1
|
Marino M, Cannarella R, Condorelli RA, Crafa A, La Vignera S, Calogero AE. New Insights of Target Therapy: Effects of Tyrosine Kinase Inhibitors on Male Gonadal Function: A Systematic Review. Clin Genitourin Cancer 2024; 22:102131. [PMID: 38901138 DOI: 10.1016/j.clgc.2024.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/22/2024]
Abstract
The number of cancer patients undergoing chronic treatment with target therapy is increasing. Although much is known about the toxicity of conventional anticancer therapies, evidence on the effects of tyrosine kinase inhibitors (TKIs) on fertility is still lacking. Therefore, this review was undertaken to evaluate the effects of TKIs on male gonadal function. A comprehensive search of PubMed and Scopus databases was conducted, focusing on the effects of TKIs on spermatogenesis and testicular endocrine function. We included animal studies, observational studies, and case reports published up to December 31, 2023. Identified articles were reviewed and analyzed to evaluate the impact of TKIs on the male gonad. Their long-term effects, the reversibility of the observed changes, and the underlying molecular mechanisms involved were recorded. The findings emerging on the effects of TKIs on male gonadal function are conflicting. Although specific TKIs (imatinib, gefitinib, sorafenib, sunitinib, quizartinib, dasatinib, and nilotinib) have been identified as potentially as potential interfering with spermatogenesis and hormone production, the extent and severity of these effects may vary from patient to patient and between different drugs within this drug class. Experimental studies on mouse models have suggested a potential interference with spermatogenesis. Evidence also suggests that TKIs affects the hypothalamic-pituitary-testicular axis, decreasing serum testosterone and gonadotropin levels. The effects of TKIs on male gonadal function highlight the need for personalized treatment choices. Potential fertility concerns can help minimize adverse effects and improve patient outcomes. Addressing the potential impact of TKIs on male fertility helps optimize cancer treatment and survival outcomes.
Collapse
Affiliation(s)
- Marta Marino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH.
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
2
|
Carrageta DF, Pereira SC, Ferreira R, Monteiro MP, Oliveira PF, Alves MG. Signatures of metabolic diseases on spermatogenesis and testicular metabolism. Nat Rev Urol 2024; 21:477-494. [PMID: 38528255 DOI: 10.1038/s41585-024-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Diets leading to caloric overload are linked to metabolic disorders and reproductive function impairment. Metabolic and hormonal abnormalities stand out as defining features of metabolic disorders, and substantially affect the functionality of the testis. Metabolic disorders induce testicular metabolic dysfunction, chronic inflammation and oxidative stress. The disruption of gastrointestinal, pancreatic, adipose tissue and testicular hormonal regulation induced by metabolic disorders can also contribute to a state of compromised fertility. In this Review, we will delve into the effects of high-fat diets and metabolic disorders on testicular metabolism and spermatogenesis, which are crucial elements for male reproductive function. Moreover, metabolic disorders have been shown to influence the epigenome of male gametes and might have a potential role in transmitting phenotype traits across generations. However, the existing evidence strongly underscores the unmet need to understand the mechanisms responsible for transgenerational paternal inheritance of male reproductive function impairment related to metabolic disorders. This knowledge could be useful for developing targeted interventions to prevent, counteract, and most of all break the perpetuation chain of male reproductive dysfunction associated with metabolic disorders across generations.
Collapse
Affiliation(s)
- David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Sara C Pereira
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus de Santiago Agra do Crasto, Aveiro, Portugal.
| |
Collapse
|
3
|
Metallinou C, Staneloudi C, Nikolettos K, Asimakopoulos B. NGF, EPO, and IGF-1 in the Male Reproductive System. J Clin Med 2024; 13:2918. [PMID: 38792459 PMCID: PMC11122040 DOI: 10.3390/jcm13102918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Several studies have demonstrated interesting results considering the implication of three growth factors (GFs), namely nerve growth factor (NGF), erythropoietin (EPO), and the insulin-like growth factor-I (IGF-1) in the physiology of male reproductive functions. This review provides insights into the effects of NGF, EPO, and IGF-1 on the male reproductive system, emphasizing mainly their effects on sperm motility and vitality. In the male reproductive system, the expression pattern of the NGF system varies according to the species and testicular development, playing a crucial role in morphogenesis and spermatogenesis. In humans, it seems that NGF positively affects sperm motility parameters and NGF supplementation in cryopreservation media improves post-thaw sperm motility. In animals, EPO is found in various male reproductive tissues, and in humans, the protein is present in seminal plasma and testicular germ cells. EPO receptors have been discovered in the plasma membrane of human spermatozoa, suggesting potential roles in sperm motility and vitality. In humans, IGF-1 is expressed mainly in Sertoli cells and is present in seminal plasma, contributing to cell development and the maturation of spermatozoa. IGF-1 seems to modulate sperm motility, and treatment with IGF-1 has a positive effect on sperm motility and vitality. Furthermore, lower levels of NGF or IGF-1 in seminal plasma are associated with infertility. Understanding the mechanisms of actions of these GFs in the male reproductive system may improve the outcome of sperm processing techniques.
Collapse
Affiliation(s)
- Chryssa Metallinou
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (C.M.); (K.N.)
| | - Chrysovalanto Staneloudi
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos Nikolettos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (C.M.); (K.N.)
| | - Byron Asimakopoulos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (C.M.); (K.N.)
| |
Collapse
|
4
|
Gruber FS, Richardson A, Johnston ZC, Myles R, Norcross NR, Day DP, Georgiou I, Sesma-Sanz L, Wilson C, Read KD, Martins da Silva S, Barratt CLR, Gilbert IH, Swedlow JR. Sperm Toolbox-A selection of small molecules to study human spermatozoa. PLoS One 2024; 19:e0297666. [PMID: 38377053 PMCID: PMC10878532 DOI: 10.1371/journal.pone.0297666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Male contraceptive options and infertility treatments are limited, and almost all innovation has been limited to updates to medically assisted reproduction protocols and methods. To accelerate the development of drugs that can either improve or inhibit fertility, we established a small molecule library as a toolbox for assay development and screening campaigns using human spermatozoa. We have profiled all compounds in the Sperm Toolbox in several automated high-throughput assays that measure stimulation or inhibition of sperm motility or the acrosome reaction. We have assayed motility under non-capacitating and capacitating conditions to distinguish between pathways operating under these different physiological states. We also assayed cell viability to ensure any effects on sperm function are specific. A key advantage of our studies is that all compounds are assayed together in the same experimental conditions, which allows quantitative comparisons of their effects in complementary functional assays. We have combined the resulting datasets to generate fingerprints of the Sperm Toolbox compounds on sperm function. The data are included in an on-line R-based app for convenient querying.
Collapse
Affiliation(s)
- Franz S. Gruber
- Divisions of Computational Biology and Molecular, Cell and Developmental Biology, and National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Anthony Richardson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Zoe C. Johnston
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Rachel Myles
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Neil R. Norcross
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David P. Day
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Irene Georgiou
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Laura Sesma-Sanz
- Divisions of Computational Biology and Molecular, Cell and Developmental Biology, and National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Caroline Wilson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kevin D. Read
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sarah Martins da Silva
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Christopher L. R. Barratt
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Ian H. Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jason R. Swedlow
- Divisions of Computational Biology and Molecular, Cell and Developmental Biology, and National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
5
|
Castillo J, de la Iglesia A, Leiva M, Jodar M, Oliva R. Proteomics of human spermatozoa. Hum Reprod 2023; 38:2312-2320. [PMID: 37632247 DOI: 10.1093/humrep/dead170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Proteomic methodologies offer a robust approach to identify and quantify thousands of proteins from semen components in both fertile donors and infertile patients. These strategies provide an unprecedented discovery potential, which many research teams are currently exploiting. However, it is essential to follow a suitable experimental design to generate robust data, including proper purification of samples, appropriate technical procedures to increase identification throughput, and data analysis following quality criteria. More than 6000 proteins have been described so far through proteomic analyses in the mature sperm cell, increasing our knowledge on processes involved in sperm function, intercommunication between spermatozoa and seminal fluid, and the transcriptional origin of the proteins. These data have been complemented with comparative studies to ascertain the potential role of the identified proteins on sperm maturation and functionality, and its impact on infertility. By comparing sperm protein profiles, many proteins involved in the acquisition of fertilizing ability have been identified. Furthermore, altered abundance of specific protein groups has been observed in a wide range of infertile phenotypes, including asthenozoospermia, oligozoospermia, and normozoospermia with unsuccessful assisted reproductive techniques outcomes, leading to the identification of potential clinically useful protein biomarkers. Finally, proteomics has been used to evaluate alterations derived from semen sample processing, which might have an impact on fertility treatments. However, the intrinsic heterogeneity and inter-individual variability of the semen samples have resulted in a relatively low overlap among proteomic reports, highlighting the relevance of combining strategies for data validation and applying strict criteria for proteomic data analysis to obtain reliable results. This mini-review provides an overview of the most critical steps to conduct robust sperm proteomic studies, the most relevant results obtained so far, and potential next steps to increase the impact of sperm proteomic data.
Collapse
Affiliation(s)
- Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marina Leiva
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Andretta RR, de Castro LS, de Carvalho RC, Moura JACD, Fraietta R, Okada FK, Bertolla RP. Understanding the impact of varicocele on sperm capacitation. F&S SCIENCE 2023; 4:229-238. [PMID: 37169221 DOI: 10.1016/j.xfss.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVE To study the relationship between the seminal sample quality of men with varicocele and sperm capacitation. DESIGN Cross-sectional observational study. SETTING Academic hospital. PATIENT(S) Seventy-six men (19 control and 57 with varicocele) were analyzed. INTERVENTION(S) Semen samples were submitted to a discontinuous density gradient for sperm selection. Sperm capacitation was induced using a human tubal fluid medium supplemented with bovine serum albumin. MAIN OUTCOME MEASURE(S) After capacitation induction, the sperm were assessed by capacitation state, computer-assisted sperm motility, mitochondrial activity, membrane integrity, acrosome reaction, and intracellular oxidative stress. RESULT(S) The capacitation period increased sperm motility, showing an increase in the average path velocity and a decrease in the straightness compared with sperm before capacitation (paired analysis). After capacitation, the rate of capacitated sperm, motility, and mitochondrial activity showed differences between groups (control and varicocele). The varicocele group showed lower mitochondrial activity and capacitation than the control group. On the other hand, no significant differences were observed in the other variables evaluated. CONCLUSION(S) Varicocele men showed less viable sperm and mitochondrial activity than control men after capacitation sperm. The induction of capacitation altered motility by increasing path velocity and decreasing straightness in all of the studied groups, evidencing the occurrence of hyperactivation.
