1
|
Kavanagh T, Thierry M, Balcomb K, Ponce J, Kanshin E, Tapia-Sealey A, Halliday G, Ueberheide B, Wisniewski T, Drummond E. The interactome of tau phosphorylated at T217 in Alzheimer's disease human brain tissue. Acta Neuropathol 2025; 149:44. [PMID: 40317322 PMCID: PMC12049313 DOI: 10.1007/s00401-025-02881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 05/07/2025]
Abstract
Hyperphosphorylated tau (pTau) in Alzheimer's disease (AD) brain tissue is a complex mix of multiple tau species that are variably phosphorylated. The emerging studies suggest that phosphorylation of specific residues may alter the role of tau. The role of specific pTau species can be explored through protein interactome studies. The aim of this study was to analyse the interactome of tau phosphorylated at T217 (pT217), which biomarker studies suggest is one of the earliest accumulating tau species in AD. pT217 interactors were identified in fresh-frozen human brain tissue from 10 cases of advanced AD using affinity purification-mass spectrometry. The cases included a balanced cohort of APOE ε3/ε3 and ε4/ε4 genotypes (n = 5 each) to explore how apolipoprotein E altered phosphorylated tau interactions. The results were compared to our previous interactome dataset that profiled the interactors of PHF1-enriched tau to determine if individual pTau species have different interactomes. 23 proteins were identified as bona fide pT217 interactors, including known pTau interactor SQSTM1. pT217 enriched tau was phosphorylated at fewer residues compared to PHF1-enriched tau, suggesting an earlier stage of pathology development. Notable pT217 interactors included five subunits of the CTLH E3 ubiquitin ligase (WDR26, ARMC8, GID8, RANBP9, MAEA), which has not previously been linked to AD. In APOE ε3/ε3 cases pT217 significantly interacted with 46 proteins compared to 28 in APOE ε4/ε4 cases, but these proteins were significantly overlapped. CTLH E3 ubiquitin ligase subunits significantly interacted with phosphorylated tau in both APOE genotypes. pT217 interactions with SQSTM1, WDR26 and RANBP9 were validated using co-immunoprecipitation and immunofluorescent microscopy of post-mortem human brain tissue, which showed colocalisation of both protein interactors with tau pathology. Our results report the interactome of pT217 in human Alzheimer's disease brain tissue for the first time and highlight the CTLH E3 ubiquitin ligase complex as a significant novel interactor of pT217 tau.
Collapse
Affiliation(s)
- Tomas Kavanagh
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Manon Thierry
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kaleah Balcomb
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Jackeline Ponce
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Alexander Tapia-Sealey
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Glenda Halliday
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Beatrix Ueberheide
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Eleanor Drummond
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2050, Australia.
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
2
|
Kavanagh T, Balcomb K, Ahmadi Rastegar D, Lourenco GF, Wisniewski T, Halliday G, Drummond E. hnRNP A1, hnRNP A2B1, and hnRNP K are dysregulated in tauopathies, but do not colocalize with tau pathology. Brain Pathol 2025; 35:e13305. [PMID: 39354671 PMCID: PMC11961206 DOI: 10.1111/bpa.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024] Open
Abstract
Tau interacts with multiple heterogeneous nuclear ribonucleoproteins (hnRNPs)-a family of RNA binding proteins that regulate multiple known cellular functions, including mRNA splicing, mRNA transport, and translation regulation. We have previously demonstrated particularly significant interactions between phosphorylated tau and three hnRNPs (hnRNP A1, hnRNP A2B1, and hnRNP K). Although multiple hnRNPs have been previously implicated in tauopathies, knowledge of whether these hnRNPs colocalize with tau aggregates or show cellular mislocalization in disease is limited. Here, we performed a neuropathological study examining the colocalization between hnRNP A1, hnRNP A2B1, hnRNP K, and phosphorylated tau in two brain regions (hippocampus and frontal cortex) in six disease groups (Alzheimer's disease, mild cognitive impairment, progressive supranuclear palsy, corticobasal degeneration, Pick's disease, and controls). Contrary to expectations, hnRNP A1, hnRNP A2B1, and hnRNP K did not colocalize with AT8-immunoreactive phosphorylated tau pathology in any of the tauopathies examined. However, we did observe significant cellular mislocalization of hnRNP A1, hnRNP A2B1 and hnRNP K in tauopathies, with unique patterns of mislocalization observed for each hnRNP. These data point to broad dysregulation of hnRNP A1, A2B1 and K across tauopathies with implications for disease processes and RNA regulation.
Collapse
Affiliation(s)
- Tomas Kavanagh
- Brain and Mind Centre and School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Kaleah Balcomb
- Brain and Mind Centre and School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Diba Ahmadi Rastegar
- Brain and Mind Centre and School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Guinevere F. Lourenco
- Brain and Mind Centre and School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Departments of Neurology, Pathology and PsychiatryGrossman School of Medicine, New York UniversityNew YorkNew YorkUSA
| | - Glenda Halliday
- Brain and Mind Centre and School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
3
|
Sun KT, Mok SA. Inducers and modulators of protein aggregation in Alzheimer's disease - Critical tools for understanding the foundations of aggregate structures. Neurotherapeutics 2025; 22:e00512. [PMID: 39755501 PMCID: PMC12047394 DOI: 10.1016/j.neurot.2024.e00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
Amyloidogenic protein aggregation is a pathological hallmark of Alzheimer's Disease (AD). As such, this critical feature of the disease has been instrumental in guiding research on the mechanistic basis of disease, diagnostic biomarkers and preventative and therapeutic treatments. Here we review identified molecular triggers and modulators of aggregation for two of the proteins associated with AD: amyloid beta and tau. We aim to provide an overview of how specific molecular factors can impact aggregation kinetics and aggregate structure to promote disease. Looking toward the future, we highlight some research areas of focus that would accelerate efforts to effectively target protein aggregation in AD.
Collapse
Affiliation(s)
- Kerry T Sun
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
4
|
Morderer D, Wren MC, Liu F, Kouri N, Maistrenko A, Khalil B, Pobitzer N, Salemi MR, Phinney BS, Bu G, Zhao N, Dickson DW, Murray ME, Rossoll W. Probe-dependent Proximity Profiling (ProPPr) Uncovers Similarities and Differences in Phospho-Tau-Associated Proteomes Between Tauopathies. Mol Neurodegener 2025; 20:32. [PMID: 40082954 PMCID: PMC11905455 DOI: 10.1186/s13024-025-00817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the mechanisms underlying the diversity of neuronal and glial tau pathology in different tauopathies are poorly understood. While there is a growing understanding of tauopathy-specific differences in tau isoforms and fibrillar structures, the specific composition of heterogenous tau lesions remains unknown. Here we study the protein composition of tau aggregates in four major tauopathies: Alzheimer's disease (AD), corticobasal degeneration (CBD), Pick's disease (PiD), and progressive supranuclear palsy (PSP). METHODS We developed an approach for in situ proximity labeling and isolation of aggregate-associated proteins using glass slides with formalin-fixed paraffin-embedded (FFPE) human postmortem brain tissue, termed Probe-dependent Proximity Profiling (ProPPr). We used ProPPr for the analysis of proteomes associated with AT8-positive cellular lesions from frontal cortices. Isolated proximity proteomes were analyzed by data-independent acquisition mass spectrometry. Co-immunofluorescence staining and quantitative data analysis for selected proteins in human brain tissue was performed to further investigate associations with diverse tau pathologies. RESULTS Proteomics data analysis identified numerous common and tauopathy-specific proteins associated with phospho-tau aggregates. Extensive validations of candidates through quantitative immunofluorescence imaging of distinct aggregates across disease cases demonstrate successful implementation of ProPPr for unbiased discovery of aggregate-associated proteins in in human brain tissue. Our results reveal the association of retromer complex component vacuolar protein sorting-associated protein 35 (VPS35) and lysosome-associated membrane glycoprotein 2 (LAMP2) with specific types of phospho-tau lesions in tauopathies. Furthermore, we discovered a disease-specific association of certain proteins with distinct pathological lesions, including glycogen synthase kinase alpha (GSK3α), ferritin light chain (FTL), and the neuropeptide precursor VGF. Notably, the identification of FTL-positive microglia in CBD astrocytic plaques indicate their potential role in the pathogenesis of these lesions. CONCLUSIONS Our findings demonstrate the suitability of the ProPPr approach in FFPE brain tissue for unbiased discovery of local proteomes that provide valuable insights into the underlying proteomic landscape of tauopathies, shedding light on the molecular mechanisms underlying tau pathology. This first comprehensive characterization of tau-associated proteomes in a range of distinct tauopathies enhances our understanding of disease heterogeneity and mechanisms, informing strategies for the development of diagnostic biomarkers and targeted therapies.
Collapse
Affiliation(s)
- Dmytro Morderer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Melissa C Wren
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Feilin Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nora Pobitzer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Brett S Phinney
- Proteomics Core, University of California Davis, Davis, CA, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Present address: Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | |
Collapse
|
5
|
Shapley SM, Shantaraman A, Kearney MA, Dammer EB, Duong DM, Bowen CA, Bagchi P, Guo Q, Rangaraju S, Seyfried NT. Proximity labeling of the Tau repeat domain enriches RNA-binding proteins that are altered in Alzheimer's disease and related tauopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.633945. [PMID: 39896523 PMCID: PMC11785194 DOI: 10.1101/2025.01.22.633945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In Alzheimer's disease (AD) and other tauopathies, tau dissociates from microtubules and forms toxic aggregates that contribute to neurodegeneration. Although some of the pathological interactions of tau have been identified from postmortem brain tissue, these studies are limited by their inability to capture transient interactions. To investigate the interactome of aggregate-prone fragments of tau, we applied an in vitro proximity labeling technique using split TurboID biotin ligase (sTurbo) fused with the tau microtubule repeat domain (TauRD), a core region implicated in tau aggregation. We characterized sTurbo TauRD co-expression, robust enzyme activity and nuclear and cytoplasmic localization in a human cell line. Following enrichment of biotinylated proteins and mass spectrometry, we identified over 700 TauRD interactors. Gene ontology analysis of enriched TauRD interactors highlighted processes often dysregulated in tauopathies, including spliceosome complexes, RNA-binding proteins (RBPs), and nuclear speckles. The disease relevance of these interactors was supported by integrating recombinant TauRD interactome data with human AD tau interactome datasets and protein co-expression networks from individuals with AD and related tauopathies. This revealed an overlap with the TauRD interactome and several modules enriched with RBPs and increased in AD and Progressive Supranuclear Palsy (PSP). These findings emphasize the importance of nuclear pathways in tau pathology, such as RNA splicing and nuclear-cytoplasmic transport and establish the sTurbo TauRD system as a valuable tool for exploring the tau interactome.
