1
|
Liu Z, Zhang F, Jia F, Li S, Jiang C, Ruan B, Long R. Lactobacillus Protects Against Chronic Suppurative Otitis Media via Modulating RFTN1/ Lipid Raft /TLR4-Mediated Inflammation. Biologics 2024; 18:453-468. [PMID: 39742136 PMCID: PMC11687115 DOI: 10.2147/btt.s484410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/10/2024] [Indexed: 01/03/2025]
Abstract
Purpose Chronic suppurative otitis media (CSOM) is a prominent contributor to preventable hearing loss globally. Probiotic therapy has attracted research interest in human infectious and inflammatory disease. As the most prevalent probiotic, the role of Lactobacillus in CSOM remains poorly defined. This study aimed to investigate the antipathogenic effects and underlying mechanism of Lactobacillus on CSOM. Methods RNA sequencing of granulation of middle ear cavity from CSOM patients and lavage fluid of middle ear from normal volunteer was conducted. Human middle ear epithelial cells (HMEEC) and rats infected with Bacillus cereus (B. cereus) and Staphylococcus aureus (S. aureus) were used for CSOM constructing. Western blot, qPCR and Vybrant™ Alexa Fluor™ 488 lipid raft labeling were performed to explore the possible molecular mechanism by which lipid raft linker (RFTN1) regulates lipid raft/toll-like receptor 4 (TLR4). ELISA and HE staining was utilized to evaluate the effect of Lactobacillus on the progression of CSOM in vivo. Results Based on RNA Sequence analysis, a total of 3646 differentially expressed genes (1620 up-regulated and 2026 down-regulated) were identified in CSOM. RFTN1 was highly expressed in CSOM. Inhibition of RFTN1 not only reduced the inflammatory response of CSOM but also suppressed the formation of lipid rafts. Further investigation revealed that RFTN1 inhibition could reduce the expression of TLR4, which also localizes to the lipid rafts. TLR4 responds to RFTN1-mediated inflammatory responses in CSOM. We treated the CSOM model with Lactobacillus, which has great potential for alleviating the inflammatory response, and found that Lactobacillus attenuated the development of CSOM by reducing RFTN1 and TLR4 expression. Conclusion In conclusion, these findings suggest a crucial role for Lactobacillus in alleviating CSOM progression and uncovered the molecular mechanism involving Lactobacillus-regulated inhibition of the RFTN1-lipid raft-TLR4 signaling pathway under CSOM conditions.
Collapse
Affiliation(s)
- Zhuohui Liu
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Fan Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Fengfeng Jia
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Shuling Li
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Chaowu Jiang
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Biao Ruan
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Ruiqing Long
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
2
|
Matveichuk OV, Ciesielska A, Hromada-Judycka A, Nowak N, Ben Amor I, Traczyk G, Kwiatkowska K. Flotillins affect LPS-induced TLR4 signaling by modulating the trafficking and abundance of CD14. Cell Mol Life Sci 2024; 81:191. [PMID: 38652315 PMCID: PMC11039508 DOI: 10.1007/s00018-024-05221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Lipopolysaccharide (LPS) induces a strong pro-inflammatory reaction of macrophages upon activation of Toll-like receptor 4 (TLR4) with the assistance of CD14 protein. Considering a key role of plasma membrane rafts in CD14 and TLR4 activity and the significant impact exerted on that activity by endocytosis and intracellular trafficking of the both LPS acceptors, it seemed likely that the pro-inflammatory reaction could be modulated by flotillins. Flotillin-1 and -2 are scaffolding proteins associated with the plasma membrane and also with endo-membranes, affecting both the plasma membrane dynamics and intracellular protein trafficking. To verify the above hypothesis, a set of shRNA was used to down-regulate flotillin-2 in Raw264 cells, which were found to also become deficient in flotillin-1. The flotillin deficiency inhibited strongly the TRIF-dependent endosomal signaling of LPS-activated TLR4, and to a lower extent also the MyD88-dependent one, without affecting the cellular level of TLR4. The flotillin depletion also inhibited the pro-inflammatory activity of TLR2/TLR1 and TLR2/TLR6 but not TLR3. In agreement with those effects, the depletion of flotillins down-regulated the CD14 mRNA level and the cellular content of CD14 protein, and also inhibited constitutive CD14 endocytosis thereby facilitating its shedding. Ultimately, the cell-surface level of CD14 was markedly diminished. Concomitantly, CD14 recycling was enhanced via EEA1-positive early endosomes and golgin-97-positive trans-Golgi network, likely to compensate for the depletion of the cell-surface CD14. We propose that the paucity of surface CD14 is the reason for the down-regulated signaling of TLR4 and the other TLRs depending on CD14 for ligand binding.