Collapse
Affiliation(s)
- Rhayza Roberta Andretta
- Human Reproduction Section, Division of Urology, Department of Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Letícia Signori de Castro
- Laboratory of Spermatozoa Biology, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Renata Cristina de Carvalho
- Human Reproduction Section, Division of Urology, Department of Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Renato Fraietta
- Human Reproduction Section, Division of Urology, Department of Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Fatima Kazue Okada
- Human Reproduction Section, Division of Urology, Department of Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil; Laboratory of Developmental Biology, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil.
| | - Ricardo Pimenta Bertolla
- Human Reproduction Section, Division of Urology, Department of Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Wang T, Zhou LY, Li XM, Liu F, Liang L, Chen XZ, Ju J, Ponnusamy M, Wang K, Liu CY, Yan KW, Wang K. ABRO1 arrests cardiomyocyte proliferation and myocardial repair by suppressing PSPH. Mol Ther 2023; 31:847-865. [PMID: 36639869 PMCID: PMC10014284 DOI: 10.1016/j.ymthe.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The role of Abraxas 2 (ABRO1 or KIAA0157), a component of the lysine63-linked deubiquitinating system, in the cardiomyocyte proliferation and myocardial regeneration is unknown. Here, we found that ABRO1 regulates cardiomyocyte proliferation and cardiac regeneration in the postnatal heart by targeting METTL3-mediated m6A methylation of Psph mRNA. The deletion of ABRO1 increased cardiomyocyte proliferation in hearts and restored the heart function after myocardial injury. On the contrary, ABRO1 overexpression significantly inhibited the neonatal cardiomyocyte proliferation and cardiac regeneration in mouse hearts. The mechanism by which ABRO1 regulates cardiomyocyte proliferation mainly involved METTL3-mediated Psph mRNA methylation and CDK2 phosphorylation. In the early postnatal period, METTL3-dependent m6A methylation promotes cardiomyocyte proliferation by hypermethylation of Psph mRNA and upregulating PSPH expression. PSPH dephosphorylates cyclin-dependent kinase 2 (CDK2), a positive regulator of cell cycle, at Thr14/Tyr15 and increases its activity. Upregulation of ABRO1 restricts METTL3 activity and halts the cardiomyocyte proliferation in the postnatal hearts. Thus, our study reveals that ABRO1 is an essential contributor in the cell cycle withdrawal and attenuation of proliferative response in the postnatal cardiomyocytes and could act as a potential target to accelerate cardiomyocyte proliferation and cardiac repair in the adult heart.
Collapse
Affiliation(s)
- Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Lu-Yu Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xin-Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Fang Liu
- Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Anatomy, Guilin Medical University, Guilin 541004, China
| | - Lin Liang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Xin-Zhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cui-Yun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Kao-Wen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| |
Collapse
|
8
|
Gaitskell-Phillips G, Martín-Cano FE, da Silva-Álvarez E, Tapia JA, Silva A, Gil MC, Ortega-Ferrusola C, Peña FJ. Phosphoproteomics for the identification of new mechanisms of cryodamage: the role of SPATA18 in the control of stallion sperm function†. Biol Reprod 2023; 108:324-337. [PMID: 36468681 DOI: 10.1093/biolre/ioac211] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/07/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Although recent research has addressed the impact of cryopreservation on the stallion sperm proteome, studies addressing the stallion sperm phosphoproteome are lacking. In the present study, the data set of proteomes of fresh and cryopreserved spermatozoa were reanalyzed, showing that cryopreservation caused significant changes in the phosphoproteome. The phosphoproteins reduced most significantly by cryopreservation were Ca2+binding tyrosine phosphorylation regulated, protein kinase cAMP-activated catalytic subunit beta (CABYR), mitochondria eating protein (SPATA18), A kinase anchoring protein 4 (AKAP4), A-kinase anchoring protein 3 (AKAP3) and the Family with sequence similarity 71 member B (FAM71B). These proteins belong to the gene ontology (GO) terms sperm fibrous sheath (GO: 0035686), and sperm principal piece (GO: 0097228). The regulatory interactions between kinases and phosphorylation sites on the proteins that were affected most were also investigated, and the potential kinases (based on human orthologs) involved in the regulation of these phosphoproteins identified were: PKCß for SPATA18 and GSK3ß for CABYR. Kinase inhibition assays were also conducted showing that kinases phosphorylating the above-mentioned proteins play an important role in their activity and thus, phosphorylation controls the activity of these proteins and their role in the regulation of the functionality and viability of stallion spermatozoa. In conclusion, the data reported here contribute to the understanding of the fact that the dephosphorylation of certain proteins is a molecular lesion induced by cryopreservation in the stallion spermatozoa.
Collapse
Affiliation(s)
- Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Eva da Silva-Álvarez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - José A Tapia
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Antonio Silva
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - María C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
9
|
Chhikara N, Tomar AK, Datta SK, Yadav S. Proteomic changes in human spermatozoa during in vitro capacitation and acrosome reaction in normozoospermia and asthenozoospermia. Andrology 2023; 11:73-85. [PMID: 36057948 DOI: 10.1111/andr.13289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/31/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The cellular and molecular mechanisms of the events that help spermatozoa acquire their fertilizing capability during capacitation and acrosome reaction are not completely understood. OBJECTIVE This study was performed with a postulation that the identification of sperm proteins and their changes during in vitro capacitation and acrosome reaction will unravel unknown molecular aspects of fertilization that impact male fertility. MATERIALS AND METHODS Spermatozoa collected from sequential conditions, that is, separation of ejaculated spermatozoa by Percoll gradient centrifugation, in vitro capacitation, and acrosome reaction were processed for tandem mass spectrometric analysis, followed by protein identification, label-free quantitation, and statistical analysis. RESULTS AND DISCUSSION Collectively, a total of 1088 sperm proteins were identified. In comparison to ejaculated spermatozoa, 44 and 141 proteins were differentially expressed in capacitated and acrosome reacted spermatozoa, respectively. A large number of proteins were found downregulated, including clusterin, pyruvate dehydrogenase E1 component, semenogelin-1 and 2, heat shock protein 90, beta-microseminoprotein, and keratin. It was expected as sperm-membrane-associated proteins are removed during capacitation. There were significant proteomic alterations in asthenozoospermia compared to normozoospermia; however, variation was more noticeable among proteins of acrosome reacted spermatozoa and those released during the acrosome reaction. The processes enriched among downregulated proteins in asthenozoospermia included acrosome assembly, binding of spermatozoa to zona pellucida, nucleosome assembly, flagellated sperm motility, protein folding, oxidative phosphorylation, tricarboxylic acid cycle, chromatin silencing, gluconeogenesis, glycolytic process, and glycolysis. CONCLUSION The dynamic information generated about proteomic alterations in spermatozoa during capacitation and acrosome reaction and their variability in asthenozoospermia will contribute not only to enhancing our understanding of processes that prepare spermatozoa to acquire fertilization capability but also help in deciphering novel factors of male infertility.
Collapse
Affiliation(s)
- Nirmal Chhikara
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
A male germ-cell-specific ribosome controls male fertility. Nature 2022; 612:725-731. [PMID: 36517592 DOI: 10.1038/s41586-022-05508-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
Ribosomes are highly sophisticated translation machines that have been demonstrated to be heterogeneous in the regulation of protein synthesis1,2. Male germ cell development involves complex translational regulation during sperm formation3. However, it remains unclear whether translation during sperm formation is performed by a specific ribosome. Here we report a ribosome with a specialized nascent polypeptide exit tunnel, RibosomeST, that is assembled with the male germ-cell-specific protein RPL39L, the paralogue of core ribosome (RibosomeCore) protein RPL39. Deletion of RibosomeST in mice causes defective sperm formation, resulting in substantially reduced fertility. Our comparison of single-particle cryo-electron microscopy structures of ribosomes from mouse kidneys and testes indicates that RibosomeST features a ribosomal polypeptide exit tunnel of distinct size and charge states compared with RibosomeCore. RibosomeST predominantly cotranslationally regulates the folding of a subset of male germ-cell-specific proteins that are essential for the formation of sperm. Moreover, we found that specialized functions of RibosomeST were not replaceable by RibosomeCore. Taken together, identification of this sperm-specific ribosome should greatly expand our understanding of ribosome function and tissue-specific regulation of protein expression pattern in mammals.
Collapse
|
11
|
Differential requirements of IQUB for the assembly of radial spoke 1 and the motility of mouse cilia and flagella. Cell Rep 2022; 41:111683. [DOI: 10.1016/j.celrep.2022.111683] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
|
12
|
Zhang R, Guo X, Liang C, Pei J, Bao P, Yin M, Wu F, Chu M, Yan P. Identification and Validation of Yak ( Bos grunniens) Frozen-Thawed Sperm Proteins Associated with Capacitation and the Acrosome Reaction. J Proteome Res 2022; 21:2754-2770. [PMID: 36251486 DOI: 10.1021/acs.jproteome.2c00528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To achieve fertilization, mammalian spermatozoa must undergo capacitation and the acrosome reaction (AR) within the female reproductive tract. However, the effects of cryopreservation on sperm maturation and fertilizing potential have yet to be established. To gain insight into changes in protein levels within sperm cells prepared for use in the context of fertilization, a comprehensive quantitative proteomic profiling approach was used to analyze frozen-thawed Ashidan yak spermatozoa under three sequential conditions: density gradient centrifugation-based purification, incubation in a capacitation medium, and treatment with the calcium ionophore A23187 to facilitate AR induction. In total, 3280 proteins were detected in these yak sperm samples, of which 3074 were quantified, with 68 and 32 being significantly altered following sperm capacitation and AR induction. Differentially abundant capacitation-related proteins were enriched in the metabolism and PPAR signaling pathways, while differentially abundant AR-related proteins were enriched in the AMPK signaling pathway. These data confirmed a role for superoxide dismutase 1 (SOD1) as a regulator of sperm capacitation while also offering indirect evidence that heat shock protein 90 alpha (HSP90AA1) regulates the AR. Together, these findings offer a means whereby sperm fertility-related marker proteins can be effectively identified. Data are available via Proteome Xchange with identifier PXD035038.
