1
|
Hu R, Ma Q, Kong Y, Wang Z, Xu M, Chen X, Su Y, Xiao T, He Q, Wang X, Xu W, Yang Y, Wang X, Li X, Liu Y, Chen S, Zhao R, Guo M, Wang G, Li W. A Compound Screen Based on Isogenic hESC-Derived β Cell Reveals an Inhibitor Targeting ZnT8-Mediated Zinc Transportation to Protect Pancreatic β Cell from Stress-Induced Cell Death. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413161. [PMID: 40192532 PMCID: PMC12120731 DOI: 10.1002/advs.202413161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/07/2025] [Indexed: 06/01/2025]
Abstract
Pancreatic β cell loss by cellular stress contributes to diabetes pathogenesis. Nevertheless, the fundamental mechanism of cellular stress regulation remains elusive. Here, it is found that elevated zinc transportation causes excessive cellular stress in pancreatic β cells in diabetes. With gene-edited human embryonic stem cell-derived β cells (SC-β cells) and human primary islets, the results reveal that elevated zinc transportation initiates the integrated stress response (ISR), and ultimately leads to β cell death. By contrary, genetic abolishment of zinc transportation shields β cells from exacerbated endoplasmic reticulum stress (ER stress) and concurrent ISR. To target excessive zinc transportation with a chemical inhibitor, an isogenic SC-β cells based drug-screening platform is established. Surprisingly, independent of its traditional role as protein synthesis inhibitor at a high-dose (10 µm), low-dose (25 nm) anisomycin significantly inhibits zinc transportation and effectively prevents β cell loss. Remarkably, in vivo administration of anisomycin in mice demonstrates protective effects on β cells and prevents type 2 diabetes induced by high-fat diet. Overall, elevated zinc transportation is identified as a crucial driver of β cell loss and low-dose anisomycin as a potential therapeutic molecule for diabetes.
Collapse
Affiliation(s)
- Rui Hu
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Qing Ma
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Yunhui Kong
- Institute of Modern BiologyNanjing UniversityNanjing20018China
| | - Zhaoyue Wang
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Minglu Xu
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Xiangyi Chen
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Yajuan Su
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Tinghui Xiao
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Qing He
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Xuan Wang
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Wenjun Xu
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Yiling Yang
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Xushu Wang
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Xiaobo Li
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Yanfang Liu
- Department of PathologyChanghai HospitalNavy Medical UniversityShanghai200433China
| | - Shuangshuang Chen
- Institute of Translational MedicineShanghai UniversityShanghai200444China
| | - Rui Zhao
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Meng Guo
- National Key Laboratory of Medical Immunology and Institute of ImmunologyNavy Medical UniversityShanghai200433China
| | - Gaowei Wang
- Institute of Modern BiologyNanjing UniversityNanjing20018China
| | - Weida Li
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| |
Collapse
|
2
|
Huang Y, Flentke GR, Rivera OC, Saini N, Mooney SM, Smith SM. Alcohol Exposure Induces Nucleolar Stress and Apoptosis in Mouse Neural Stem Cells and Late-Term Fetal Brain. Cells 2024; 13:440. [PMID: 38474404 PMCID: PMC10931382 DOI: 10.3390/cells13050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Prenatal alcohol exposure (PAE) is a leading cause of neurodevelopmental disability through its induction of neuronal growth dysfunction through incompletely understood mechanisms. Ribosome biogenesis regulates cell cycle progression through p53 and the nucleolar cell stress response. Whether those processes are targeted by alcohol is unknown. Pregnant C57BL/6J mice received 3 g alcohol/kg daily at E8.5-E17.5. Transcriptome sequencing was performed on the E17.5 fetal cortex. Additionally, primary neural stem cells (NSCs) were isolated from the E14.5 cerebral cortex and exposed to alcohol to evaluate nucleolar stress and p53/MDM2 signaling. Alcohol suppressed KEGG pathways involving ribosome biogenesis (rRNA synthesis/processing and ribosomal proteins) and genes that are mechanistic in ribosomopathies (Polr1d, Rpl11; Rpl35; Nhp2); this was accompanied by nucleolar dissolution and p53 stabilization. In primary NSCs, alcohol reduced rRNA synthesis, caused nucleolar loss, suppressed proliferation, stabilized nuclear p53, and caused apoptosis that was prevented by dominant-negative p53 and MDM2 overexpression. Alcohol's actions were dose-dependent and rapid, and rRNA synthesis was suppressed between 30 and 60 min following alcohol exposure. The alcohol-mediated deficits in ribosomal protein expression were correlated with fetal brain weight reductions. This is the first report describing that pharmacologically relevant alcohol levels suppress ribosome biogenesis, induce nucleolar stress in neuronal populations, and involve the ribosomal/MDM2/p53 pathway to cause growth arrest and apoptosis. This represents a novel mechanism of alcohol-mediated neuronal damage.
