1
|
Liu Y, Sundah NR, Ho NRY, Shen WX, Xu Y, Natalia A, Yu Z, Seet JE, Chan CW, Loh TP, Lim BY, Shao H. Bidirectional linkage of DNA barcodes for the multiplexed mapping of higher-order protein interactions in cells. Nat Biomed Eng 2024; 8:909-923. [PMID: 38898172 DOI: 10.1038/s41551-024-01225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/05/2024] [Indexed: 06/21/2024]
Abstract
Capturing the full complexity of the diverse hierarchical interactions in the protein interactome is challenging. Here we report a DNA-barcoding method for the multiplexed mapping of pairwise and higher-order protein interactions and their dynamics within cells. The method leverages antibodies conjugated with barcoded DNA strands that can bidirectionally hybridize and covalently link to linearize closely spaced interactions within individual 3D protein complexes, encoding and decoding the protein constituents and the interactions among them. By mapping protein interactions in cancer cells and normal cells, we found that tumour cells exhibit a larger diversity and abundance of protein complexes with higher-order interactions. In biopsies of human breast-cancer tissue, the method accurately identified the cancer subtype and revealed that higher-order protein interactions are associated with cancer aggressiveness.
Collapse
Affiliation(s)
- Yu Liu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Noah R Sundah
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Nicholas R Y Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Wan Xiang Shen
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yun Xu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Zhonglang Yu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Ju Ee Seet
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Ching Wan Chan
- Department of Surgery, National University Hospital, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tze Ping Loh
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Brian Y Lim
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
- Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore.
| | - Huilin Shao
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
2
|
Trotter VV, Shatsky M, Price MN, Juba TR, Zane GM, De León KB, Majumder ELW, Gui Q, Ali R, Wetmore KM, Kuehl JV, Arkin AP, Wall JD, Deutschbauer AM, Chandonia JM, Butland GP. Large-scale genetic characterization of the model sulfate-reducing bacterium, Desulfovibrio vulgaris Hildenborough. Front Microbiol 2023; 14:1095191. [PMID: 37065130 PMCID: PMC10102598 DOI: 10.3389/fmicb.2023.1095191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) are obligate anaerobes that can couple their growth to the reduction of sulfate. Despite the importance of SRB to global nutrient cycles and their damage to the petroleum industry, our molecular understanding of their physiology remains limited. To systematically provide new insights into SRB biology, we generated a randomly barcoded transposon mutant library in the model SRB Desulfovibrio vulgaris Hildenborough (DvH) and used this genome-wide resource to assay the importance of its genes under a range of metabolic and stress conditions. In addition to defining the essential gene set of DvH, we identified a conditional phenotype for 1,137 non-essential genes. Through examination of these conditional phenotypes, we were able to make a number of novel insights into our molecular understanding of DvH, including how this bacterium synthesizes vitamins. For example, we identified DVU0867 as an atypical L-aspartate decarboxylase required for the synthesis of pantothenic acid, provided the first experimental evidence that biotin synthesis in DvH occurs via a specialized acyl carrier protein and without methyl esters, and demonstrated that the uncharacterized dehydrogenase DVU0826:DVU0827 is necessary for the synthesis of pyridoxal phosphate. In addition, we used the mutant fitness data to identify genes involved in the assimilation of diverse nitrogen sources and gained insights into the mechanism of inhibition of chlorate and molybdate. Our large-scale fitness dataset and RB-TnSeq mutant library are community-wide resources that can be used to generate further testable hypotheses into the gene functions of this environmentally and industrially important group of bacteria.
