1
|
Maharjan S, Kirk RS, Lawton SP, Walker AJ. Human growth factor-mediated signalling through lipid rafts regulates stem cell proliferation, development and survival of Schistosoma mansoni. Open Biol 2024; 14:230262. [PMID: 38195062 PMCID: PMC10776228 DOI: 10.1098/rsob.230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024] Open
Abstract
Although the mechanisms by which schistosomes grow and develop in humans are poorly defined, their unique outer tegument layer, which interfaces with host blood, is considered vital to homeostasis of the parasite. Here, we investigated the importance of tegument lipid rafts to the biology of Schistosoma mansoni in the context of host-parasite interactions. We demonstrate the temporal clustering of lipid rafts in response to human epidermal growth factor (EGF) during early somule development, concomitant with the localization of anteriorly orientated EGF receptors (EGFRs) and insulin receptors, mapped using fluorescent EGF/insulin ligand. Methyl-β-cyclodextrin (MβCD)-mediated depletion of cholesterol from lipid rafts abrogated the EGFR/IR binding at the parasite surface and led to modulation of protein kinase C, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase and Akt signalling pathways within the parasite. Furthermore, MβCD-mediated lipid raft disruption, and blockade of EGFRs using canertinib, profoundly reduced somule motility and survival, and attenuated stem cell proliferation and somule growth and development particularly to the fast-growing liver stage. These findings provide a novel paradigm for schistosome development and vitality in the host, driven through host-parasite interactions at the tegument, that might be exploitable for developing innovative therapeutic approaches to combat human schistosomiasis.
Collapse
Affiliation(s)
- Shradha Maharjan
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Scott P. Lawton
- Centre for Epidemiology and Planetary Health, SRUC School of Veterinary Medicine, Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
2
|
Peruzzu D, Boussadia Z, Fratini F, Spadaro F, Bertuccini L, Sanchez M, Carollo M, Matarrese P, Falchi M, Iosi F, Raggi C, Parolini I, Carè A, Sargiacomo M, Gagliardi MC, Fecchi K. Inhibition of cholesterol transport impairs Cav-1 trafficking and small extracellular vesicles secretion, promoting amphisome formation in melanoma cells. Traffic 2023; 24:76-94. [PMID: 36519961 DOI: 10.1111/tra.12878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Caveolin-1 (Cav-1) is a fundamental constituent of caveolae, whose functionality and structure are strictly dependent on cholesterol. In this work the U18666A inhibitor was used to study the role of cholesterol transport in the endosomal degradative-secretory system in a metastatic human melanoma cell line (WM266-4). We found that U18666A induces a shift of Cav-1 from the plasma membrane to the endolysosomal compartment, which is involved, through Multi Vesicular Bodies (MVBs), in the formation and release of small extracellular vesicles (sEVs). Moreover, this inhibitor induces an increase in the production of sEVs with chemical-physical characteristics similar to control sEVs but with a different protein composition (lower expression of Cav-1 and increase of LC3II) and reduced transfer capacity on target cells. Furthermore, we determined that U18666A affects mitochondrial function and also cancer cell aggressive features, such as migration and invasion. Taken together, these results indicate that the blockage of cholesterol transport, determining the internalization of Cav-1, may modify sEVs secretory pathways through an increased fusion between autophagosomes and MVBs to form amphisome, which in turn fuses with the plasma membrane releasing a heterogeneous population of sEVs to maintain homeostasis and ensure correct cellular functionality.
