drug resistance. However, the underlying molecular mechanisms are poorly defined. To better understand the molecular mechanisms underlying TCTP involved in cellular processes, we performed an affinity purification-based proteomic profiling to identify proteins interacting with TCTP in human cervical cancer HeLa cells. We found that a group of proteins involved in DNA repair are enriched in the potential TCTP interactome. Silencing TCTP by short hairpin RNA in breast carcinoma MCF-7 cells leads to the declined repair efficiency for DNA double-strand breaks on the GFP-Pem1 reporter gene by homologous recombination, the persistent activation and the prolonged retention of γH2AX and Rad51 foci following ionizing radiation. Reciprocal immunoprecipitations indicated that TCTP forms complexes with Rad51 in vivo, and the stability maintenance of Rad51 requires TCTP in MCF-7 cells under normal cell culture conditions. Moreover, inactivation of TCTP by sertraline treatment enhances UVC irradiation-induced apoptosis in MCF-7 cells, and causes sensitization to DNA-damaging drug etoposide and DNA repair inhibitor olaparib. Thus, we have identified an important role of TCTP in promoting DNA double-stand break repair via facilitating DNA homologous recombination processes and highlighted the great potential of TCTP as a drug target to enhance conventional chemotherapy for cancer patients with high levels of TCTP expression.
Collapse
Affiliation(s)
- Y Li
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - H Sun
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - C Zhang
- The 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - J Liu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - H Zhang
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - F Fan
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - R A Everley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - X Ning
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Y Sun
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - J Hu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - J Liu
- The 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - J Zhang
- The 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - W Ye
- The 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - X Qiu
- The 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - S Dai
- The Tumor Hospital, Harbin Medical University, Harbin, China
| | - B Liu
- The Tumor Hospital, Harbin Medical University, Harbin, China
| | - H Xu
- Department of Clinical Laboratory, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - S Fu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - S P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - C Zhou
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Targeting Hsp27/eIF4E interaction with phenazine compound: a promising alternative for castration-resistant prostate cancer treatment. Oncotarget 2017; 8:77317-77329. [PMID: 29100389 PMCID: PMC5652782 DOI: 10.18632/oncotarget.20469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
The actual strategy to improve current therapies in advanced prostate cancer involves targeting genes activated by androgen withdrawal, either to delay or prevent the emergence of the castration-refractory phenotype. However, these genes are often implicated in several physiological processes, and long-term inhibition of survival proteins might be accompanied with cytotoxic effects. To avoid this problem, an alternative therapeutic strategy relies on the identification and use of compounds that disrupt specific protein-protein interactions involved in androgen withdrawal. Specifically, the interaction of the chaperone protein Hsp27 with the initiation factor eIF4E leads to the protection of protein synthesis initiation process and enhances cell survival during cell stress induced by castration or chemotherapy. Thus, in this work we aimed at i) identifying the interaction site of the Hsp27/eIF4E complex and ii) interfere with the relevant protein/protein association mechanism involved in castration-resistant progression of prostate cancer. By a combination of experimental and modeling techniques, we proved that eIF4E interacts with the C-terminal part of Hsp27, preferentially when Hsp27 is phosphorylated. We also observed that the loss of this interaction increased cell chemo-and hormone-sensitivity. In order to find a potential inhibitor of Hsp27/eIF4E interaction, BRET assays in combination with molecular simulations identified the phenazine derivative 14 as the compound able to efficiently interfere with this protein/protein interaction, thereby inhibiting cell viability and increasing cell death in chemo- and castration-resistant prostate cancer models in vitro and in vivo.