Collapse
Affiliation(s)
- Yanping Huang
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - George R. Flentke
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Olivia C. Rivera
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Nipun Saini
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Sandra M. Mooney
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Susan M. Smith
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
3
|
Hu R, Chen X, Su Q, Wang Z, Wang X, Gong M, Xu M, Le R, Gao Y, Dai P, Zhang ZN, Shao L, Li W. ISR inhibition reverses pancreatic β-cell failure in Wolfram syndrome models. Cell Death Differ 2024; 31:322-334. [PMID: 38321214 PMCID: PMC10923889 DOI: 10.1038/s41418-024-01258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Pancreatic β-cell failure by WFS1 deficiency is manifested in individuals with wolfram syndrome (WS). The lack of a suitable human model in WS has impeded progress in the development of new treatments. Here, human pluripotent stem cell derived pancreatic islets (SC-islets) harboring WFS1 deficiency and mouse model of β cell specific Wfs1 knockout were applied to model β-cell failure in WS. We charted a high-resolution roadmap with single-cell RNA-seq (scRNA-seq) to investigate pathogenesis for WS β-cell failure, revealing two distinct cellular fates along pseudotime trajectory: maturation and stress branches. WFS1 deficiency disrupted β-cell fate trajectory toward maturation and directed it towards stress trajectory, ultimately leading to β-cell failure. Notably, further investigation of the stress trajectory identified activated integrated stress response (ISR) as a crucial mechanism underlying WS β-cell failure, characterized by aberrant eIF2 signaling in WFS1-deficient SC-islets, along with elevated expression of genes in regulating stress granule formation. Significantly, we demonstrated that ISRIB, an ISR inhibitor, efficiently reversed β-cell failure in WFS1-deficient SC-islets. We further validated therapeutic efficacy in vivo with β-cell specific Wfs1 knockout mice. Altogether, our study provides novel insights into WS pathogenesis and offers a strategy targeting ISR to treat WS diabetes.
Collapse
Affiliation(s)
- Rui Hu
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiangyi Chen
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiang Su
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhaoyue Wang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xushu Wang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Mengting Gong
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Minglu Xu
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yawei Gao
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Peng Dai
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhen-Ning Zhang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Li Shao
- Department of VIP Clinic, Shanghai East Hospital, Tongji University School of Medicine, No. 1800 Yuntai Road, Pudong District, Shanghai, 200123, China.
| | - Weida Li
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Reg-Verse Therapeutics (Shanghai) Co. Ltd., Shanghai, 200120, China.
| |
Collapse
|
4
|
Liu L, Lu L, Qiu M, Han N, Dai S, Shi S, He S, Zhang J, Yan Q, Chen S. Comprehensive modular analyses of scar subtypes illuminate underlying molecular mechanisms and potential therapeutic targets. Int Wound J 2024; 21:e14384. [PMID: 37697692 PMCID: PMC10784627 DOI: 10.1111/iwj.14384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
Pathological scarring resulting from traumas and wounds, such as hypertrophic scars and keloids, pose significant aesthetic, functional and psychological challenges. This study provides a comprehensive transcriptomic analysis of these conditions, aiming to illuminate underlying molecular mechanisms and potential therapeutic targets. We employed a co-expression and module analysis tool to identify significant gene clusters associated with distinct pathophysiological processes and mechanisms, notably lipid metabolism, sebum production, cellular energy metabolism and skin barrier function. This examination yielded critical insights into several skin conditions including folliculitis, skin fibrosis, fibrosarcoma and congenital ichthyosis. Particular attention was paid to Module Cluster (MCluster) 3, encompassing genes like BLK, TRPV1 and GABRD, all displaying high expression and potential implications in immune modulation. Preliminary immunohistochemistry validation supported these findings, showing elevated expression of these genes in non-fibrotic samples rich in immune activity. The complex interplay of different cell types in scar formation, such as fibroblasts, myofibroblasts, keratinocytes and mast cells, was also explored, revealing promising therapeutic strategies. This study underscores the promise of targeted gene therapy for pathological scars, paving the way for more personalised therapeutic approaches. The results necessitate further research to fully ascertain the roles of these identified genes and pathways in skin disease pathogenesis and potential therapeutics. Nonetheless, our work forms a strong foundation for a new era of personalised medicine for patients suffering from pathological scarring.