Collapse
Affiliation(s)
- Orest V Matveichuk
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Anna Ciesielska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Aneta Hromada-Judycka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Ichrak Ben Amor
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Gabriela Traczyk
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur St., 02-093, Warsaw, Poland.
| |
Collapse
|
3
|
Chandel S, Bhattacharya A, Gautam A, Zeng W, Alka O, Sachsenberg T, Gupta GD, Narang RK, Ravichandiran V, Singh R. Investigation of the anti-cancer potential of epoxyazadiradione in neuroblastoma: experimental assays and molecular analysis. J Biomol Struct Dyn 2023; 42:11377-11395. [PMID: 37753734 DOI: 10.1080/07391102.2023.2262593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Neuroblastoma, the most common childhood solid tumor, originates from primitive sympathetic nervous system cells. Epoxyazadiradione (EAD) is a limonoid derived from Azadirachta indica, belonging to the family Meliaceae. In this study, we isolated the EAD from Azadirachta indica seed and studied the anti-cancer potential against neuroblastoma. Herein, EAD demonstrated significant efficacy against neuroblastoma by suppressing cell proliferation, enhancing the rate of apoptosis and cycle arrest at the SubG0 and G2/M phases. EAD enhanced the pro-apoptotic Caspase 3 and Caspase 9 and inhibited the NF-kβ translocation in a dose-dependent manner. In order to identify the specific EAD target, a gel-free quantitative proteomics study on SH-SY5Y cells using Liquid Chromatography with tandem mass spectrometry was done in a dose-dependent manner, followed by detailed bioinformatics analysis to identify effects on protein. Proteomics data identified that Enolase1 and HSP90 were up-regulated in neuroblastoma. EAD inhibited the expression of Enolase1 and HSP90, validated by mRNA expression, immunoblotting, Enolase1 and HSP90 kit and flow-cytometry based bioassay. Molecular docking study, Molecular dynamic simulation, and along with molecular mechanics/Poisson-Boltzmann surface area analysis also suggested that EAD binds at the active site of the proteins and were stable throughout the 100 ns Molecular dynamic simulation study. Overall, this study suggested EAD exhibited anti-cancer activity against neuroblastoma by targeting Enolase1 and HSP90 pathways.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Arka Bhattacharya
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | - Wenhuan Zeng
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Oliver Alka
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Timo Sachsenberg
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen, Germany
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
4
|
Matthews CEP, Fussner LA, Yaeger M, Aloor JJ, Reece SW, Kilburg-Basnyat BJ, Varikuti S, Luo B, Inks M, Sergin S, Schmidt CA, Neufer PD, Pennington ER, Fisher-Wellman KH, Chowdhury SM, Fessler MB, Fenton JI, Anderson EJ, Shaikh SR, Gowdy KM. The prohibitin complex regulates macrophage fatty acid composition, plasma membrane packing, and lipid raft-mediated inflammatory signaling. Prostaglandins Leukot Essent Fatty Acids 2023; 190:102540. [PMID: 36706677 PMCID: PMC9992117 DOI: 10.1016/j.plefa.2023.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/28/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Prohibitins (PHB1 and PHB2) are ubiquitously expressed proteins which play critical roles in multiple biological processes, and together form the ring-like PHB complex found in phospholipid-rich cellular compartments including lipid rafts. Recent studies have implicated PHB1 as a mediator of fatty acid transport as well as a membrane scaffold mediating B lymphocyte and mast cell signal transduction. However, the specific role of PHBs in the macrophage have not been characterized, including their role in fatty acid uptake and lipid raft-mediated inflammatory signaling. We hypothesized that the PHB complex regulates macrophage inflammatory signaling through the formation of lipid rafts. To evaluate our hypothesis, RAW 