1
|
Liongue C, Ward AC. Cytokine Receptor-like Factor 3 (CRLF3) and Its Emerging Roles in Neurobiology, Hematopoiesis and Related Human Diseases. Int J Mol Sci 2025; 26:3498. [PMID: 40331935 PMCID: PMC12026705 DOI: 10.3390/ijms26083498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 05/08/2025] Open
Abstract
Cytokine receptor-like factor 3 (CRLF3) has an extended evolutionary history, which has been conserved across metazoan species. It consists of several structural elements, notably including a fibronectin type 3 (FBNIII) domain containing a WSXWS motif that is synonymous with so-called class I cytokine receptors present throughout bilaterial species, and a proposed spl1 and ryanodine receptor (SPRY) domain that represents a widespread protein-protein interaction module. The function of CRLF3 has remained enigmatic, but several recent investigations have revealed critical insights into its biological roles. These studies suggest that CRLF3 principally functions in neural and hematopoietic cells, where it plays critical and diverse roles in the development and function of specific cell populations. Disruption of CRLF3 has also been associated with several human diseases, mainly associated with these same lineages but also including malignancy. The mechanisms by which CRLF3 exerts these diverse effects remain uncertain, although a number of potential options have emerged.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia;
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia;
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
2
|
Lu J, Feng Y, Yu D, Li H, Li W, Chen H, Chen L. A review of nuclear Dbf2-related kinase 1 (NDR1) protein interaction as promising new target for cancer therapy. Int J Biol Macromol 2024; 259:129188. [PMID: 38184050 DOI: 10.1016/j.ijbiomac.2023.129188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Nuclear Dbf2-related kinase 1 (NDR1) is a nuclear Dbf2-related (NDR) protein kinase family member, which regulates cell functions and participates in cell proliferation and differentiation through kinase activity. NDR1 regulates physiological functions by interacting with different proteins. Protein-protein interactions (PPIs) are crucial for regulating biological processes and controlling cell fate, and as a result, it is beneficial to study the actions of PPIs to elucidate the pathological mechanism of diseases. The previous studies also show that the expression of NDR1 is deregulated in numerous human cancer samples and it needs the context-specific targeting strategies for NDR1. Thus, a comprehensive understanding of the direct interaction between NDR1 and varieties of proteins may provide new insights into cancer therapies. In this review, we summarize recent studies of NDR1 in solid tumors, such as prostate cancer and breast cancer, and explore the mechanism of action of PPIs of NDR1 in tumors.
Collapse
Affiliation(s)
- Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanjun Feng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Low-Calle AM, Ghoneima H, Ortega N, Cuibus AM, Katz C, Prives C, Prywes R. A Non-Canonical Hippo Pathway Represses the Expression of ΔNp63. Mol Cell Biol 2024; 44:27-42. [PMID: 38270135 PMCID: PMC10829837 DOI: 10.1080/10985549.2023.2292037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
The p63 transcription factor, a member of the p53 family, plays an oncogenic role in squamous cell carcinomas, while in breast cancers its expression is often repressed. In the canonical conserved Hippo pathway, known to play a complex role in regulating growth of cancer cells, protein kinases MST1/2 and LATS1/2 act sequentially to phosphorylate and inhibit the YAP/TAZ transcription factors. We found that in MCF10A mammary epithelial cells as well as in squamous and breast cancer cell lines, expression of ΔNp63 RNA and protein is strongly repressed by inhibition of the Hippo pathway protein kinases. While MST1/2 and LATS1 are required for p63 expression, the next step of the pathway, namely phosphorylation and degradation of the YAP/TAZ transcriptional activators is not required for p63 repression. This suggests that regulation of p63 expression occurs by a noncanonical version of the Hippo pathway. We identified similarly regulated genes, suggesting the broader importance of this pathway. Interestingly, lowering p63 expression lead to increased YAP protein levels, indicating crosstalk of the YAP/TAZ-independent and -dependent branches of the Hippo pathway. These results, which reveal the intersection of the Hippo and p63 pathways, may prove useful for the control of their activities in cancer cells.
Collapse
Affiliation(s)
- Ana Maria Low-Calle
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Hana Ghoneima
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Nicholas Ortega
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Adriana M. Cuibus
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Chen Katz
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Ron Prywes
- Department of Biological Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Ma X, Mandausch FJ, Wu Y, Sahoo VK, Ma W, Leoni G, Hostiuc M, Wintgens JP, Qiu J, Kannaiyan N, Rossner MJ, Wehr MC. Comprehensive split TEV based protein-protein interaction screening reveals TAOK2 as a key modulator of Hippo signalling to limit growth. Cell Signal 2024; 113:110917. [PMID: 37813295 DOI: 10.1016/j.cellsig.2023.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
The conserved Hippo signalling pathway plays a crucial role in tumour formation by limiting tissue growth and proliferation. At the core of this pathway are tumour suppressor kinases STK3/4 and LATS1/2, which limit the activity of the oncogene YAP1, the primary downstream effector. Here, we employed a split TEV-based protein-protein interaction screen to assess the physical interactions among 28 key Hippo pathway components and potential upstream modulators. This screen led us to the discovery of TAOK2 as pivotal modulator of Hippo signalling, as it binds to the pathway's core kinases, STK3/4 and LATS1/2, and leads to their phosphorylation. Specifically, our findings revealed that TAOK2 binds to and phosphorylates LATS1, resulting in the reduction of YAP1 phosphorylation and subsequent transcription of oncogenes. Consequently, this decrease led to a decrease in cell proliferation and migration. Interestingly, a correlation was observed between reduced TAOK2 expression and decreased patient survival time in certain types of human cancers, including lung and kidney cancer as well as glioma. Moreover, in cellular models corresponding to these cancer types the downregulation of TAOK2 by CRISPR inhibition led to reduced phosphorylation of LATS1 and increased proliferation rates, supporting TAOK2's role as tumour suppressor gene. By contrast, overexpression of TAOK2 in these cellular models lead to increased phospho-LATS1 but reduced cell proliferation. As TAOK2 is a druggable kinase, targeting TAOK2 could serve as an attractive pharmacological approach to modulate cell growth and potentially offer strategies for combating cancer.