Collapse
Affiliation(s)
- Sarah M Shapley
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, Georgia, USA
| | - Anantharaman Shantaraman
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Emory Integrated Proteomics Core, Emory School of Medicine, Atlanta, Georgia, USA
| | - Masin A Kearney
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, Georgia, USA
| | - Eric B Dammer
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Emory Integrated Proteomics Core, Emory School of Medicine, Atlanta, Georgia, USA
| | - Duc M Duong
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Emory Integrated Proteomics Core, Emory School of Medicine, Atlanta, Georgia, USA
| | - Christine A Bowen
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, Georgia, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory School of Medicine, Atlanta, Georgia, USA
| | - Qi Guo
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, Georgia, USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Nicholas T Seyfried
- Center for Neurodegenerative Diseases, Emory School of Medincine, Atlanta, Georgia, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Lester E, Parker R. Tau, RNA, and RNA-Binding Proteins: Complex Interactions in Health and Neurodegenerative Diseases. Neuroscientist 2024; 30:458-472. [PMID: 36892034 DOI: 10.1177/10738584231154551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The tau protein is a key contributor to multiple neurodegenerative diseases. The pathology of tau is thought to be related to tau's propensity to form self-templating fibrillar structures that allow tau fibers to propagate in the brain by prion-like mechanisms. Unresolved issues with respect to tau pathology are how the normal function of tau and its misregulation contribute to disease, how cofactors and cellular organelles influence the initiation and propagation of tau fibers, and determining the mechanism of tau toxicity. Herein, we review the connection between tau and degenerative diseases, the basis for tau fibrilization, and how that process interacts with cellular molecules and organelles. One emerging theme is that tau interacts with RNA and RNA-binding proteins, normally and in pathologic aggregates, which may provide insight into alterations in RNA regulation observed in disease.
Collapse
Affiliation(s)
- Evan Lester
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
7
|
Hole KL, Zhu B, Huggon L, Brown JT, Mason JM, Williams RJ. Tau P301L disengages from the proteosome core complex and neurogranin coincident with enhanced neuronal network excitability. Cell Death Dis 2024; 15:429. [PMID: 38890273 PMCID: PMC11189525 DOI: 10.1038/s41419-024-06815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Tauopathies are characterised by the pathological accumulation of misfolded tau. The emerging view is that toxic tau species drive synaptic dysfunction and potentially tau propagation before measurable neurodegeneration is evident, but the underlying molecular events are not well defined. Human non-mutated 0N4R tau (tauWT) and P301L mutant 0N4R tau (tauP301L) were expressed in mouse primary cortical neurons using adeno-associated viruses to monitor early molecular changes and synaptic function before the onset of neuronal loss. In this model tauP301L was differentially phosphorylated relative to tauwt with a notable increase in phosphorylation at ser262. Affinity purification - mass spectrometry combined with tandem mass tagging was used to quantitatively compare the tauWT and tauP301L interactomes. This revealed an enrichment of tauP301L with ribosomal proteins but a decreased interaction with the proteasome core complex and reduced tauP301L degradation. Differences in the interaction of tauP301L with members of a key synaptic calcium-calmodulin signalling pathway were also identified, most notably, increased association with CaMKII but reduced association with calcineurin and the candidate AD biomarker neurogranin. Decreased association of neurogranin to tauP301L corresponded with the appearance of enhanced levels of extracellular neurogranin suggestive of potential release or leakage from synapses. Finally, analysis of neuronal network activity using micro-electrode arrays showed that overexpression of tauP301L promoted basal hyperexcitability coincident with these changes in the tau interactome and implicating tau in specific early alterations in synaptic function.
Collapse
Affiliation(s)
- Katriona L Hole
- Department of Life Sciences, University of Bath, Bath, UK
- The Francis Crick Institute, London, UK
| | - Bangfu Zhu
- Department of Life Sciences, University of Bath, Bath, UK
| | - Laura Huggon
- Department of Life Sciences, University of Bath, Bath, UK
- UK Dementia Research Institute at King's College London, London, UK
| | - Jon T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jody M Mason
- Department of Life Sciences, University of Bath, Bath, UK
| | | |
Collapse
|
8
|
Buchholz S, Zempel H. The six brain-specific TAU isoforms and their role in Alzheimer's disease and related neurodegenerative dementia syndromes. Alzheimers Dement 2024; 20:3606-3628. [PMID: 38556838 PMCID: PMC11095451 DOI: 10.1002/alz.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Alternative splicing of the human MAPT gene generates six brain-specific TAU isoforms. Imbalances in the TAU isoform ratio can lead to neurodegenerative diseases, underscoring the need for precise control over TAU isoform balance. Tauopathies, characterized by intracellular aggregates of hyperphosphorylated TAU, exhibit extensive neurodegeneration and can be classified by the TAU isoforms present in pathological accumulations. METHODS A comprehensive review of TAU and related dementia syndromes literature was conducted using PubMed, Google Scholar, and preprint server. RESULTS While TAU is recognized as key driver of neurodegeneration in specific tauopathies, the contribution of the isoforms to neuronal function and disease development remains largely elusive. DISCUSSION In this review we describe the role of TAU isoforms in health and disease, and stress the importance of comprehending and studying TAU isoforms in both, physiological and pathological context, in order to develop targeted therapeutic interventions for TAU-associated diseases. HIGHLIGHTS MAPT splicing is tightly regulated during neuronal maturation and throughout life. TAU isoform expression is development-, cell-type and brain region specific. The contribution of TAU to neurodegeneration might be isoform-specific. Ineffective TAU-based therapies highlight the need for specific targeting strategies.
Collapse
Affiliation(s)
- Sarah Buchholz
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Present address:
Department Schaefer, Neurobiology of AgeingMax Planck Institute for Biology of AgeingCologneGermany
| | - Hans Zempel
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| |
Collapse
|
9
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
10
|
Morderer D, Wren MC, Liu F, Kouri N, Maistrenko A, Khalil B, Pobitzer N, Salemi M, Phinney BS, Dickson DW, Murray ME, Rossoll W. Probe-dependent Proximity Profiling (ProPPr) Uncovers Similarities and Differences in Phospho-Tau-Associated Proteomes Between Tauopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.585597. [PMID: 38585836 PMCID: PMC10996607 DOI: 10.1101/2024.03.25.585597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the precise mechanisms underlying the complexity of different types of tau pathology remain incompletely understood. Here we describe an approach for proteomic profiling of aggregate-associated proteomes on slides with formalin-fixed, paraffin-embedded (FFPE) tissue that utilizes proximity labelling upon high preservation of aggregate morphology, which permits the profiling of pathological aggregates regardless of their size. To comprehensively investigate the common and unique protein interactors associated with the variety of tau lesions present across different human tauopathies, Alzheimer's disease (AD), corticobasal degeneration (CBD), Pick's disease (PiD), and progressive supranuclear palsy (PSP), were selected to represent the major tauopathy diseases. Implementation of our widely applicable Probe-dependent Proximity Profiling (ProPPr) strategy, using the AT8 antibody, permitted identification and quantification of proteins associated with phospho-tau lesions in well-characterized human post-mortem tissue. The analysis revealed both common and disease-specific proteins associated with phospho-tau aggregates, highlighting potential targets for therapeutic intervention and biomarker development. Candidate validation through high-resolution co-immunofluorescence of distinct aggregates across disease and control cases, confirmed the association of retromer complex protein VPS35 with phospho-tau lesions across the studied tauopathies. Furthermore, we discovered disease-specific associations of proteins including ferritin light chain (FTL) and the neuropeptide precursor VGF within distinct pathological lesions. Notably, examination of FTL-positive microglia in CBD astrocytic plaques indicate a potential role for microglial involvement in the pathogenesis of these tau lesions. Our findings provide valuable insights into the proteomic landscape of tauopathies, shedding light on the molecular mechanisms underlying tau pathology. This first comprehensive characterization of tau-associated proteomes across different tauopathies enhances our understanding of disease heterogeneity and provides a resource for future functional investigation, as well as development of targeted therapies and diagnostic biomarkers.
Collapse
|
11
|
Abasi LS, Elathram N, Movva M, Deep A, Corbett KD, Debelouchina GT. Phosphorylation regulates tau's phase separation behavior and interactions with chromatin. Commun Biol 2024; 7:251. [PMID: 38429335 PMCID: PMC10907630 DOI: 10.1038/s42003-024-05920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
Tau is a microtubule-associated protein often found in neurofibrillary tangles (NFTs) in the brains of patients with Alzheimer's disease. Beyond this context, mounting evidence suggests that tau localizes into the nucleus, where it may play a role in DNA protection and heterochromatin regulation. The molecular mechanisms behind these observations are currently unclear. Using in vitro biophysical experiments, here we demonstrate that tau can undergo liquid-liquid phase separation (LLPS) with DNA, mononucleosomes, and reconstituted nucleosome arrays under low salt conditions. Low concentrations of tau promote chromatin compaction and protect DNA from digestion. While the material state of samples at physiological salt is dominated by chromatin oligomerization, tau can still associate strongly and reversibly with nucleosome arrays. These properties are driven by tau's strong interactions with linker and nucleosomal DNA. In addition, tau co-localizes into droplets formed by nucleosome arrays and phosphorylated HP1α, a key heterochromatin constituent thought to function through an LLPS mechanism. Importantly, LLPS and chromatin interactions are disrupted by aberrant tau hyperphosphorylation. These biophysical properties suggest that tau may directly impact DNA and chromatin accessibility and that loss of these interactions could contribute to the aberrant nuclear effects seen in tau pathology.
Collapse
Affiliation(s)
- Lannah S Abasi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nesreen Elathram
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Manasi Movva
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Galia T Debelouchina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
12
|
Granholm AC, Hamlett ED. The Role of Tau Pathology in Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:1338. [PMID: 38592182 PMCID: PMC10932364 DOI: 10.3390/jcm13051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Individuals with Down syndrome (DS) exhibit an almost complete penetrance of Alzheimer's disease (AD) pathology but are underrepresented in clinical trials for AD. The Tau protein is associated with microtubule function in the neuron and is crucial for normal axonal transport. In several different neurodegenerative disorders, Tau misfolding leads to hyper-phosphorylation of Tau (p-Tau), which may seed pathology to bystander cells and spread. This review is focused on current findings regarding p-Tau and its potential to seed pathology as a "prion-like" spreader. It also considers the consequences of p-Tau pathology leading to AD, particularly in individuals with Down syndrome. Methods: Scopus (SC) and PubMed (PM) were searched in English using keywords "tau AND seeding AND brain AND down syndrome". A total of 558 SC or 529 PM potentially relevant articles were identified, of which only six SC or three PM articles mentioned Down syndrome. This review was built upon the literature and the recent findings of our group and others. Results: Misfolded p-Tau isoforms are seeding competent and may be responsible for spreading AD pathology. Conclusions: This review demonstrates recent work focused on understanding the role of neurofibrillary tangles and monomeric/oligomeric Tau in the prion-like spreading of Tau pathology in the human brain.