264.7 macrophages were transduced with shRNA against PHB1, PHB2, or scrambled control (Scr), and then stimulated with lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-α), which activate lipid raft-dependent receptor signaling (CD14/TLR4 and TNFR1, respectively). PHB1 knockdown was lethal, whereas PHB2 knockdown (PHB2kd), which also resulted in decreased PHB1 expression, led to attenuated nuclear factor-kappa-B (NF-κB) activation and subsequent cytokine and chemokine production. PHB2kd macrophages also had decreased cell surface TNFR1, CD14, TLR4, and lipid raft marker ganglioside GM1 at baseline and post-stimuli. Post-LPS, PHB2kd macrophages did not increase the concentration of cellular saturated, monounsaturated, and polyunsaturated fatty acids. This was accompanied by decreased lipid raft formation and modified plasma membrane molecular packing, further supporting the PHB complex's importance in lipid raft formation. Taken together, these data suggest a critical role for PHBs in regulating macrophage inflammatory signaling via maintenance of fatty acid composition and lipid raft structure. SUMMARY: Prohibitins are proteins found in phospholipid-rich cellular compartments, including lipid rafts, that play important roles in signaling, transcription, and multiple other cell functions. Macrophages are key cells in the innate immune response and the presence of membrane lipid rafts is integral to signal transduction, but the role of prohibitins in macrophage lipid rafts and associated signaling is unknown. To address this question, prohibitin knockdown macrophages were generated and responses to lipopolysaccharide and tumor necrosis factor-alpha, which act through lipid raft-dependent receptors, were analyzed. Prohibitin knockdown macrophages had significantly decreased cytokine and chemokine production, transcription factor activation, receptor expression, lipid raft assembly and membrane packing, and altered fatty acid remodeling. These data indicate a novel role for prohibitins in macrophage inflammatory signaling through regulation of fatty acid composition and lipid raft formation.
Collapse
Affiliation(s)
- Christine E Psaltis Matthews
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Lynn A Fussner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Michael Yaeger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Jim J Aloor
- Diabetes and Obesity Institute, Department of Physiology, East Carolina University, Greenville, NC, United States
| | - Sky W Reece
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Brita J Kilburg-Basnyat
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Sanjay Varikuti
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Bin Luo
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Morgan Inks
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Selin Sergin
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Cameron A Schmidt
- Diabetes and Obesity Institute, Department of Physiology, East Carolina University, Greenville, NC, United States
| | - P Darrell Neufer
- Diabetes and Obesity Institute, Department of Physiology, East Carolina University, Greenville, NC, United States
| | - Edward Ross Pennington
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Kelsey H Fisher-Wellman
- Diabetes and Obesity Institute, Department of Physiology, East Carolina University, Greenville, NC, United States
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, United States
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, United States
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Ethan J Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, FOE Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
5
|