Collapse
Affiliation(s)
- Liang Liu
- College of Life SciencesZhejiang UniversityHangzhouChina
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouChina
| | - Lantian Lu
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaAustralia
| | - Min Qiu
- Hangzhou Neoantigen Therapeutics Co., LtdHangzhouChina
| | - Ning Han
- Hangzhou AI‐Nano Therapeutics Co., Ltd.HangzhouChina
| | - Shijie Dai
- School of Life SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Shuiping Shi
- Hangzhou Neoantigen Therapeutics Co., LtdHangzhouChina
| | - Shanshan He
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Jing Zhang
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Qingfeng Yan
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Shuqing Chen
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
5
|
Zhang X, Kumar A, Sathe AA, Mootha VV, Xing C. Transcriptomic meta-analysis reveals ERRα-mediated oxidative phosphorylation is downregulated in Fuchs' endothelial corneal dystrophy. PLoS One 2023; 18:e0295542. [PMID: 38096202 PMCID: PMC10721014 DOI: 10.1371/journal.pone.0295542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Late-onset Fuchs' endothelial corneal dystrophy (FECD) is a degenerative disease of cornea and the leading indication for corneal transplantation. Genetically, FECD patients can be categorized as with (RE+) or without (RE-) the CTG trinucleotide repeat expansion in the transcription factor 4 gene. The molecular mechanisms underlying FECD remain unclear, though there are plausible pathogenic models proposed for RE+ FECD. METHOD In this study, we performed a meta-analysis on RNA sequencing datasets of FECD corneal endothelium including 3 RE+ datasets and 2 RE- datasets, aiming to compare the transcriptomic profiles of RE+ and RE- FECD. Gene differential expression analysis, co-expression networks analysis, and pathway analysis were conducted. RESULTS There was a striking similarity between RE+ and RE- transcriptomes. There were 1,184 genes significantly upregulated and 1,018 genes significantly downregulated in both RE+ and RE- cases. Pathway analysis identified multiple biological processes significantly enriched in both-mitochondrial functions, energy-related processes, ER-nucleus signaling pathway, demethylation, and RNA splicing were negatively enriched, whereas small GTPase mediated signaling, actin-filament processes, extracellular matrix organization, stem cell differentiation, and neutrophil mediated immunity were positively enriched. The translational initiation process was downregulated in the RE+ transcriptomes. Gene co-expression analysis identified modules with relatively distinct biological processes enriched including downregulation of mitochondrial respiratory chain complex assembly. The majority of oxidative phosphorylation (OXPHOS) subunit genes, as well as their upstream regulator gene estrogen-related receptor alpha (ESRRA), encoding ERRα, were downregulated in both RE+ and RE- cases, and the expression level of ESRRA was correlated with that of OXPHOS subunit genes. CONCLUSION Meta-analysis increased the power of detecting differentially expressed genes. Integrating differential expression analysis with co-expression analysis helped understand the underlying molecular mechanisms. FECD RE+ and RE- transcriptomic profiles are much alike with the hallmark of downregulation of genes in pathways related to ERRα-mediated OXPHOS.
Collapse
Affiliation(s)
- Xunzhi Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Adwait A. Sathe
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - V. Vinod Mootha
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
6
|
Zare Ashrafi F, Akhtarkhavari T, Fattahi Z, Asadnezhad M, Beheshtian M, Arzhangi S, Najmabadi H, Kahrizi K. Emerging Epidemiological Data on Rare Intellectual Disability Syndromes from Analyzing the Data of a Large Iranian Cohort. ARCHIVES OF IRANIAN MEDICINE 2023; 26:186-197. [PMID: 38301078 PMCID: PMC10685746 DOI: 10.34172/aim.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/25/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Intellectual disability (ID) is a genetically heterogeneous condition, and so far, 1679 human genes have been identified for this phenotype. Countries with a high rate of parental consanguinity, such as Iran, provide an excellent opportunity to identify the remaining novel ID genes, especially those with an autosomal recessive (AR) mode of inheritance. This study aimed to investigate the most prevalent ID genes identified via next-generation sequencing (NGS) in a large ID cohort at the Genetics Research Center (GRC) of the University of Social Welfare and Rehabilitation Sciences. METHODS First, we surveyed the epidemiological data of 619 of 1295 families in our ID cohort, who referred to the Genetics Research Center from all over the country between 2004 and 2021 for genetic investigation via the NGS pipeline. We then compared our data with those of several prominent studies conducted in consanguineous countries. Data analysis, including cohort data extraction, categorization, and comparison, was performed using the R program version 4.1.2. RESULTS We categorized the most common ID genes that were mutated in more than two families into 17 categories. The most common syndromic ID in our cohort was AP4 deficiency syndrome, and the most common non-syndromic autosomal recessive intellectual disability (ARID) gene was ASPM. We identified two unrelated families for the 36 ID genes. We found 14 genes in common between our cohort and the Arab and Pakistani groups, of which three genes (AP4M1, AP4S1, and ADGRG1) were repeated more than once. CONCLUSION To date, there has been no comprehensive targeted NGS platform for the detection of ID genes in our country. Due to the large sample size of our study, our data may provide the initial step toward designing an indigenously targeted NGS platform for the diagnosis of ID, especially common ARID in our population.