Collapse
Affiliation(s)
- Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
13
|
Younas A, Younas N, Iqbal MJ, Ferrer I, Zerr I. Comparative interactome mapping of Tau-protein in classical and rapidly progressive Alzheimer's disease identifies subtype-specific pathways. Neuropathol Appl Neurobiol 2024; 50:e12964. [PMID: 38374702 DOI: 10.1111/nan.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
AIMS Tau is a key player in Alzheimer's disease (AD) and other Tauopathies. Tau pathology in the brain directly correlates with neurodegeneration in AD. The recent identification of a rapid variant of AD demands an urgent need to uncover underlying mechanisms leading to differential progression in AD. Accordingly, we aimed to dissect the underlying differential mechanisms of toxicity associated with the Tau protein in AD subtypes and to find out subtype-dependent biomarkers and therapeutic targets. METHODS To identify and characterise subtype-specific Tau-associated mechanisms of pathology, we performed comparative interactome mapping of Tau protein in classical AD (cAD) and rapidly progressive AD (rpAD) cases using co-immunoprecipitation coupled with quantitative mass spectrometry. The mass spectrometry data were extensively analysed using several bioinformatics approaches. RESULTS The comparative interactome mapping of Tau protein revealed distinct and unique interactors (DPYSL4, ARHGEF2, TUBA4A and UQCRC2) in subtypes of AD. Interestingly, an analysis of the Tau-interacting proteins indicated enrichment of mitochondrial organisation processes, including negative regulation of mitochondrion organisation, mitochondrial outer membrane permeabilisation involved in programmed cell death, regulation of autophagy of mitochondrion and necroptotic processes, specifically in the rpAD interactome. While, in cAD, the top enriched processes were related to oxidation-reduction process, transport and monocarboxylic acid metabolism. CONCLUSIONS Overall, our results provide a comprehensive map of Tau-interacting protein networks in a subtype-dependent manner and shed light on differential functions/pathways in AD subtypes. This comprehensive map of the Tau-interactome has provided subsets of disease-related proteins that can serve as novel biomarkers/biomarker panels and new drug targets.
Collapse
Affiliation(s)
- Abrar Younas
- National Reference Center for Surveillance of TSE, Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Biological Sciences, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Neelam Younas
- National Reference Center for Surveillance of TSE, Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Inga Zerr
- National Reference Center for Surveillance of TSE, Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
14
|
Bartosch AMW, Youth EHH, Hansen S, Wu Y, Buchanan HM, Kaufman ME, Xiao H, Koo SY, Ashok A, Sivakumar S, Soni RK, Dumitrescu LC, Lam TG, Ropri AS, Lee AJ, Klein HU, Vardarajan BN, Bennett DA, Young-Pearse TL, De Jager PL, Hohman TJ, Sproul AA, Teich AF. ZCCHC17 Modulates Neuronal RNA Splicing and Supports Cognitive Resilience in Alzheimer's Disease. J Neurosci 2024; 44:e2324222023. [PMID: 38050142 PMCID: PMC10860597 DOI: 10.1523/jneurosci.2324-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.
Collapse
Affiliation(s)
- Anne Marie W Bartosch
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Elliot H H Youth
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Shania Hansen
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Yiyang Wu
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Heather M Buchanan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Maria E Kaufman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Harrison Xiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Archana Ashok
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Sharanya Sivakumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York 10032
| | - Logan C Dumitrescu
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Tiffany G Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Ali S Ropri
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Annie J Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Hans-Ulrich Klein
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Badri N Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - Tracy L Young-Pearse
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Philip L De Jager
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Andrew A Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Andrew F Teich
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| |
Collapse
|
15
|
Abasi LS, Elathram N, Movva M, Deep A, Corbett KD, Debelouchina GT. Phosphorylation regulates tau's phase separation behavior and interactions with chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572911. [PMID: 38187700 PMCID: PMC10769318 DOI: 10.1101/2023.12.21.572911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tau is a microtubule-associated protein often found in neurofibrillary tangles (NFTs) in the brains of patients with Alzheimer's disease (AD). Beyond this context, mounting evidence suggests that tau localizes into the nucleus, where it may play a role in DNA protection and heterochromatin regulation. Models of tau depletion or pathology show loss of genetically silent heterochromatin, aberrant expression of heterochromatic genes, and transposable element activation. The molecular mechanisms behind these observations are currently unclear. Using in vitro biophysical experiments, here we demonstrate that tau can undergo liquid-liquid phase separation (LLPS) with DNA, mononucleosomes, and reconstituted nucleosome arrays under low salt conditions. Low concentrations of tau promote chromatin compaction and protect DNA from digestion. While the material state of samples at physiological salt is dominated by chromatin oligomerization, tau can still associate strongly and reversibly with nucleosome arrays. These properties are driven by tau's strong interactions with linker and nucleosomal DNA, while magic angle spinning (MAS) solid-state NMR experiments show that tau binding does not drastically alter nucleosome structure and dynamics. In addition, tau co-localizes into droplets formed by nucleosome arrays and phosphorylated HP1α, a key heterochromatin constituent thought to function through an LLPS mechanism. Importantly, LLPS and chromatin interactions are disrupted by aberrant tau hyperphosphorylation. These biophysical properties suggest that tau may directly impact DNA and chromatin accessibility and that loss of these interactions could contribute to the aberrant nuclear effects seen in tau pathology.
Collapse
Affiliation(s)
- Lannah S. Abasi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nesreen Elathram
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Manasi Movva
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Sun K, Patel T, Kang SG, Yarahmady A, Srinivasan M, Julien O, Heras J, Mok SA. Disease-Associated Mutations in Tau Encode for Changes in Aggregate Structure Conformation. ACS Chem Neurosci 2023; 14:4282-4297. [PMID: 38054595 PMCID: PMC10741665 DOI: 10.1021/acschemneuro.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
The accumulation of tau fibrils is associated with neurodegenerative diseases, which are collectively termed tauopathies. Cryo-EM studies have shown that the packed fibril core of tau adopts distinct structures in different tauopathies, such as Alzheimer's disease, corticobasal degeneration, and progressive supranuclear palsy. A subset of tauopathies are linked to missense mutations in the tau protein, but it is not clear whether these mutations impact the structure of tau fibrils. To answer this question, we developed a high-throughput protein purification platform and purified a panel of 37 tau variants using the full-length 0N4R splice isoform. Each of these variants was used to create fibrils in vitro, and their relative structures were studied using a high-throughput protease sensitivity platform. We find that a subset of the disease-associated mutations form fibrils that resemble wild-type tau, while others are strikingly different. The impact of mutations on tau structure was not clearly associated with either the location of the mutation or the relative kinetics of fibril assembly, suggesting that tau mutations alter the packed core structures through a complex molecular mechanism. Together, these studies show that single-point mutations can impact the assembly of tau into fibrils, providing insight into its association with pathology and disease.
Collapse
Affiliation(s)
- Kerry
T. Sun
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Tark Patel
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Sang-Gyun Kang
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Allan Yarahmady
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Mahalashmi Srinivasan
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Jónathan Heras
- Department
of Mathematics and Computer Sciences, University
of La Rioja, Logroño, Spain 26004
| | - Sue-Ann Mok
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
17
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
18
|
Bhagat R, Minaya MA, Renganathan A, Mehra M, Marsh J, Martinez R, Eteleeb AM, Nana AL, Spina S, Seeley WW, Grinberg LT, Karch CM. Long non-coding RNA SNHG8 drives stress granule formation in tauopathies. Mol Psychiatry 2023; 28:4889-4901. [PMID: 37730840 PMCID: PMC10914599 DOI: 10.1038/s41380-023-02237-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10 + 16, or p.R406W mutation and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer's disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels in immortalized cells and in MAPT mutant neurons, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.
Collapse
Affiliation(s)
- Reshma Bhagat
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Miguel A Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Arun Renganathan
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Muneshwar Mehra
- Department of Neuroscience, Washington University in St Louis, St Louis, MO, USA
| | - Jacob Marsh
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Rita Martinez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Abdallah M Eteleeb
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Alissa L Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of Sao Paulo, São Paulo, Brazil
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA.
- Knight Alzheimer Disease Research Center, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
19
|
Zuniga G, Frost B. Selective neuronal vulnerability to deficits in RNA processing. Prog Neurobiol 2023; 229:102500. [PMID: 37454791 DOI: 10.1016/j.pneurobio.2023.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence indicates that errors in RNA processing can causally drive neurodegeneration. Given that RNA produced from expressed genes of all cell types undergoes processing (splicing, polyadenylation, 5' capping, etc.), the particular vulnerability of neurons to deficits in RNA processing calls for careful consideration. The activity-dependent transcriptome remodeling associated with synaptic plasticity in neurons requires rapid, multilevel post-transcriptional RNA processing events that provide additional opportunities for dysregulation and consequent introduction or persistence of errors in RNA transcripts. Here we review the accumulating evidence that neurons have an enhanced propensity for errors in RNA processing alongside grossly insufficient defenses to clear misprocessed RNA compared to other cell types. Additionally, we explore how tau, a microtubule-associated protein implicated in Alzheimer's disease and related tauopathies, contributes to deficits in RNA processing and clearance.
Collapse
Affiliation(s)
- Gabrielle Zuniga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
20
|
Ghosh A, Vande Velde C. A new way to mitigate pathological Tau? Neuron 2023; 111:2617-2619. [PMID: 37678165 DOI: 10.1016/j.neuron.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
In this issue of Neuron, Wang et al.1 show that the RNA-binding protein G3BP2 interacts with Tau in human neurons and in brains of patients with Alzheimer's disease (AD), suggesting a new role for G3BP2 with implications for therapeutic sequestration of Tau in neurodegenerative diseases.
Collapse
Affiliation(s)
- Asmita Ghosh
- Department of Neurosciences, Université de Montréal, Montreal, QC H3C 3J7, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal, Montreal, QC H3C 3J7, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada.
| |
Collapse
|
21
|
Wang C, Terrigno M, Li J, Distler T, Pandya NJ, Ebeling M, Tyanova S, Hoozemans JJM, Dijkstra AA, Fuchs L, Xiang S, Bonni A, Grüninger F, Jagasia R. Increased G3BP2-Tau interaction in tauopathies is a natural defense against Tau aggregation. Neuron 2023; 111:2660-2674.e9. [PMID: 37385246 DOI: 10.1016/j.neuron.2023.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/21/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
Many RNA-binding proteins (RBPs), particularly those associated with RNA granules, promote pathological protein aggregation in neurodegenerative diseases. Here, we demonstrate that G3BP2, a core component of stress granules, directly interacts with Tau and inhibits Tau aggregation. In the human brain, the interaction of G3BP2 and Tau is dramatically increased in multiple tauopathies, and it is independent of neurofibrillary tangle (NFT) formation in Alzheimer's disease (AD). Surprisingly, Tau pathology is significantly elevated upon loss of G3BP2 in human neurons and brain organoids. Moreover, we found that G3BP2 masks the microtubule-binding region (MTBR) of Tau, thereby inhibiting Tau aggregation. Our study defines a novel role for RBPs as a line of defense against Tau aggregation in tauopathies.