Collapse
Affiliation(s)
- Renzheng Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.,College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Mancai Yin
- Yak Breeding and Extension Service Center in Qinghai Province, Xining 810000, China
| | - Fude Wu
- Yak Breeding and Extension Service Center in Qinghai Province, Xining 810000, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
13
|
Zhang R, Liang C, Guo X, Bao P, Pei J, Wu F, Yin M, Chu M, Yan P. Quantitative phosphoproteomics analyses reveal the regulatory mechanisms related to frozen-thawed sperm capacitation and acrosome reaction in yak (Bos grunniens). Front Physiol 2022; 13:1013082. [PMID: 36277216 PMCID: PMC9583833 DOI: 10.3389/fphys.2022.1013082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian spermatozoa are not mature after ejaculation and must undergo additional functional and structural changes within female reproductive tracts to achieve subsequent fertilization, including both capacitation and acrosome reaction (AR), which are dominated by post-translational modifications (PTMs), especially phosphorylation. However, the mechanism of protein phosphorylation during frozen-thawed sperm capacitation and AR has not been well studied. In this study, the phosphoproteomics approach was employed based on tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategy to analyze frozen-thawed sperm in Ashidan yak under three sequential conditions (density gradient centrifugation-based purification, incubation in the capacitation medium and induction of AR processes by the calcium ionophore A23187 treatment). The identification of 1,377 proteins with 5,509 phosphorylation sites revealed changes in phosphorylation levels of sperm-specific proteins involved in regulation of spermatogenesis, sperm motility, energy metabolism, cilium movement, capacitation and AR. Some phosphorylated proteins, such as AKAP3, AKAP4, SPA17, PDMD11, CABYR, PRKAR1A, and PRKAR2A were found to regulate yak sperm capacitation and AR though the cAMP/PKA signaling pathway cascades. Notably, the phosphorylation level of SPA17 at Y156 increased in capacitated sperm, suggesting that it is also a novel functional protein besides AKAPs during sperm capacitation. Furthermore, the results of this study suggested that the phosphorylation of PRKAR1A and PRKAR2A, and the dephosphorylation of CABYR both play key regulatory role in yak sperm AR process. Protein-protein interaction analysis revealed that differentially phosphorylated proteins (AKAP3, AKAP4, FSIP2, PSMD11, CABYR, and TPPP2) related to capacitation and AR process played a key role in protein kinase A binding, sperm motility, reproductive process, cytoskeleton and sperm flagella function. Taken together, these data provide not only a solid foundation for further exploring phosphoproteome of sperm in yak, but an efficient way to identify sperm fertility-related marker phosphorylated proteins.
Collapse
Affiliation(s)
- Renzheng Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fude Wu
- Yak Breeding and Extension Service Center in in Qinghai Province, Xining, China
| | - Mancai Yin
- Yak Breeding and Extension Service Center in in Qinghai Province, Xining, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Min Chu, ; Ping Yan,
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Min Chu, ; Ping Yan,
| |
Collapse
|
14
|
Qu X, Han Y, Chen X, Lv Y, Zhang Y, Cao L, Zhang J, Jin Y. Inhibition of 26 S Proteasome Enhances AKAP3-mediated cAMP-PKA Signaling During Boar Sperm Capacitation. Anim Reprod Sci 2022; 247:107079. [DOI: 10.1016/j.anireprosci.2022.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/20/2022] [Accepted: 09/21/2022] [Indexed: 11/01/2022]
|
15
|
Targeted Analysis of HSP70 Isoforms in Human Spermatozoa in the Context of Capacitation and Motility. Int J Mol Sci 2022; 23:ijms23126497. [PMID: 35742939 PMCID: PMC9224233 DOI: 10.3390/ijms23126497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
HSP70s constitute a family of chaperones, some isoforms of which appear to play a role in sperm function. Notably, global proteomic studies analyzing proteins deregulated in asthenozoospermia, a main cause of male infertility characterized by low sperm motility, showed the dysregulation of some HSP70 isoforms. However, to date, no clear trend has been established since the variations in the abundance of HSP70 isoforms differed between studies. The HSPA2 isoform has been reported to play a key role in fertilization, but its dysregulation and possible relocation during capacitation, a maturation process making the spermatozoon capable of fertilizing an oocyte, is debated in the literature. The aim of the present study was to investigate the fate of all sperm HSP70 isoforms during capacitation and in relation to sperm motility. Using Multiple-Reaction Monitoring (MRM) mass spectrometry, we showed that the relative abundance of all detected isoforms was stable between non-capacitated and capacitated spermatozoa. Immunofluorescence using two different antibodies also demonstrated the stability of HSP70 isoform localization during capacitation. We also investigated spermatozoa purified from 20 sperm samples displaying various levels of total and progressive sperm motility. We showed that the abundance of HSP70 isoforms is not correlated to sperm total or progressive motility.
Collapse
|
16
|
Kanaka V, Proikakis S, Drakakis P, Loutradis D, Tsangaris GT. Implementing a preimplantation proteomic approach to advance assisted reproduction technologies in the framework of predictive, preventive, and personalized medicine. EPMA J 2022; 13:237-260. [PMID: 35719135 PMCID: PMC9203609 DOI: 10.1007/s13167-022-00282-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/05/2022] [Indexed: 10/28/2022]
Abstract
The evolution of the field of assisted reproduction technology (ART) in the last 40 years has significantly contributed to the management of global infertility. Despite the great numbers of live births that have been achieved through ART, there is still potential for increasing the success rates. As a result, there is a need to create optimum conditions in order to increase ART efficacy. The selection of the best sperm, oocyte, and embryo, as well as the achievement of optimal endometrial receptivity, through the contribution of new diagnostic and treatment methods, based on a personalized proteomic approach, may assist in the attainment of this goal. Proteomics represent a powerful new technological development, which seeks for protein biomarkers in human tissues. These biomarkers may aid to predict the outcome, prevent failure, and monitor in a personalized manner in vitro fertilization (IVF) cycles. In this review, we will present data from studies that have been conducted in the search for such biomarkers in order to identify proteins related to good sperm, oocyte, and embryo quality, as well as optimal endometrial receptivity, which may later lead to greater results and the desirable ART outcome.
Collapse
Affiliation(s)
- Vasiliki Kanaka
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Stavros Proikakis
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Dimitrios Loutradis
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
17
|
Nogueira E, Tirpák F, Hamilton LE, Zigo M, Kerns K, Sutovsky M, Kim J, Volkmann D, Jovine L, Taylor JF, Schnabel RD, Sutovsky P. A Non-Synonymous Point Mutation in a WD-40 Domain Repeat of EML5 Leads to Decreased Bovine Sperm Quality and Fertility. Front Cell Dev Biol 2022; 10:872740. [PMID: 35478957 PMCID: PMC9037033 DOI: 10.3389/fcell.2022.872740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
This study is part of a concerted effort to identify and phenotype rare, deleterious mutations that adversely affect sperm quality, or convey high developmental and fertility potential to embryos and ensuing progeny. A rare, homozygous mutation in EML5 (EML5R1654W), which encodes a microtubule-associated protein with high expression in testis and brain was identified in an Angus bull used extensively in artificial insemination (AI) for its outstanding progeny production traits. The bull’s fertility was low in cross-breeding timed AI (TAI) (Pregnancy/TAI = 25.2%; n = 222) and, in general, AI breeding to Nellore cows (41%; n = 822). A search of the 1,000 Bull Genomes Run9 database revealed an additional 74 heterozygous animals and 8 homozygous animals harboring this exact mutation across several different breeds (0.7% frequency within the 6,191 sequenced animals). Phenotypically, spermatozoa from the homozygous Angus bull displayed prominent piriform and tapered heads, and outwardly protruding knobbed acrosomes. Additionally, an increased retention of EML5 was also observed in the sperm head of both homozygous and heterozygous Angus bulls compared to wild-type animals. This non-synonymous point mutation is located within a WD40 signaling domain repeat of EML5 and is predicted to be detrimental to overall protein function by genomic single nucleotide polymorphism (SNP) analysis and protein modeling. Future work will examine how this rare mutation affects field AI fertility and will characterize the role of EML5 in spermatogenesis.
Collapse
Affiliation(s)
- Eriklis Nogueira
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Embrapa Pantanal, Corumbá, Brazil.,Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Filip Tirpák
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - JaeWoo Kim
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Dietrich Volkmann
- Theriogenology Laboratory, School of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Genetics Area Program, University of Missouri, Columbia, MO, United States
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Genetics Area Program, University of Missouri, Columbia, MO, United States.,Institute for Data Science and Informatics, University of Missouri, Columbia, MO, United States
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
18
|
Sperm Phosphoproteome: Unraveling Male Infertility. BIOLOGY 2022; 11:biology11050659. [PMID: 35625387 PMCID: PMC9137924 DOI: 10.3390/biology11050659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
Infertility affects approximately 15% of couples worldwide of childbearing age, and in many cases the etiology of male infertility is unknown. The current standard evaluation of semen is insufficient to establish an accurate diagnosis. Proteomics techniques, such as phosphoproteomics, applied in this field are a powerful tool to understand the mechanisms that regulate sperm functions such as motility, which is essential for successful fertilization. Among the post-translational modifications of sperm proteins, this review summarizes, from a proteomic perspective, the updated knowledge of protein phosphorylation, in human spermatozoa, as a relevant molecular mechanism involved in the regulation of sperm physiology. Specifically, the role of sperm protein phosphorylation in motility and, consequently, in sperm quality is highlighted. Additionally, through the analysis of published comparative phosphoproteomic studies, some candidate human sperm phosphoproteins associated with low sperm motility are proposed. Despite the remarkable advances in phosphoproteomics technologies, the relatively low number of studies performed in human spermatozoa suggests that phosphoproteomics has not been applied to its full potential in studying male infertility yet. Therefore, further studies will improve the application of this procedure and overcome the limitations, increasing the understanding of regulatory mechanisms underlying protein phosphorylation in sperm motility and, consequently, in male fertility.
Collapse
|
19
|
Zhang H, Situ C, Guo X. Recent progress of proteomic analysis on spermatogenesis. Biol Reprod 2022; 107:109-117. [DOI: 10.1093/biolre/ioac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Testis, the only organ responsible for generating sperm, is by far the organ with the largest variety of proteins and tissue-specific proteins in humans. In testis, spermatogenesis is a multi-step complex process well-accepted that protein and mRNA are decoupled in certain stages of spermatogenesis. With the fast development of mass spectrometry-based proteomics, it is possible to systemically study protein abundances and modifications in testis and sperm to help us understand the molecular mechanisms of spermatogenesis. This review provides an overview of the recent progress of proteomics analysis on spermatogenesis, including protein expression and multiple PTMs, such as phosphorylation, glycosylation, ubiquitylation, and acetylation.
Collapse
Affiliation(s)
- Haotian Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
20
|
Ojaghi M, Varghese J, Kastelic JP, Thundathil JC. Characterization of the Testis-Specific Angiotensin Converting Enzyme (tACE)-Interactome during Bovine Sperm Capacitation. Curr Issues Mol Biol 2022; 44:449-469. [PMID: 35723410 PMCID: PMC8928970 DOI: 10.3390/cimb44010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
A comprehensive understanding of molecular and biochemical changes during sperm capacitation is critical to the success of assisted reproductive technologies. We reported involvement of the testis-specific isoform of Angiotensin Converting Enzyme (tACE) in bovine sperm capacitation. The objective of this study was to characterize the tACE interactome in fresh and heparin-capacitated bovine sperm through immunoprecipitation coupled with mass spectrometry. These interactions were validated by co-localization of tACE with beta-tubulin as an identified interactome constituent. Although interactions between tACE and several proteins remained unchanged in fresh and capacitated sperm, mitochondrial aldehyde dehydrogenase 2 (ALDH2), inactive serine/threonine protein-kinase 3 (VRK3), tubulin-beta-4B chain (TUBB4B), and tubulin-alpha-8 chain (TUBA8) were recruited during capacitation, with implications for cytoskeletal and membrane reorganization, vesicle-mediated transport, GTP-binding, and redox regulation. A proposed tACE interactional network with identified interactome constituents was generated. Despite tACE function being integral to capacitation, the relevance of interactions with its binding partners during capacitation and subsequent events leading to fertilization remains to be elucidated.