Collapse
Affiliation(s)
- Xiao Ma
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Fiona J Mandausch
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Vivek K Sahoo
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany
| | - Wenbo Ma
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Giovanna Leoni
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany
| | - Madalina Hostiuc
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Jan P Wintgens
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Jiajun Qiu
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | | | - Moritz J Rossner
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany; Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Michael C Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany; Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany.
| |
Collapse
|
5
|
Elkholi IE, Boulais J, Thibault MP, Phan HD, Robert A, Lai LB, Faubert D, Smith MJ, Gopalan V, Côté JF. Mapping the MOB proteins' proximity network reveals a unique interaction between human MOB3C and the RNase P complex. J Biol Chem 2023; 299:105123. [PMID: 37536630 PMCID: PMC10480535 DOI: 10.1016/j.jbc.2023.105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023] Open
Abstract
Distinct functions mediated by members of the monopolar spindle-one-binder (MOB) family of proteins remain elusive beyond the evolutionarily conserved and well-established roles of MOB1 (MOB1A/B) in regulating tissue homeostasis within the Hippo pathway. Since MOB proteins are adaptors, understanding how they engage in protein-protein interactions and help assemble complexes is essential to define the full scope of their biological functions. To address this, we undertook a proximity-dependent biotin identification approach to define the interactomes of all seven human MOB proteins in HeLa and human embryonic kidney 293 cell lines. We uncovered >200 interactions, of which at least 70% are unreported on BioGrid. The generated dataset reliably recalled the bona fide interactors of the well-studied MOBs. We further defined the common and differential interactome between different MOBs on a subfamily and an individual level. We discovered a unique association between MOB3C and 7 of 10 protein subunits of the RNase P complex, an endonuclease that catalyzes tRNA 5' maturation. As a proof of principle for the robustness of the generated dataset, we validated the specific interaction of MOB3C with catalytically active RNase P by using affinity purification-mass spectrometry and pre-tRNA cleavage assays of MOB3C pulldowns. In summary, our data provide novel insights into the biology of MOB proteins and reveal the first interactors of MOB3C, components of the RNase P complex, and hence an exciting nexus with RNA biology.
Collapse
Affiliation(s)
- Islam E Elkholi
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada; Molecular Biology Programs, Université de Montréal, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| | - Jonathan Boulais
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada
| | | | - Hong-Duc Phan
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Amélie Robert
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada
| | - Lien B Lai
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Denis Faubert
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jean-Franҫois Côté
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada; Molecular Biology Programs, Université de Montréal, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Mariano NC, Rusin SF, Nasa I, Kettenbach AN. Inducible Protein Degradation as a Strategy to Identify Phosphoprotein Phosphatase 6 Substrates in RAS-Mutant Colorectal Cancer Cells. Mol Cell Proteomics 2023; 22:100614. [PMID: 37392812 PMCID: PMC10400926 DOI: 10.1016/j.mcpro.2023.100614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, including cell cycle progression, cell division, and response to extracellular stimuli, among many others, and is deregulated in many diseases. Protein phosphorylation is coordinated by the opposing activities of protein kinases and protein phosphatases. In eukaryotic cells, most serine/threonine phosphorylation sites are dephosphorylated by members of the Phosphoprotein Phosphatase (PPP) family. However, we only know for a few phosphorylation sites which specific PPP dephosphorylates them. Although natural compounds such as calyculin A and okadaic acid inhibit PPPs at low nanomolar concentrations, no selective chemical PPP inhibitors exist. Here, we demonstrate the utility of endogenous tagging of genomic loci with an auxin-inducible degron (AID) as a strategy to investigate specific PPP signaling. Using Protein Phosphatase 6 (PP6) as an example, we demonstrate how rapidly inducible protein degradation can be employed to identify dephosphorylation sites and elucidate PP6 biology. Using genome editing, we introduce AID-tags into each allele of the PP6 catalytic subunit (PP6c) in DLD-1 cells expressing the auxin receptor Tir1. Upon rapid auxin-induced degradation of PP6c, we perform quantitative mass spectrometry-based proteomics and phosphoproteomics to identify PP6 substrates in mitosis. PP6 is an essential enzyme with conserved roles in mitosis and growth signaling. Consistently, we identify candidate PP6c-dependent dephosphorylation sites on proteins implicated in coordinating the mitotic cell cycle, cytoskeleton, gene expression, and mitogen-activated protein kinase (MAPK) and Hippo signaling. Finally, we demonstrate that PP6c opposes the activation of large tumor suppressor 1 (LATS1) by dephosphorylating Threonine 35 (T35) on Mps One Binder (MOB1), thereby blocking the interaction of MOB1 and LATS1. Our analyses highlight the utility of combining genome engineering, inducible degradation, and multiplexed phosphoproteomics to investigate signaling by individual PPPs on a global level, which is currently limited by the lack of tools for specific interrogation.