Collapse
Affiliation(s)
- Congwei Wang
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland.
| | - Marco Terrigno
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Juan Li
- School of Life Sciences, University of Science and Technology of China, 230026 Anhui, China
| | - Tania Distler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Nikhil J Pandya
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Stefka Tyanova
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, 1081 HV Amsterdam, the Netherlands
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, 1081 HV Amsterdam, the Netherlands
| | - Luisa Fuchs
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Shengqi Xiang
- School of Life Sciences, University of Science and Technology of China, 230026 Anhui, China
| | - Azad Bonni
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Fiona Grüninger
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland.
| |
Collapse
|
22
|
Wojewska MJ, Otero-Jimenez M, Guijarro-Nuez J, Alegre-Abarrategui J. Beyond Strains: Molecular Diversity in Alpha-Synuclein at the Center of Disease Heterogeneity. Int J Mol Sci 2023; 24:13199. [PMID: 37686005 PMCID: PMC10487421 DOI: 10.3390/ijms241713199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Alpha-synucleinopathies (α-synucleinopathies) such as Parkinson's disease (PD), Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) are all characterized by aggregates of alpha-synuclein (α-syn), but display heterogeneous clinical and pathological phenotypes. The mechanism underlying this heterogeneity is thought to be due to diversity in the α-syn strains present across the diseases. α-syn obtained from the post-mortem brain of patients who lived with these conditions is heterogenous, and displays a different protease sensitivity, ultrastructure, cytotoxicity, and seeding potential. The primary aim of this review is to summarize previous studies investigating these concepts, which not only reflect the idea of different syn strains being present, but demonstrate that each property explains a small part of a much larger puzzle. Strains of α-syn appear at the center of the correlation between α-syn properties and the disease phenotype, likely influenced by external factors. There are considerable similarities in the properties of disease-specific α-syn strains, but MSA seems to consistently display more aggressive traits. Elucidating the molecular underpinnings of heterogeneity amongst α-synucleinopathies holds promise for future clinical translation, allowing for the development of personalized medicine approaches tackling the root cause of each α-synucleinopathy.
Collapse
|
23
|
Bauer KE, de Queiroz BR, Kiebler MA, Besse F. RNA granules in neuronal plasticity and disease. Trends Neurosci 2023:S0166-2236(23)00104-2. [PMID: 37202301 DOI: 10.1016/j.tins.2023.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 05/20/2023]
Abstract
RNA granules are dynamic entities controlling the spatiotemporal distribution and translation of RNA molecules. In neurons, a variety of RNA granules exist both in the soma and in cellular processes. They contain transcripts encoding signaling and synaptic proteins as well as RNA-binding proteins causally linked to several neurological disorders. In this review, we highlight that neuronal RNA granules exhibit properties of biomolecular condensates that are regulated upon maturation and physiological aging and how they are reversibly remodeled in response to neuronal activity to control local protein synthesis and ultimately synaptic plasticity. Moreover, we propose a framework of how neuronal RNA granules mature over time in healthy conditions and how they transition into pathological inclusions in the context of late-onset neurodegenerative diseases.
Collapse
Affiliation(s)
- Karl E Bauer
- Biomedical Center (BMC), Department of Anatomy and Cell Biology, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Bruna R de Queiroz
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Michael A Kiebler
- Biomedical Center (BMC), Department of Anatomy and Cell Biology, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany.
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
24
|
Bartosch AMW, Youth EHH, Hansen S, Kaufman ME, Xiao H, Koo SY, Ashok A, Sivakumar S, Soni RK, Dumitrescu LC, Lam TG, Ropri AS, Lee AJ, Klein HU, Vardarajan BN, Bennett DA, Young-Pearse TL, De Jager PL, Hohman TJ, Sproul AA, Teich AF. ZCCHC17 modulates neuronal RNA splicing and supports cognitive resilience in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533654. [PMID: 36993746 PMCID: PMC10055234 DOI: 10.1101/2023.03.21.533654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's Disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis. Co-immunoprecipitation of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA splicing proteins. ZCCHC17 knockdown results in widespread RNA splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4 dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.
Collapse
Affiliation(s)
- Anne Marie W. Bartosch
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Elliot H. H. Youth
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Shania Hansen
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Maria E. Kaufman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Harrison Xiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Archana Ashok
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Sharanya Sivakumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY 10032
| | - Logan C. Dumitrescu
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Tiffany G. Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Ali S. Ropri
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Annie J. Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - Hans-Ulrich Klein
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - Badri N. Vardarajan
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612
| | - Tracy L. Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Philip L. De Jager
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| | - Timothy J. Hohman
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Andrew A. Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
| | - Andrew F. Teich
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032
| |
Collapse
|
25
|
Bhagat R, Minaya MA, Renganathan A, Mehra M, Marsh J, Martinez R, Nana AL, Spina S, Seeley WW, Grinberg LT, Karch CM. Long non-coding RNA SNHG8 drives stress granule formation in tauopathies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.27.23286548. [PMID: 36909621 PMCID: PMC10002771 DOI: 10.1101/2023.02.27.23286548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10+16, or p.R406W mutation, and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer’s disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.
Collapse
|
26
|
Griffin TA, Schnier PD, Cleveland EM, Newberry RW, Becker J, Carlson GA. Fibril treatment changes protein interactions of tau and α-synuclein in human neurons. J Biol Chem 2023; 299:102888. [PMID: 36634849 PMCID: PMC9978635 DOI: 10.1016/j.jbc.2023.102888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
In several neurodegenerative disorders, the neuronal proteins tau and α-synuclein adopt aggregation-prone conformations capable of replicating within and between cells. To better understand how these conformational changes drive neuropathology, we compared the interactomes of tau and α-synuclein in the presence or the absence of recombinant fibril seeds. Human embryonic stem cells with an inducible neurogenin-2 transgene were differentiated into glutamatergic neurons expressing (1) WT 0N4R tau, (2) mutant (P301L) 0N4R tau, (3) WT α-synuclein, or (4) mutant (A53T) α-synuclein, each genetically fused to a promiscuous biotin ligase (BioID2). Neurons expressing unfused BioID2 served as controls. After treatment with fibrils or PBS, interacting proteins were labeled with biotin in situ and quantified using mass spectrometry via tandem mass tag labeling. By comparing interactions in mutant versus WT neurons and in fibril- versus PBS-treated neurons, we observed changes in protein interactions that are likely relevant to disease progression. We identified 45 shared interactors, suggesting that tau and α-synuclein function within some of the same pathways. Potential loci of shared interactions include microtubules, Wnt signaling complexes, and RNA granules. Following fibril treatment, physiological interactions decreased, whereas other interactions, including those between tau and 14-3-3 η, increased. We confirmed that 14-3-3 proteins, which are known to colocalize with protein aggregates during neurodegeneration, can promote or inhibit tau aggregation in vitro depending on the specific combination of 14-3-3 isoform and tau sequence.
Collapse
Affiliation(s)
- Tagan A Griffin
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Paul D Schnier
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Elisa M Cleveland
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Robert W Newberry
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Julia Becker
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - George A Carlson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA.
| |
Collapse
|
27
|
Choi SH, Yousefian-Jazi A, Hyeon SJ, Nguyen PTT, Chu J, Kim S, Kim S, Ryu HL, Kowall NW, Ryu H, Lee J. Modulation of histone H3K4 dimethylation by spermidine ameliorates motor neuron survival and neuropathology in a mouse model of ALS. J Biomed Sci 2022; 29:106. [PMID: 36536341 PMCID: PMC9764677 DOI: 10.1186/s12929-022-00890-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive paralysis due to motor neuron degeneration. It has been proposed that epigenetic modification and transcriptional dysregulation may contribute to motor neuron death. In this study, we investigate the basis for therapeutic approaches to target lysine-specific histone demethylase 1 (LSD1) and elucidate the mechanistic role of LSD1-histone H3K4 signaling pathway in ALS pathogenesis. METHODS In order to examine the role of spermidine (SD), we administered SD to an animal model of ALS (G93A) and performed neuropathological analysis, body weight, and survival evaluation. RESULTS Herein, we found that LSD1 activity is increased while levels of H3K4me2, a substrate of LSD1, is decreased in cellular and animal models of ALS. SD administration modulated the LSD1 activity and restored H3K4me2 levels in ChAT-positive motor neurons in the lumbar spinal cord of ALS mice. SD prevented cellular damage by improving the number and size of motor neurons in ALS mice. SD administration also reduced GFAP-positive astrogliogenesis in the white and gray matter of the lumbar spinal cord, improving the neuropathology of ALS mice. Moreover, SD administration improved the rotarod performance and gait analysis of ALS mice. Finally, SD administration delayed disease onset and prolonged the lifespan of ALS (G93A) transgenic mice. CONCLUSION Together, modulating epigenetic targets such as LSD1 by small compounds may be a useful therapeutic strategy for treating ALS.