Shahinuzzaman ADA, Kamal AHM, Chakrabarty JK, Rahman A, Chowdhury SM. Identification of Inflammatory Proteomics Networks of Toll-like Receptor 4 through Immunoprecipitation-Based Chemical Cross-Linking Proteomics. Proteomes 2022; 10:proteomes10030031. [PMID: 36136309 PMCID: PMC9506174 DOI: 10.3390/proteomes10030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is a receptor on an immune cell that can recognize the invasion of bacteria through their attachment with bacterial lipopolysaccharides (LPS). Hence, LPS is a pro-immune response stimulus. On the other hand, statins are lipid-lowering drugs and can also lower immune cell responses. We used human embryonic kidney (HEK 293) cells engineered to express HA-tagged TLR-4 upon treatment with LPS, statin, and both statin and LPS to understand the effect of pro- and anti-inflammatory responses. We performed a monoclonal antibody (mAb) directed co-immunoprecipitation (CO-IP) of HA-tagged TLR4 and its interacting proteins in the HEK 293 extracted proteins. We utilized an ETD cleavable chemical cross-linker to capture weak and transient interactions with TLR4 protein. We tryptic digested immunoprecipitated and cross-linked proteins on beads, followed by liquid chromatography–mass spectrometry (LC-MS/MS) analysis of the peptides. Thus, we utilized the label-free quantitation technique to measure the relative expression of proteins between treated and untreated samples. We identified 712 proteins across treated and untreated samples and performed protein network analysis using Ingenuity Pathway Analysis (IPA) software to reveal their protein networks. After filtering and evaluating protein expression, we identified macrophage myristoylated alanine-rich C kinase substrate (MARCKSL1) and creatine kinase proteins as a potential part of the inflammatory networks of TLR4. The results assumed that MARCKSL1 and creatine kinase proteins might be associated with a statin-induced anti-inflammatory response due to possible interaction with the TLR4.
Collapse
Affiliation(s)
- A. D. A. Shahinuzzaman
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
- Pharmaceutical Sciences Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Abu Hena Mostafa Kamal
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
- Advanced Technology Cores, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jayanta K. Chakrabarty
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
- Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY 10027, USA
| | - Aurchie Rahman
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Saiful M. Chowdhury
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
- Correspondence: ; Tel.: +1-817-272-5439
| |
Collapse
|
6
|
Stitham J, Rodriguez-Velez A, Zhang X, Jeong SJ, Razani B. Inflammasomes: a preclinical assessment of targeting in atherosclerosis. Expert Opin Ther Targets 2020; 24:825-844. [PMID: 32757967 PMCID: PMC7554266 DOI: 10.1080/14728222.2020.1795831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/12/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Inflammasomes are central to atherosclerotic vascular dysfunction with regulatory effects on inflammation, immune modulation, and lipid metabolism. The NLRP3 inflammasome is a critical catalyst for atherogenesis thus highlighting its importance in understanding the pathophysiology of atherosclerosis and for the identification of novel therapeutic targets and biomarkers for the treatment of cardiovascular disease. AREAS COVERED This review includes an overview of macrophage lipid metabolism and the role of NLRP3 inflammasome activity in cardiovascular inflammation and atherosclerosis. We highlight key activators, signal transducers and major regulatory components that are being considered as putative therapeutic targets for inhibition of NLRP3-mediated cardiovascular inflammation and atherosclerosis. EXPERT OPINION NLRP3 inflammasome activity lies at the nexus between inflammation and cholesterol metabolism; it offers unique opportunities for understanding atherosclerotic pathophysiology and identifying novel modes of treatment. As such, a host of NLRP3 signaling cascade components have been identified as putative targets for drug development. We catalog these current discoveries in therapeutic targeting of the NLRP3 inflammasome and, utilizing the CANTOS trial as the translational (bench-to-bedside) archetype, we examine the complexities, challenges, and ultimate goals facing the field of atherosclerosis research.