Collapse
|
21
|
Tu H, Xu F, Cheng Y, Pan Q, Cai X, Wang S, Ge S, Cao M, Su D, Li Y. Proteomic profiling of the endogenous peptides of MRSA and MSSA. PeerJ 2021; 9:e12508. [PMID: 34900427 PMCID: PMC8627652 DOI: 10.7717/peerj.12508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium that can cause diverse skin and soft tissue infections. Methicillin-resistant Staphylococcus aureus (MRSA) can cause more severe infections than methicillin-susceptible Staphylococcus aureus (MSSA). Nevertheless, the physiological and metabolic regulation of MSSA and MRSA has not been well studied. In light of the increased interest in endogenous peptides and recognition of the important roles that they play, we studied the endogenous peptidome of MSSA and MRSA. We identified 1,065 endogenous peptides, among which 435 were differentially expressed (DE), with 292 MSSA-abundant endogenous peptides and 35 MRSA-abundant endogenous peptides. MSSA-abundant endogenous peptides have significantly enriched “VXXXK” motif of at the C-terminus. MSSA-abundant endogenous peptides are involved in penicillin-binding and immune responses, whereas MRSA-abundant endogenous peptides are associated with antibiotic resistance and increased toxicity. Our characterization of the peptidome of MSSA and MRSA provides a rich resource for future studies to explore the functional regulation of drug resistance in S. aureus and may also help elucidate the mechanisms of its pathogenicity and the development of treatments.
Collapse
Affiliation(s)
- Haixia Tu
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fei Xu
- Blood Transfusion Department, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwei Cheng
- School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qianglong Pan
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao Cai
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shouxing Wang
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shuting Ge
- School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Min Cao
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dongming Su
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan Li
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
22
|
Quantitative phosphoproteomics reveals GSK3A substrate network is involved in the cryodamage of sperm motility. Biosci Rep 2021; 41:229867. [PMID: 34596222 PMCID: PMC8521533 DOI: 10.1042/bsr20211326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022] Open
Abstract
During sperm cryopreservation, the most significant phenotype of cryodamage is the decrease in sperm motility. Several proteomics studies have already been performed to search for key regulators at the protein level. However, sperm functions are known to be highly regulated by phosphorylation signaling. Here, we constructed a quantitative phosphoproteome to investigate the expression change of phosphorylated sites during sperm cryopreservation. A total of 3107 phosphorylated sites are identified and 848 of them are found to be significantly differentially expressed (DE). Bioinformatics analysis showed that the corresponding genes of these regulated sites are highly associated with sperm motility, providing a connection between the molecular basis and the phenotype of cryodamage. We then performed kinase enrichment analysis and successfully identified glycogen synthase kinase-3α (GSK3A) as the key kinase that may play an important role in the regulation of sperm motility. We further constructed a GSK3A centric network that could help us better understand the molecular mechanism of cryodamage in sperm motility. Finally, we also verified that GSK3A was abnormally activated during this process. The presented phosphoproteome and functional associations provide abundant research resources for us to learn the regulation of sperm functions, as well as to optimize the cryoprotectant for sperm cryopreservation.
Collapse
|
23
|
Xu Y, Han Q, Ma C, Wang Y, Zhang P, Li C, Cheng X, Xu H. Comparative Proteomics and Phosphoproteomics Analysis Reveal the Possible Breed Difference in Yorkshire and Duroc Boar Spermatozoa. Front Cell Dev Biol 2021; 9:652809. [PMID: 34336820 PMCID: PMC8322956 DOI: 10.3389/fcell.2021.652809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Sperm cells are of unique elongated structure and function, the development of which is tightly regulated by the existing proteins and the posttranslational modifications (PTM) of these proteins. Based on the phylogenetic relationships of various swine breeds, Yorkshire boar is believed to be distinctly different from Duroc boar. The comprehensive differential proteomics and phosphoproteomics profilings were performed on spermatozoa from both Yorkshire and Duroc boars. By both peptide and PTM peptide quantification followed by statistical analyses, 167 differentially expressed proteins were identified from 1,745 proteins, and 283 differentially expressed phosphopeptides corresponding to 102 unique differentially phosphorylated proteins were measured from 1,140 identified phosphopeptides derived from 363 phosphorylated proteins. The representative results were validated by Western blots. Pathway enrichment analyses revealed that majority of differential expression proteins and differential phosphorylation proteins were primarily concerned with spermatogenesis, male gamete generation, sperm motility, energy metabolism, cilium morphogenesis, axonemal dynein complex assembly, sperm–egg recognition, and capacitation. Remarkably, axonemal dynein complex assembly related proteins, such as SMCP, SUN5, ODF1, AKAP3, and AKAP4 that play a key regulatory role in the sperm physiological functions, were significantly higher in Duroc spermatozoa than that of Yorkshire. Furthermore, phosphorylation of sperm-specific proteins, such as CABYR, ROPN1, CALM1, PRKAR2A, and PRKAR1A, participates in regulation of the boar sperm motility mainly through the cAMP/PKA signal pathway in different breeds, demonstrating that protein phosphorylation may be an important mechanism underlying the sperm diversity. Protein–protein interaction analysis revealed that the 14 overlapped proteins between differential expression proteins and differential phosphorylation proteins potentially played a key role in sperm development and motility of the flagellum, including the proteins ODF1, SMCP, AKAP4, FSIP2, and SUN5. Taken together, these physiologically and functionally differentially expressed proteins (DEPs) and differentially expressed phosphorylated proteins (DPPs) may constitute the proteomic backgrounds between the two different boar breeds. The validation will be performed to delineate the roles of these PTM proteins as modulators of Yorkshire and Duroc boar spermatozoa.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Qiu Han
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Chaofeng Ma
- Xinyang Animal Disease Control and Prevention Center, Xinyang, China
| | - Yaling Wang
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
24
|
Zhou S, Guo Y, Sun H, Liu L, Yao L, Liu C, He Y, Cao S, Zhou C, Li M, Cao Y, Wang C, Lu Q, Li W, Guo X, Huo R. Maternal RNF114-mediated target substrate degradation regulates zygotic genome activation in mouse embryos. Development 2021; 148:269079. [PMID: 34104941 DOI: 10.1242/dev.199426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Zygotic genomic activation (ZGA) is a landmark event in the maternal-to-zygotic transition (MZT), and the regulation of ZGA by maternal factors remains to be elucidated. In this study, the depletion of maternal ring finger protein 114 (RNF114), a ubiquitin E3 ligase, led to developmental arrest of two-cell mouse embryos. Using immunofluorescence and transcriptome analysis, RNF114 was proven to play a crucial role in major ZGA. To study the underlying mechanism, we performed protein profiling in mature oocytes and found a potential substrate for RNF114, chromobox 5 (CBX5), ubiquitylation and degradation of which was regulated by RNF114. The overexpression of CBX5 prevented embryonic development and impeded major ZGA. Furthermore, TAB1 was abnormally accumulated in mutant two-cell embryos, which was consistent with the result of in vitro knockdown of Rnf114. Knockdown of Cbx5 or Tab1 in maternal RNF114-depleted embryos partially rescued developmental arrest and the defect of major ZGA. In summary, our study reveals that maternal RNF114 plays a precise role in degrading some important substrates during the MZT, the misregulation of which may impede the appropriate activation of major ZGA in mouse embryos.
Collapse
Affiliation(s)
- Shuai Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China.,Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Haifeng Sun
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Lu Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Liping Yao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Chao Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Shanren Cao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Cheng Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Mingrui Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Yumeng Cao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Congjing Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Qianneng Lu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Wei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
25
|
Kumar A, Singh G, A J, Kumar P, V A, Bala R, Verma N, Sharma RK. IGF-1 supplementation in semen affects mitochondrial functional and calcium status of buffalo sperm following cryopreservation. Anim Reprod Sci 2021; 231:106783. [PMID: 34091430 DOI: 10.1016/j.anireprosci.2021.106783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
This study was designed to examine the effects of seminal insulin-like growth factor-1 (IGF-1) supplementation on structural and functional properties of buffalo sperm post cryopreservation. Semen ejaculates from buffalo bulls (n = 6) were proportioned into four aliquots and diluted with egg yolk-based extender. Prior to equilibration, IGF-1 was added to extender as four treatments: group IGF0 (no supplementation), IGF150 (150 ng/mL), IGF250 (250 ng/mL) and IGF350 (350 ng/mL). The extended semen was transferred into 0.25 mL mini-straws, equilibrated (4 °C at 4 h), and cryopreserved. Total sperm motility was greater (P < 0.05) when there was the IGF150 treatment compared with values for other groups. Furthermore, with the IGF150 treatment there was the least and greatest (P < 0.05) mitochondrial superoxide status and membrane potential, respectively. Similarly, with the IGF150 treatment there was a greater (P < 0.05) sperm membrane integrity with a lesser (P < 0.05) calcium status compared to values for the other groups. In conclusion, seminal IGF-1 supplementation affects the structural and functional properties of buffalo sperm following cryopreservation.
Collapse
Affiliation(s)
- Amit Kumar
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India; Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Gyan Singh
- Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
| | - Jerome A
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India.