Collapse
Affiliation(s)
- Seung-Hye Choi
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Ali Yousefian-Jazi
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Seung Jae Hyeon
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Phuong Thi Thanh Nguyen
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea ,grid.412786.e0000 0004 1791 8264KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792 South Korea
| | - Jiyeon Chu
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea ,grid.222754.40000 0001 0840 2678Integrated Biomedical and Life Science Department, Graduate School, Korea University, Seoul, 02841 South Korea
| | - Sojung Kim
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Suhyun Kim
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Hannah L. Ryu
- grid.189504.10000 0004 1936 7558Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA 02118 USA
| | - Neil W. Kowall
- grid.189504.10000 0004 1936 7558Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA 02118 USA ,grid.410370.10000 0004 4657 1992VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130 USA
| | - Hoon Ryu
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea ,grid.412786.e0000 0004 1791 8264KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792 South Korea
| | - Junghee Lee
- grid.189504.10000 0004 1936 7558Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA 02118 USA ,grid.410370.10000 0004 4657 1992VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130 USA
| |
Collapse
|
28
|
Martinez P, Patel H, You Y, Jury N, Perkins A, Lee-Gosselin A, Taylor X, You Y, Viana Di Prisco G, Huang X, Dutta S, Wijeratne AB, Redding-Ochoa J, Shahid SS, Codocedo JF, Min S, Landreth GE, Mosley AL, Wu YC, McKinzie DL, Rochet JC, Zhang J, Atwood BK, Troncoso J, Lasagna-Reeves CA. Bassoon contributes to tau-seed propagation and neurotoxicity. Nat Neurosci 2022; 25:1597-1607. [PMID: 36344699 PMCID: PMC9708566 DOI: 10.1038/s41593-022-01191-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Tau aggregation is a defining histopathological feature of Alzheimer's disease and other tauopathies. However, the cellular mechanisms involved in tau propagation remain unclear. Here, we performed an unbiased quantitative proteomic study to identify proteins that specifically interact with this tau seed. We identified Bassoon (BSN), a presynaptic scaffolding protein, as an interactor of the tau seed isolated from a mouse model of tauopathy, and from Alzheimer's disease and progressive supranuclear palsy postmortem samples. We show that BSN exacerbates tau seeding and toxicity in both mouse and Drosophila models for tauopathy, and that BSN downregulation decreases tau spreading and overall disease pathology, rescuing synaptic and behavioral impairments and reducing brain atrophy. Our findings improve the understanding of how tau seeds can be stabilized by interactors such as BSN. Inhibiting tau-seed interactions is a potential new therapeutic approach for neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Pablo Martinez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Henika Patel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanwen You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nur Jury
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abigail Perkins
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Audrey Lee-Gosselin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xavier Taylor
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yingjian You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gonzalo Viana Di Prisco
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaoqing Huang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sayan Dutta
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Aruna B Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Javier Redding-Ochoa
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Syed Salman Shahid
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Juan F Codocedo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sehong Min
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David L McKinzie
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Jie Zhang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brady K Atwood
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Juan Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
29
|
Kavanagh T, Halder A, Drummond E. Tau interactome and RNA binding proteins in neurodegenerative diseases. Mol Neurodegener 2022; 17:66. [PMID: 36253823 PMCID: PMC9575286 DOI: 10.1186/s13024-022-00572-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Pathological tau aggregation is a primary neuropathological feature of many neurodegenerative diseases. Intriguingly, despite the common presence of tau aggregates in these diseases the affected brain regions, clinical symptoms, and morphology, conformation, and isoform ratio present in tau aggregates varies widely. The tau-mediated disease mechanisms that drive neurodegenerative disease are still unknown. Tau interactome studies are critically important for understanding tauopathy. They reveal the interacting partners that define disease pathways, and the tau interactions present in neuropathological aggregates provide potential insight into the cellular environment and protein interactions present during pathological tau aggregation. Here we provide a combined analysis of 12 tau interactome studies of human brain tissue, human cell culture models and rodent models of disease. Together, these studies identified 2084 proteins that interact with tau in human tissue and 1152 proteins that interact with tau in rodent models of disease. Our combined analysis of the tau interactome revealed consistent enrichment of interactions between tau and proteins involved in RNA binding, ribosome, and proteasome function. Comparison of human and rodent tau interactome studies revealed substantial differences between the two species. We also performed a second analysis to identify the tau interacting proteins that are enriched in neurons containing granulovacuolar degeneration or neurofibrillary tangle pathology. These results revealed a timed dysregulation of tau interactions as pathology develops. RNA binding proteins, particularly HNRNPs, emerged as early disease-associated tau interactors and therefore may have an important role in driving tau pathology.
Collapse
Affiliation(s)
- Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| | - Aditi Halder
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| |
Collapse
|
30
|
Zwierzchowski-Zarate AN, Mendoza-Oliva A, Kashmer OM, Collazo-Lopez JE, White CL, Diamond MI. RNA induces unique tau strains and stabilizes Alzheimer's disease seeds. J Biol Chem 2022; 298:102132. [PMID: 35700826 PMCID: PMC9364032 DOI: 10.1016/j.jbc.2022.102132] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Tau aggregation underlies neurodegenerative tauopathies, and trans-cellular propagation of tau assemblies of unique structure, i.e. strains, may underlie the diversity of these disorders. Polyanions have been reported to induce tau aggregation in vitro, but the precise trigger to convert tau from an inert to a seed-competent form in disease states is unknown. RNA triggers tau fibril formation in vitro and has been observed to associate with neurofibrillary tangles in human brain. Here we have tested whether RNA exerts sequence-specific effects on tau assembly and strain formation. We found that three RNA homopolymers, polyA, polyU, and polyC, all bound tau, but only polyA RNA triggered seed and fibril formation. In addition, polyA:tau seeds and fibrils were sensitive to RNase. We also observed that the origin of the RNA influenced the ability of tau to adopt a structure that would form stable strains. Human RNA potently induced tau seed formation and created tau conformations that preferentially formed stable strains in a HEK293T cell model, whereas RNA from other sources, or heparin, produced strains that were not stably maintained in cultured cells. Finally, we found that soluble, but not insoluble seeds from Alzheimer's disease (AD) brain were also sensitive to RNase. We conclude that human RNA specifically induces formation of stable tau strains, and may trigger the formation of dominant pathological assemblies that propagate in AD, and possibly other tauopathies.
Collapse
Affiliation(s)
- Amy N Zwierzchowski-Zarate
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Aydé Mendoza-Oliva
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Omar M Kashmer
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Josue E Collazo-Lopez
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Charles L White
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA.
| |
Collapse
|
31
|
Tarutani A, Adachi T, Akatsu H, Hashizume Y, Hasegawa K, Saito Y, Robinson AC, Mann DMA, Yoshida M, Murayama S, Hasegawa M. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol 2022; 143:613-640. [PMID: 35513543 PMCID: PMC9107452 DOI: 10.1007/s00401-022-02426-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 12/20/2022]
Abstract
Intracellular accumulation of abnormal proteins with conformational changes is the defining neuropathological feature of neurodegenerative diseases. The pathogenic proteins that accumulate in patients' brains adopt an amyloid-like fibrous structure and exhibit various ultrastructural features. The biochemical analysis of pathogenic proteins in sarkosyl-insoluble fractions extracted from patients' brains also shows disease-specific features. Intriguingly, these ultrastructural and biochemical features are common within the same disease group. These differences among the pathogenic proteins extracted from patients' brains have important implications for definitive diagnosis of the disease, and also suggest the existence of pathogenic protein strains that contribute to the heterogeneity of pathogenesis in neurodegenerative diseases. Recent experimental evidence has shown that prion-like propagation of these pathogenic proteins from host cells to recipient cells underlies the onset and progression of neurodegenerative diseases. The reproduction of the pathological features that characterize each disease in cellular and animal models of prion-like propagation also implies that the structural differences in the pathogenic proteins are inherited in a prion-like manner. In this review, we summarize the ultrastructural and biochemical features of pathogenic proteins extracted from the brains of patients with neurodegenerative diseases that accumulate abnormal forms of tau, α-synuclein, and TDP-43, and we discuss how these disease-specific properties are maintained in the brain, based on recent experimental insights.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tadashi Adachi
- Division of Neuropathology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, 683-8503, Japan
| | - Hiroyasu Akatsu
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
| | - Kazuko Hasegawa
- Division of Neurology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, 252-0392, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - David M A Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, 480-1195, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, 565-0871, Japan
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
32
|
Molecular interaction of stress granules with Tau and autophagy in Alzheimer's disease. Neurochem Int 2022; 157:105342. [DOI: 10.1016/j.neuint.2022.105342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/09/2022] [Accepted: 04/10/2022] [Indexed: 11/23/2022]
|
33
|
Tracy TE, Madero-Pérez J, Swaney DL, Chang TS, Moritz M, Konrad C, Ward ME, Stevenson E, Hüttenhain R, Kauwe G, Mercedes M, Sweetland-Martin L, Chen X, Mok SA, Wong MY, Telpoukhovskaia M, Min SW, Wang C, Sohn PD, Martin J, Zhou Y, Luo W, Trojanowski JQ, Lee VMY, Gong S, Manfredi G, Coppola G, Krogan NJ, Geschwind DH, Gan L. Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration. Cell 2022; 185:712-728.e14. [PMID: 35063084 PMCID: PMC8857049 DOI: 10.1016/j.cell.2021.12.041] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/20/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
Tau (MAPT) drives neuronal dysfunction in Alzheimer disease (AD) and other tauopathies. To dissect the underlying mechanisms, we combined an engineered ascorbic acid peroxidase (APEX) approach with quantitative affinity purification mass spectrometry (AP-MS) followed by proximity ligation assay (PLA) to characterize Tau interactomes modified by neuronal activity and mutations that cause frontotemporal dementia (FTD) in human induced pluripotent stem cell (iPSC)-derived neurons. We established interactions of Tau with presynaptic vesicle proteins during activity-dependent Tau secretion and mapped the Tau-binding sites to the cytosolic domains of integral synaptic vesicle proteins. We showed that FTD mutations impair bioenergetics and markedly diminished Tau’s interaction with mitochondria proteins, which were downregulated in AD brains of multiple cohorts and correlated with disease severity. These multimodal and dynamic Tau interactomes with exquisite spatial resolution shed light on Tau’s role in neuronal function and disease and highlight potential therapeutic targets to block Tau-mediated pathogenesis. By combining APEX and AP-MS proteomic approaches, Tau interactome mapping reveals that Tau interactors are modified by neuronal activity and FTD mutations in human iPSC-derived neurons.
Collapse
Affiliation(s)
- Tara E Tracy
- Gladstone Institutes, San Francisco, CA 94158, USA; Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Jesus Madero-Pérez
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Danielle L Swaney
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Timothy S Chang
- Department of Neurology, Movement Disorders Program and Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Michelle Moritz
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Erica Stevenson
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Grant Kauwe
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Maria Mercedes
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lauren Sweetland-Martin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xu Chen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Sang-Won Min
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Chao Wang
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | | | | - Yungui Zhou
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M Y Lee
- Center for Neurodegenerative Disease Research, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giovanni Coppola
- Department of Neurology, Movement Disorders Program and Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel H Geschwind
- Department of Neurology, Movement Disorders Program and Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
34
|
Tau mRNA Metabolism in Neurodegenerative Diseases: A Tangle Journey. Biomedicines 2022; 10:biomedicines10020241. [PMID: 35203451 PMCID: PMC8869323 DOI: 10.3390/biomedicines10020241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/07/2022] Open
Abstract
Tau proteins are known to be mainly involved in regulation of microtubule dynamics. Besides this function, which is critical for axonal transport and signal transduction, tau proteins also have other roles in neurons. Moreover, tau proteins are turned into aggregates and consequently trigger many neurodegenerative diseases termed tauopathies, of which Alzheimer’s disease (AD) is the figurehead. Such pathological aggregation processes are critical for the onset of these diseases. Among the various causes of tau protein pathogenicity, abnormal tau mRNA metabolism, expression and dysregulation of tau post-translational modifications are critical steps. Moreover, the relevance of tau function to general mRNA metabolism has been highlighted recently in tauopathies. In this review, we mainly focus on how mRNA metabolism impacts the onset and development of tauopathies. Thus, we intend to portray how mRNA metabolism of, or mediated by, tau is associated with neurodegenerative diseases.