Collapse
|
30
|
Kevei É, Pokrzywa W, Hoppe T. Repair or destruction-an intimate liaison between ubiquitin ligases and molecular chaperones in proteostasis. FEBS Lett 2017; 591:2616-2635. [PMID: 28699655 PMCID: PMC5601288 DOI: 10.1002/1873-3468.12750] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022]
Abstract
Cellular differentiation, developmental processes, and environmental factors challenge the integrity of the proteome in every eukaryotic cell. The maintenance of protein homeostasis, or proteostasis, involves folding and degradation of damaged proteins, and is essential for cellular function, organismal growth, and viability 1, 2. Misfolded proteins that cannot be refolded by chaperone machineries are degraded by specialized proteolytic systems. A major degradation pathway regulating cellular proteostasis is the ubiquitin (Ub)/proteasome system (UPS), which regulates turnover of damaged proteins that accumulate upon stress and during aging. Despite a large number of structurally unrelated substrates, Ub conjugation is remarkably selective. Substrate selectivity is mainly provided by the group of E3 enzymes. Several observations indicate that numerous E3 Ub ligases intimately collaborate with molecular chaperones to maintain the cellular proteome. In this review, we provide an overview of specialized quality control E3 ligases playing a critical role in the degradation of damaged proteins. The process of substrate recognition and turnover, the type of chaperones they team up with, and the potential pathogeneses associated with their malfunction will be further discussed.
Collapse
Affiliation(s)
- Éva Kevei
- School of Biological Sciences, University of Reading, Whiteknights, UK
| | - Wojciech Pokrzywa
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
31
|
González-Mariscal L, Miranda J, Raya-Sandino A, Domínguez-Calderón A, Cuellar-Perez F. ZO-2, a tight junction protein involved in gene expression, proliferation, apoptosis, and cell size regulation. Ann N Y Acad Sci 2017; 1397:35-53. [PMID: 28415133 DOI: 10.1111/nyas.13334] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 02/07/2023]
Abstract
ZO-2 is a peripheral tight junction protein that belongs to the membrane-associated guanylate kinase protein family. Here, we explain the modular and supramodular organization of ZO-2 that allows it to interact with a wide variety of molecules, including cell-cell adhesion proteins, cytoskeletal components, and nuclear factors. We also describe how ZO proteins evolved through metazoan evolution and analyze the intracellular traffic of ZO-2, as well as the roles played by ZO-2 at the plasma membrane and nucleus that translate into the regulation of proliferation, cell size, and apoptosis. In addition, we focus on the impact of ZO-2 expression on male fertility and on maladies like cancer, cholestasis, and hearing loss.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Arturo Raya-Sandino
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alaide Domínguez-Calderón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Francisco Cuellar-Perez
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
32
|
Baylot V, Karaki S, Rocchi P. TCTP Has a Crucial Role in the Different Stages of Prostate Cancer Malignant Progression. Results Probl Cell Differ 2017; 64:255-261. [PMID: 29149413 DOI: 10.1007/978-3-319-67591-6_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Prostate cancer (PC) is the second most common cause of cancer-related mortality in men in the western world after lung cancer. Many patients are not candidates for resection given the advanced stage of their cancer. The primary treatment for advanced PC is the castration therapy which supresses the production of androgens, hormone that promotes PC growth. Despite the efficiency of the castration therapy, most patients develop castration resistant disease which remains uncurable. Clearly, novel approaches are required to effectively treat castration resistant PC (CRPC). New strategies that identify the molecular mechanisms by which PC becomes resistant to conventional therapies may enable the identification of novel therapeutic targets that could improve clinical outcome. Recent studies have demonstrated the implication of TCTP's over-expression in PC and CRPC, and its role in resistance to treatment. TCTP's interaction with p53 and their negative feedback loop regulation have also been described to be causal for PC progression and invasion. A novel nanotherapy that inhibits TCTP has been developed as a new therapeutical strategy in CRPC. This chapter will highlight the role of TCTP as new therapeutic target in PC, in particular, therapy-resistant advanced PC and report the development of novel nanotherapy against TCTP that restore treatment-sensitivity in CRPC that deserve to be tested in clinical trial.
Collapse
Affiliation(s)
- Virginie Baylot
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sara Karaki
- UMR 1068, Inserm, CRCM, BP30059, Cedex9, 27 Boulevard Leï Roure, Marseille, 13273, France
- Institut Paoli-Calmettes, Marseille, 13009, France
- Aix-Marseille Université, 13284, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, 13009, France
| | - Palma Rocchi
- UMR 1068, Inserm, CRCM, BP30059, Cedex9, 27 Boulevard Leï Roure, Marseille, 13273, France.
- Institut Paoli-Calmettes, Marseille, 13009, France.
- Aix-Marseille Université, 13284, Marseille, France.