Collapse
Affiliation(s)
- Daniela Peruzzu
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Zaira Boussadia
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Fratini
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Spadaro
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Bertuccini
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Sanchez
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Carollo
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National Center for HIV/AIDS Research, Istituto Superiore di Sanità, Rome
| | - Francesca Iosi
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Raggi
- National Center for the control and evaluation of Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Isabella Parolini
- Department Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Sargiacomo
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Katia Fecchi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
3
|
Dimitrova A, Sferra G, Scippa GS, Trupiano D. Network-Based Analysis to Identify Hub Genes Involved in Spatial Root Response to Mechanical Constrains. Cells 2022; 11:3121. [PMID: 36231084 PMCID: PMC9564363 DOI: 10.3390/cells11193121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies report that the asymmetric response, observed along the main poplar woody bent root axis, was strongly related to both the type of mechanical forces (compression or tension) and the intensity of force displacement. Despite a large number of targets that have been proposed to trigger this asymmetry, an understanding of the comprehensive and synergistic effect of the antistress spatially related pathways is still lacking. Recent progress in the bioinformatics area has the potential to fill these gaps through the use of in silico studies, able to investigate biological functions and pathway overlaps, and to identify promising targets in plant responses. Presently, for the first time, a comprehensive network-based analysis of proteomic signatures was used to identify functions and pivotal genes involved in the coordinated signalling pathways and molecular activities that asymmetrically modulate the response of different bent poplar root sectors and sides. To accomplish this aim, 66 candidate proteins, differentially represented across the poplar bent root sides and sectors, were grouped according to their abundance profile patterns and mapped, together with their first neighbours, on a high-confidence set of interactions from STRING to compose specific cluster-related subnetworks (I-VI). Successively, all subnetworks were explored by a functional gene set enrichment analysis to identify enriched gene ontology terms. Subnetworks were then analysed to identify the genes that are strongly interconnected with other genes (hub gene) and, thus, those that have a pivotal role in the bent root asymmetric response. The analysis revealed novel information regarding the response coordination, communication, and potential signalling pathways asymmetrically activated along the main root axis, delegated mainly to Ca2+ (for new lateral root formation) and ROS (for gravitropic response and lignin accumulation) signatures. Furthermore, some of the data indicate that the concave side of the bent sector, where the mechanical forces are most intense, communicates to the other (neighbour and distant) sectors, inducing spatially related strategies to ensure water uptake and accompanying cell modification. This information could be critical for understanding how plants maintain and improve their structural integrity-whenever and wherever it is necessary-in natural mechanical stress conditions.
Collapse
Affiliation(s)
| | | | | | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|
4
|
Maier AG, van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front Cell Infect Microbiol 2022; 12:984049. [PMID: 36189362 PMCID: PMC9522969 DOI: 10.3389/fcimb.2022.984049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites are unicellular eukaryotic pathogens that develop through a complex lifecycle involving two hosts, an anopheline mosquito and a vertebrate host. Throughout this lifecycle, the parasite encounters widely differing conditions and survives in distinct ways, from an intracellular lifestyle in the vertebrate host to exclusively extracellular stages in the mosquito. Although the parasite relies on cholesterol for its growth, the parasite has an ambiguous relationship with cholesterol: cholesterol is required for invasion of host cells by the parasite, including hepatocytes and erythrocytes, and for the development of the parasites in those cells. However, the parasite is unable to produce cholesterol itself and appears to remove cholesterol actively from its own plasma membrane, thereby setting up a cholesterol gradient inside the infected host erythrocyte. Overall a picture emerges in which the parasite relies on host cholesterol and carefully controls its transport. Here, we describe the role of cholesterol at the different lifecycle stages of the parasites.
Collapse
Affiliation(s)
- Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra ACT, Australia
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| |
Collapse
|
5
|
Grasso F, Fratini F, Albanese TG, Mochi S, Ciardo M, Pace T, Ponzi M, Pizzi E, Olivieri A. Identification and preliminary characterization of Plasmodium falciparum proteins secreted upon gamete formation. Sci Rep 2022; 12:9592. [PMID: 35689013 PMCID: PMC9187623 DOI: 10.1038/s41598-022-13415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria long-term elimination depends on parasite transmission control. Plasmodium sexual stage maturation in the mosquito, including egress from the host erythrocyte, is one of the prime targets for transmission-blocking interventions. This work aims to identify candidate molecules potentially involved in gamete emergence from the host erythrocyte, as novel transmission blocking targets. We analyzed by quantitative mass spectrometry the proteins released/secreted by purified Plasmodium falciparum gametocytes upon induction of gametogenesis. The proteome obtained showed a good overlap (74%) with the one previously characterized in similar conditions from gametocytes of the rodent malaria parasite P. berghei. Four candidates were selected based on comparative analysis of their abundance values in released vs total gametocyte proteome. We also characterized the P. falciparum orthologue of the microgamete surface protein (MiGS), a marker of male gametocyte secretory vesicles in murine models of malaria. The findings of this study reveal that all the selected candidate proteins are expressed in both genders and localize to vesicle-like structures that respond to gametogenesis stimuli. This result, together with the fact that the selected proteins are released during gamete emergence in both Plasmodium species, makes them interesting candidates for future functional studies to investigate their potential role in the gametogenesis process.