Collapse
|
35
|
p38 Inhibition Decreases Tau Toxicity in Microglia and Improves Their Phagocytic Function. Mol Neurobiol 2022; 59:1632-1648. [PMID: 35006531 PMCID: PMC8882095 DOI: 10.1007/s12035-021-02715-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023]
Abstract
Alzheimer’s disease (AD) and other tauopathies are histopathologically characterized by tau aggregation, along with a chronic inflammatory response driven by microglia. Over the past few years, the role of microglia in AD has been studied mainly in relation to amyloid-β (Aβ) pathology. Consequently, there is a substantial knowledge gap concerning the molecular mechanisms involved in tau-mediated toxicity and neuroinflammation, thus hindering the development of therapeutic strategies. We previously demonstrated that extracellular soluble tau triggers p38 MAPK activation in microglia. Given the activation of this signaling pathway in AD and its involvement in neuroinflammation processes, here we evaluated the effect of p38 inhibition on primary microglia cultures subjected to tau treatment. Our data showed that the toxic effect driven by tau in microglia was diminished through p38 inhibition. Furthermore, p38 blockade enhanced microglia-mediated tau phagocytosis, as reflected by an increase in the number of lysosomes. In conclusion, these results contribute to our understanding of the functions of p38 in the central nervous system (CNS) beyond tau phosphorylation in neurons and provide further insights into the potential of p38 inhibition as a therapeutic strategy to halt neuroinflammation in tauopathies.
Collapse
|
36
|
Limorenko G, Lashuel HA. Revisiting the grammar of Tau aggregation and pathology formation: how new insights from brain pathology are shaping how we study and target Tauopathies. Chem Soc Rev 2021; 51:513-565. [PMID: 34889934 DOI: 10.1039/d1cs00127b] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Converging evidence continues to point towards Tau aggregation and pathology formation as central events in the pathogenesis of Alzheimer's disease and other Tauopathies. Despite significant advances in understanding the morphological and structural properties of Tau fibrils, many fundamental questions remain about what causes Tau to aggregate in the first place. The exact roles of cofactors, Tau post-translational modifications, and Tau interactome in regulating Tau aggregation, pathology formation, and toxicity remain unknown. Recent studies have put the spotlight on the wide gap between the complexity of Tau structures, aggregation, and pathology formation in the brain and the simplicity of experimental approaches used for modeling these processes in research laboratories. Embracing and deconstructing this complexity is an essential first step to understanding the role of Tau in health and disease. To help deconstruct this complexity and understand its implication for the development of effective Tau targeting diagnostics and therapies, we firstly review how our understanding of Tau aggregation and pathology formation has evolved over the past few decades. Secondly, we present an analysis of new findings and insights from recent studies illustrating the biochemical, structural, and functional heterogeneity of Tau aggregates. Thirdly, we discuss the importance of adopting new experimental approaches that embrace the complexity of Tau aggregation and pathology as an important first step towards developing mechanism- and structure-based therapies that account for the pathological and clinical heterogeneity of Alzheimer's disease and Tauopathies. We believe that this is essential to develop effective diagnostics and therapies to treat these devastating diseases.
Collapse
Affiliation(s)
- Galina Limorenko
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
37
|
Chinnathambi S, Gorantla NV. Implications of Valosin-containing Protein in Promoting Autophagy to Prevent Tau Aggregation. Neuroscience 2021; 476:125-134. [PMID: 34509548 DOI: 10.1016/j.neuroscience.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Chaperones and cellular degradative mechanisms modulate Tau aggregation. During aging and neurodegenerative disorders, the cellular proteostasis is disturbed due to impaired protective mechanisms. This results in accumulation of aberrant Tau aggregates in the neuron that leads to microtubule destabilization and neuronal degeneration. The intricate mechanisms to prevent Tau aggregation involve chaperones, autophagy, and proteasomal system have gained main focus about concerning to therapeutic intervention. However, the thorough understanding of other key proteins, such as Valosin-containing protein (VCP), is limited. In various neurodegenerative diseases, the chaperone-like activity of VCP is involved in preventing protein aggregation and mediating the degradation of aberrant proteins by proteasome and autophagy. In the case of Tau aggregation associated with Alzheimer's disease, the importance of VCP is poorly understood. VCP is known to co-localize with Tau, and alterations in VCP cause aberrant accumulation of Tau. Nevertheless, the direct mechanism of VCP in altering Tau aggregation is not known. Hence, we speculate that VCP might be one of the key modulators in preventing Tau aggregation and can disintegrate Tau aggregates by directing its clearance by autophagy.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Nalini Vijay Gorantla
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
38
|
Andrés-Benito P, Carmona M, Pirla MJ, Torrejón-Escribano B, Del Rio JA, Ferrer I. Dysregulated Protein Phosphorylation as Main Contributor of Granulovacuolar Degeneration at the First Stages of Neurofibrillary Tangles Pathology. Neuroscience 2021; 518:119-140. [PMID: 34757172 DOI: 10.1016/j.neuroscience.2021.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023]
Abstract
The hippocampus of cases with neurofibrillary tangles (NFT) pathology classified as stages I-II, III-IV, and V-VI without comorbidities, and middle-aged (MA) individuals with no NFT pathology, were examined to learn about the composition of granulovacuolar degeneration (GVD). Our results confirm the presence of CK1-δ, p38-P Thr180/Tyr182, SAPK/JNK-P Thr183/Thr185, GSK-3α/β-P Tyr279/Tyr216, and GSK-3β Ser9 in the cytoplasmic granules in a subset of neurons of the CA1 and CA2 subfields of the hippocampus. Also, we identify the presence of PKA α/β-P Thr197, SRC-P Tyr416, PAK1-P Ser199/Ser204, CAMK2A-P Tyr197, and PKCG-P Thr655 in cytoplasmic granules in cases with NFT pathology, but not in MA cases. Our results also confirm the presence of β-catenin-P Ser45/Thr41, IREα-P Ser274, eIF2α-P Ser51, TDP-43-P Ser403-404 (but absent TDP-43), and ubiquitin in cytoplasmic granules. Other components of the cytoplasmic granules are MAP2-P Thr1620/1623, MAP1B-P Thr1265, ADD1-P Ser726, and ADD1/ADD1-P Ser726/Ser713, in addition to several tau species including 3Rtau, 4Rtau, and tau-P Ser262. The analysis of GVD at progressive stages of NFT pathology reveals the early appearance of phosphorylated kinases and proteins in cytoplasmic granules at stages I-II, before the appearance of pre-tangles and NFTs. Most of these granules are not surrounded by LAMP1-positive membranes. Markers of impaired ubiquitin-protesome system, abnormal reticulum stress response, and altered endocytic and autophagic pathways occur in a subpopulation of neurons containing cytoplasmic granules, and they appear later. These observations suggest early phosphorylation of kinases leading to their activation, and resulting in the abnormal phosphorylation of various substrates, including tau, as a main alteration at the first stages of GVD.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| | - Margarita Carmona
- Department of Pathology and Experimental Therapeutics, University of Barcelona, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| | - Mónica Jordán Pirla
- Department of Pathology and Experimental Therapeutics, University of Barcelona, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| | - Benjamín Torrejón-Escribano
- Advanced Light Microscopy Unit (Campus de Bellvitge), Scientific and Technical Facility (CCiTUB), University of Barcelona, Hospitalet de Llobregat, Spain.
| | - José Antonio Del Rio
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Science Park Barcelona (PCB), Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
39
|
Rybak-Wolf A, Plass M. RNA Dynamics in Alzheimer's Disease. Molecules 2021; 26:5113. [PMID: 34500547 PMCID: PMC8433936 DOI: 10.3390/molecules26175113] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder that heavily burdens healthcare systems worldwide. There is a significant requirement to understand the still unknown molecular mechanisms underlying AD. Current evidence shows that two of the major features of AD are transcriptome dysregulation and altered function of RNA binding proteins (RBPs), both of which lead to changes in the expression of different RNA species, including microRNAs (miRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs). In this review, we will conduct a comprehensive overview of how RNA dynamics are altered in AD and how this leads to the differential expression of both short and long RNA species. We will describe how RBP expression and function are altered in AD and how this impacts the expression of different RNA species. Furthermore, we will also show how changes in the abundance of specific RNA species are linked to the pathology of AD.
Collapse
Affiliation(s)
- Agnieszka Rybak-Wolf
- Max Delbrück Center for Molecular Medicine (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Mireya Plass
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908 Barcelona, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, 08908 Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
40
|
Schwab K, Melis V, Harrington CR, Wischik CM, Magbagbeolu M, Theuring F, Riedel G. Proteomic Analysis of Hydromethylthionine in the Line 66 Model of Frontotemporal Dementia Demonstrates Actions on Tau-Dependent and Tau-Independent Networks. Cells 2021; 10:2162. [PMID: 34440931 PMCID: PMC8391171 DOI: 10.3390/cells10082162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Abnormal aggregation of tau is the pathological hallmark of tauopathies including frontotemporal dementia (FTD). We have generated tau-transgenic mice that express the aggregation-prone P301S human tau (line 66). These mice present with early-onset, high tau load in brain and FTD-like behavioural deficiencies. Several of these behavioural phenotypes and tau pathology are reversed by treatment with hydromethylthionine but key pathways underlying these corrections remain elusive. In two proteomic experiments, line 66 mice were compared with wild-type mice and then vehicle and hydromethylthionine treatments of line 66 mice were compared. The brain proteome was investigated using two-dimensional electrophoresis and mass spectrometry to identify protein networks and pathways that were altered due to tau overexpression or modified by hydromethylthionine treatment. Overexpression of mutant tau induced metabolic/mitochondrial dysfunction, changes in synaptic transmission and in stress responses, and these functions were recovered by hydromethylthionine. Other pathways, such as NRF2, oxidative phosphorylation and protein ubiquitination were activated by hydromethylthionine, presumably independent of its function as a tau aggregation inhibitor. Our results suggest that hydromethylthionine recovers cellular activity in both a tau-dependent and a tau-independent fashion that could lead to a wide-spread improvement of homeostatic function in the FTD brain.
Collapse
Affiliation(s)
- Karima Schwab
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
- Charité—Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; (M.M.); (F.T.)
| | - Valeria Melis
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
| | - Charles R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
- TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Claude M. Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
- TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Mandy Magbagbeolu
- Charité—Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; (M.M.); (F.T.)
| | - Franz Theuring
- Charité—Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; (M.M.); (F.T.)