Collapse
Affiliation(s)
- Valentine V. Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Maxim Shatsky
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Thomas R. Juba
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Grant M. Zane
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Kara B. De León
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Erica L.-W. Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Qin Gui
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Rida Ali
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kelly M. Wetmore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jennifer V. Kuehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - John-Marc Chandonia
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Gareth P. Butland
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
3
|
Andreyeva EN, Emelyanov AV, Nevil M, Sun L, Vershilova E, Hill CA, Keogh MC, Duronio RJ, Skoultchi AI, Fyodorov DV. Drosophila SUMM4 complex couples insulator function and DNA replication control. eLife 2022; 11:e81828. [PMID: 36458689 PMCID: PMC9917439 DOI: 10.7554/elife.81828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Asynchronous replication of chromosome domains during S phase is essential for eukaryotic genome function, but the mechanisms establishing which domains replicate early versus late in different cell types remain incompletely understood. Intercalary heterochromatin domains replicate very late in both diploid chromosomes of dividing cells and in endoreplicating polytene chromosomes where they are also underreplicated. Drosophila SNF2-related factor SUUR imparts locus-specific underreplication of polytene chromosomes. SUUR negatively regulates DNA replication fork progression; however, its mechanism of action remains obscure. Here, we developed a novel method termed MS-Enabled Rapid protein Complex Identification (MERCI) to isolate a stable stoichiometric native complex SUMM4 that comprises SUUR and a chromatin boundary protein Mod(Mdg4)-67.2. Mod(Mdg4) stimulates SUUR ATPase activity and is required for a normal spatiotemporal distribution of SUUR in vivo. SUUR and Mod(Mdg4)-67.2 together mediate the activities of gypsy insulator that prevent certain enhancer-promoter interactions and establish euchromatin-heterochromatin barriers in the genome. Furthermore, SuUR or mod(mdg4) mutations reverse underreplication of intercalary heterochromatin. Thus, SUMM4 can impart late replication of intercalary heterochromatin by attenuating the progression of replication forks through euchromatin/heterochromatin boundaries. Our findings implicate a SNF2 family ATP-dependent motor protein SUUR in the insulator function, reveal that DNA replication can be delayed by a chromatin barrier, and uncover a critical role for architectural proteins in replication control. They suggest a mechanism for the establishment of late replication that does not depend on an asynchronous firing of late replication origins.
Collapse
Affiliation(s)
- Evgeniya N Andreyeva
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | | | - Markus Nevil
- UNC-SPIRE, University of North CarolinaChapel HillUnited States
| | - Lu Sun
- EpiCypherDurhamUnited States
| | - Elena Vershilova
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Christina A Hill
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel HillChapel HillUnited States
| | | | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North CarolinaChapel HillUnited States
- Department of Biology, University of North CarolinaChapel HillUnited States
- Department of Genetics, University of North CarolinaChapel HillUnited States
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
4
|
Mehta D, Krahmer J, Uhrig RG. Closing the protein gap in plant chronobiology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1509-1522. [PMID: 33783885 DOI: 10.1111/tpj.15254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Our modern understanding of diel cell regulation in plants stems from foundational work in the late 1990s that analysed the dynamics of selected genes and mutants in Arabidopsis thaliana. The subsequent rise of transcriptomics technologies such as microarrays and RNA sequencing has substantially increased our understanding of anticipatory (circadian) and reactive (light- or dark-triggered) diel events in plants. However, it is also becoming clear that gene expression data fail to capture critical events in diel regulation that can only be explained by studying protein-level dynamics. Over the past decade, mass spectrometry technologies and quantitative proteomic workflows have significantly advanced, finally allowing scientists to characterise diel protein regulation at high throughput. Initial proteomic investigations suggest that the diel transcriptome and proteome generally lack synchrony and that the timing of daily regulatory events in plants is impacted by multiple levels of protein regulation (e.g., post-translational modifications [PTMs] and protein-protein interactions [PPIs]). Here, we highlight and summarise how the use of quantitative proteomics to elucidate diel plant cell regulation has advanced our understanding of these processes. We argue that this new understanding, coupled with the extraordinary developments in mass spectrometry technologies, demands greater focus on protein-level regulation of, and by, the circadian clock. This includes hitherto unexplored diel dynamics of protein turnover, PTMs, protein subcellular localisation and PPIs that can be masked by simple transcript- and protein-level changes. Finally, we propose new directions for how the latest advancements in quantitative proteomics can be utilised to answer outstanding questions in plant chronobiology.