- CNRS, UMR7258, CRCM, Marseille, 13009, France.
| |
Collapse
|
33
|
Assrir N, Malard F, Lescop E. Structural Insights into TCTP and Its Interactions with Ligands and Proteins. Results Probl Cell Differ 2017; 64:9-46. [PMID: 29149402 DOI: 10.1007/978-3-319-67591-6_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 19-24 kDa Translationally Controlled Tumor Protein (TCTP) is involved in a wide range of molecular interactions with biological and nonbiological partners of various chemical compositions such as proteins, peptides, nucleic acids, carbohydrates, or small molecules. TCTP is therefore an important and versatile binding platform. Many of these protein-protein interactions have been validated, albeit only few received an in-depth structural characterization. In this chapter, we will focus on the structural analysis of TCTP and we will review the available literature regarding its interaction network from a structural perspective.
Collapse
Affiliation(s)
- Nadine Assrir
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
34
|
Xu Y, Anderson DE, Ye Y. The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation. Cell Discov 2016; 2:16040. [PMID: 27867533 PMCID: PMC5102030 DOI: 10.1038/celldisc.2016.40] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
In eukaryotes, many proteins function in multi-subunit complexes that require
proper assembly. To maintain complex stoichiometry, cells use the endoplasmic
reticulum-associated degradation system to degrade unassembled membrane
subunits, but how unassembled soluble proteins are eliminated is undefined. Here
we show that degradation of unassembled soluble proteins (referred to as
unassembled soluble protein degradation, USPD) requires the ubiquitin selective
chaperone p97, its co-factor nuclear protein localization protein 4 (Npl4), and
the proteasome. At the ubiquitin ligase level, the previously identified protein
quality control ligase UBR1 (ubiquitin protein ligase E3 component n-recognin 1)
and the related enzymes only process a subset of unassembled soluble proteins.
We identify the homologous to the E6-AP carboxyl terminus (homologous to the
E6-AP carboxyl terminus) domain-containing protein HUWE1 as a ubiquitin ligase
for substrates bearing unshielded, hydrophobic segments. We used a stable
isotope labeling with amino acids-based proteomic approach to identify
endogenous HUWE1 substrates. Interestingly, many HUWE1 substrates form
multi-protein complexes that function in the nucleus although HUWE1 itself is
cytoplasmically localized. Inhibition of nuclear entry enhances HUWE1-mediated
ubiquitination and degradation, suggesting that USPD occurs primarily in the
cytoplasm. Altogether, these findings establish a new branch of the cytosolic
protein quality control network, which removes surplus polypeptides to control
protein homeostasis and nuclear complex assembly.
Collapse
Affiliation(s)
- Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD, USA
| | - D Eric Anderson
- Advanced Mass Spectrometry Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
35
|
Batulan Z, Pulakazhi Venu VK, Li Y, Koumbadinga G, Alvarez-Olmedo DG, Shi C, O'Brien ER. Extracellular Release and Signaling by Heat Shock Protein 27: Role in Modifying Vascular Inflammation. Front Immunol 2016; 7:285. [PMID: 27507972 PMCID: PMC4960997 DOI: 10.3389/fimmu.2016.00285] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022] Open
Abstract
Heat shock protein 27 (HSP27) is traditionally viewed as an intracellular chaperone protein with anti-apoptotic properties. However, recent data indicate that a number of heat shock proteins, including HSP27, are also found in the extracellular space where they may signal via membrane receptors to alter gene transcription and cellular function. Therefore, there is increasing interest in better understanding how HSP27 is released from cells, its levels and composition in the extracellular space, and the cognate cell membrane receptors involved in effecting cell signaling. In this paper, the knowledge to date, as well as some emerging paradigms about the extracellular function of HSP27 is presented. Of particular interest is the role of HSP27 in attenuating atherogenesis by modifying lipid uptake and inflammation in the plaque. Moreover, the abundance of HSP27 in serum is an emerging new biomarker for ischemic events. Finally, HSP27 replacement therapy may represent a novel therapeutic opportunity for chronic inflammatory disorders, such as atherosclerosis.