| | - Pradeep Kumar
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| | - Arjun V
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India; Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Renu Bala
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| | - Nisha Verma
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| | - R K Sharma
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
| |
Collapse
|
26
|
Oud MS, Okutman Ö, Hendricks LAJ, de Vries PF, Houston BJ, Vissers LELM, O'Bryan MK, Ramos L, Chemes HE, Viville S, Veltman JA. Exome sequencing reveals novel causes as well as new candidate genes for human globozoospermia. Hum Reprod 2021; 35:240-252. [PMID: 31985809 PMCID: PMC6993856 DOI: 10.1093/humrep/dez246] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Can exome sequencing identify new genetic causes of globozoospermia? SUMMARY ANSWER Exome sequencing in 15 cases of unexplained globozoospermia revealed deleterious mutations in seven new genes, of which two have been validated as causing globozoospermia when knocked out in mouse models. WHAT IS KNOWN ALREADY Globozoospermia is a rare form of male infertility characterised by round-headed sperm and malformation of the acrosome. Although pathogenic variants in DPY19L2 and SPATA16 are known causes of globozoospermia and explain up to 70% of all cases, genetic causality remains unexplained in the remaining patients. STUDY DESIGN, SIZE, DURATION After pre-screening 16 men for mutations in known globozoospermia genes DPY19L2 and SPATA16, exome sequencing was performed in 15 males with globozoospermia or acrosomal hypoplasia of unknown aetiology. PARTICIPANTS/MATERIALS, SETTING, METHOD Targeted next-generation sequencing and Sanger sequencing was performed for all 16 patients to screen for single-nucleotide variants and copy number variations in DPY19L2 and SPATA16. After exclusion of one patient with DPY19L2 mutations, we performed exome sequencing for the 15 remaining subjects. We prioritised recessive and X-linked protein-altering variants with an allele frequency of <0.5% in the population database GnomAD in genes with an enhanced expression in the testis. All identified candidate variants were confirmed in patients and, where possible, in family members using Sanger sequencing. Ultrastructural examination of semen from one of the patients allowed for a precise phenotypic characterisation of abnormal spermatozoa. MAIN RESULTS AND ROLE OF CHANCE After prioritisation and validation, we identified possibly causative variants in eight of 15 patients investigated by exome sequencing. The analysis revealed homozygous nonsense mutations in ZPBP and CCDC62 in two unrelated patients, as well as rare missense mutations in C2CD6 (also known as ALS2CR11), CCIN, C7orf61 and DHNA17 and a frameshift mutation in GGN in six other patients. All variants identified through exome sequencing, except for the variants in DNAH17, were located in a region of homozygosity. Familial segregation of the nonsense variant in ZPBP revealed two fertile brothers and the patient’s mother to be heterozygous carriers. Paternal DNA was unavailable. Immunohistochemistry confirmed that ZPBP localises to the acrosome in human spermatozoa. Ultrastructural analysis of spermatozoa in the patient with the C7orf61 mutation revealed a mixture of round heads with no acrosomes (globozoospermia) and ovoid or irregular heads with small acrosomes frequently detached from the sperm head (acrosomal hypoplasia). LIMITATIONS, REASONS FOR CAUTION Stringent filtering criteria were used in the exome data analysis which could result in possible pathogenic variants remaining undetected. Additionally, functional follow-up is needed for several candidate genes to confirm the impact of these mutations on normal spermatogenesis. WIDER IMPLICATIONS OF THE FINDINGS Our study revealed an important role for mutations in ZPBP and CCDC62 in human globozoospermia as well as five new candidate genes. These findings provide a more comprehensive understanding of the genetics of male infertility and bring us closer to a complete molecular diagnosis for globozoospermia patients which would help to predict the success of reproductive treatments. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by The Netherlands Organisation for Scientific Research (918–15-667); National Health and Medical Research Council of Australia (APP1120356) and the National Council for Scientific Research (CONICET), Argentina, PIP grant 11220120100279CO. The authors have nothing to disclose.
Collapse
Affiliation(s)
- M S Oud
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
| | - Ö Okutman
- Laboratoire de Diagnostic Génétique, UF3472-génétique de l'infertilité, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.,Institut de Parasitologie et Pathologie Tropicale, EA 7292, Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - L A J Hendricks
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
| | - P F de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
| | - B J Houston
- School of Biological Sciences, Monash University, Clayton, Australia
| | - L E L M Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
| | - M K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Australia
| | - L Ramos
- Department of Gynaecology and Obstetrics, Radboudumc, Nijmegen, The Netherlands
| | - H E Chemes
- Center for Research in Endocrinology (CEDIE), National Research Council, Department of Endocrinology, Buenos Aires Children's Hospital, Argentina
| | - S Viville
- Laboratoire de Diagnostic Génétique, UF3472-génétique de l'infertilité, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.,Institut de Parasitologie et Pathologie Tropicale, EA 7292, Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - J A Veltman
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands.,Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
27
|
Beurois J, Cazin C, Kherraf ZE, Martinez G, Celse T, Touré A, Arnoult C, Ray PF, Coutton C. Genetics of teratozoospermia: Back to the head. Best Pract Res Clin Endocrinol Metab 2020; 34:101473. [PMID: 33183966 DOI: 10.1016/j.beem.2020.101473] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spermatozoa are polarized cells with a head and a flagellum joined by the connecting piece. Head integrity is critical for normal sperm function, and head defects consistently lead to male infertility. Abnormalities of the sperm head are among the most severe and characteristic sperm defects. Patients presenting with a monomorphic head sperm defects such as globozoospermia or marcrozoospermia were analyzed permitting to identify several key genes for spermatogenesis such as AURKC and DPY19L2. The study of patients with other specific sperm head defects such as acephalic spermatozoa have also enabled the identification of new infertility genes such as SUN5. Here, we review the genetic causes leading to morphological defects of sperm head. Advances in the genetics of male infertility are necessary to improve the management of infertility and will pave the road towards future strategies of treatments, especially for patients with the most severe phenotype as sperm head defects.
Collapse
Affiliation(s)
- Julie Beurois
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Caroline Cazin
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Guillaume Martinez
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Tristan Celse
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Aminata Touré
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Christophe Arnoult
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Pierre F Ray
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Charles Coutton
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France.
| |
Collapse
|
28
|
Phosphoproteomics and Bioinformatics Analyses Reveal Key Roles of GSK-3 and AKAP4 in Mouse Sperm Capacitation. Int J Mol Sci 2020; 21:ijms21197283. [PMID: 33023073 PMCID: PMC7582274 DOI: 10.3390/ijms21197283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Protein phosphorylation can induce signal transduction to change sperm motility patterns during sperm capacitation. However, changes in the phosphorylation of sperm proteins in mice are still incompletely understood. Here, capacitation-related phosphorylation in mouse sperms were firstly investigated by label-free quantitative (LFQ) phosphoproteomics coupled with bioinformatics analysis using ingenuity pathway analysis (IPA) methods such as canonical pathway, upstream regulator, and network analysis. Among 1632 phosphopeptides identified at serine, threonine, and tyrosine residues, 1050 novel phosphosites, corresponding to 402 proteins, were reported. Gene heatmaps for IPA canonical pathways showed a novel role for GSK-3 in GP6 signaling pathways associated with capacitation for 60 min. At the same time, the reduction of the abundant isoform-specific GSK-3α expression was shown by western blot (WB) while the LFQ pY of this isoform slightly decreased and then increased. The combined results from WB and LFQ methods explain the less inhibitory phosphorylation of GSK-3α during capacitation and also support the predicted increases in its activity. In addition, pAKAP4 increased at the Y156 site but decreased at the Y811 site in a capacitated state, even though IPA network analysis and WB analysis for overall pAKAP revealed upregulated trends. The potential roles of GSK-3 and AKAP4 in fertility are discussed.
Collapse
|
29
|
Agarwal A, Baskaran S, Panner Selvam MK, Barbăroșie C, Master K. Unraveling the Footsteps of Proteomics in Male Reproductive Research: A Scientometric Approach. Antioxid Redox Signal 2020; 32:536-549. [PMID: 31861964 DOI: 10.1089/ars.2019.7945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Male reproductive research at molecular level has gained more attention as it offers the cellular mechanisms and biological pathways implicated in the reproductive physiology. Several researchers across the world have used global proteomic approach in conjunction with advanced bioinformatics software to identify putative biomarkers for various male infertility conditions. Recent Advances: Introduction of advance proteomic platforms has made it easier to generate enormous amount of data in a short period of time. In this article, we have reviewed the functional and comparative proteomic studies in the area of male reproductive research. We have discussed the key proteins and associated cellular pathways such as oxidative phosphorylation and mitochondrial dysfunction implicated in the various male infertility conditions. Furthermore, for the first time scientometric approach was used to analyze the publication trends and hot topics in proteomics of male reproductive research. Critical Issues: Analysis of publication trends revealed that majority of the published studies were focused on varicocele and asthenozoospermia, while very limited research has been conducted on assisted reproductive technology (ART). This area of research requires more attention as it would facilitate identification of novel biomarkers to catalogue proteomic characteristics of spermatozoa for achieving better results in ART. Future Directions: Future research should be focused on the development and validation of a biomarker panel for specific male infertility scenarios based on etiology. Translation of validated proteomic biomarkers into tests or assays for male infertility conditions would enable the physician to provide better management for the patients.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | | | - Cătălina Barbăroșie
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio.,Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Kruyanshi Master
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
30
|
Fan Y, Cheng Y, Li Y, Chen B, Wang Z, Wei T, Zhang H, Guo Y, Wang Q, Wei Y, Chen F, Sha J, Guo X, Wang L. Phosphoproteomic Analysis of Neonatal Regenerative Myocardium Revealed Important Roles of Checkpoint Kinase 1 via Activating Mammalian Target of Rapamycin C1/Ribosomal Protein S6 Kinase b-1 Pathway. Circulation 2020; 141:1554-1569. [PMID: 32098494 DOI: 10.1161/circulationaha.119.040747] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND In mammals, regenerative therapy after myocardial infarction is hampered by the limited regenerative capacity of adult heart, whereas a transient regenerative capacity is maintained in the neonatal heart. Systemic phosphorylation signaling analysis on ischemic neonatal myocardium might be helpful to identify key pathways involved in heart regeneration. Our aim was to define the kinase-substrate network in ischemic neonatal myocardium and to identify key pathways involved in heart regeneration after ischemic insult. METHODS Quantitative phosphoproteomics profiling was performed on infarct border zone of neonatal myocardium, and kinase-substrate network analysis revealed 11 kinases with enriched substrates and upregulated phosphorylation levels, including checkpoint kinase 1 (CHK1) kinase. The effect of CHK1 on cardiac regeneration was tested on Institute of Cancer Research CD1 neonatal and adult mice that underwent apical resection or myocardial infarction. RESULTS In vitro, CHK1 overexpression promoted whereas CHK1 knockdown blunted cardiomyocyte proliferation. In vivo, inhibition of CHK1 hindered myocardial regeneration on resection border zone in neonatal mice. In adult myocardial infarction mice, CHK1 overexpression on infarct border zone upregulated mammalian target of rapamycin C1/ribosomal protein S6 kinase b-1 pathway, promoted cardiomyocyte proliferation, and improved cardiac function. Inhibiting mammalian target of rapamycin activity by rapamycin blunted the neonatal cardiomyocyte proliferation induced by CHK1 overexpression in vitro. CONCLUSIONS Our study indicates that phosphoproteome of neonatal regenerative myocardium could help identify important signaling pathways involved in myocardial regeneration. CHK1 is found to be a key signaling responsible for neonatal regeneration. Myocardial overexpression of CHK1 could improve cardiac regeneration in adult hearts by activating the mammalian target of rapamycin C1/ribosomal protein S6 kinase b-1 pathway. Thus, CHK1 might serve as a potential novel target in myocardial repair after myocardial infarction.