Collapse
Affiliation(s)
- Farzane Zare Ashrafi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Tara Akhtarkhavari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Asadnezhad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
7
|
Fauntleroy-Love KD, Wilson TE, Padem N, Golomb MR. A 2-Year-Old Child with Alazami Syndrome with Newly Reported Findings of Immune Deficiency, Periventricular Nodular Heterotopia, and Stroke; Broadening the Phenotype of Alazami. Child Neurol Open 2023; 10:2329048X231190784. [PMID: 37529055 PMCID: PMC10388622 DOI: 10.1177/2329048x231190784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023] Open
Abstract
Alazami syndrome is a rare autosomal recessive neurodevelopmental disorder due to loss-of-function variants in the La ribonucleoprotein 7 (LARP7) gene. Children with Alazami syndrome are most often affected by a combination of primordial dwarfism, intellectual disability, and distinctive facial features. Previous cases have been primarily found in consanguineous families from the Middle East, Asia, and North Africa. We present a 21-month-old Caucasian male from the Midwest United States with nonconsanguineous parents who presented with frequently reported findings of unusual facial features, poor growth, cardiac and genitourinary findings, and developmental delay; less-frequently reported findings, including transient erythroblastopenia of childhood (TEC) and immune deficiency; and never-before reported findings of periventricular nodular heterotopia and stroke. He developed stroke during a hospitalization for Hemophilus influenzae meningitis. The possible contributions of LARP7 to TEC, immune deficiency, brain malformation, and stroke are discussed. Guidelines for the care of Alazami patients are proposed.
Collapse
Affiliation(s)
- Kristin D. Fauntleroy-Love
- Division of Developmental Pediatrics, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Pediatric Neurology, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Theodore E. Wilson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nurcicek Padem
- Division of Pediatric Pulmonology, Allergy-Immunology, and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Meredith R. Golomb
- Division of Pediatric Neurology, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Komarasamy TV, Adnan NAA, James W, Balasubramaniam VRMT. Zika Virus Neuropathogenesis: The Different Brain Cells, Host Factors and Mechanisms Involved. Front Immunol 2022; 13:773191. [PMID: 35371036 PMCID: PMC8966389 DOI: 10.3389/fimmu.2022.773191] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV), despite being discovered six decades earlier, became a major health concern only after an epidemic in French Polynesia and an increase in the number of microcephaly cases in Brazil. Substantial evidence has been found to support the link between ZIKV and neurological complications in infants. The virus targets various cells in the brain, including radial glial cells, neural progenitor cells (NPCs), astrocytes, microglial and glioblastoma stem cells. It affects the brain cells by exploiting different mechanisms, mainly through apoptosis and cell cycle dysregulation. The modulation of host immune response and the inflammatory process has also been demonstrated to play a critical role in ZIKV induced neurological complications. In addition to that, different ZIKV strains have exhibited specific neurotropism and unique molecular mechanisms. This review provides a comprehensive and up-to-date overview of ZIKV-induced neuroimmunopathogenesis by dissecting its main target cells in the brain, and the underlying cellular and molecular mechanisms. We highlighted the roles of the different ZIKV host factors and how they exploit specific host factors through various mechanisms. Overall, it covers key components for understanding the crosstalk between ZIKV and the brain.
Collapse
Affiliation(s)
- Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Nur Amelia Azreen Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Vinod R M T Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
9
|
Ren S, Wang X, Qin J, Mu Q, Ye S, Zhang Y, Yu W, Guo J. Altered gut microbiota correlates with cognitive impairment in Chinese children with Down's syndrome. Eur Child Adolesc Psychiatry 2022; 31:189-202. [PMID: 33999314 PMCID: PMC8816804 DOI: 10.1007/s00787-021-01799-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Down's syndrome (DS), a common chromosomal disease caused by chromosome 21 trisomy, is the main cause of cognitive impairment in children worldwide. Emerging evidence suggests that the microbiota-gut-brain axis plays a potential role in cognitive impairment. However, data regarding gut microbiota alterations in DS patients remain scarce, especially data from children with DS. This case-control study was conducted to explore the gut microbiota composition in Chinese DS children. Additionally, the potential association between gut microbiota and cognitive function in DS was evaluated. Microbiota communities in the feces of 15 DS subjects and 15 matched controls were investigated using high-throughput Illumina Miseq sequencing targeting the V3-V4 region of 16S rRNA gene. The relationships between gut microbiota composition and DS cognitive function scores were analyzed. The structure and richness of the gut microbiota differed between DS patients and healthy controls. The abundance of Acidaminococcaceae was decreased in DS patients. Moreover, the Kyoto Encyclopedia of Genes and Genomes analysis showed increased modules related to peptidases and pyrimidine metabolism. Overall, we confirmed that gut microbiota alterations occurred in Chinese patients with DS. Additionally, the fecal microbiota was closely related to DS cognitive impairment. Larger cohorts are needed to confirm these findings and to clarify the mechanisms involved. Elucidating these novel findings in the field of microbiota-gut-brain axis will provide a promising strategy for future studies of DS cognitive impairment.