Collapse
Affiliation(s)
- Natasha C Mariano
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Scott F Rusin
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.
| |
Collapse
|
7
|
Mariano NC, Rusin SF, Nasa I, Kettenbach AN. Inducible protein degradation as a strategy to identify Phosphoprotein Phosphatase 6 substrates in RAS-mutant colorectal cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534211. [PMID: 36993243 PMCID: PMC10055397 DOI: 10.1101/2023.03.25.534211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, including cell cycle progression, cell division, and response to extracellular stimuli, among many others, and is deregulated in many diseases. Protein phosphorylation is coordinated by the opposing activities of protein kinases and protein phosphatases. In eukaryotic cells, most serine/threonine phosphorylation sites are dephosphorylated by members of the Phosphoprotein Phosphatase (PPP) family. However, we only know for a few phosphorylation sites which specific PPP dephosphorylates them. Although natural compounds such as calyculin A and okadaic acid inhibit PPPs at low nanomolar concentrations, no selective chemical PPP inhibitors exist. Here, we demonstrate the utility of endogenous tagging of genomic loci with an auxin-inducible degron (AID) as a strategy to investigate specific PPP signaling. Using Protein Phosphatase 6 (PP6) as an example, we demonstrate how rapidly inducible protein degradation can be employed to identify dephosphorylation SITES and elucidate PP6 biology. Using genome editing, we introduce AID-tags into each allele of the PP6 catalytic subunit (PP6c) in DLD-1 cells expressing the auxin receptor Tir1. Upon rapid auxin-induced degradation of PP6c, we perform quantitative mass spectrometry-based proteomics and phosphoproteomics to identify PP6 substrates in mitosis. PP6 is an essential enzyme with conserved roles in mitosis and growth signaling. Consistently, we identify candidate PP6c-dependent phosphorylation sites on proteins implicated in coordinating the mitotic cell cycle, cytoskeleton, gene expression, and mitogen-activated protein kinase (MAPK) and Hippo signaling. Finally, we demonstrate that PP6c opposes the activation of large tumor suppressor 1 (LATS1) by dephosphorylating Threonine 35 (T35) on Mps One Binder (MOB1), thereby blocking the interaction of MOB1 and LATS1. Our analyses highlight the utility of combining genome engineering, inducible degradation, and multiplexed phosphoproteomics to investigate signaling by individual PPPs on a global level, which is currently limited by the lack of tools for specific interrogation.
Collapse
|
8
|
Low-Calle AM, Ghoneima H, Ortega N, Cuibus AM, Katz C, Tong D, Prives C, Prywes R. A non-canonical Hippo pathway represses the expression of ΔNp63. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528336. [PMID: 36824867 PMCID: PMC9949004 DOI: 10.1101/2023.02.13.528336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The p63 transcription factor, a member of the p53 family, plays an oncogenic role in squamous cancers, while in breast cancers its expression is often repressed. In the canonical conserved Hippo pathway, known to play a complex role in regulating growth of cancer cells, the protein kinases MST1/2 and LATS1/2 act sequentially to phosphorylate and inhibit the YAP/TAZ transcription factors. We found that in the MCF10A mammary epithelial cell line as well as in squamous and breast cancer cell lines, expression of ΔNp63 RNA and protein is strongly repressed by inhibition of the Hippo pathway protein kinases in a manner that is independent of p53. While MST1/2 and LATS1 are required for p63 expression, the next step of the pathway, namely phosphorylation and degradation of the YAP/TAZ transcriptional activators is not required for repression of p63. This suggests that regulation of p63 expression occurs by a non-canonical version of the Hippo pathway. We additionally identified additional genes that were similarly regulated suggesting the broader importance of this pathway. Interestingly, we observed that experimentally lowering p63 expression leads to increased YAP protein levels, thereby constituting a feedback loop. These results, which reveal the intersection of the Hippo and p63 pathways, may prove useful for the control of their activities in cancer cells. One Sentence Summary Regulation of p63 expression occurs by a non-canonical version of the Hippo pathway in mammary epithelial, breast carcinoma and head and neck squamous carcinoma cells.
Collapse
|
9
|
Maejima Y, Zablocki D, Nah J, Sadoshima J. The role of the Hippo pathway in autophagy in the heart. Cardiovasc Res 2023; 118:3320-3330. [PMID: 35150237 DOI: 10.1093/cvr/cvac014] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
The Hippo pathway, an evolutionarily conserved signalling mechanism, controls organ size and tumourigenesis. Increasing lines of evidence suggest that autophagy, an important mechanism of lysosome-mediated cellular degradation, is regulated by the Hippo pathway, which thereby profoundly affects cell growth and death responses in various cell types. In the heart, Mst1, an upstream component of the Hippo pathway, not only induces apoptosis but also inhibits autophagy through phosphorylation of Beclin 1. YAP/TAZ, transcription factor co-factors and the terminal effectors of the Hippo pathway, affect autophagy through transcriptional activation of TFEB, a master regulator of autophagy and lysosomal biogenesis. The cellular abundance of YAP is negatively regulated by autophagy and suppression of autophagy induces accumulation of YAP, which, in turn, acts as a feedback mechanism to induce autophagosome formation. Thus, the Hippo pathway and autophagy regulate each other, thereby profoundly affecting cardiomyocyte survival and death. This review discusses the interaction between the Hippo pathway and autophagy and its functional significance during stress conditions in the heart and the cardiomyocytes therein.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA.,Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA
| | - Jihoon Nah
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA
| |
Collapse
|
10
|
Brauer BL, Wiredu K, Gerber SA, Kettenbach AN. Evaluation of Quantification and Normalization Strategies for Phosphoprotein Phosphatase Affinity Proteomics: Application to Breast Cancer Signaling. J Proteome Res 2023; 22:47-61. [PMID: 36448918 PMCID: PMC10625046 DOI: 10.1021/acs.jproteome.2c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Accurate quantification of proteomics data is essential for revealing and understanding biological signaling processes. We have recently developed a chemical proteomic strategy termed phosphatase inhibitor beads and mass spectrometry (PIB-MS) to investigate endogenous phosphoprotein phosphatase (PPP) dephosphorylation signaling. Here, we compare the robustness and reproducibility of status quo quantification methods for optimal performance and ease of implementation. We then apply PIB-MS to an array of breast cancer cell lines to determine differences in PPP signaling between subtypes. Breast cancer, a leading cause of cancer death in women, consists of three main subtypes: estrogen receptor-positive (ER+), human epidermal growth factor receptor two positive (HER2+), and triple-negative (TNBC). Although there are effective treatment strategies for ER+ and HER2+ subtypes, tumors become resistant and progress. Furthermore, TNBC has few targeted therapies. Therefore, there is a need to identify new approaches for treating breast cancers. Using PIB-MS, we distinguished TNBC from non-TNBC based on subtype-specific PPP holoenzyme composition. In addition, we identified an increase in PPP interactions with Hippo pathway proteins in TNBC. These interactions suggest that phosphatases in TNBC play an inhibitory role on the Hippo pathway and correlate with increased expression of YAP/TAZ target genes both in TNBC cell lines and in TNBC patients.