Collapse
Affiliation(s)
- Jeremiah Stitham
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO
| | - Astrid Rodriguez-Velez
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
| | - Xiangyu Zhang
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
- John Cochran VA Medical Center, St. Louis, MO
| | - Se-Jin Jeong
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
- John Cochran VA Medical Center, St. Louis, MO
| | - Babak Razani
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
- John Cochran VA Medical Center, St. Louis, MO
| |
Collapse
|
7
|
Lin WC, Gowdy KM, Madenspacher JH, Zemans RL, Yamamoto K, Lyons-Cohen M, Nakano H, Janardhan K, Williams CJ, Cook DN, Mizgerd JP, Fessler MB. Epithelial membrane protein 2 governs transepithelial migration of neutrophils into the airspace. J Clin Invest 2020; 130:157-170. [PMID: 31550239 DOI: 10.1172/jci127144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
Whether respiratory epithelial cells regulate the final transit of extravasated neutrophils into the inflamed airspace or are a passive barrier is poorly understood. Alveolar epithelial type 1 (AT1) cells, best known for solute transport and gas exchange, have few established immune roles. Epithelial membrane protein 2 (EMP2), a tetraspan protein that promotes recruitment of integrins to lipid rafts, is highly expressed in AT1 cells but has no known function in lung biology. Here, we show that Emp2-/- mice exhibit reduced neutrophil influx into the airspace after a wide range of inhaled exposures. During bacterial pneumonia, Emp2-/- mice had attenuated neutrophilic lung injury and improved survival. Bone marrow chimeras, intravital neutrophil labeling, and in vitro assays suggested that defective transepithelial migration of neutrophils into the alveolar lumen occurs in Emp2-/- lungs. Emp2-/- AT1 cells had dysregulated surface display of multiple adhesion molecules, associated with reduced raft abundance. Epithelial raft abundance was dependent upon putative cholesterol-binding motifs in EMP2, whereas EMP2 supported adhesion molecule display and neutrophil transmigration through suppression of caveolins. Taken together, we propose that EMP2-dependent membrane organization ensures proper display on AT1 cells of a suite of proteins required to instruct paracellular neutrophil traffic into the alveolus.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kymberly M Gowdy
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jennifer H Madenspacher
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Rachel L Zemans
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kazuko Yamamoto
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA.,Second Department of Internal Medicine, Nagasaki University Hospital, Nagasaki, Japan.,Department of Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Miranda Lyons-Cohen
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kyathanahalli Janardhan
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.,Integrated Laboratory Systems Inc., Research Triangle Park, North Carolina, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
8
|
Pu X, Dong C, Zhu W, Li W, Jiang H. Silencing stomatin-like protein 2 attenuates tumor progression and inflammatory response through repressing CD14 in liver cancer. Onco Targets Ther 2019; 12:7361-7373. [PMID: 31571899 PMCID: PMC6750618 DOI: 10.2147/ott.s215131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose Toll-like receptor 4 (TLR4) is involved in the inflammation in liver cancer. High-expressed stomatin-like protein 2 (SLP-2) is commonly reported in many cancer types. This study aims to investigate the functions of SLP-2 in TLR4-mediated inflammatory responses and tumor progression of liver cancer. Patients and methods Plasmid transfection technique was applied to silence and overexpress genes. Changes in cell viability and apoptosis were determined by performing cell counting kit-8 assay and flow cytometry. The levels of pro-inflammatory cytokines were determined by ELISA. We further measured the several types of the malignant transformation of SK-Hep1 cells to assess the effects of SLP-2 silencing on the cell migration and invasion, proliferation and angiogenesis of liver cancer in vitro. Western blot and RT-qPCR were performed for expression analysis. Results Lipopolysaccharide (LPS) promoted the cell proliferation of SK-Hep1 and production of tumor necrosis factor-α (TNF-α) and IL-6. SLP-2 silencing could inhibit the protein and mRNA levels of CD14 and Cdc42 and subsequently inhibited the levels of TNF-α and IL-6. Overexpressed CD14 not only remarkably reversed the proapoptotic ability of SLP-2 silencing and promoted the expression of Cdc42 and production of TNF-α and IL-6, but also notably reversed the inhibitory effects on the malignant abilities of SK-Hep1 cells by SLP-2 silencing. Conclusion SLP-2 silencing could significantly attenuate the inflammatory responses and tumor progression of liver cancer via inhibiting LPS/TLR4 signal transduction through the repression of CD14.