Collapse
Affiliation(s)
- Shimeng Ren
- Department of Pediatrics, Peking University People's Hospital, Beijing, 100044, China
| | - Xinjuan Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, 100044, China
| | - Qing Mu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China
| | - Shuai Ye
- Department of Pediatrics, Peking University People's Hospital, Beijing, 100044, China
| | - Yang Zhang
- Department of Pediatrics, Peking University People's Hospital, Beijing, 100044, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China.
| | - Jingzhu Guo
- Department of Pediatrics, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
10
|
Briese M, Sendtner M. Keeping the balance: The noncoding RNA 7SK as a master regulator for neuron development and function. Bioessays 2021; 43:e2100092. [PMID: 34050960 DOI: 10.1002/bies.202100092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The noncoding RNA 7SK is a critical regulator of transcription by adjusting the activity of the kinase complex P-TEFb. Release of P-TEFb from 7SK stimulates transcription at many genes by promoting productive elongation. Conversely, P-TEFb sequestration by 7SK inhibits transcription. Recent studies have shown that 7SK functions are particularly important for neuron development and maintenance and it can thus be hypothesized that 7SK is at the center of many signaling pathways contributing to neuron function. 7SK activates neuronal gene expression programs that are key for terminal differentiation of neurons. Proteomics studies revealed a complex protein interactome of 7SK that includes several RNA-binding proteins. Some of these novel 7SK subcomplexes exert non-canonical cytosolic functions in neurons by regulating axonal mRNA transport and fine-tuning spliceosome production in response to transcription alterations. Thus, a picture emerges according to which 7SK acts as a multi-functional RNA scaffold that is integral for neuron homeostasis.
Collapse
Affiliation(s)
- Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
11
|
Zhang S, Chen Y, Wang Y, Zhang P, Chen G, Zhou Y. Insights Into Translatomics in the Nervous System. Front Genet 2021; 11:599548. [PMID: 33408739 PMCID: PMC7779767 DOI: 10.3389/fgene.2020.599548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Most neurological disorders are caused by abnormal gene translation. Generally, dysregulation of elements involved in the translational process disrupts homeostasis in neurons and neuroglia. Better understanding of how the gene translation process occurs requires detailed analysis of transcriptomic and proteomic profile data. However, a lack of strictly direct correlations between mRNA and protein levels limits translational investigation by combining transcriptomic and proteomic profiling. The much better correlation between proteins and translated mRNAs than total mRNAs in abundance and insufficiently sensitive proteomics approach promote the requirement of advances in translatomics technology. Translatomics which capture and sequence the mRNAs associated with ribosomes has been effective in identifying translational changes by genetics or projections, ribosome stalling, local translation, and transcript isoforms in the nervous system. Here, we place emphasis on the main three translatomics methods currently used to profile mRNAs attached to ribosome-nascent chain complex (RNC-mRNA). Their prominent applications in neurological diseases including glioma, neuropathic pain, depression, fragile X syndrome (FXS), neurodegenerative disorders are outlined. The content reviewed here expands our understanding on the contributions of aberrant translation to neurological disease development.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Hasler D, Meister G, Fischer U. Stabilize and connect: the role of LARP7 in nuclear non-coding RNA metabolism. RNA Biol 2020; 18:290-303. [PMID: 32401147 DOI: 10.1080/15476286.2020.1767952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
La and La-related proteins (LARPs) are characterized by a common RNA interaction platform termed the La module. This structural hallmark allows LARPs to pervade various aspects of RNA biology. The metazoan LARP7 protein binds to the 7SK RNA as part of a 7SK small nuclear ribonucleoprotein (7SK snRNP), which inhibits the transcriptional activity of RNA polymerase II (Pol II). Additionally, recent findings revealed unanticipated roles of LARP7 in the assembly of other RNPs, as well as in the modification, processing and cellular transport of RNA molecules. Reduced levels of functional LARP7 have been linked to cancer and Alazami syndrome, two seemingly unrelated human diseases characterized either by hyperproliferation or growth retardation. Here, we review the intricate regulatory networks centered on LARP7 and assess how malfunction of these networks may relate to the etiology of LARP7-linked diseases.