Collapse
Affiliation(s)
- Felicia Grasso
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Federica Fratini
- Servizio Grandi Strumentazioni E Core Facilities, Istituto Superiore Di Sanità, Rome, Italy
| | | | - Stefania Mochi
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Mariagrazia Ciardo
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Tomasino Pace
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Marta Ponzi
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Elisabetta Pizzi
- Servizio Grandi Strumentazioni E Core Facilities, Istituto Superiore Di Sanità, Rome, Italy
| | - Anna Olivieri
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy.
| |
Collapse
|
6
|
Structural organization of erythrocyte membrane microdomains and their relation with malaria susceptibility. Commun Biol 2021; 4:1375. [PMID: 34880413 PMCID: PMC8655059 DOI: 10.1038/s42003-021-02900-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022] Open
Abstract
Cholesterol-rich microdomains are membrane compartments characterized by specific lipid and protein composition. These dynamic assemblies are involved in several biological processes, including infection by intracellular pathogens. This work provides a comprehensive analysis of the composition of human erythrocyte membrane microdomains. Based on their floating properties, we also categorized the microdomain-associated proteins into clusters. Interestingly, erythrocyte microdomains include the vast majority of the proteins known to be involved in invasion by the malaria parasite Plasmodium falciparum. We show here that the Ecto-ADP-ribosyltransferase 4 (ART4) and Aquaporin 1 (AQP1), found within one specific cluster, containing the essential host determinant CD55, are recruited to the site of parasite entry and then internalized to the newly formed parasitophorous vacuole membrane. By generating null erythroid cell lines, we showed that one of these proteins, ART4, plays a role in P. falciparum invasion. We also found that genetic variants in both ART4 and AQP1 are associated with susceptibility to the disease in a malaria-endemic population.
Collapse
|
7
|
Ressurreição M, van Ooij C. Lipid transport proteins in malaria, from Plasmodium parasites to their hosts. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159047. [PMID: 34461309 DOI: 10.1016/j.bbalip.2021.159047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
Eukaryotic unicellular pathogens from the genus Plasmodium are the etiological agents of malaria, a disease that persists over a wide range of vertebrate species, including humans. During its dynamic lifecycle, survival in the different hosts depends on the parasite's ability to establish a suitable environmental milieu. To achieve this, specific host processes are exploited to support optimal growth, including extensive modifications to the infected host cell. These modifications include the formation of novel membranous structures, which are induced by the parasite. Consequently, to maintain a finely tuned and dynamic lipid environment, the organisation and distribution of lipids to different cell sites likely requires specialised lipid transfer proteins (LTPs). Indeed, several parasite and host-derived LTPs have been identified and shown to be essential at specific stages. Here we describe the roles of LTPs in parasite development and adaptation to its host including how the latest studies are profiting from the improved genetic, lipidomic and imaging toolkits available to study Plasmodium parasites. Lastly, a list of predicted Plasmodium LTPs is provided to encourage research in this field.
Collapse
Affiliation(s)
- Margarida Ressurreição
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| |
Collapse
|
8
|
Soeiro MDNC, Vergoten G, Bailly C. Mechanism of action of glycyrrhizin against Plasmodium falciparum. Mem Inst Oswaldo Cruz 2021; 116:e210084. [PMID: 34431854 PMCID: PMC8384254 DOI: 10.1590/0074-02760210084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/26/2021] [Indexed: 11/21/2022] Open
Abstract
Extracts of the plant Glycyrrhiza glabra (licorice) are used in traditional medicine to treat malaria. The main active components are the saponin glycyrrhizin (GLR) and its active metabolite glycyrrhetinic acid (GA) which both display activities against Plasmodium falciparum. We have identified three main mechanisms at the origin of their anti-plasmodial activity: (i) drug-induced disorganisation of membrane lipid rafts, (ii) blockade of the alarmin protein HMGB1 and (iii) potential inhibition of the detoxifying enzyme glyoxalase 1 (GLO-1) considered as an important drug target for malaria. Our analysis shed light on the mechanism of action of GLR against P. falciparum.