Collapse
Affiliation(s)
- Zarah Batulan
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Vivek Krishna Pulakazhi Venu
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Yumei Li
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Geremy Koumbadinga
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Daiana Gisela Alvarez-Olmedo
- Oncology Laboratory, Institute for Experimental Medicine and Biology of Cuyo (IMBECU), CCT CONICET , Mendoza , Argentina
| | - Chunhua Shi
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Edward R O'Brien
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| |
Collapse
|
36
|
Shi X, Li C, Cao M, Xu X, Zhou G, Xiong YL. Comparative proteomic analysis of longissimus dorsi muscle in immuno- and surgically castrated male pigs. Food Chem 2016; 199:885-92. [DOI: 10.1016/j.foodchem.2015.11.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/15/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
|
37
|
Wang C, Zhang Y, Guo K, Wang N, Jin H, Liu Y, Qin W. Heat shock proteins in hepatocellular carcinoma: Molecular mechanism and therapeutic potential. Int J Cancer 2016; 138:1824-1834. [PMID: 26853533 DOI: 10.1002/ijc.29723] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 12/30/2022]
Abstract
Heat shock proteins (HSPs) are highly conserved proteins, which are expressed at low levels under normal conditions, but significantly induced in response to cellular stresses. As molecular chaperones, HSPs play crucial roles in protein homeostasis, apoptosis, invasion and cellular signaling transduction. The induction of HSPs is an important part of heat shock response, which could help cancer cells to adapt to stress conditions. Because of the constant stress condition in tumor microenvironment, HSPs overexpression is widely reported in many human cancers. In light of the significance of HSPs for cancer cells to survive and obtain invasive phenotype under stress condition, HSPs are often associated with poor prognosis and treatment resistance in many types of human cancers. It has been described that upregulation of HSPs may serve as diagnostic and prognostic markers in hepatocellular carcinoma (HCC). Targeting HSPs with specific inhibitor alone or in combination with chemotherapy regimens holds promise for the improvement of outcomes for HCC patients. In this review, we summarize the expression profiles, functions and molecular mechanisms of HSPs (HSP27, HSP70 and HSP90) as well as a HSP-like protein (clusterin) in HCC. In addition, we address progression and challenges in targeting these HSPs as novel therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yurong Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Ning Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Zhang Y, Tao X, Jin G, Jin H, Wang N, Hu F, Luo Q, Shu H, Zhao F, Yao M, Fang J, Cong W, Qin W, Wang C. A Targetable Molecular Chaperone Hsp27 Confers Aggressiveness in Hepatocellular Carcinoma. Am J Cancer Res 2016; 6:558-70. [PMID: 26941848 PMCID: PMC4775865 DOI: 10.7150/thno.14693] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
Heat shock protein 27 (Hsp27) is an ATP-independent molecular chaperone and confers survival advantages and resistance to cancer cells under stress conditions. The effects and molecular mechanisms of Hsp27 in HCC invasion and metastasis are still unclear. In this study, hepatocellular carcinoma (HCC) tissue array (n = 167) was used to investigate the expression and prognostic relevance of Hsp27 in HCC patients. HCC patients with high expression of Hsp27 exhibited poor prognosis. Overexpression of Hsp27 led to the forced invasion of HCC cells, whereas silencing Hsp27 attenuated invasion and metastasis of HCC cells in vitro and in vivo. We revealed that Hsp27 activated Akt signaling, which in turn promoted MMP2 and ITGA7 expression and HCC metastasis. We further observed that targeting Hsp27 using OGX-427 obviously suppressed HCC metastasis in two metastatic models. These findings indicate that Hsp27 is a useful predictive factor for prognosis of HCC and it facilitates HCC metastasis through Akt signaling. Targeting Hsp27 with OGX-427 may represent an attractive therapeutic option for suppressing HCC metastasis.