Collapse
Affiliation(s)
- Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
The subcellular localization of bHLH transcription factor TCF4 is mediated by multiple nuclear localization and nuclear export signals. Sci Rep 2019; 9:15629. [PMID: 31666615 PMCID: PMC6821749 DOI: 10.1038/s41598-019-52239-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023] Open
Abstract
Transcription factor 4 (TCF4) is a class I basic helix-loop-helix (bHLH) transcription factor which regulates the neurogenesis and specialization of cells. TCF4 also plays an important role in the development and functioning of the immune system. Additionally, TCF4 regulates the development of Sertoli cells and pontine nucleus neurons, myogenesis, melanogenesis and epithelial-mesenchymal transition. The ability of transcription factors to fulfil their function often depends on their intracellular trafficking between the nucleus and cytoplasm of the cell. The trafficking is regulated by specific sequences, i.e. the nuclear localization signal (NLS) and the nuclear export signal (NES). We performed research on the TCF4 trafficking regulating sequences by mapping and detailed characterization of motifs potentially acting as the NLS or NES. We demonstrate that the bHLH domain of TCF4 contains an NLS that overlaps two NESs. The results of in silico analyses show high conservation of the sequences, especially in the area of the NLS and NESs. This high conservation is not only between mouse and human TCF4, but also between TCF4 and other mammalian E proteins, indicating the importance of these sequences for the functioning of bHLH class I transcription factors.
Collapse
|
14
|
Wang H, Tan S, Dong J, Zhang J, Yao B, Xu X, Hao Y, Yu C, Zhou H, Zhao L, Peng R. iTRAQ quantitatively proteomic analysis of the hippocampus in a rat model of accumulative microwave-induced cognitive impairment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17248-17260. [PMID: 31012066 DOI: 10.1007/s11356-019-04873-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Central nervous system is sensitive and vulnerable to microwave radiation. Numerous studies have reported that microwave could damage cognitive functions, such as impairment of learning and memory ability. However, the biological effects and mechanisms of accumulative microwave radiation on cognitive functions were remained unexplored. In this study, we analyzed differential expressed proteins in rat models of microwave-induced cognitive impairment by iTRAQ high-resolution proteomic method. Rats were exposed to 2.856 GHz microwave (S band), followed by 1.5 GHz microwave exposure (L band) both at an average power density of 10 mW/cm2 (SL10 group). Sham-exposed (control group), 2.856 GHz microwave-exposed (S10 group), or 1.5 GHz microwave-exposed (L10 group) rats were used as controls. Hippocampus was isolated, and total proteins were extracted at 7 days after exposure, for screening differential expressed proteins. We found that accumulative microwave exposure induced 391 differential expressed proteins, including 9 downregulated and 382 upregulated proteins. The results of GO analysis suggested that the biological processes of these proteins were related to the adhesion, translation, brain development, learning and memory, neurogenesis, and so on. The cellular components mainly focused on the extracellular exosome, membrane, and mitochondria. The molecular function contained the protein complex binding, protein binding, and ubiquitin-protein transferase activity. And, the KEGG pathways mainly included the synaptic vesicle cycle, long-term potentiation, long-term depression, glutamatergic synapse, and calcium signaling pathways. Importantly, accumulative exposure (SL10 group) caused more differential expressed proteins than single exposure (S10 group or L10 group). In conclusion, 10 mW/cm2 S or L band microwave induced numerous differential expressed proteins in the hippocampus, while accumulative exposure evoked strongest responses. These proteins were closely associated with cognitive functions and were sensitive to microwave.
Collapse
Affiliation(s)
- Hui Wang
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Shengzhi Tan
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Ji Dong
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Jing Zhang
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Binwei Yao
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Xinping Xu
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Yanhui Hao
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Chao Yu
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hongmei Zhou
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Li Zhao
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Ruiyun Peng
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
15
|
Hetman M, Slomnicki LP. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J Neurochem 2018; 148:325-347. [PMID: 30144322 DOI: 10.1111/jnc.14576] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
Development of the nervous system is carried out by complex gene expression programs that are regulated at both transcriptional and translational level. In addition, quality control mechanisms such as the TP53-mediated apoptosis or neuronal activity-stimulated survival ensure successful neurogenesis and formation of functional circuitries. In the nucleolus, production of ribosomes is essential for protein synthesis. In addition, it participates in chromatin organization and regulates the TP53 pathway via the ribosomal stress response. Its tight regulation is required for maintenance of genomic integrity. Mutations in several ribosomal components and trans-acting ribosomal biogenesis factors result in neurodevelopmental syndromes that present with microcephaly, autism, intellectual deficits and/or progressive neurodegeneration. Furthermore, ribosomal biogenesis is perturbed by exogenous factors that disrupt neurodevelopment including alcohol or Zika virus. In this review, we present recent literature that argues for a role of dysregulated ribosomal biogenesis in pathogenesis of various neurodevelopmental syndromes. We also discuss potential mechanisms through which such dysregulation may lead to cellular pathologies of the developing nervous system including insufficient proliferation and/or loss of neuroprogenitors cells, apoptosis of immature neurons, altered neuronal morphogenesis, and neurodegeneration.