Collapse
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, Institut de Chimie Pharmaceutique Albert Lespagnol, Faculté de Pharmacie, Lille, France
| | | |
Collapse
|
9
|
Grasso F, Mochi S, Fratini F, Olivieri A, Currà C, Siden Kiamos I, Deligianni E, Birago C, Picci L, Pizzi E, Pace T, Ponzi M. A Comprehensive Gender-related Secretome of Plasmodium berghei Sexual Stages. Mol Cell Proteomics 2020; 19:1986-1997. [PMID: 32883804 PMCID: PMC7710150 DOI: 10.1074/mcp.ra120.002212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 11/06/2022] Open
Abstract
Plasmodium, the malaria parasite, undergoes a complex life cycle alternating between a vertebrate host and a mosquito vector of the genus Anopheles In red blood cells of the vertebrate host, Plasmodium multiplies asexually or differentiates into gamete precursors, the male and female gametocytes, responsible for parasite transmission. Sexual stage maturation occurs in the midgut of the mosquito vector, where male and female gametes egress from the host erythrocytes to fuse and form a zygote. Gamete egress entails the successive rupture of two membranes surrounding the parasite, the parasitophorous vacuole membrane and the erythrocyte plasma membrane. In this study, we used the rodent model parasite Plasmodium berghei to design a label-free quantitative proteomic approach aimed at identifying gender-related proteins differentially released/secreted by purified mature gametocytes when activated to form gametes. We compared the abundance of molecules secreted by wild type gametocytes of both genders with that of a transgenic line defective in male gamete maturation and egress. This enabled us to provide a comprehensive data set of egress-related molecules and their gender specificity. Using specific antibodies, we validated eleven candidate molecules, predicted as either gender-specific or common to both male and female gametocytes. All of them localize to punctuate, vesicle-like structures that relocate to cell periphery upon activation, but only three of them localize to the gametocyte-specific secretory vesicles named osmiophilic bodies. Our results confirm that the egress process involves a tightly coordinated secretory apparatus that includes different types of vesicles and may put the basis for functional studies aimed at designing novel transmission-blocking molecules.
Collapse
Affiliation(s)
- Felicia Grasso
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Stefania Mochi
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Federica Fratini
- Istituto Superiore di Sanità, Servizio Grandi Strumentazioni e Core Facilities, Rome, Italy
| | - Anna Olivieri
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Chiara Currà
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Inga Siden Kiamos
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Cecilia Birago
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Leonardo Picci
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Elisabetta Pizzi
- Istituto Superiore di Sanità, Servizio Grandi Strumentazioni e Core Facilities, Rome, Italy
| | - Tomasino Pace
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Marta Ponzi
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| |
Collapse
|
10
|
Proteomic analysis of plasma exosomes from Cystic Echinococcosis patients provides in vivo support for distinct immune response profiles in active vs inactive infection and suggests potential biomarkers. PLoS Negl Trop Dis 2020; 14:e0008586. [PMID: 33017416 PMCID: PMC7535053 DOI: 10.1371/journal.pntd.0008586] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
The reference diagnostic method of human abdominal Cystic Echinococcosis (CE) is imaging, particularly ultrasound, supported by serology when imaging is inconclusive. However, current diagnostic tools are neither optimal nor widely available. The availability of a test detecting circulating biomarkers would considerably improve CE diagnosis and cyst staging (active vs inactive), as well as treatments and follow-up of patients. Exosomes are extracellular vesicles involved in intercellular communication, including immune system responses, and are a recognized source of biomarkers. With the aim of identifying potential biomarkers, plasma pools from patients infected by active or inactive CE, as well as from control subjects, were processed to isolate exosomes for proteomic label-free quantitative analysis. Results were statistically processed and subjected to bioinformatics analysis to define distinct features associated with parasite viability. First, a few parasite proteins were identified that were specifically associated with either active or inactive CE, which represent potential biomarkers to be validated in further studies. Second, numerous identified proteins of human origin were common to active and inactive CE, confirming an overlap of several immune response pathways. However, a subset of human proteins specific to either active or inactive CE, and central in the respective protein-protein interaction networks, were identified. These include the Src family kinases Src and Lyn, and the immune-suppressive cytokine TGF-β in active CE, and Cdc42 in inactive CE. The Src and Lyn Kinases were confirmed as potential markers of active CE in totally independent plasma pools. In addition, insights were obtained on immune response profiles: largely consistent with previous evidence, our observations hint to a Th1/Th2/regulatory immune environment in patients with active CE and a Th1/inflammatory environment with a component of the wound healing response in the presence of inactive CE. Of note, our results were obtained for the first time from the analysis of samples obtained in vivo from a well-characterized, large cohort of human subjects.