Collapse
Affiliation(s)
- Brooke L. Brauer
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Kwame Wiredu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Scott A. Gerber
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| |
Collapse
|
11
|
Koehler TJ, Tran T, Weingartner KA, Kavran JM. Kinetic Regulation of the Mammalian Sterile 20-like Kinase 2 (MST2). Biochemistry 2022; 61:1683-1693. [PMID: 35895874 PMCID: PMC10167949 DOI: 10.1021/acs.biochem.2c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Canonically, MST1/2 functions as a core kinase of the Hippo pathway and noncanonically during both apoptotic signaling and with RASSFs in T-cells. Faithful signal transduction by MST1/2 relies on both appropriate activation and regulated substrate phosphorylation by the activated kinase. Considerable progress has been made in understanding the molecular mechanisms regulating the activation of MST1/2 and identifying downstream signaling events. Here, we investigated the ability of MST2 to phosphorylate a peptide substrate and how that activity is regulated. Using a steady-state kinetic system, we parse the contribution of different factors to substrate phosphorylation, including the domains of MST2, phosphorylation, caspase cleavage, and complex formation. We found that in the unphosphorylated state, the SARAH domain stabilizes interactions with a peptide substrate and promotes turnover. Phosphorylation drives the activity of MST2, and once activated, MST2 is not further regulated by complex formation with other Hippo pathway components (SAV1, MOB1A, and RASSF5). We also show that the phosphorylated, caspase-cleaved MST2 is as active as the full-length one, suggesting that caspase-stimulated activity arises through noncatalytic mechanisms. The kinetic analysis presented here establishes a framework for interpreting how signaling events and post-translational modifications contribute to the signaling of MST2 in vivo.
Collapse
Affiliation(s)
- Thomas J Koehler
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Thao Tran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Kyler A Weingartner
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Jennifer M Kavran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
12
|
Dutchak K, Garnett S, Nicoll M, de Bruyns A, Dankort D. MOB3A Bypasses BRAF and RAS Oncogene-Induced Senescence by Engaging the Hippo Pathway. Mol Cancer Res 2022; 20:770-781. [PMID: 35046109 DOI: 10.1158/1541-7786.mcr-21-0767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
Oncogenic activation of the RTK-RAS-RAF-MEK-ERK pathway occurs in approximately 25% of all human cancers, yet activated RAS, BRAF, or MEK expression in primary cells leads to a prolonged and predominantly irreversible cell-cycle arrest termed oncogene-induced senescence (OIS). OIS acts as an intrinsic tumor suppressor mechanism, serving as a barrier to tumor progression. Screening a library of activated kinases and kinase-regulatory proteins we identified MOB3A, a Mps-one binder coactivator (MOB) protein family member, whose constitutive expression permits proliferation and suppresses senescence in response to oncogenic RAS and BRAF signals. MOB3A is one of seven human MOB genes, which are highly conserved from yeast to human and that function to activate the Hippo pathway kinases (MST/LATS) or NDR kinases through direct association. Here we show that within the MOB family of genes MOB3A and C are unique in their ability to allow primary cell proliferation in the face of sustained oncogene signaling. Unlike the canonical MOB1A/B proteins, MOB3A inhibits Hippo/MST/LATS signaling and constitutive MOB3A membrane localization phenocopies OIS bypass seen with elevated YAP expression. Moreover, inhibition of MOB3 family member expression results in decreased proliferation and tumor growth of cancer cell lines. Together these data identify MOB3A's role in bypass of oncogene induced senescence and its role as a Hippo pathway inhibitor. IMPLICATIONS These results suggest that MOB3 targeting to re-engage the Hippo pathway, or direct targeting of YAP/TAZ, may be viable therapeutic strategies potential for RAS-pathway driven tumours.
Collapse
Affiliation(s)
- Kendall Dutchak
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada
| | - Sam Garnett
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada
| | - Mary Nicoll
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada
| | - Angeline de Bruyns
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada
| | - David Dankort
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada.,Goodman Cancer Research Centre, Montréal QC, Canada
| |
Collapse
|
13
|
Bennett C, Lawrence M, Guerrero JA, Stritt S, Waller AK, Yan Y, Mifsud RW, Ballester-Beltran J, Baig A, Mueller A, Mayer L, Warland J, Penkett CJ, Akbari P, Moreau T, Evans AL, Mookerjee S, Hoffman GJ, Saeb-Parsy K, Adams DJ, Couzens AL, Bender M, Erber WN, Nieswandt B, Read RJ, Ghevaert C. CRLF3 plays a key role in the final stage of platelet genesis and is a potential therapeutic target for thrombocythemia. Blood 2022; 139:2227-2239. [PMID: 35051265 PMCID: PMC7614665 DOI: 10.1182/blood.2021013113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
The process of platelet production has so far been understood to be a 2-stage process: megakaryocyte maturation from hematopoietic stem cells followed by proplatelet formation, with each phase regulating the peripheral blood platelet count. Proplatelet formation releases into the bloodstream beads-on-a-string preplatelets, which undergo fission into mature platelets. For the first time, we show that preplatelet maturation is a third, tightly regulated, critical process akin to cytokinesis that regulates platelet count. We show that deficiency in cytokine receptor-like factor 3 (CRLF3) in mice leads to an isolated and sustained 25% to 48% reduction in the platelet count without any effect on other blood cell lineages. We show that Crlf3-/- preplatelets have increased microtubule stability, possibly because of increased microtubule glutamylation via the interaction of CRLF3 with key members of the Hippo pathway. Using a mouse model of JAK2 V617F essential thrombocythemia, we show that a lack of CRLF3 leads to long-term lineage-specific normalization of the platelet count. We thereby postulate that targeting CRLF3 has therapeutic potential for treatment of thrombocythemia.