Collapse
Affiliation(s)
- Michal Hetman
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA.,Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Lukasz P Slomnicki
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| |
Collapse
|
16
|
Scaturro P, Stukalov A, Haas DA, Cortese M, Draganova K, Płaszczyca A, Bartenschlager R, Götz M, Pichlmair A. An orthogonal proteomic survey uncovers novel Zika virus host factors. Nature 2018; 561:253-257. [PMID: 30177828 DOI: 10.1038/s41586-018-0484-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/20/2018] [Indexed: 11/09/2022]
Abstract
Zika virus (ZIKV) has recently emerged as a global health concern owing to its widespread diffusion and its association with severe neurological symptoms and microcephaly in newborns1. However, the molecular mechanisms that are responsible for the pathogenicity of ZIKV remain largely unknown. Here we use human neural progenitor cells and the neuronal cell line SK-N-BE2 in an integrated proteomics approach to characterize the cellular responses to viral infection at the proteome and phosphoproteome level, and use affinity proteomics to identify cellular targets of ZIKV proteins. Using this approach, we identify 386 ZIKV-interacting proteins, ZIKV-specific and pan-flaviviral activities as well as host factors with known functions in neuronal development, retinal defects and infertility. Moreover, our analysis identified 1,216 phosphorylation sites that are specifically up- or downregulated after ZIKV infection, indicating profound modulation of fundamental signalling pathways such as AKT, MAPK-ERK and ATM-ATR and thereby providing mechanistic insights into the proliferation arrest elicited by ZIKV infection. Functionally, our integrative study identifies ZIKV host-dependency factors and provides a comprehensive framework for a system-level understanding of ZIKV-induced perturbations at the levels of proteins and cellular pathways.
Collapse
Affiliation(s)
- Pietro Scaturro
- Max-Planck Institute of Biochemistry, Innate Immunity Laboratory, Martinsried, Germany. .,Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany.
| | - Alexey Stukalov
- Max-Planck Institute of Biochemistry, Innate Immunity Laboratory, Martinsried, Germany.,Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Darya A Haas
- Max-Planck Institute of Biochemistry, Innate Immunity Laboratory, Martinsried, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Kalina Draganova
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet, Munich, Germany
| | - Anna Płaszczyca
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet, Munich, Germany.,Synergy, Excellence Cluster for Systems Neurology, Biomedical Center, Ludwig-Maximilians-Universitaet, Munich, Germany
| | - Andreas Pichlmair
- Max-Planck Institute of Biochemistry, Innate Immunity Laboratory, Martinsried, Germany. .,Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany. .,German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
17
|
Slomnicki LP, Chung DH, Parker A, Hermann T, Boyd NL, Hetman M. Ribosomal stress and Tp53-mediated neuronal apoptosis in response to capsid protein of the Zika virus. Sci Rep 2017; 7:16652. [PMID: 29192272 PMCID: PMC5709411 DOI: 10.1038/s41598-017-16952-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
We report here that in rat and human neuroprogenitor cells as well as rat embryonic cortical neurons Zika virus (ZIKV) infection leads to ribosomal stress that is characterized by structural disruption of the nucleolus. The anti-nucleolar effects were most pronounced in postmitotic neurons. Moreover, in the latter system, nucleolar presence of ZIKV capsid protein (ZIKV-C) was associated with ribosomal stress and apoptosis. Deletion of 22 C-terminal residues of ZIKV-C prevented nucleolar localization, ribosomal stress and apoptosis. Consistent with a casual relationship between ZIKV-C-induced ribosomal stress and apoptosis, ZIKV-C-overexpressing neurons were protected by loss-of-function manipulations targeting the ribosomal stress effector Tp53 or knockdown of the ribosomal stress mediator RPL11. Finally, capsid protein of Dengue virus, but not West Nile virus, induced ribosomal stress and apoptosis. Thus, anti-nucleolar and pro-apoptotic effects of protein C are flavivirus-species specific. In the case of ZIKV, capsid protein-mediated ribosomal stress may contribute to neuronal death, neurodevelopmental disruption and microcephaly.
Collapse
Affiliation(s)
- Lukasz P Slomnicki
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Dong-Hoon Chung
- Center of Predictive Medicine and the Department of Microbiology & Immunology, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Austin Parker
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Taylor Hermann
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Nolan L Boyd
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA.
- Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky, 40292, USA.