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
| |
Collapse
|
41
|
Dent P, Booth L, Roberts JL, Poklepovic A, Cridebring D, Reiman EM. Inhibition of heat shock proteins increases autophagosome formation, and reduces the expression of APP, Tau, SOD1 G93A and TDP-43. Aging (Albany NY) 2021; 13:17097-17117. [PMID: 34252884 PMCID: PMC8312464 DOI: 10.18632/aging.203297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Aberrant expression and denaturation of Tau, amyloid-beta and TDP-43 can lead to cell death and is a major component of pathologies such as Alzheimer’s Disease (AD). AD neurons exhibit a reduced ability to form autophagosomes and degrade proteins via autophagy. Using genetically manipulated colon cancer cells we determined whether drugs that directly inhibit the chaperone ATPase activity or cause chaperone degradation and endoplasmic reticulum stress signaling leading to macroautophagy could reduce the levels of these proteins. The antiviral chaperone ATPase inhibitor AR12 reduced the ATPase activities and total expression of GRP78, HSP90, and HSP70, and of Tau, Tau 301L, APP, APP692, APP715, SOD1 G93A and TDP-43. In parallel, it increased the phosphorylation of ATG13 S318 and eIF2A S51 and caused eIF2A-dependent autophagosome formation and autophagic flux. Knock down of Beclin1 or ATG5 prevented chaperone, APP and Tau degradation. Neratinib, used to treat HER2+ breast cancer, reduced chaperone levels and expression of Tau and APP via macroautophagy, and neratinib interacted with AR12 to cause further reductions in protein levels. The autophagy-regulatory protein ATG16L1 is expressed as two isoforms, T300 or A300: Africans trend to express T300 and Europeans A300. We observed higher basal expression of Tau in T300 cells when compared to isogenic A300 cells. ATG16L1 isoform expression did not alter basal levels of HSP90, HSP70 or HSP27, however, basal levels of GRP78 were reduced in A300 cells. The abilities of both AR12 and neratinib to stimulate ATG13 S318 and eIF2A S51 phosphorylation and autophagic flux was also reduced in A300 cells. Our data support further evaluation of AR12 and neratinib in neuronal cells as repurposed treatments for AD.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Richmond, VA 23298, USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Pharmacology and Toxicology, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Derek Cridebring
- Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, USA
| | - Eric M Reiman
- Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, USA.,Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| |
Collapse
|
42
|
Lester E, Ooi FK, Bakkar N, Ayers J, Woerman AL, Wheeler J, Bowser R, Carlson GA, Prusiner SB, Parker R. Tau aggregates are RNA-protein assemblies that mislocalize multiple nuclear speckle components. Neuron 2021; 109:1675-1691.e9. [PMID: 33848474 PMCID: PMC8141031 DOI: 10.1016/j.neuron.2021.03.026] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Tau aggregates contribute to neurodegenerative diseases, including frontotemporal dementia and Alzheimer's disease (AD). Although RNA promotes tau aggregation in vitro, whether tau aggregates in cells contain RNA is unknown. We demonstrate, in cell culture and mouse brains, that cytosolic and nuclear tau aggregates contain RNA with enrichment for small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). Nuclear tau aggregates colocalize with and alter the composition, dynamics, and organization of nuclear speckles, membraneless organelles involved in pre-mRNA splicing. Moreover, several nuclear speckle components, including SRRM2, mislocalize to cytosolic tau aggregates in cells, mouse brains, and brains of individuals with AD, frontotemporal dementia (FTD), and corticobasal degeneration (CBD). Consistent with these alterations, we observe that the presence of tau aggregates is sufficient to alter pre-mRNA splicing. This work identifies tau alteration of nuclear speckles as a feature of tau aggregation that may contribute to the pathology of tau aggregates.
Collapse
Affiliation(s)
- Evan Lester
- Department of Biochemistry, University of Colorado, Boulder, CO, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Felicia K Ooi
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Nadine Bakkar
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Jacob Ayers
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Amanda L Woerman
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Joshua Wheeler
- Department of Biochemistry, University of Colorado, Boulder, CO, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pathology, Stanford University, Stanford, CA, USA
| | - Robert Bowser
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - George A Carlson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
43
|
Schmitt-Ulms G, Mehrabian M, Williams D, Ehsani S. The IDIP framework for assessing protein function and its application to the prion protein. Biol Rev Camb Philos Soc 2021; 96:1907-1932. [PMID: 33960099 DOI: 10.1111/brv.12731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023]
Abstract
The quest to determine the function of a protein can represent a profound challenge. Although this task is the mandate of countless research groups, a general framework for how it can be approached is conspicuously lacking. Moreover, even expectations for when the function of a protein can be considered to be 'known' are not well defined. In this review, we begin by introducing concepts pertinent to the challenge of protein function assignments. We then propose a framework for inferring a protein's function from four data categories: 'inheritance', 'distribution', 'interactions' and 'phenotypes' (IDIP). We document that the functions of proteins emerge at the intersection of inferences drawn from these data categories and emphasise the benefit of considering them in an evolutionary context. We then apply this approach to the cellular prion protein (PrPC ), well known for its central role in prion diseases, whose function continues to be considered elusive by many investigators. We document that available data converge on the conclusion that the function of the prion protein is to control a critical post-translational modification of the neural cell adhesion molecule in the context of epithelial-to-mesenchymal transition and related plasticity programmes. Finally, we argue that this proposed function of PrPC has already passed the test of time and is concordant with the IDIP framework in a way that other functions considered for this protein fail to achieve. We anticipate that the IDIP framework and the concepts analysed herein will aid the investigation of other proteins whose primary functional assignments have thus far been intractable.
Collapse
Affiliation(s)
- Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Sepehr Ehsani
- Theoretical and Philosophical Biology, Department of Philosophy, University College London, Bloomsbury, London, WC1E 6BT, U.K.,Ronin Institute for Independent Scholarship, Montclair, NJ, 07043, U.S.A
| |
Collapse
|
44
|
Gutiérrez-Amavizca BE, Prado Montes de Oca E, Gutiérrez-Amavizca JP, Castro OD, Ruíz-Marquez CH, Perez Conde-Andreu K, Pérez Calderón R, Aguirre Ramírez M, Pérez-León JA. Association of P10L Polymorphism in Melanopsin Gene with Chronic Insomnia in Mexicans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020571. [PMID: 33445464 PMCID: PMC7827055 DOI: 10.3390/ijerph18020571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 11/16/2022]
Abstract
The aim of this pilot study was to determine the association of the P10L (rs2675703) polymorphism of the OPN4 gene with chronic insomnia in uncertain etiology in a Mexican population. A case control study was performed including 98 healthy subjects and 29 individuals with chronic insomnia not related to mental disorders, medical condition, medication or substance abuse. Samples were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Genetic analyses showed that the T allele of P10L increased risk to chronic insomnia in a dominant model (p = 1 ×10−4; odds ratio (OR) = 9.37, CI = 8.18–335.66, Kelsey statistical power (KSP) = 99.9%), and in a recessive model (p = 7.5 × 10−5, OR = 9.37, KSP = 99.3%, CI = 2.7–34.29). In the insomnia group, we did not find a correlation between genotypes and chronotype (p = 0.219 Fisher’s exact test), severity of chronic insomnia using ISI score (p = 0.082 Fisher’s exact test) and ESS score (p ˃ 0.999 Fisher’s exact test). However, evening chronotype was correlated to daytime sleepiness severity, individuals with an eveningness chronotype had more severe drowsiness according to their insomnia severity index (ISI) score (p = 0.021 Fisher’s exact test) and Epworth sleepiness scale (ESS) score (p = 0.015 Fisher’s exact test) than the morningness and intermediate chronotype. We demonstrated that the T allele of the P10L polymorphism in the OPN4 gene is associated with chronic insomnia in Mexicans. We suggest the need to conduct larger studies in different ethnic populations to test the probable association and function of P10L and other SNPs in the OPN4 gene and in the onset of chronic insomnia.
Collapse
Affiliation(s)
- Bianca Ethel Gutiérrez-Amavizca
- Chemical Biological Sciences PhD Graduate Program, Department of Chemical Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua 32310, Mexico; (B.E.G.-A.); (J.P.G.-A.); (O.D.C.); (C.H.R.-M.); (K.P.C.-A.); (M.A.R.)
| | - Ernesto Prado Montes de Oca
- Laboratory of Regulatory SNPs and Laboratory of Pharmacogenomics and Preventive Medicine, Personalized Medicine National Laboratory (LAMPER), Pharmaceutical and Medical Biotechnology, Central Unit, CIATEJ, A.C., National Council of Science and Technology (CONACYT), Guadalajara 44270, Mexico; or
- Scripps Research Translational Institute & Scripps Integrative Structural and Computational Biology Research Institute La Jolla, La Jolla, CA 92307, USA
| | - Jaime Paul Gutiérrez-Amavizca
- Chemical Biological Sciences PhD Graduate Program, Department of Chemical Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua 32310, Mexico; (B.E.G.-A.); (J.P.G.-A.); (O.D.C.); (C.H.R.-M.); (K.P.C.-A.); (M.A.R.)
| | - Oscar David Castro
- Chemical Biological Sciences PhD Graduate Program, Department of Chemical Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua 32310, Mexico; (B.E.G.-A.); (J.P.G.-A.); (O.D.C.); (C.H.R.-M.); (K.P.C.-A.); (M.A.R.)
| | - Cesar Heriberto Ruíz-Marquez
- Chemical Biological Sciences PhD Graduate Program, Department of Chemical Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua 32310, Mexico; (B.E.G.-A.); (J.P.G.-A.); (O.D.C.); (C.H.R.-M.); (K.P.C.-A.); (M.A.R.)
| | - Kricel Perez Conde-Andreu
- Chemical Biological Sciences PhD Graduate Program, Department of Chemical Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua 32310, Mexico; (B.E.G.-A.); (J.P.G.-A.); (O.D.C.); (C.H.R.-M.); (K.P.C.-A.); (M.A.R.)
| | - Ricardo Pérez Calderón
- Genomics Sciences Masters Program, Department of Chemical Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua 32310, Mexico;
| | - Marisela Aguirre Ramírez
- Chemical Biological Sciences PhD Graduate Program, Department of Chemical Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua 32310, Mexico; (B.E.G.-A.); (J.P.G.-A.); (O.D.C.); (C.H.R.-M.); (K.P.C.-A.); (M.A.R.)
- Cuerpo Académico Consolidado Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico
| | - Jorge Alberto Pérez-León
- Chemical Biological Sciences PhD Graduate Program, Department of Chemical Sciences, Biomedical Sciences Institute, Ciudad Juarez Autonomous University, Chihuahua 32310, Mexico; (B.E.G.-A.); (J.P.G.-A.); (O.D.C.); (C.H.R.-M.); (K.P.C.-A.); (M.A.R.)