Collapse
Affiliation(s)
- Xiaolin Pu
- Department of Oncology, Changzhou Second People's Hospital, Changzhou, Jiangsu Province, People's Republic of China
| | - Changqing Dong
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing City, Jiangsu Province, People's Republic of China
| | - Wenyu Zhu
- Department of Oncology, Changzhou Second People's Hospital, Changzhou, Jiangsu Province, People's Republic of China
| | - Wei Li
- Department of Oncology, Jiangsu Province People's Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Hua Jiang
- Department of Oncology, Changzhou Second People's Hospital, Changzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
9
|
Proteomic Analysis of Lipid Rafts from RBL-2H3 Mast Cells. Int J Mol Sci 2019; 20:ijms20163904. [PMID: 31405203 PMCID: PMC6720779 DOI: 10.3390/ijms20163904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are highly ordered membrane microdomains enriched in cholesterol, glycosphingolipids, and certain proteins. They are involved in the regulation of cellular processes in diverse cell types, including mast cells (MCs). The MC lipid raft protein composition was assessed using qualitative mass spectrometric characterization of the proteome from detergent-resistant membrane fractions from RBL-2H3 MCs. Using two different post-isolation treatment methods, a total of 949 lipid raft associated proteins were identified. The majority of these MC lipid raft proteins had already been described in the RaftProtV2 database and are among highest cited/experimentally validated lipid raft proteins. Additionally, more than half of the identified proteins had lipid modifications and/or transmembrane domains. Classification of identified proteins into functional categories showed that the proteins were associated with cellular membrane compartments, and with some biological and molecular functions, such as regulation, localization, binding, catalytic activity, and response to stimulus. Furthermore, functional enrichment analysis demonstrated an intimate involvement of identified proteins with various aspects of MC biological processes, especially those related to regulated secretion, organization/stabilization of macromolecules complexes, and signal transduction. This study represents the first comprehensive proteomic profile of MC lipid rafts and provides additional information to elucidate immunoregulatory functions coordinated by raft proteins in MCs.
Collapse
|
10
|
Kamal AHM, Fessler MB, Chowdhury SM. Comparative and network-based proteomic analysis of low dose ethanol- and lipopolysaccharide-induced macrophages. PLoS One 2018; 13:e0193104. [PMID: 29481576 PMCID: PMC5826526 DOI: 10.1371/journal.pone.0193104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
Macrophages are specialized phagocytes that play an essential role in inflammation, immunity, and tissue repair. Profiling the global proteomic response of macrophages to microbial molecules such as bacterial lipopolysaccharide is key to understanding fundamental mechanisms of inflammatory disease. Ethanol is a widely abused substance that has complex effects on inflammation. Reports have indicated that ethanol can activate or inhibit the lipopolysaccharide receptor, Toll-like Receptor 4, in different settings, with important consequences for liver and neurologic inflammation, but the underlying mechanisms are poorly understood. To profile the sequential effect of low dose ethanol and lipopolysaccharide on macrophages, a gel-free proteomic technique was applied to RAW 264.7 macrophages. Five hundred four differentially expressed proteins were identified and quantified with high confidence using ≥ 5 peptide spectral matches. Among these, 319 proteins were shared across all treatment conditions, and 69 proteins were exclusively identified in ethanol-treated or lipopolysaccharide-stimulated cells. The interactive impact of ethanol and lipopolysaccharide on the macrophage proteome was evaluated using bioinformatics tools, enabling identification of differentially responsive proteins, protein interaction networks, disease- and function-based networks, canonical pathways, and upstream regulators. Five candidate protein coding genes (PGM2, ISYNA1, PARP1, and PSAP) were further validated by qRT-PCR that mostly related to glucose metabolism and fatty acid synthesis pathways. Taken together, this study describes for the first time at a systems level the interaction between ethanol and lipopolysaccharide in the proteomic programming of macrophages, and offers new mechanistic insights into the biology that may underlie the impact of ethanol on infectious and inflammatory disease in humans.