Collapse
Affiliation(s)
- Cavan Bennett
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
| | - Moyra Lawrence
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Jose A. Guerrero
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
| | - Simon Stritt
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Amie K. Waller
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Yahui Yan
- Cambridge Institute for Medical Research and Department of Haematology, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, England
| | - Richard W. Mifsud
- Cambridge Institute for Medical Research and Department of Haematology, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, England
| | - Jose Ballester-Beltran
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
| | - Ayesha Baig
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Annett Mueller
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Louisa Mayer
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
| | - James Warland
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Christopher J. Penkett
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
| | - Parsa Akbari
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort’s Causeway, Cambridge CB1 8RN, UK
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Thomas Moreau
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
| | - Amanda L. Evans
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Souradip Mookerjee
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Gary J. Hoffman
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, 6099, Australia
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - David J. Adams
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1HH, UK
| | - Amber L. Couzens
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Markus Bender
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Wendy N. Erber
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, 6099, Australia
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Randy J. Read
- Cambridge Institute for Medical Research and Department of Haematology, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, England
| | - Cedric Ghevaert
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Blood Centre, Long Road, Cambridge CB2 0PT, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| |
Collapse
|
14
|
Park J, Jun K, Choi Y, Yoon E, Kim W, Jang YG, Chung J. CORO7 functions as a scaffold protein for the core kinase complex assembly of the Hippo pathway. J Biol Chem 2021; 296:100040. [PMID: 33162394 PMCID: PMC7949047 DOI: 10.1074/jbc.ra120.013297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/26/2020] [Accepted: 11/08/2020] [Indexed: 12/25/2022] Open
Abstract
The Hippo pathway controls organ size and tissue homeostasis through the regulation of cell proliferation and apoptosis. However, the exact molecular mechanisms underpinning Hippo pathway regulation are not fully understood. Here, we identify a new component of the Hippo pathway: coronin 7 (CORO7), a coronin protein family member that is involved in organization of the actin cytoskeleton. pod1, the Drosophila ortholog of CORO7, genetically interacts with key Hippo pathway genes in Drosophila. In mammalian cells, CORO7 is required for the activation of the Hippo pathway in response to cell-cell contact, serum deprivation, and cytoskeleton damage. CORO7 forms a complex with the core components of the pathway and functions as a scaffold for the Hippo core kinase complex. Collectively, these results demonstrate that CORO7 is a key scaffold controlling the Hippo pathway via modulating protein-protein interactions.
Collapse
Affiliation(s)
- Jina Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Kyoungho Jun
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Yujin Choi
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Eunju Yoon
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Wonho Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Gu Jang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Delgado ILS, Carmona B, Nolasco S, Santos D, Leitão A, Soares H. MOB: Pivotal Conserved Proteins in Cytokinesis, Cell Architecture and Tissue Homeostasis. BIOLOGY 2020; 9:biology9120413. [PMID: 33255245 PMCID: PMC7761452 DOI: 10.3390/biology9120413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/08/2023]
Abstract
The MOB family proteins are constituted by highly conserved eukaryote kinase signal adaptors that are often essential both for cell and organism survival. Historically, MOB family proteins have been described as kinase activators participating in Hippo and Mitotic Exit Network/ Septation Initiation Network (MEN/SIN) signaling pathways that have central roles in regulating cytokinesis, cell polarity, cell proliferation and cell fate to control organ growth and regeneration. In metazoans, MOB proteins act as central signal adaptors of the core kinase module MST1/2, LATS1/2, and NDR1/2 kinases that phosphorylate the YAP/TAZ transcriptional co-activators, effectors of the Hippo signaling pathway. More recently, MOBs have been shown to also have non-kinase partners and to be involved in cilia biology, indicating that its activity and regulation is more diverse than expected. In this review, we explore the possible ancestral role of MEN/SIN pathways on the built-in nature of a more complex and functionally expanded Hippo pathway, by focusing on the most conserved components of these pathways, the MOB proteins. We discuss the current knowledge of MOBs-regulated signaling, with emphasis on its evolutionary history and role in morphogenesis, cytokinesis, and cell polarity from unicellular to multicellular organisms.
Collapse
Affiliation(s)
- Inês L. S. Delgado
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal
| | - Bruno Carmona
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
| | - Dulce Santos
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
| | - Alexandre Leitão
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: or
| |
Collapse
|
16
|
Wang D, He J, Huang B, Liu S, Zhu H, Xu T. Emerging role of the Hippo pathway in autophagy. Cell Death Dis 2020; 11:880. [PMID: 33082313 PMCID: PMC7576599 DOI: 10.1038/s41419-020-03069-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Autophagy is a dynamic circulatory system that occurs in all eukaryotic cells. Cytoplasmic material is transported to lysosomes for degradation and recovery through autophagy. This provides energy and macromolecular precursors for cell renewal and homeostasis. The Hippo-YAP pathway has significant biological properties in controlling organ size, tissue homeostasis, and regeneration. Recently, the Hippo-YAP axis has been extensively referred to as the pathophysiological processes regulating autophagy. Understanding the cellular and molecular basis of these processes is crucial for identifying disease pathogenesis and novel therapeutic targets. Here we review recent findings from Drosophila models to organisms. We particularly emphasize the regulation between Hippo core components and autophagy, which is involved in normal cellular regulation and the pathogenesis of human diseases, and its application to disease treatment.