Collapse
Affiliation(s)
- Yi Fan
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China
| | - Yiwei Cheng
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China.,State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology (Y.C., H.Z., Y.G., J.S., X.G.), Nanjing Medical University, China
| | | | - Bingrui Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China
| | - Zimu Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China
| | - Tianwen Wei
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology (Y.C., H.Z., Y.G., J.S., X.G.), Nanjing Medical University, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology (Y.C., H.Z., Y.G., J.S., X.G.), Nanjing Medical University, China
| | - Qiming Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, China International Cooperation Center for Environment and Human Health (Y.W., F.C.), Nanjing Medical University, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, China International Cooperation Center for Environment and Human Health (Y.W., F.C.), Nanjing Medical University, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology (Y.C., H.Z., Y.G., J.S., X.G.), Nanjing Medical University, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology (Y.C., H.Z., Y.G., J.S., X.G.), Nanjing Medical University, China
| | - Liansheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China
| |
Collapse
|
31
|
Kinetic Model of the Action of 17α-Ethynylestradiol on the Capacitation of Mouse Sperm, Monitored by HPLC-MS/MS. Catalysts 2020. [DOI: 10.3390/catal10010124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
17α-Ethynylestradiol (EE2), a synthetic estrogen used in contraceptive pills, is resistant to hepatic degradation and is excreted in the urine. It is chemically stable and has a negative impact on the endocrine system. The aim of this work was to mathematically describe the possible interaction of EE2 (200, 20, and 2 μg/L) with sperm estrogen receptors during sperm maturation, which is called capacitation. The concentrations of the unbound EE2 remaining in capacitating medium during 180 min of sperm capacitation were determined at 30 min intervals by high performance liquid chromatography with tandem mass spectrometric detection (HPLC-MS/MS) and the data obtained (relative concentrations Bt) were subjected to kinetic analysis. The suggested kinetic schema was described by the system of differential equations with the optimization of rate constants used to calculate the theoretical Bt values. Optimal parameters (overall rate constants K1–K5 and molar ratio n) were determined by searching the minimum of absolute values of the difference between theoretical and experimental Bt values. These values were used for the design of the theoretical B(t) curves which fit to experimental points. The proposed kinetic model assumes the formation of an unstable adduct between EE2 and the receptor in cytoplasm, which acts as an autocatalytic agent and gradually decomposes.
Collapse
|
32
|
Castillo J, Bogle OA, Jodar M, Torabi F, Delgado-Dueñas D, Estanyol JM, Ballescà JL, Miller D, Oliva R. Proteomic Changes in Human Sperm During Sequential in vitro Capacitation and Acrosome Reaction. Front Cell Dev Biol 2019; 7:295. [PMID: 31824947 PMCID: PMC6879431 DOI: 10.3389/fcell.2019.00295] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
The male gamete is not completely mature after ejaculation and requires further events in the female genital tract to acquire fertilizing ability, including the processes of capacitation and acrosome reaction. In order to shed light on protein changes experienced by the sperm cell in preparation for fertilization, a comprehensive quantitative proteomic profiling based on isotopic peptide labeling and liquid chromatography followed by tandem mass spectrometry was performed on spermatozoa from three donors of proven fertility under three sequential conditions: purification with density gradient centrifugation, incubation with capacitation medium, and induction of acrosome reaction by exposure to the calcium ionophore A23187. After applying strict selection criteria for peptide quantification and for statistical analyses, 36 proteins with significant changes in their relative abundance within sperm protein extracts were detected. Moreover, the presence of peptide residues potentially harboring sites for post-translational modification was revealed, suggesting that protein modification may be an important mechanism in sperm maturation. In this regard, increased levels of proteins mainly involved in motility and signaling, both regulated by protein modifiers, were detected in sperm lysates following incubation with capacitation medium. In contrast, less abundant proteins in acrosome-reacted cell lysates did not contain potentially modifiable residues, suggesting the possibility that all those proteins might be relocated or released during the process. Protein-protein interaction analysis revealed a subset of proteins potentially involved in sperm maturation, including the proteins Erlin-2 (ERLIN2), Gamma-glutamyl hydrolase (GGH) and Transmembrane emp24 domain-containing protein 10 (TMED10). These results contribute to the current knowledge of the molecular basis of human fertilization. It should now be possible to further validate the potential role of the detected altered proteins as modulators of male infertility.
Collapse
Affiliation(s)
- Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Orleigh Adeleccia Bogle
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Forough Torabi
- LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - David Delgado-Dueñas
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Josep Maria Estanyol
- Proteomics Unit, Scientific and Technical Services, Universitat de Barcelona, Barcelona, Spain
| | - Josep Lluís Ballescà
- Clinic Institute of Gynaecology, Obstetrics and Neonatology, Hospital Clínic, Barcelona, Spain
| | - David Miller
- LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
33
|
Cannarella R, Condorelli RA, La Vignera S, Bellucci C, Luca G, Calafiore R, Calogero AE. IGF2 and IGF1R mRNAs Are Detectable in Human Spermatozoa. World J Mens Health 2019; 38:545-551. [PMID: 31496145 PMCID: PMC7502314 DOI: 10.5534/wjmh.190070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/24/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose Oligozoospermia is highly prevalent worldwide. Studies have reported a lower methylation rate in the H19 differentially methylated region at the sperm level in oligozoospermic patients than in controls. IGF2/H19 are the best-known pair of imprinted genes. However, no studies have yet evaluated whether they are transcribed in human sperm. To assess whether IGF2 and IGF1R mRNAs are present in human sperm and if their levels are correlated with sperm concentration and total sperm count. Materials and Methods Sperm samples (n=22) underwent reverse-transcription quantitative polymerase chain reaction using specific primers to detect IGF2 and IGF1R mRNA levels. They were then correlated with patients' conventional sperm parameters using the Spearman (τ) and Kendall (ρ) rank correlation coefficients. Results Statistically significant positive correlations were found between IGF2 mRNA levels and sperm concentration (τ=0.403, p<0.01; ρ=0.587, p<0.005) and total sperm count (τ=0.347, p<0.024; ρ=0.509, p<0.015). IGF1R mRNA levels were positively correlated with sperm concentration (τ=0.595, p<0.001; ρ=0.774, p<0.001) and total sperm count (τ=0.547, p<0.001; ρ=0.701, p<0.001). Apart from IGF1R mRNA and sperm morphology (τ=0.325, p<0.05; ρ=0.461, p<0.05), no additional correlations were found between the levels of these transcripts and other conventional sperm parameters. Conclusions IGF2 and IGF1R mRNAs were found to be present in human spermatozoa and their transcription levels were positively correlated with sperm concentration and total sperm count. Spermatozoa are the only source of IGF2 mRNA since IGF2 is a paternally-inherited gene. Further studies are needed to evaluate its role in human fertilization.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Catia Bellucci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giovanni Luca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Riccardo Calafiore
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
34
|
Montani DA, Braga DPDAF, Borges E, Camargo M, Cordeiro FB, Pilau EJ, Gozzo FC, Fraietta R, Lo Turco EG. Understanding mechanisms of oocyte development by follicular fluid lipidomics. J Assist Reprod Genet 2019; 36:1003-1011. [PMID: 31011990 DOI: 10.1007/s10815-019-01428-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The present study aimed to provide a non-invasive approach to studying mechanisms responsible for oocyte development. METHODS To this end, follicular fluid (FF) from 62 patients undergoing in vitro fertilization (IVF) cycles was split into two groups depending on the pregnancy outcome: pregnant (n = 28) and non-pregnant (n = 34) groups. Data were acquired by the MALDI-TOF mass spectrometry. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were applied to the data set. A ROC curve, to predict success rate, was constructed, and the lipids were attributed. RESULTS Six ions were differentially represented in FF of pregnant and non-pregnant patients, with an area under the curve of 0.962. Phosphatidic acid, phosphatidylglycerol, and triacylglycerol were hyper-represented in the pregnant group, while glucosylceramide was hyper-represented in the non-pregnant group. Enriched functions related to these lipids are steroidogenesis, cellular response, signal transduction, cell cycle, and activation of protein kinase C for the pregnant group and apoptosis inhibition for the non-pregnant group. CONCLUSION Human FF fingerprinting can both improve the understanding concerning mechanisms responsible for oocyte development and its effect on embryo implantation potential and assist in the management of IVF cycles.
Collapse
Affiliation(s)
- Daniela Antunes Montani
- Department of Surgery, Division of Urology, Human Reproduction Section, Sao Paulo Federal University, Rua Embau, 231, CEP: 04039-060, Sao Paulo, SP, Brazil
| | - Daniela Paes de Almeida Ferreira Braga
- Department of Surgery, Division of Urology, Human Reproduction Section, Sao Paulo Federal University, Rua Embau, 231, CEP: 04039-060, Sao Paulo, SP, Brazil. .,Fertility Medical Group, Av. Brigadeiro Luiz Antônio, 4545, CEP: 04511-010, Sao Paulo, SP, Brazil.
| | - Edson Borges
- Fertility Medical Group, Av. Brigadeiro Luiz Antônio, 4545, CEP: 04511-010, Sao Paulo, SP, Brazil
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Human Reproduction Section, Sao Paulo Federal University, Rua Embau, 231, CEP: 04039-060, Sao Paulo, SP, Brazil
| | - Fernanda Bertuccez Cordeiro
- Department of Surgery, Division of Urology, Human Reproduction Section, Sao Paulo Federal University, Rua Embau, 231, CEP: 04039-060, Sao Paulo, SP, Brazil.,Laboratorio para Investigaciones Biomédicas, Escuela Superior Politécnica del Litoral, ESPOL, Km. 30.5 Via Perimetral, CEP: 09-01-5863, Guayaquil, Ecuador
| | - Eduardo Jorge Pilau
- Department of Chemistry, Maringa State University, Avenida Colombo, 5790, CEP: 87020-900, Maringá, PR, Brazil
| | - Fábio Cesar Gozzo
- Institute of Chemistry, University of Campinas, R. Josué de Castro, 126, CEP: 13083-861, Campinas, SP, Brazil
| | - Renato Fraietta
- Department of Surgery, Division of Urology, Human Reproduction Section, Sao Paulo Federal University, Rua Embau, 231, CEP: 04039-060, Sao Paulo, SP, Brazil
| | - Edson Guimarães Lo Turco
- Department of Surgery, Division of Urology, Human Reproduction Section, Sao Paulo Federal University, Rua Embau, 231, CEP: 04039-060, Sao Paulo, SP, Brazil
| |
Collapse
|
35
|
Urizar-Arenaza I, Osinalde N, Akimov V, Puglia M, Candenas L, Pinto FM, Muñoa-Hoyos I, Gianzo M, Matorras R, Irazusta J, Blagoev B, Subiran N, Kratchmarova I. Phosphoproteomic and Functional Analyses Reveal Sperm-specific Protein Changes Downstream of Kappa Opioid Receptor in Human Spermatozoa. Mol Cell Proteomics 2019; 18:S118-S131. [PMID: 30622161 PMCID: PMC6427232 DOI: 10.1074/mcp.ra118.001133] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
G-protein coupled receptors (GPCRs) belong to the seven transmembrane receptor superfamily that transduce signals via G proteins in response to external stimuli to initiate different intracellular signaling pathways which culminate in specific cellular responses. The expression of diverse GPCRs at the plasma membrane of human spermatozoa suggests their involvement in the regulation of sperm fertility. However, the signaling events downstream of many GPCRs in spermatozoa remain uncharacterized. Here, we selected the kappa-opioid receptor (KOR) as a study model and applied phosphoproteomic approach based on TMT labeling and LC-MS/MS analyses. Quantitative coverage of more than 5000 proteins with over 3500 phosphorylation sites revealed changes in the phosphorylation levels of sperm-specific proteins involved in the regulation of the sperm fertility in response to a specific agonist of KOR, U50488H. Further functional studies indicate that KOR could be involved in the regulation of sperm fertile capacity by modulation of calcium channels. Our findings suggest that human spermatozoa possess unique features in the molecular mechanisms downstream of GPCRs which could be key regulators of sperm fertility and improved knowledge of these specific processes may contribute to the development of useful biochemical tools for diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Itziar Urizar-Arenaza
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Araba, Spain, 01006
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320
| | - Michele Puglia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Sevilla, Spain, 41092
| | | | - Iraia Muñoa-Hoyos
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Marta Gianzo
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Roberto Matorras
- Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Jon Irazusta
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320
| | - Nerea Subiran
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903;.