- Cuerpo Académico Consolidado Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico
- Correspondence:
| |
Collapse
|
45
|
Alqawlaq S, Livne-Bar I, Williams D, D'Ercole J, Leung SW, Chan D, Tuccitto A, Datti A, Wrana JL, Corbett AH, Schmitt-Ulms G, Sivak JM. An endogenous PI3K interactome promoting astrocyte-mediated neuroprotection identifies a novel association with RNA-binding protein ZC3H14. J Biol Chem 2021; 296:100118. [PMID: 33234594 PMCID: PMC7948738 DOI: 10.1074/jbc.ra120.015389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022] Open
Abstract
Astrocytes can support neuronal survival through a range of secreted signals that protect against neurotoxicity, oxidative stress, and apoptotic cascades. Thus, analyzing the effects of the astrocyte secretome may provide valuable insight into these neuroprotective mechanisms. Previously, we characterized a potent neuroprotective activity mediated by retinal astrocyte conditioned media (ACM) on retinal and cortical neurons in metabolic stress models. However, the molecular mechanism underlying this complex activity in neuronal cells has remained unclear. Here, a chemical genetics screen of kinase inhibitors revealed phosphoinositide 3-kinase (PI3K) as a central player transducing ACM-mediated neuroprotection. To identify additional proteins contributing to the protective cascade, endogenous PI3K was immunoprecipitated from neuronal cells exposed to ACM or control media, followed by MS/MS proteomic analyses. These data pointed toward a relatively small number of proteins that coimmunoprecipitated with PI3K, and surprisingly only five were regulated by the ACM signal. These hits included expected PI3K interactors, such as the platelet-derived growth factor receptor A (PDGFRA), as well as novel RNA-binding protein interactors ZC3H14 (zinc finger CCCH-type containing 14) and THOC1 (THO complex protein 1). In particular, ZC3H14 has recently emerged as an important RNA-binding protein with multiple roles in posttranscriptional regulation. In validation studies, we show that PI3K recruitment of ZC3H14 is necessary for PDGF-induced neuroprotection and that this interaction is present in primary retinal ganglion cells. Thus, we identified a novel non-cell autonomous neuroprotective signaling cascade mediated through PI3K that requires recruitment of ZC3H14 and may present a promising strategy to promote astrocyte-secreted prosurvival signals.
Collapse
Affiliation(s)
- Samih Alqawlaq
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Izhar Livne-Bar
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Joseph D'Ercole
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Sara W Leung
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Darren Chan
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Alessandra Tuccitto
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Alessandro Datti
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jeffrey L Wrana
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Jeremy M Sivak
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Ontario, Canada.
| |
Collapse
|
46
|
Drepper F, Biernat J, Kaniyappan S, Meyer HE, Mandelkow EM, Warscheid B, Mandelkow E. A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications. J Biol Chem 2020; 295:18213-18225. [PMID: 33106314 PMCID: PMC7939451 DOI: 10.1074/jbc.ra120.015882] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Abnormal changes of neuronal Tau protein, such as phosphorylation and aggregation, are considered hallmarks of cognitive deficits in Alzheimer's disease. Abnormal phosphorylation is thought to precede aggregation and therefore to promote aggregation, but the nature and extent of phosphorylation remain ill-defined. Tau contains ∼85 potential phosphorylation sites, which can be phosphorylated by various kinases because the unfolded structure of Tau makes them accessible. However, methodological limitations (e.g. in MS of phosphopeptides, or antibodies against phosphoepitopes) led to conflicting results regarding the extent of Tau phosphorylation in cells. Here we present results from a new approach based on native MS of intact Tau expressed in eukaryotic cells (Sf9). The extent of phosphorylation is heterogeneous, up to ∼20 phosphates per molecule distributed over 51 sites. The medium phosphorylated fraction Pm showed overall occupancies of ∼8 Pi (± 5) with a bell-shaped distribution; the highly phosphorylated fraction Ph had 14 Pi (± 6). The distribution of sites was highly asymmetric (with 71% of all P-sites in the C-terminal half of Tau). All sites were on Ser or Thr residues, but none were on Tyr. Other known posttranslational modifications were near or below our detection limit (e.g. acetylation, ubiquitination). These findings suggest that normal cellular Tau shows a remarkably high extent of phosphorylation, whereas other modifications are nearly absent. This implies that abnormal phosphorylations at certain sites may not affect the extent of phosphorylation significantly and do not represent hyperphosphorylation. By implication, the pathological aggregation of Tau is not likely a consequence of high phosphorylation.
Collapse
Affiliation(s)
- Friedel Drepper
- Group of Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Jacek Biernat
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany
| | - Senthilvelrajan Kaniyappan
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Helmut E Meyer
- Medical Proteome Center, Ruhr-University Bochum, Bochum, Germany; Department of Biomedical Research, Leibniz-Institute for Analytical Sciences (ISAS), Dortmund, Germany
| | - Eva Maria Mandelkow
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany; CAESAR Research Center, Bonn, Germany
| | - Bettina Warscheid
- Group of Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| | - Eckhard Mandelkow
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany; CAESAR Research Center, Bonn, Germany.
| |
Collapse
|
47
|
Colnaghi L, Rondelli D, Muzi-Falconi M, Sertic S. Tau and DNA Damage in Neurodegeneration. Brain Sci 2020; 10:E946. [PMID: 33297375 PMCID: PMC7762255 DOI: 10.3390/brainsci10120946] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are a family of incurable conditions. Among them, Alzheimer's disease and tauopathies are the most common. Pathological features of these two disorders are synaptic loss, neuronal cell death and increased DNA damage. A key pathological protein for the onset and progression of the conditions is the protein tau, a microtubule-binding protein highly expressed in neurons and encoded by the MAPT (microtubule-associated protein tau) gene. Tau is predominantly a cytosolic protein that interacts with numerous other proteins and molecules. Recent findings, however, have highlighted new and unexpected roles for tau in the nucleus of neuronal cells. This review summarizes the functions of tau in the metabolism of DNA, describing them in the context of the disorders.
Collapse
Affiliation(s)
- Luca Colnaghi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Negri 2, 20156 Milan, Italy
| | - Diego Rondelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy; (D.R.); (M.M.-F.)
| |
Collapse
|
48
|
Advani VM, Ivanov P. Stress granule subtypes: an emerging link to neurodegeneration. Cell Mol Life Sci 2020; 77:4827-4845. [PMID: 32500266 PMCID: PMC7668291 DOI: 10.1007/s00018-020-03565-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Stress Granules (SGs) are membraneless cytoplasmic RNA granules, which contain translationally stalled mRNAs, associated translation initiation factors and multiple RNA-binding proteins (RBPs). They are formed in response to various stresses and contribute to reprogramming of cellular metabolism to aid cell survival. Because of their cytoprotective nature, association with translation regulation and cell signaling, SGs are an essential component of the integrated stress response pathway, a complex adaptive program central to stress management. Recent advances in SG biology unambiguously demonstrate that SGs are heterogeneous in their RNA and protein content leading to the idea that various SG subtypes exist. These SG variants are formed in cell type- and stress-specific manners and differ in their composition, dynamics of assembly and disassembly, and contribution to cell viability. As aberrant SG dynamics contribute to the formation of pathological persistent SGs that are implicated in neurodegenerative diseases, the biology of different SG subtypes may be directly implicated in neurodegeneration. Here, we will discuss mechanisms of SG formation, their subtypes, and potential contribution to health and disease.
Collapse
Affiliation(s)
- Vivek M Advani
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Harvard Initiative for RNA Medicine, Boston, MA, USA.
| |
Collapse
|
49
|
Alyenbaawi H, Allison WT, Mok SA. Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects. Biomolecules 2020; 10:E1487. [PMID: 33121065 PMCID: PMC7692808 DOI: 10.3390/biom10111487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
The accumulation of tau protein in the form of filamentous aggregates is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). These dementias share traumatic brain injury (TBI) as a prominent risk factor. Tau aggregates can transfer between cells and tissues in a "prion-like" manner, where they initiate the templated misfolding of normal tau molecules. This enables the spread of tau pathology to distinct parts of the brain. The evidence that tauopathies spread via prion-like mechanisms is considerable, but work detailing the mechanisms of spread has mostly used in vitro platforms that cannot fully reveal the tissue-level vectors or etiology of progression. We review these issues and then briefly use TBI and CTE as a case study to illustrate aspects of tauopathy that warrant further attention in vivo. These include seizures and sleep/wake disturbances, emphasizing the urgent need for improved animal models. Dissecting these mechanisms of tauopathy progression continues to provide fresh inspiration for the design of diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hadeel Alyenbaawi
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Laboratories, Majmaah University, Majmaah 11952, Saudi Arabia
| | - W. Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sue-Ann Mok
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
50
|
Perea JR, Bolós M, Avila J. Microglia in Alzheimer's Disease in the Context of Tau Pathology. Biomolecules 2020; 10:biom10101439. [PMID: 33066368 PMCID: PMC7602223 DOI: 10.3390/biom10101439] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
Microglia are the cells that comprise the innate immune system in the brain. First described more than a century ago, these cells were initially assigned a secondary role in the central nervous system (CNS) with respect to the protagonists, neurons. However, the latest advances have revealed the complexity and importance of microglia in neurodegenerative conditions such as Alzheimer’s disease (AD), the most common form of dementia associated with aging. This pathology is characterized by the accumulation of amyloid-β peptide (Aβ), which forms senile plaques in the neocortex, as well as by the aggregation of hyperphosphorylated tau protein, a process that leads to the development of neurofibrillary tangles (NFTs). Over the past few years, efforts have been focused on studying the interaction between Aβ and microglia, together with the ability of the latter to decrease the levels of this peptide. Given that most clinical trials following this strategy have failed, current endeavors focus on deciphering the molecular mechanisms that trigger the tau-induced inflammatory response of microglia. In this review, we summarize the most recent studies on the physiological and pathological functions of tau protein and microglia. In addition, we analyze the impact of microglial AD-risk genes (APOE, TREM2, and CD33) in tau pathology, and we discuss the role of extracellular soluble tau in neuroinflammation.
Collapse
Affiliation(s)
- Juan Ramón Perea
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 1 Nicolás Cabrera, 28049 Madrid, Spain; (J.R.P.); (M.B.)
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), 5 Valderrebollo, 28031 Madrid, Spain
| | - Marta Bolós
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 1 Nicolás Cabrera, 28049 Madrid, Spain; (J.R.P.); (M.B.)
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), 5 Valderrebollo, 28031 Madrid, Spain
| | - Jesús Avila
- Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 1 Nicolás Cabrera, 28049 Madrid, Spain; (J.R.P.); (M.B.)
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), 5 Valderrebollo, 28031 Madrid, Spain
- Correspondence: ; Tel.:+34-196-4564
| |
Collapse
|