Collapse
Affiliation(s)
- Dongying Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Jiaxing He
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Bingyu Huang
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Shanshan Liu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Hongming Zhu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Hospital, Jilin University, 218 Zi Qiang Street, Changchun, Jilin, 130000, China.
| |
Collapse
|
17
|
Sarmasti Emami S, Zhang D, Yang X. Interaction of the Hippo Pathway and Phosphatases in Tumorigenesis. Cancers (Basel) 2020; 12:E2438. [PMID: 32867200 PMCID: PMC7564220 DOI: 10.3390/cancers12092438] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
The Hippo pathway is an emerging tumor suppressor signaling pathway involved in a wide range of cellular processes. Dysregulation of different components of the Hippo signaling pathway is associated with a number of diseases including cancer. Therefore, identification of the Hippo pathway regulators and the underlying mechanism of its regulation may be useful to uncover new therapeutics for cancer therapy. The Hippo signaling pathway includes a set of kinases that phosphorylate different proteins in order to phosphorylate and inactivate its main downstream effectors, YAP and TAZ. Thus, modulating phosphorylation and dephosphorylation of the Hippo components by kinases and phosphatases play critical roles in the regulation of the signaling pathway. While information regarding kinase regulation of the Hippo pathway is abundant, the role of phosphatases in regulating this pathway is just beginning to be understood. In this review, we summarize the most recent reports on the interaction of phosphatases and the Hippo pathway in tumorigenesis. We have also introduced challenges in clarifying the role of phosphatases in the Hippo pathway and future direction of crosstalk between phosphatases and the Hippo pathway.
Collapse
Affiliation(s)
| | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.S.E.); (D.Z.)
| |
Collapse
|
18
|
Protein kinase CK2 phosphorylation of SAPS3 subunit increases PP6 phosphatase activity with Aurora A kinase. Biochem J 2020; 477:431-444. [PMID: 31904830 DOI: 10.1042/bcj20190740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Protein Ser/Thr phosphatase-6 (PP6) regulates pathways for activation of NF-kB, YAP1 and Aurora A kinase (AURKA). PP6 is a heterotrimer comprised of a catalytic subunit, one of three different SAPS subunits and one of three different ankyrin-repeat ANKRD subunits. Here, we show FLAG-PP6C expressed in cells preferentially binds endogenous SAPS3, and the complex is active with the chemical substrate DiFMUP. SAPS3 has multiple acidic sequence motifs recognized by protein kinase CK2 (CK2) and SAPS3 is phosphorylated by purified CK2, without affecting its associated PP6 phosphatase activity. However, HA3-SAPS3-PP6 phosphatase activity using pT288 AURKA as substrate is significantly increased by phosphorylation with CK2. The substitution of Ala in nine putative phosphorylation sites in SAPS3 was required to prevent CK2 activation of the phosphatase. Different CK2 chemical inhibitors equally increased phosphorylation of endogenous AURKA in living cells, consistent with reduction in PP6 activity. CRISPR/Cas9 deletion or siRNA knockdown of SAPS3 resulted in highly activated endogenous AURKA, and a high proportion of cells with abnormal nuclei. Activation of PP6 by CK2 can form a feedback loop with bistable changes in substrates.
Collapse
|
19
|
Gingras AC. Connecting proteins: shareable tools for reproducible interaction mapping. Biochem Cell Biol 2020; 98:309-313. [PMID: 31689129 DOI: 10.1139/bcb-2019-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Room 992, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
20
|
Duhart JC, Raftery LA. Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Front Cell Dev Biol 2020; 8:161. [PMID: 32266255 DOI: 10.3389/fcell.2020.00161/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 05/26/2023] Open
Abstract
Studies in yeast first delineated the function of Mob proteins in kinase pathways that regulate cell division and shape; in multicellular eukaryotes Mobs regulate tissue growth and morphogenesis. In animals, Mobs are adaptors in Hippo signaling, an intracellular signal-transduction pathway that restricts growth, impacting the development and homeostasis of animal organs. Central to Hippo signaling are the Nuclear Dbf2-Related (NDR) kinases, Warts and LATS1 and LATS2, in flies and mammals, respectively. A second Hippo-like signaling pathway has been uncovered in animals, which regulates cell and tissue morphogenesis. Central to this emergent pathway are the NDR kinases, Tricornered, STK38, and STK38L. In Hippo signaling, NDR kinase activation is controlled by three activating interactions with a conserved set of proteins. This review focuses on one co-activator family, the highly conserved, non-catalytic Mps1-binder-related (Mob) proteins. In this context, Mobs are allosteric activators of NDR kinases and adaptors that contribute to assembly of multiprotein NDR kinase activation complexes. In multicellular eukaryotes, the Mob family has expanded relative to model unicellular yeasts; accumulating evidence points to Mob functional diversification. A striking example comes from the most sequence-divergent class of Mobs, which are components of the highly conserved Striatin Interacting Phosphatase and Kinase (STRIPAK) complex, that antagonizes Hippo signaling. Mobs stand out for their potential to modulate the output from Hippo and Hippo-like kinases, through their roles both in activating NDR kinases and in antagonizing upstream Hippo or Hippo-like kinase activity. These opposing Mob functions suggest that they coordinate the relative activities of the Tricornered/STK38/STK38L and Warts/LATS kinases, and thus have potential to assemble nodes for pathway signaling output. We survey the different facets of Mob-dependent regulation of Hippo and Hippo-like signaling and highlight open questions that hinge on unresolved aspects of Mob functions.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
21
|
Duhart JC, Raftery LA. Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Front Cell Dev Biol 2020; 8:161. [PMID: 32266255 PMCID: PMC7096357 DOI: 10.3389/fcell.2020.00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Studies in yeast first delineated the function of Mob proteins in kinase pathways that regulate cell division and shape; in multicellular eukaryotes Mobs regulate tissue growth and morphogenesis. In animals, Mobs are adaptors in Hippo signaling, an intracellular signal-transduction pathway that restricts growth, impacting the development and homeostasis of animal organs. Central to Hippo signaling are the Nuclear Dbf2-Related (NDR) kinases, Warts and LATS1 and LATS2, in flies and mammals, respectively. A second Hippo-like signaling pathway has been uncovered in animals, which regulates cell and tissue morphogenesis. Central to this emergent pathway are the NDR kinases, Tricornered, STK38, and STK38L. In Hippo signaling, NDR kinase activation is controlled by three activating interactions with a conserved set of proteins. This review focuses on one co-activator family, the highly conserved, non-catalytic Mps1-binder-related (Mob) proteins. In this context, Mobs are allosteric activators of NDR kinases and adaptors that contribute to assembly of multiprotein NDR kinase activation complexes. In multicellular eukaryotes, the Mob family has expanded relative to model unicellular yeasts; accumulating evidence points to Mob functional diversification. A striking example comes from the most sequence-divergent class of Mobs, which are components of the highly conserved Striatin Interacting Phosphatase and Kinase (STRIPAK) complex, that antagonizes Hippo signaling. Mobs stand out for their potential to modulate the output from Hippo and Hippo-like kinases, through their roles both in activating NDR kinases and in antagonizing upstream Hippo or Hippo-like kinase activity. These opposing Mob functions suggest that they coordinate the relative activities of the Tricornered/STK38/STK38L and Warts/LATS kinases, and thus have potential to assemble nodes for pathway signaling output. We survey the different facets of Mob-dependent regulation of Hippo and Hippo-like signaling and highlight open questions that hinge on unresolved aspects of Mob functions.