Collapse
|
11
|
Pedini F, De Luca G, Felicetti F, Puglisi R, Boe A, Arasi MB, Fratini F, Mattia G, Spada M, Caporali S, Biffoni M, Giuliani A, Carè A, Felli N. Joint action of miR-126 and MAPK/PI3K inhibitors against metastatic melanoma. Mol Oncol 2019; 13:1836-1854. [PMID: 31115969 PMCID: PMC6717748 DOI: 10.1002/1878-0261.12506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 02/03/2023] Open
Abstract
Emerging data support the rationale of combined therapies in advanced melanoma. Specifically, the combined use of drugs with different mechanisms of action can reduce the probability of selecting resistant clones. To identify agents active against melanoma cells, we screened a library of 349 anti‐cancer compounds, currently in clinical use or trials, and selected PIK‐75, an inhibitor of the phosphatidylinositol 3‐kinase/protein kinase B (PI3K/AKT) pathway, as the ‘top active’ drug. PIK‐75 was then used alone or in combination with vemurafenib, the first BRAF inhibitor approved for patients with melanoma harboring BRAF mutations. We identified a combined dose of PIK‐75 and vemurafenib that inhibited both the PI3K/AKT and mitogen‐activated protein kinase pathways, thereby overcoming any compensatory activation. In view of the important tumor suppressor function induced by restoring expression of microRNA (miR)‐126 in metastatic melanoma cells, we examined whether miR‐126 has a synergistic role when included in a triple combination alongside PIK‐75 and vemurafenib. We found that enforced expression of miR‐126 (which alone can reduce tumorigenicity) significantly increased PIK‐75 activity when used as either a single agent or in combination with vemurafenib. Interestingly, PIK‐75 proved to be effective against early passage cell lines derived from patients’ biopsies and on melanoma cell lines resistant to either vemurafenib or dabrafenib, thus suggesting that it potentially has the capability to overcome drug resistance. Finally, the synergistic role played by miR‐126 in combination with vemurafenib and/or PIK‐75 was demonstrated in vivo in mouse xenograft models, in which tumor growth inhibition was associated with increased apoptosis. These results not only show the efficacy of PIK‐75 and vemurafenib co‐treatment but also indicate that restoration of miR‐126 expression in advanced melanoma can enhance their antitumor activity, which may possibly allow dose reduction to decrease adverse events without reducing the therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Pedini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Felicetti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Puglisi
- Center for Gender Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Boe
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Gianfranco Mattia
- Center for Gender Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nadia Felli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
12
|
Raggi C, Diociaiuti M, Caracciolo G, Fratini F, Fantozzi L, Piccaro G, Fecchi K, Pizzi E, Marano G, Ciaffoni F, Bravo E, Fiani ML, Sargiacomo M. Caveolin-1 Endows Order in Cholesterol-Rich Detergent Resistant Membranes. Biomolecules 2019; 9:biom9070287. [PMID: 31319608 PMCID: PMC6680987 DOI: 10.3390/biom9070287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 01/14/2023] Open
Abstract
Cholesterol-enriched functional portions of plasma membranes, such as caveolae and rafts, were isolated from lungs of wild-type (WT) and caveolin-1 knockout (Cav-1 KO) mice within detergent resistant membranes (DRMs). To gain insight into their molecular composition we performed proteomic and lipid analysis on WT and Cav-1 KO-DRMs that showed predicted variations of proteomic profiles and negligible differences in lipid composition, while Langmuir monolayer technique and small and wide-angle X-ray scattering (SAXS-WAXS) were here originally introduced to study DRMs biophysical association state. Langmuir analysis of Cav-1 containing DRMs displayed an isotherm with a clear-cut feature, suggesting the coexistence of the liquid-ordered (Lo) phase typical of the raft structure, namely “cholesterol-rich Lo phase”, with a phase fully missing in Cav-1 KO that we named “caveolin-induced Lo phase”. Furthermore, while the sole lipid component of both WT and KO-DRMs showed qualitatively similar isotherm configuration, the reinsertion of recombinant Cav-1 into WT-DRMs lipids restored the WT-DRM pattern. X-ray diffraction results confirmed that Cav-1 causes the formation of a “caveolin-induced Lo phase”, as suggested by Langmuir experiments, allowing us to speculate about a possible structural model. These results show that the unique molecular link between Cav-1 and cholesterol can spur functional order in a lipid bilayer strictly derived from biological sources.
Collapse
Affiliation(s)
- Carla Raggi
- National Center for Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marco Diociaiuti
- National Center for Rare Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, "La Sapienza" University, 00161 Rome, Italy
| | - Federica Fratini
- Scientific Service for Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Luca Fantozzi
- Present address : ARPALAZIO, Via Salaria per L'Aquila 6/8, 02100 Rieti, Italy
| | | | - Katia Fecchi
- Reference Centre for Gender Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Elisabetta Pizzi
- Scientific Service for Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giuseppe Marano
- Reference Centre for Gender Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Fiorella Ciaffoni
- Scientific Service for Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Elena Bravo
- Scientific Service for Research Coordination and Support, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maria L Fiani
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Massimo Sargiacomo
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|