| | - Irina Kratchmarova
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320;.
| |
Collapse
|
36
|
Quantitative Proteomic Analysis of Human Seminal Plasma from Normozoospermic and Asthenozoospermic Individuals. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2735038. [PMID: 30984777 PMCID: PMC6431472 DOI: 10.1155/2019/2735038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/02/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
Seminal plasma is a complex mixture of secretions from various glands in the male genital tract. Compared to sperm cells, it contains important proteins that are both directly and indirectly associated with sperm motility. Here, we constructed quantitative proteomes of human seminal plasma from three normozoospermic and asthenozoospermic individuals. A total of 524 proteins were identified, and 366 of them were found to be quantified in all six samples. We first investigated the absolute expression features of these proteins and found that the variations of protein identification among different samples and other published datasets were mainly due to some lowly expressed proteins. By integration of various proteomic datasets and bioinformatics databases, we comprehensively annotated the biological functions, physiological originations, and disease associations of these proteins. We found that our dataset could benefit the studies of both male infertility and other male diseases. Finally, based on the relative expression values determined by chemical labeling, we identified a total of 29 differentially expressed proteins, which could be used as candidate targets for studying the molecular bases of sperm motility or developing precise diagnostic biomarkers of asthenozoospermia. We further successfully verified the expression trends of four representative proteins by Western blotting. Compared to a previous dataset based on label-free quantification, our results showed that most of the important proteins could be identified in the sample collected only once for each individual, providing the bases for personalized examination of seminal plasma proteins in clinic.
Collapse
|
37
|
Bosakova T, Tockstein A, Sebkova N, Simonik O, Adamusova H, Albrechtova J, Albrecht T, Bosakova Z, Dvorakova-Hortova K. New Insight into Sperm Capacitation: A Novel Mechanism of 17β-Estradiol Signalling. Int J Mol Sci 2018; 19:ijms19124011. [PMID: 30545117 PMCID: PMC6321110 DOI: 10.3390/ijms19124011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 12/20/2022] Open
Abstract
17β-estradiol (estradiol) is a natural estrogen regulating reproduction including sperm and egg development, sperm maturation—called capacitation—and sperm–egg communication. High doses can increase germ cell apoptosis and decrease sperm count. Our aim was to answer the biological relevance of estradiol in sperm capacitation and its effect on motility and acrosome reaction to quantify its interaction with estrogen receptors and propose a model of estradiol action during capacitation using kinetic analysis. Estradiol increased protein tyrosine phosphorylation, elevated rate of spontaneous acrosome reaction, and altered motility parameters measured Hamilton-Thorne Computer Assisted Semen Analyzer (CASA) in capacitating sperm. To monitor time and concentration dependent binding dynamics of extracellular estradiol, high-performance liquid chromatography with tandem mass spectrometry was used to measure sperm response and data was subjected to kinetic analysis. The kinetic model of estradiol action during sperm maturation shows that estradiol adsorption onto a plasma membrane surface is controlled by Langmuir isotherm. After, when estradiol passes into the cytoplasm, it forms an unstable adduct with cytoplasmic receptors, which display a signalling autocatalytic pattern. This autocatalytic reaction suggests crosstalk between receptor and non-receptor pathways utilized by sperm prior to fertilization.
Collapse
Affiliation(s)
- Tereza Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Antonin Tockstein
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Natasa Sebkova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic.
| | - Hana Adamusova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Jana Albrechtova
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic.
- Institute of Vertebrate Biology, v.v.i., Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic.
| | - Tomas Albrecht
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic.
- Institute of Vertebrate Biology, v.v.i., Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic.
| | - Zuzana Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Katerina Dvorakova-Hortova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic.
| |
Collapse
|
38
|
Giacone F, Cannarella R, Mongioì LM, Alamo A, Condorelli RA, Calogero AE, La Vignera S. Epigenetics of Male Fertility: Effects on Assisted Reproductive Techniques. World J Mens Health 2018; 37:148-156. [PMID: 30588778 PMCID: PMC6479088 DOI: 10.5534/wjmh.180071] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/16/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
During the last decades the study of male infertility and the introduction of the assisted reproductive techniques (ARTs) has allowed to understand that normal sperm parameters do not always predict fertilization. Sperm genetic components could play an important role in the early stages of embryonic development. Based on these acquisitions, several epigenetic investigations have been developed on spermatozoa, with the aim of understanding the multifactorial etiology of male infertility and of showing whether embryonic development may be influenced by sperm epigenetic abnormalities. This article reviews the possible epigenetic modifications of spermatozoa and their effects on male fertility, embryonic development and ART outcome. It focuses mainly on sperm DNA methylation, chromatin remodeling, histone modifications and RNAs.
Collapse
Affiliation(s)
- Filippo Giacone
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Angela Alamo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
39
|
Huang S, Cao S, Zhou T, Kong L, Liang G. 4-tert-octylphenol injures motility and viability of human sperm by affecting cAMP-PKA/PKC-tyrosine phosphorylation signals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:234-243. [PMID: 30098580 DOI: 10.1016/j.etap.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
4-tert-octylphenol (4t-OP) is a well-known xenoestrogen. Our objective was to explore the effects and molecular mechanisms of 4t-OP on human sperm. Sperm samples were exposed to 0, 0.1, or 0.3 mM 4t-OP for two hours. Results showed that both sperm viability and motility were significantly injured by 0.3 mM 4t-OP. We applied comparative proteomics to explore the molecular targets affected by 4t-OP. 81 differentially expressed (DE) proteins were identified. Bioinformatic analysis showed that these proteins were highly associated with motility and apoptosis, and were mostly enriched in cAMP-PKA/PKC-phosphorylation-associated pathway. We further verified that 0.1 mM and 0.3 mM 4t-OP significantly decreased cAMP activity of sperm. Expression of RACK1 and PRDX6 were detected by western blot (WB) to verify their tendencies in gels; antiapoptotic factor BCL2 was also detected by WB. The data indicated that 4-tert-octylphenol injures the motility and viability of human sperm probably by affecting cAMP-PKA/PKC-tyrosine phosphorylation signals.
Collapse
Affiliation(s)
- Shaoping Huang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing 210009, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Senyang Cao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China; Center of Reproductive Medicine, Yancheng Maternity and Child Health Care Hospital, Yancheng 224002, Jiangsu, China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China; Central Laboratory, Wuxi Maternity and Child Health Care Hospital affiliated to Nanjing Medical University 214002, Jiangsu, China
| | - Lu Kong
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
40
|
Castillo J, Jodar M, Oliva R. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Hum Reprod Update 2018; 24:535-555. [DOI: 10.1093/humupd/dmy017] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Judit Castillo
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Villarroel, Barcelona, Spain
| |
Collapse
|
41
|
Wang H, Cheng Q, Li X, Hu F, Han L, Zhang H, Li L, Ge J, Ying X, Guo X, Wang Q. Loss of TIGAR Induces Oxidative Stress and Meiotic Defects in Oocytes from Obese Mice. Mol Cell Proteomics 2018; 17:1354-1364. [PMID: 29776966 DOI: 10.1074/mcp.ra118.000620] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/25/2018] [Indexed: 12/26/2022] Open
Abstract
Maternal obesity has been reported to impair oocyte quality in mice, however, the underlying mechanisms remain unclear. In the present study, by conducting a comparative proteomic analysis, we identified a reduced expression of TIGAR (TP53-induced glycolysis and apoptosis regulator) protein in ovulated oocytes from high-fat diet (HFD)-fed mice. Specific depletion of TIGAR in mouse oocytes results in the marked elevation of reactive oxygen species (ROS) levels and the failure of meiotic apparatus assembly. Importantly, forced expression of TIGAR in HFD oocytes not only attenuates ROS production, but also partly prevents spindle disorganization and chromosome misalignment during meiosis. Meantime, we noted that TIGAR knockdown in oocytes induces a strong activation of autophagy, whereas overexpression of TIGAR significantly reduces the LC3 accumulation in HFD oocytes. By anti-oxidant treatment, we further demonstrated that such an autophagic response is dependent on the TIGAR-controlled ROS production. In summary, our data indicate a role for TIGAR in modulating redox homeostasis during oocyte maturation, and uncover that loss of TIGAR is a critical pathway mediating the effects of maternal obesity on oocyte quality.
Collapse
Affiliation(s)
- Haichao Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University
| | - Qing Cheng
- §Departement of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University
| | - Xiaoyan Li
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University.,¶College of Animal Science & Technology, Nanjing Agricultural University
| | - Feifei Hu
- ‖Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210000
| | - Longsen Han
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University
| | - Hao Zhang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University
| | - Ling Li
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University
| | - Juan Ge
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University
| | - Xiaoyan Ying
- ‖Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210000
| | - Xuejiang Guo
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University;
| | - Qiang Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University;
| |
Collapse
|
42
|
Assessment of GSK1904529A as a promising anti-osteosarcoma agent. Oncotarget 2018; 8:49646-49654. [PMID: 28572530 PMCID: PMC5564795 DOI: 10.18632/oncotarget.17911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/04/2017] [Indexed: 01/20/2023] Open
Abstract
The insulin growth factor-I receptor (IGF1R) signaling is a key mechanism for osteosarcoma (OS) cell proliferation. GSK1904529A is a novel small molecule IGF1R kinase inhibitor. Its activity against OS cells was tested. In both established OS cell lines (Saos-2 and MG-63) and primary human OS cells, treatment with GSK1904529A (at nM concentrations) significantly inhibited cell proliferation. At the molecular level, GSK1904529A almost completely blocked IGF1R activation in OS cells, and inhibited downstream AKT-ERK activation. IGF1R silence by targeted shRNA also inhibited AKT-ERK activation and Saos-2 cell proliferation. Significantly, GSK1904529A was unable to further inhibit proliferation of IGF1R-silenced Saos-2 cells. In vivo, GSK1904529A administration orally inhibited Saos-2 tumor growth in nude mice. Together, these results suggest that targeting IGF1R by GSK1904529A inhibits OS cell growth in vitro and in vivo.