Collapse
Affiliation(s)
- Abu Hena M. Kamal
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Michael B. Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Saiful M. Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, United States of America
| |
Collapse
|
11
|
Inflammatory Proteomic Network Analysis of Statin-treated and Lipopolysaccharide-activated Macrophages. Sci Rep 2018; 8:164. [PMID: 29317699 PMCID: PMC5760528 DOI: 10.1038/s41598-017-18533-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
A significant component of immune biology research is the investigation of protein encoding genes that play central roles in contributing inflammatory response. A gel-free quantitative bottom-up proteomics study was performed on immune cell macrophages after the combined treatment of lipopolysaccharide (LPS) and statin drugs using mass spectrometry and a detailed bioinformatics analyses were conducted. Systematic bioinformatics analysis was applied for discovering novel relationships among proteins and effects of statin and lipopolysaccharide in macrophage cells. Based on gene ontology, majority of protein encoding genes was involved in metabolic and cellular processes and are actively associated with binding, structural molecular, and catalytic activity. Notably, proteomic data analyzed by Ingenuity Pathway Analysis (IPA), discovered the plectin and prohibitin 2 protein interactions network and inflammatory-disease based protein networks. Two up-regulated proteins, plectin and prohibitin 2, were further validated by immunoblotting. Plectin was also cross-validated by immunocytochemistry, since its expression was highly modulated by statin but inhibited during LPS-stimulation. Collectively, the significant up-regulation of plectin due to the treatment of statin, suggests that statin has a significant impact on the cytoskeletal networks of cells. Plectin might have a significant role in the intermediate filament assembly and dynamics, and possibly stabilizing and crosslinking intermediate filament networks.
Collapse
|
12
|
Bowler RP, Wendt CH, Fessler MB, Foster MW, Kelly RS, Lasky-Su J, Rogers AJ, Stringer KA, Winston BW. New Strategies and Challenges in Lung Proteomics and Metabolomics. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2017; 14:1721-1743. [PMID: 29192815 PMCID: PMC5946579 DOI: 10.1513/annalsats.201710-770ws] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This document presents the proceedings from the workshop entitled, "New Strategies and Challenges in Lung Proteomics and Metabolomics" held February 4th-5th, 2016, in Denver, Colorado. It was sponsored by the National Heart Lung Blood Institute, the American Thoracic Society, the Colorado Biological Mass Spectrometry Society, and National Jewish Health. The goal of this workshop was to convene, for the first time, relevant experts in lung proteomics and metabolomics to discuss and overcome specific challenges in these fields that are unique to the lung. The main objectives of this workshop were to identify, review, and/or understand: (1) emerging technologies in metabolomics and proteomics as applied to the study of the lung; (2) the unique composition and challenges of lung-specific biological specimens for metabolomic and proteomic analysis; (3) the diverse informatics approaches and databases unique to metabolomics and proteomics, with special emphasis on the lung; (4) integrative platforms across genetic and genomic databases that can be applied to lung-related metabolomic and proteomic studies; and (5) the clinical applications of proteomics and metabolomics. The major findings and conclusions of this workshop are summarized at the end of the report, and outline the progress and challenges that face these rapidly advancing fields.