| |
Collapse
|
18
|
Rebecca VW, Nicastri MC, McLaughlin N, Fennelly C, McAfee Q, Ronghe A, Nofal M, Lim CY, Witze E, Chude CI, Zhang G, Alicea GM, Piao S, Murugan S, Ojha R, Levi SM, Wei Z, Barber-Rotenberg JS, Murphy ME, Mills GB, Lu Y, Rabinowitz J, Marmorstein R, Liu Q, Liu S, Xu X, Herlyn M, Zoncu R, Brady DC, Speicher DW, Winkler JD, Amaravadi RK. A Unified Approach to Targeting the Lysosome's Degradative and Growth Signaling Roles. Cancer Discov 2017; 7:1266-1283. [PMID: 28899863 PMCID: PMC5833978 DOI: 10.1158/2159-8290.cd-17-0741] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 01/01/2023]
Abstract
Lysosomes serve dual roles in cancer metabolism, executing catabolic programs (i.e., autophagy and macropinocytosis) while promoting mTORC1-dependent anabolism. Antimalarial compounds such as chloroquine or quinacrine have been used as lysosomal inhibitors, but fail to inhibit mTOR signaling. Further, the molecular target of these agents has not been identified. We report a screen of novel dimeric antimalarials that identifies dimeric quinacrines (DQ) as potent anticancer compounds, which concurrently inhibit mTOR and autophagy. Central nitrogen methylation of the DQ linker enhances lysosomal localization and potency. An in situ photoaffinity pulldown identified palmitoyl-protein thioesterase 1 (PPT1) as the molecular target of DQ661. PPT1 inhibition concurrently impairs mTOR and lysosomal catabolism through the rapid accumulation of palmitoylated proteins. DQ661 inhibits the in vivo tumor growth of melanoma, pancreatic cancer, and colorectal cancer mouse models and can be safely combined with chemotherapy. Thus, lysosome-directed PPT1 inhibitors represent a new approach to concurrently targeting mTORC1 and lysosomal catabolism in cancer.Significance: This study identifies chemical features of dimeric compounds that increase their lysosomal specificity, and a new molecular target for these compounds, reclassifying these compounds as targeted therapies. Targeting PPT1 blocks mTOR signaling in a manner distinct from catalytic inhibitors, while concurrently inhibiting autophagy, thereby providing a new strategy for cancer therapy. Cancer Discov; 7(11); 1266-83. ©2017 AACR.See related commentary by Towers and Thorburn, p. 1218This article is highlighted in the In This Issue feature, p. 1201.
Collapse
Affiliation(s)
- Vito W Rebecca
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael C Nicastri
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Noel McLaughlin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Colin Fennelly
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Quentin McAfee
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amruta Ronghe
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania
| | - Michel Nofal
- Department of Chemistry and Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Chun-Yan Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California
| | - Eric Witze
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cynthia I Chude
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania
| | - Gretchen M Alicea
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania
| | - Shengfu Piao
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Rani Ojha
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samuel M Levi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Julie S Barber-Rotenberg
- Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maureen E Murphy
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joshua Rabinowitz
- Department of Chemistry and Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania
| | - Shujing Liu
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California
| | - Donita C Brady
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania
| | - Jeffrey D Winkler
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K Amaravadi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Maraia RJ, Mattijssen S, Cruz-Gallardo I, Conte MR. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. WILEY INTERDISCIPLINARY REVIEWS. RNA 2017; 8:10.1002/wrna.1430. [PMID: 28782243 PMCID: PMC5647580 DOI: 10.1002/wrna.1430] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Commissioned Corps, U.S. Public Health Service, Rockville, MD USA
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Isabel Cruz-Gallardo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| |
Collapse
|
20
|
The Intellectual Disability and Schizophrenia Associated Transcription Factor TCF4 Is Regulated by Neuronal Activity and Protein Kinase A. J Neurosci 2017; 37:10516-10527. [PMID: 28951451 DOI: 10.1523/jneurosci.1151-17.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/10/2017] [Accepted: 09/16/2017] [Indexed: 12/23/2022] Open
Abstract
Transcription factor 4 (TCF4 also known as ITF2 or E2-2) is a basic helix-loop-helix (bHLH) protein associated with Pitt-Hopkins syndrome, intellectual disability, and schizophrenia (SCZ). Here, we show that TCF4-dependent transcription in cortical neurons cultured from embryonic rats of both sexes is induced by neuronal activity via soluble adenylyl cyclase and protein kinase A (PKA) signaling. PKA phosphorylates TCF4 directly and a PKA phosphorylation site in TCF4 is necessary for its transcriptional activity in cultured neurons and in the developing brain in vivo We also demonstrate that Gadd45g (growth arrest and DNA damage inducible gamma) is a direct target of neuronal-activity-induced, TCF4-dependent transcriptional regulation and that TCF4 missense variations identified in SCZ patients alter the transcriptional activity of TCF4 in neurons. This study identifies a new role for TCF4 as a neuronal-activity-regulated transcription factor, offering a novel perspective on the association of TCF4 with cognitive disorders.SIGNIFICANCE STATEMENT The importance of the basic helix-loop-helix transcription factor transcription factor 4 (TCF4) in the nervous system is underlined by its association with common and rare cognitive disorders. In the current study, we show that TCF4-controlled transcription in primary cortical neurons is induced by neuronal activity and protein kinase A. Our results support the hypotheses that dysregulation of neuronal-activity-dependent signaling plays a significant part in the etiology of neuropsychiatric and neurodevelopmental disorders.
Collapse
|