Collapse
Affiliation(s)
- Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Johanna Krahmer
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
6
|
Zheng J, Chen X, Yang Y, Tan CSH, Tian R. Mass Spectrometry-Based Protein Complex Profiling in Time and Space. Anal Chem 2020; 93:598-619. [DOI: 10.1021/acs.analchem.0c04332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiangnan Zheng
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiong Chen
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Yang
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chris Soon Heng Tan
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
7
|
Pang CNI, Ballouz S, Weissberger D, Thibaut LM, Hamey JJ, Gillis J, Wilkins MR, Hart-Smith G. Analytical Guidelines for co-fractionation Mass Spectrometry Obtained through Global Profiling of Gold Standard Saccharomyces cerevisiae Protein Complexes. Mol Cell Proteomics 2020; 19:1876-1895. [PMID: 32817346 PMCID: PMC7664123 DOI: 10.1074/mcp.ra120.002154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/14/2020] [Indexed: 11/06/2022] Open
Abstract
Co-fractionation MS (CF-MS) is a technique with potential to characterize endogenous and unmanipulated protein complexes on an unprecedented scale. However this potential has been offset by a lack of guidelines for best-practice CF-MS data collection and analysis. To obtain such guidelines, this study thoroughly evaluates novel and published Saccharomyces cerevisiae CF-MS data sets using very high proteome coverage libraries of yeast gold standard complexes. A new method for identifying gold standard complexes in CF-MS data, Reference Complex Profiling, and the Extending 'Guilt-by-Association' by Degree (EGAD) R package are used for these evaluations, which are verified with concurrent analyses of published human data. By evaluating data collection designs, which involve fractionation of cell lysates, it is found that near-maximum recall of complexes can be achieved with fewer samples than published studies. Distributing sample collection across orthogonal fractionation methods, rather than a single high resolution data set, leads to particularly efficient recall. By evaluating 17 different similarity scoring metrics, which are central to CF-MS data analysis, it is found that two metrics rarely used in past CF-MS studies - Spearman and Kendall correlations - and the recently introduced Co-apex metric frequently maximize recall, whereas a popular metric-Euclidean distance-delivers poor recall. The common practice of integrating external genomic data into CF-MS data analysis is also evaluated, revealing that this practice may improve the precision and recall of known complexes but is generally unsuitable for predicting novel complexes in model organisms. If studying nonmodel organisms using orthologous genomic data, it is found that particular subsets of fractionation profiles (e.g. the lowest abundance quartile) should be excluded to minimize false discovery. These assessments are summarized in a series of universally applicable guidelines for precise, sensitive and efficient CF-MS studies of known complexes, and effective predictions of novel complexes for orthogonal experimental validation.
Collapse
Affiliation(s)
- Chi Nam Ignatius Pang
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sara Ballouz
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Loïc M Thibaut
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
| | - Joshua J Hamey
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jesse Gillis
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, USA
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Gene Hart-Smith
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia; Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Salas D, Stacey RG, Akinlaja M, Foster LJ. Next-generation Interactomics: Considerations for the Use of Co-elution to Measure Protein Interaction Networks. Mol Cell Proteomics 2020; 19:1-10. [PMID: 31792070 PMCID: PMC6944233 DOI: 10.1074/mcp.r119.001803] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/26/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding how proteins interact is crucial to understanding cellular processes. Among the available interactome mapping methods, co-elution stands out as a method that is simultaneous in nature and capable of identifying interactions between all the proteins detected in a sample. The general workflow in co-elution methods involves the mild extraction of protein complexes and their separation into several fractions, across which proteins bound together in the same complex will show similar co-elution profiles when analyzed appropriately. In this review we discuss the different separation, quantification and bioinformatic strategies used in co-elution studies, and the important considerations in designing these studies. The benefits of co-elution versus other methods makes it a valuable starting point when asking questions that involve the perturbation of the interactome.
Collapse
Affiliation(s)
- Daniela Salas
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - R Greg Stacey
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Mopelola Akinlaja
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Gain- and Loss-of-Function Screens Coupled to Next-Generation Sequencing for Antibiotic Mode of Action and Resistance Studies in Streptococcus pneumoniae. Antimicrob Agents Chemother 2019; 63:AAC.02381-18. [PMID: 30783004 DOI: 10.1128/aac.02381-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/08/2019] [Indexed: 12/23/2022] Open
Abstract
Two whole-genome screening approaches are described for studying the mode of action and the mechanisms of resistance to trimethoprim (TMP) in the Gram-positive Streptococcus pneumoniae The gain-of-function approach (Int-Seq) relies on a genomic library of DNA fragments integrated into a fucose-inducible cassette. The second approach, leading to both gain- and loss-of-function mutation, is based on chemical mutagenesis coupled to next-generation sequencing (Mut-Seq). Both approaches pointed at the drug target dihydrofolate reductase (DHFR) as a major resistance mechanism to TMP. Resistance was achieved by dhfr overexpression either through the addition of fucose (Int-Seq) or by mutations upstream of the gene (Mut-Seq). Three types of mutations increased expression by disrupting a predicted Rho-independent terminator upstream of dhfr Known and novel DHFR mutations were also detected by Mut-Seq, and these were functionally validated for TMP resistance. The two approaches also suggested that an increase in the metabolic flux from purine synthesis to GTP and then to folate can modulate the susceptibility to TMP. Finally, we provide evidence for a novel role of the ABC transporter PatAB in TMP susceptibility. Our genomic screens highlighted novel aspects on the mode of action and mechanisms of resistance to antibiotics.