Collapse
|
13
|
Marín D, Taborda NA, Urcuqui S, Hernandez JC. Inflamación y respuesta inmune innata: participación de las lipoproteínas de alta densidad. IATREIA 2017. [DOI: 10.17533/udea.iatreia.v30n4a06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
The macrophage marker translocator protein (TSPO) is down-regulated on pro-inflammatory 'M1' human macrophages. PLoS One 2017; 12:e0185767. [PMID: 28968465 PMCID: PMC5624624 DOI: 10.1371/journal.pone.0185767] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022] Open
Abstract
The translocator protein (TSPO) is a mitochondrial membrane protein, of as yet uncertain function. Its purported high expression on activated macrophages, has lent utility to TSPO targeted molecular imaging in the form of positron emission tomography (PET), as a means to detect and quantify inflammation in vivo. However, existing literature regarding TSPO expression on human activated macrophages is lacking, mostly deriving from brain tissue studies, including studies of brain malignancy, and inflammatory diseases such as multiple sclerosis. Here, we utilized three human sources of monocyte derived macrophages (MDM), from THP-1 monocytes, healthy peripheral blood monocytes and synovial fluid monocytes from patients with rheumatoid arthritis, to undertake a detailed investigation of TSPO expression in activated macrophages. In this work, we demonstrate a consistent down-regulation of TSPO mRNA and protein in macrophages activated to a pro-inflammatory, or ‘M1’ phenotype. Conversely, stimulation of macrophages to an M2 phenotype with IL-4, dexamethasone or TGF-β1 did not alter TSPO expression, regardless of MDM source. The reasons for this are uncertain, but our study findings add some supporting evidence for recent investigations concluding that TSPO may be involved in negative regulation of inflammatory responses in macrophages.
Collapse
|
15
|
Zanon A, Hicks AA, Pramstaller PP, Pichler I. SLP-2: a potential new target for improving mitochondrial function in Parkinson's disease. Neural Regen Res 2017; 12:1435-1436. [PMID: 29089985 PMCID: PMC5649460 DOI: 10.4103/1673-5374.215251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Alessandra Zanon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
16
|
Affiliation(s)
- Dmitri Sviridov
- aBaker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia bUniversity of California in San Diego, La Jolla, California, USA
| | | |
Collapse
|
17
|
Chi H, Hu YH. Stomatin-like protein 2 of turbot Scopthalmus maximus: Gene cloning, expression profiling and immunoregulatory properties. FISH & SHELLFISH IMMUNOLOGY 2016; 49:436-441. [PMID: 26806162 DOI: 10.1016/j.fsi.2016.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Stomatin-like protein 2 (SLP-2) is a novel and unusual member of the stomatin gene superfamily. In this study, we obtained a full-length SLP-2 (SmSLP-2) cDNA from turbot (Scopthalmus maximus) spleen cDNA library. The cDNA sequence of SmSLP-2 contains a 5'-UTR of 107 bp, an ORF of 1050 bp, and a 3'-UTR of 959 bp. The ORF encodes a putative protein of 349 residues, which has a calculated molecular mass of 38.7 kDa. The SmSLP-2 protein possesses a prohibitin-homology (PHB) domain (residues 40 to 198) and shares 72.4-87.6% overall sequence identity with that of the teleost species. The highest expression of SmSLP-2 mRNA was found in the skin, followed by the head kidney, gut, spleen, liver, heart, gill and muscle. Moreover, both viral and bacterial pathogen infection resulted in the up-regulation of SmSLP-2 mRNA in the turbot head kidney and spleen in vivo. Subcellular localization analysis indicated that the SmSLP-2 proteins are mainly located in the peripheral membrane of ZF4 cells. This study also demonstrated that SmSLP-2 modulates IL-2 expression via active NFκB signaling pathway, and is possibly involved in host immune defense against bacterial and viral pathogens.
Collapse
Affiliation(s)
- Heng Chi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yong-Hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
18
|
Obesity-related abnormalities couple environmental triggers with genetic susceptibility in adult-onset T1D. Biochem Biophys Res Commun 2016; 470:94-100. [DOI: 10.1016/j.bbrc.2016.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/01/2016] [Indexed: 12/18/2022]
|