Collapse
Affiliation(s)
| | - Laurel A. Raftery
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
22
|
Wang D, He J, Dong J, Meyer TF, Xu T. The HIPPO pathway in gynecological malignancies. Am J Cancer Res 2020; 10:610-629. [PMID: 32195031 PMCID: PMC7061741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023] Open
Abstract
The Hippo pathway has been initially discovered by screening genes that regulate organ size in Drosophila. Recent studies have highlighted the role of the Hippo pathway in controlling organ size, tissue homeostasis and regeneration, and signaling dysregulation, especially the overactivation of the transcriptional coactivator YAP/TAZ, which leads to uncontrolled cell growth and malignant transformation. The core components of the Hippo pathway may initiate tumorigenesis by inducing tumor stem cells and proliferation, ultimately leading to metastasis and drug resistance, which occurs extensively in gynecological malignancies, including cervical cancer, ovarian cancer, and endometrial cancer. In this review, we attempt to systematically summarize recent progress in our understanding of the mechanism of Hippo pathway regulation in tumorigenesis and the mechanisms that underlie alterations during gynecological malignancies, as well as new therapeutic strategies.
Collapse
Affiliation(s)
- Dongying Wang
- Department of Obstetrics and Gynecology, Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
| | - Jiaxing He
- Department of Obstetrics and Gynecology, Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
| | - Junxue Dong
- Department of Obstetrics and Gynecology, Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
- Department of Molecular Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin UniversityChangchun, Jilin, P. R. China
| |
Collapse
|
23
|
Soares H, Carmona B, Nolasco S, Viseu Melo L. Polarity in Ciliate Models: From Cilia to Cell Architecture. Front Cell Dev Biol 2019; 7:240. [PMID: 31681771 PMCID: PMC6813674 DOI: 10.3389/fcell.2019.00240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Tetrahymena and Paramecium are highly differentiated unicellular organisms with elaborated cortical patterns showing a regular arrangement of hundreds to thousands of basal bodies in longitudinal rows that extend from the anterior to the posterior region of the cell. Thus both ciliates exhibit a permanent antero–posterior axis and left–right asymmetry. This cell polarity is reflected in the direction of the structures nucleated around each basal body such as the ciliary rootlets. Studies in these ciliates showed that basal bodies assemble two types of cilia, the cortical cilia and the cilia of the oral apparatus, a complex structure specialized in food capture. These two cilia types display structural differences at their tip domain. Basal bodies possessing distinct compositions creating specialized landmarks are also present. Cilia might be expected to express and transmit polarities throughout signaling pathways given their recognized role in signal transduction. This review will focus on how local polarities in basal bodies/cilia are regulated and transmitted through cell division in order to maintain the global polarity and shape of these cells and locally constrain the interpretation of signals by different cilia. We will also discuss ciliates as excellent biological models to study development and morphogenetic mechanisms and their relationship with cilia diversity and function in metazoans.
Collapse
Affiliation(s)
- Helena Soares
- Centro de Química e Bioquímica/Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Bruno Carmona
- Centro de Química e Bioquímica/Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Viseu Melo
- Physics Department and CEFEMA, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Klimek C, Jahnke R, Wördehoff J, Kathage B, Stadel D, Behrends C, Hergovich A, Höhfeld J. The Hippo network kinase STK38 contributes to protein homeostasis by inhibiting BAG3-mediated autophagy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1556-1566. [PMID: 31326538 PMCID: PMC6692498 DOI: 10.1016/j.bbamcr.2019.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/18/2019] [Accepted: 07/14/2019] [Indexed: 12/31/2022]
Abstract
Chaperone-assisted selective autophagy (CASA) initiated by the cochaperone Bcl2-associated athanogene 3 (BAG3) represents an important mechanism for the disposal of misfolded and damaged proteins in mammalian cells. Under mechanical stress, the cochaperone cooperates with the small heat shock protein HSPB8 and the cytoskeleton-associated protein SYNPO2 to degrade force-unfolded forms of the actin-crosslinking protein filamin. This is essential for muscle maintenance in flies, fish, mice and men. Here, we identify the serine/threonine protein kinase 38 (STK38), which is part of the Hippo signaling network, as a novel interactor of BAG3. STK38 was previously shown to facilitate cytoskeleton assembly and to promote mitophagy as well as starvation and detachment induced autophagy. Significantly, our study reveals that STK38 exerts an inhibitory activity on BAG3-mediated autophagy. Inhibition relies on a disruption of the functional interplay of BAG3 with HSPB8 and SYNPO2 upon binding of STK38 to the cochaperone. Of note, STK38 attenuates CASA independently of its kinase activity, whereas previously established regulatory functions of STK38 involve target phosphorylation. The ability to exert different modes of regulation on central protein homeostasis (proteostasis) machineries apparently allows STK38 to coordinate the execution of diverse macroautophagy pathways and to balance cytoskeleton assembly and degradation.