Collapse
|
39
|
Didier G, Brun C, Baudot A. Identifying communities from multiplex biological networks. PeerJ 2015; 3:e1525. [PMID: 26713261 PMCID: PMC4690346 DOI: 10.7717/peerj.1525] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/01/2015] [Indexed: 02/04/2023] Open
Abstract
Various biological networks can be constructed, each featuring gene/protein relationships of different meanings (e.g., protein interactions or gene co-expression). However, this diversity is classically not considered and the different interaction categories are usually aggregated in a single network. The multiplex framework, where biological relationships are represented by different network layers reflecting the various nature of interactions, is expected to retain more information. Here we assessed aggregation, consensus and multiplex-modularity approaches to detect communities from multiple network sources. By simulating random networks, we demonstrated that the multiplex-modularity method outperforms the aggregation and consensus approaches when network layers are incomplete or heterogeneous in density. Application to a multiplex biological network containing 4 layers of physical or functional interactions allowed recovering communities more accurately annotated than their aggregated counterparts. Overall, taking into account the multiplexity of biological networks leads to better-defined functional modules. A user-friendly graphical software to detect communities from multiplex networks, and corresponding C source codes, are available at GitHub (https://github.com/gilles-didier/MolTi).
Collapse
Affiliation(s)
- Gilles Didier
- Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373 , Marseille , France
| | - Christine Brun
- Aix Marseille Université, Inserm, TAGC UMR_S1090 , Marseille , France ; CNRS , Marseille , France
| | - Anaïs Baudot
- Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373 , Marseille , France
| |
Collapse
|
40
|
Silva JV, Freitas MJ, Felgueiras J, Fardilha M. The power of the yeast two-hybrid system in the identification of novel drug targets: building and modulating PPP1 interactomes. Expert Rev Proteomics 2015; 12:147-58. [PMID: 25795147 DOI: 10.1586/14789450.2015.1024226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since the description of the yeast two-hybrid (Y2H) method, it has become more and more evident that it is the most commonly used method to identify protein-protein interactions (PPIs). The improvements in the original Y2H methodology in parallel with the idea that PPIs are promising drug targets, offer an excellent opportunity to apply the principles of this molecular biology technique to the pharmaceutical field. Additionally, the theoretical developments in the networks field make PPI networks very useful frameworks that facilitate many discoveries in biomedicine. This review highlights the relevance of Y2H in the determination of PPIs, specifically phosphoprotein phosphatase 1 interactions, and its possible outcomes in pharmaceutical research.
Collapse
Affiliation(s)
- Joana Vieira Silva
- Signal Transduction Laboratory, Institute for Research in Biomedicine - iBiMED, Health Sciences Program, University of Aveiro, Aveiro, Portugal
| | | | | | | |
Collapse
|
41
|
Grose JH, Langston K, Wang X, Squires S, Mustafi SB, Hayes W, Neubert J, Fischer SK, Fasano M, Saunders GM, Dai Q, Christians E, Lewandowski ED, Ping P, Benjamin IJ. Characterization of the Cardiac Overexpression of HSPB2 Reveals Mitochondrial and Myogenic Roles Supported by a Cardiac HspB2 Interactome. PLoS One 2015; 10:e0133994. [PMID: 26465331 PMCID: PMC4605610 DOI: 10.1371/journal.pone.0133994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 07/03/2015] [Indexed: 01/26/2023] Open
Abstract
Small Heat Shock Proteins (sHSPs) are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2), which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait) and a human cardiac library (prey) coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 “cardiac interactome” to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID). A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is tempting to speculate that small molecule activators of HspB2 might be deployed to mitigate mitochondrial related diseases such as cardiomyopathy and neurodegenerative disease.