Collapse
|
10
|
Discovery of new RNA classes and global RNA-binding proteins. Curr Opin Microbiol 2017; 39:152-160. [PMID: 29179042 DOI: 10.1016/j.mib.2017.11.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022]
Abstract
The identification of new RNA functions and the functional annotation of transcripts in genomes represent exciting yet challenging endeavours of modern biology. Crucial insights into the biological roles of RNA molecules can be gained from the identification of the proteins with which they form specific complexes. Modern interactome techniques permit to profile RNA-protein interactions in a genome-wide manner and identify new RNA classes associated with globally acting RNA-binding proteins. Applied to a variety of organisms, these methods are already revolutionising our understanding of RNA-mediated biological processes. Here, we focus on one such approach-Gradient sequencing or Grad-seq-which has recently guided the discovery of protein ProQ and its associated small RNAs as a new domain of post-transcriptional control in bacteria.
Collapse
|
11
|
Drew K, Müller CL, Bonneau R, Marcotte EM. Identifying direct contacts between protein complex subunits from their conditional dependence in proteomics datasets. PLoS Comput Biol 2017; 13:e1005625. [PMID: 29023445 PMCID: PMC5638211 DOI: 10.1371/journal.pcbi.1005625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022] Open
Abstract
Determining the three dimensional arrangement of proteins in a complex is highly beneficial for uncovering mechanistic function and interpreting genetic variation in coding genes comprising protein complexes. There are several methods for determining co-complex interactions between proteins, among them co-fractionation / mass spectrometry (CF-MS), but it remains difficult to identify directly contacting subunits within a multi-protein complex. Correlation analysis of CF-MS profiles shows promise in detecting protein complexes as a whole but is limited in its ability to infer direct physical contacts among proteins in sub-complexes. To identify direct protein-protein contacts within human protein complexes we learn a sparse conditional dependency graph from approximately 3,000 CF-MS experiments on human cell lines. We show substantial performance gains in estimating direct interactions compared to correlation analysis on a benchmark of large protein complexes with solved three-dimensional structures. We demonstrate the method’s value in determining the three dimensional arrangement of proteins by making predictions for complexes without known structure (the exocyst and tRNA multi-synthetase complex) and by establishing evidence for the structural position of a recently discovered component of the core human EKC/KEOPS complex, GON7/C14ORF142, providing a more complete 3D model of the complex. Direct contact prediction provides easily calculable additional structural information for large-scale protein complex mapping studies and should be broadly applicable across organisms as more CF-MS datasets become available. Proteins physically associate into complexes in order to carry out the essential functions of life. Knowing how proteins are physically arranged three dimensionally in these complexes provides clues towards how they work. In principle, the associations between proteins in large-scale proteomics datasets should often reflect direct physical contacts between proteins in each complex. Here, we describe a statistical method to discover which subunits within complexes directly contact each other based on their co-purification behavior in published co-fractionation mass spectrometry datasets. Within our predictions, we recover many known protein-protein contacts, serving to validate our method, as well as unknown contacts that can inform future studies of these complexes. Specifically, we observe confident contacts between subunits within the exocyst and tRNA multi-synthetase complexes, two complexes that have incomplete structural information. Using our method, we further provide structural information for a previously missing subunit of the EKC/KEOPS complex. We anticipate that this method and the associated predictions will help to better inform our understanding of the functions and structures of diverse protein complexes.
Collapse
Affiliation(s)
- Kevin Drew
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States of America
- * E-mail: (KD); (CLM); (EMM)
| | - Christian L. Müller
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY, United States of America
- * E-mail: (KD); (CLM); (EMM)
| | - Richard Bonneau
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY, United States of America
- New York University Center for Genomics and Systems Biology, New York University, New York, NY, United States of America
| | - Edward M. Marcotte
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States of America
- * E-mail: (KD); (CLM); (EMM)
| |
Collapse
|