Collapse
|
43
|
Bareja A, Hodgkinson CP, Soderblom E, Waitt G, Dzau VJ. The proximity-labeling technique BioID identifies sorting nexin 6 as a member of the insulin-like growth factor 1 (IGF1)-IGF1 receptor pathway. J Biol Chem 2018. [PMID: 29530981 DOI: 10.1074/jbc.ra118.002406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The insulin-like growth factor 1 receptor (IGF1R) is a receptor tyrosine kinase with critical roles in various biological processes. Recent results from clinical trials targeting IGF1R indicate that IGF1R signaling pathways are more complex than previously thought. Moreover, it has become increasingly clear that the function of many proteins can be understood only in the context of a network of interactions. To that end, we sought to profile IGF1R-protein interactions with the proximity-labeling technique BioID. We applied BioID by generating a HEK293A cell line that stably expressed the BirA* biotin ligase fused to the IGF1R. Following stimulation by IGF1, biotinylated proteins were analyzed by MS. This screen identified both known and previously unknown interactors of IGF1R. One of the novel interactors was sorting nexin 6 (SNX6), a protein that forms part of the retromer complex, which is involved in intracellular protein sorting. Using co-immunoprecipitation, we confirmed that IGF1R and SNX6 physically interact. SNX6 knockdown resulted in a dramatic diminution of IGF1-mediated ERK1/2 phosphorylation, but did not affect IGF1R internalization. Bioluminescence resonance energy transfer experiments indicated that the SNX6 knockdown perturbed the association between IGF1R and the key adaptor proteins insulin receptor substrate 1 (IRS1) and SHC adaptor protein 1 (SHC1). Intriguingly, even in the absence of stimuli, SNX6 overexpression significantly increased Akt phosphorylation. Our study confirms the utility of proximity-labeling methods, such as BioID, to screen for interactors of cell-surface receptors and has uncovered a role of one of these interactors, SNX6, in the IGF1R signaling cascade.
Collapse
Affiliation(s)
- Akshay Bareja
- From the Duke Cardiovascular Research Center, the Mandel Center for Hypertension and Atherosclerosis Research, and
| | - Conrad P Hodgkinson
- From the Duke Cardiovascular Research Center, the Mandel Center for Hypertension and Atherosclerosis Research, and
| | - Erik Soderblom
- the Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27710
| | - Greg Waitt
- the Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27710
| | - Victor J Dzau
- From the Duke Cardiovascular Research Center, the Mandel Center for Hypertension and Atherosclerosis Research, and
| |
Collapse
|
44
|
Xie C, Shen H, Zhang H, Yan J, Liu Y, Yao F, Wang X, Cheng Z, Tang TS, Guo C. Quantitative proteomics analysis reveals alterations of lysine acetylation in mouse testis in response to heat shock and X-ray exposure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:464-472. [DOI: 10.1016/j.bbapap.2017.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
45
|
Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nat Genet 2018; 50:432-442. [DOI: 10.1038/s41588-018-0055-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
|
46
|
Chen L, Zhao W, He J, Li L, Meng D, Cai D, Yu J, Chen D, Wu Y, Zhou T. Label-Free Quantitative Proteomic Screening of Candidate Plasma Biomarkers for the Prognosis of Breast Cancer with Different Lymph Node Statuses. Proteomics Clin Appl 2018; 12:e1700117. [PMID: 29384592 DOI: 10.1002/prca.201700117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 01/02/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Lymph node status is a crucial predictor for the overall survival of invasive breast cancer. However, lymph node involvement is only detected in about half of HER2-positive patients. Since patients with lymph node involvement has less favorable prognosis and higher risk of recurrence, it is important to develop plasma protein biomarkers for distinguishing lymph node metastasis. EXPERIMENTAL DESIGN A label-free quantitative proteomic strategy to construct plasma proteomes of ten patients with small size HER2-positive breast cancer (five patients with lymph node metastasis versus five patients without lymph node metastasis) is applied. RESULTS A total of 388 proteins are identified, of which 33 proteins are differentially expressed. Statistical analyses suggested the present strategy is low cost and highly efficient in initial screening of plasma biomarkers. In silico analyses using various bioinformatics databases show that these altered proteins are highly associated with breast disease, cancer pathway, lymph node morphology, metastasis, complement pathway, and immune regulation. CONCLUSIONS AND CLINICAL RELEVANCE The present dataset provides a list of candidate biomarkers that could be used for early differentiation diagnosis and prognosis of breast cancer with lymph node metastasis.
Collapse
Affiliation(s)
- Ling Chen
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, P. R. China.,Laboratory of Genomic and Precision Medicine, Jiangnan University, Wuxi, P. R. China
| | - Weibo Zhao
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, P. R. China
| | - Jing He
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, P. R. China
| | - Liqi Li
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, P. R. China
| | - Dong Meng
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, P. R. China
| | - Dongyan Cai
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, P. R. China
| | - Jinjin Yu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, P. R. China
| | - Daozhen Chen
- Central Laboratory, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, P. R. China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, P. R. China
| | - Tao Zhou
- Central Laboratory, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, P. R. China
| |
Collapse
|
47
|
Gianazza E, Miller I, Guerrini U, Palazzolo L, Parravicini C, Eberini I. Gender proteomics II. Which proteins in sexual organs. J Proteomics 2017; 178:18-30. [PMID: 28988880 DOI: 10.1016/j.jprot.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023]
Abstract
In continuity with the review dealing with differences by gender in non-sexual organs [1], this review collects data on the proteomes of the sexual organs as involved in human reproduction, under both physiological and pathological conditions. It also collects data on the tissue structures and biological fluids typical of pregnancy, such as placenta and amniotic fluid, as well as what may be tested on preimplantation embryos during medically assisted reproduction. The review includes as well mention to all fluids and secretions connected with sex organs and/or reproduction, including sperm and milk, to exemplify two distinctive items in male and female physiology. SIGNIFICANCE The causes of infertility are only incompletely understood; the same holds for the causes, and even the early markers, of the most frequent complications of pregnancy. To these established medical challenges, present day practice adds new issues connected with medically assisted reproduction. Omics approaches, including proteomics, are building the database for basic knowledge to possibly translate into clinical testing and eventually into medical routine in this critical branch of health care.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy.
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| |
Collapse
|
48
|
Panizza E, Branca RMM, Oliviusson P, Orre LM, Lehtiö J. Isoelectric point-based fractionation by HiRIEF coupled to LC-MS allows for in-depth quantitative analysis of the phosphoproteome. Sci Rep 2017; 7:4513. [PMID: 28674419 PMCID: PMC5495806 DOI: 10.1038/s41598-017-04798-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Protein phosphorylation is involved in the regulation of most eukaryotic cells functions and mass spectrometry-based analysis has made major contributions to our understanding of this regulation. However, low abundance of phosphorylated species presents a major challenge in achieving comprehensive phosphoproteome coverage and robust quantification. In this study, we developed a workflow employing titanium dioxide phospho-enrichment coupled with isobaric labeling by Tandem Mass Tags (TMT) and high-resolution isoelectric focusing (HiRIEF) fractionation to perform in-depth quantitative phosphoproteomics starting with a low sample quantity. To benchmark the workflow, we analyzed HeLa cells upon pervanadate treatment or cell cycle arrest in mitosis. Analyzing 300 µg of peptides per sample, we identified 22,712 phosphorylation sites, of which 19,075 were localized with high confidence and 1,203 are phosphorylated tyrosine residues, representing 6.3% of all detected phospho-sites. HiRIEF fractions with the most acidic isoelectric points are enriched in multiply phosphorylated peptides, which represent 18% of all the phospho-peptides detected in the pH range 2.5–3.7. Cross-referencing with the PhosphoSitePlus database reveals 1,264 phosphorylation sites that have not been previously reported and kinase association analysis suggests that a subset of these may be functional during the mitotic phase.
Collapse
Affiliation(s)
- Elena Panizza
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Rui M M Branca
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | | | - Lukas M Orre
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
49
|
Kosteria I, Anagnostopoulos AK, Kanaka-Gantenbein C, Chrousos GP, Tsangaris GT. The Use of Proteomics in Assisted Reproduction. In Vivo 2017; 31:267-283. [PMID: 28438852 PMCID: PMC5461434 DOI: 10.21873/invivo.11056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023]
Abstract
Despite the explosive increase in the use of Assisted Reproductive Technologies (ART) over the last 30 years, their success rates remain suboptimal. Proteomics is a rapidly-evolving technology-driven science that has already been widely applied in the exploration of human reproduction and fertility, providing useful insights into its physiology and leading to the identification of numerous proteins that may be potential biomarkers and/or treatment targets of a successful ART pregnancy. Here we present a brief overview of the techniques used in proteomic analyses and attempt a comprehensive presentation of recent data from mass spectrometry-based proteomic studies in humans, regarding all components of ARTs, including the male and female gamete, the derived zygote and embryo, the endometrium and, finally, the ART offspring both pre- and postnatally.
Collapse
Affiliation(s)
- Ioanna Kosteria
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George T Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
50
|
Wang M, Guo Y, Wang M, Zhou T, Xue Y, Du G, Wei X, Wang J, Qi L, Zhang H, Li L, Ye L, Guo X, Wu X. The Glial Cell-Derived Neurotrophic Factor (GDNF)-responsive Phosphoprotein Landscape Identifies Raptor Phosphorylation Required for Spermatogonial Progenitor Cell Proliferation. Mol Cell Proteomics 2017; 16:982-997. [PMID: 28408662 DOI: 10.1074/mcp.m116.065797] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/24/2017] [Indexed: 01/15/2023] Open
Abstract
Cytokine-dependent renewal of stem cells is a fundamental requisite for tissue homeostasis and regeneration. Spermatogonial progenitor cells (SPCs) including stem cells support life-long spermatogenesis and male fertility, but pivotal phosphorylation events that regulate fate decisions in SPCs remain unresolved. Here, we described a quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of SPCs following sustained stimulation with glial cell-derived neurotrophic factor (GDNF), an extrinsic factor supporting SPC proliferation. Stimulated SPCs contained 3382 identified phosphorylated proteins and 12141 phosphorylation sites. Of them, 325 differentially phosphorylated proteins and 570 phosphorylation sites triggered by GDNF were highly enriched for ERK1/2, GSK3, CDK1, and CDK5 phosphorylating motifs. We validated that inhibition of GDNF/ERK1/2-signaling impaired SPC proliferation and increased G2/M cell cycle arrest. Significantly, we found that proliferation of SPCs requires phosphorylation of the mTORC1 component Raptor at Ser863 Tissue-specific deletion of Raptor in mouse germline cells results in impaired spermatogenesis and progressive loss of spermatogonia, but in vitro increased phosphorylation of Raptor by raptor over-expression in SPCs induced a more rapidly growth of SPCs in culture. These findings implicate previously undescribed signaling networks in governing fate decision of SPCs, which is essential for the understanding of spermatogenesis and of potential consequences of pathogenic insult for male infertility.
Collapse
Affiliation(s)
- Min Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yueshuai Guo
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mei Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Zhou
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuanyuan Xue
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Guihua Du
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiang Wei
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jing Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lin Qi
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hao Zhang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lufan Li
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lan Ye
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuejiang Guo
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Wu
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|