Collapse
Affiliation(s)
- Julianne H. Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT, 84602, United States of America
- * E-mail: (JHG); (IJB)
| | - Kelsey Langston
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT, 84602, United States of America
| | - Xiaohui Wang
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT, 84132, United States of America
| | - Shayne Squires
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT, 84132, United States of America
- Division of Cardiovascular Medicine, Dept. of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, United States of America
| | - Soumyajit Banerjee Mustafi
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT, 84132, United States of America
| | - Whitney Hayes
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT, 84602, United States of America
| | - Jonathan Neubert
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT, 84602, United States of America
| | - Susan K. Fischer
- Program in Integrative Cardiac Metabolism, Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, United States of America
| | - Matthew Fasano
- Program in Integrative Cardiac Metabolism, Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, United States of America
| | - Gina Moore Saunders
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT, 84132, United States of America
| | - Qiang Dai
- Division of Cardiovascular Medicine, Dept. of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, United States of America
| | - Elisabeth Christians
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT, 84132, United States of America
| | - E. Douglas Lewandowski
- Program in Integrative Cardiac Metabolism, Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, United States of America
| | - Peipei Ping
- UCLA Departments of Physiology, Medicine, and Cardiology, Los Angeles, CA, 90095, United States of America
| | - Ivor J. Benjamin
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT, 84132, United States of America
- Division of Cardiovascular Medicine, Dept. of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, United States of America
- * E-mail: (JHG); (IJB)
| |
Collapse
|
42
|
Krasnov GS, Dmitriev AA, Sadritdinova AF, Volchenko NN, Slavnova EN, Danilova TV, Snezhkina AV, Melnikova NV, Fedorova MS, Lakunina VA, Belova AA, Nyushko KM, Alekseev BY, Kaprin AD, Kudryavtseva AV. Molecular genetic mechanisms of drug resistance in prostate cancer. Mol Biol 2015. [DOI: 10.1134/s0026893315050118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Katsogiannou M, Ziouziou H, Karaki S, Andrieu C, Henry de Villeneuve M, Rocchi P. The hallmarks of castration-resistant prostate cancers. Cancer Treat Rev 2015; 41:588-97. [PMID: 25981454 DOI: 10.1016/j.ctrv.2015.05.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/17/2022]
Abstract
Prostate cancer has become a real public health issue in industrialized countries, mainly due to patients' relapse by castration-refractory disease after androgen ablation. Castration-resistant prostate cancer is an incurable and highly aggressive terminal stage of prostate cancer, seriously jeopardizing the patient's quality of life and lifespan. The management of castration-resistant prostate cancer is complex and has opened new fields of research during the last decade leading to an improved understanding of the biology of the disease and the development of new therapies. Most advanced tumors resistant to therapy still maintain the androgen receptor-pathway, which plays a central role for survival and growth of most castration-resistant prostate cancers. Many mechanisms induce the emergence of the castration resistant phenotype through this pathway. However some non-related AR pathways like neuroendocrine cells or overexpression of anti-apoptotic proteins like Hsp27 are described to be involved in CRPC progression. More recently, loss of expression of tumor suppressor gene, post-transcriptional modification using miRNA, epigenetic alterations, alternatif splicing and gene fusion became also hallmarks of castration-resistant prostate cancer. This review presents an up-to-date overview of the androgen receptor-related mechanisms as well as the latest evidence of the non-AR-related mechanisms underlying castration-resistant prostate cancer progression.
Collapse
Affiliation(s)
- Maria Katsogiannou
- Inserm, UMR1068, CRCM, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille Université, F-13284 Marseille, France; CNRS, UMR7258, CRCM, Marseille F-13009, France.
| | - Hajer Ziouziou
- Inserm, UMR1068, CRCM, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille Université, F-13284 Marseille, France; CNRS, UMR7258, CRCM, Marseille F-13009, France
| | - Sara Karaki
- Inserm, UMR1068, CRCM, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille Université, F-13284 Marseille, France; CNRS, UMR7258, CRCM, Marseille F-13009, France
| | - Claudia Andrieu
- Inserm, UMR1068, CRCM, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille Université, F-13284 Marseille, France; CNRS, UMR7258, CRCM, Marseille F-13009, France
| | - Marie Henry de Villeneuve
- Inserm, UMR1068, CRCM, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille Université, F-13284 Marseille, France; CNRS, UMR7258, CRCM, Marseille F-13009, France
| | - Palma Rocchi
- Inserm, UMR1068, CRCM, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille Université, F-13284 Marseille, France; CNRS, UMR7258, CRCM, Marseille F-13009, France.
| |
Collapse
|
44
|
Via A, Zanzoni A. A prismatic view of protein phosphorylation in health and disease. Front Genet 2015; 6:131. [PMID: 25904935 PMCID: PMC4387955 DOI: 10.3389/fgene.2015.00131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Allegra Via
- Department of Physics, Sapienza University of Rome Rome, Italy
| | - Andreas Zanzoni
- Technological Advances for Genomics and Clinics (TAGC), UMR_S1090, INSERM Marseille, France ; Technological Advances for Genomics and Clinics (TAGC), UMR_S1090, Aix Marseille Université Marseille, France
| |
Collapse
|