Collapse
Affiliation(s)
- Christina Klimek
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Ricarda Jahnke
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Judith Wördehoff
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Barbara Kathage
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Daniela Stadel
- Institute of Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Ludwig-Maximilians-University Munich, Feodor-Lynen Strasse 17, 81377 München, Germany
| | | | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| |
Collapse
|
25
|
Gundogdu R, Hergovich A. MOB (Mps one Binder) Proteins in the Hippo Pathway and Cancer. Cells 2019; 8:cells8060569. [PMID: 31185650 PMCID: PMC6627106 DOI: 10.3390/cells8060569] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022] Open
Abstract
The family of MOBs (monopolar spindle-one-binder proteins) is highly conserved in the eukaryotic kingdom. MOBs represent globular scaffold proteins without any known enzymatic activities. They can act as signal transducers in essential intracellular pathways. MOBs have diverse cancer-associated cellular functions through regulatory interactions with members of the NDR/LATS kinase family. By forming additional complexes with serine/threonine protein kinases of the germinal centre kinase families, other enzymes and scaffolding factors, MOBs appear to be linked to an even broader disease spectrum. Here, we review our current understanding of this emerging protein family, with emphases on post-translational modifications, protein-protein interactions, and cellular processes that are possibly linked to cancer and other diseases. In particular, we summarise the roles of MOBs as core components of the Hippo tissue growth and regeneration pathway.
Collapse
Affiliation(s)
- Ramazan Gundogdu
- Vocational School of Health Services, Bingol University, 12000 Bingol, Turkey.
| | - Alexander Hergovich
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom.
| |
Collapse
|
26
|
Abstract
The Hippo pathway controls organ size and maintains tissue homeostasis through a central MST-LATS kinase cascade. When Hippo signaling is on, activated MST1/2 partner with SAV1 to phosphorylate and activate the LATS1/2-MOB1 complexes, which in turn phosphorylate and inactivate YAP/TAZ transcription co-activators. This process halts the expression of Hippo-responsive genes, thereby inhibiting cell proliferation and promoting apoptosis. Our studies have shown that two core adaptor proteins MOB1 and SAV1 use distinctive mechanisms to enhance Hippo signaling. MOB1 promotes MST-dependent LATS activation through dynamic scaffolding and allosteric regulation. SAV1 promotes MST activation by antagonizing the PP2A phosphatase activity. Here we describe the detailed methods for the purification and crystallization of the MST2-SAV1 and pMOB1-LATS1 complexes, for assaying the SAV1-dependent inhibition of PP2A, and for analyzing LATS1 kinase activation using in vitro reconstitution.
Collapse
Affiliation(s)
- Lisheng Ni
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuelian Luo
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
27
|
Abstract
The Hippo tumor suppressor pathway is fundamental to the coordination of death, growth, proliferation, and differentiation on the cellular level. At the molecular level, a highly conserved Hippo core cassette is central for the regulation of effector activities such as the co-transcriptional activity of YAP. In particular, the mammalian MST1/2 serine/threonine protein kinases (termed Hippo kinase in Drosophila melanogaster) can act as central signal transducers as part of the Hippo core cassette. In this chapter we describe in vitro kinase assays using recombinant MST1/2 kinases and recombinant MST1/2 kinase substrate.
Collapse
Affiliation(s)
- Marta Gomez
- University College London Cancer Institute, London, UK
| | - Yavuz Kulaberoglu
- University College London Cancer Institute, London, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
28
|
Ohama T. The multiple functions of protein phosphatase 6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:74-82. [DOI: 10.1016/j.bbamcr.2018.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/21/2018] [Accepted: 07/18/2018] [Indexed: 12/26/2022]
|
29
|
Gill MK, Christova T, Zhang YY, Gregorieff A, Zhang L, Narimatsu M, Song S, Xiong S, Couzens AL, Tong J, Krieger JR, Moran MF, Zlotta AR, van der Kwast TH, Gingras AC, Sicheri F, Wrana JL, Attisano L. A feed forward loop enforces YAP/TAZ signaling during tumorigenesis. Nat Commun 2018; 9:3510. [PMID: 30158528 PMCID: PMC6115388 DOI: 10.1038/s41467-018-05939-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
In most solid tumors, the Hippo pathway is inactivated through poorly understood mechanisms that result in the activation of the transcriptional regulators, YAP and TAZ. Here, we identify NUAK2 as a YAP/TAZ activator that directly inhibits LATS-mediated phosphorylation of YAP/TAZ and show that NUAK2 induction by YAP/TAZ and AP-1 is required for robust YAP/TAZ signaling. Pharmacological inhibition or loss of NUAK2 reduces the growth of cultured cancer cells and mammary tumors in mice. Moreover, in human patient samples, we show that NUAK2 expression is elevated in aggressive, high-grade bladder cancer and strongly correlates with a YAP/TAZ gene signature. These findings identify a positive feed forward loop in the Hippo pathway that establishes a key role for NUAK2 in enforcing the tumor-promoting activities of YAP/TAZ. Our results thus introduce a new opportunity for cancer therapeutics by delineating NUAK2 as a potential target for re-engaging the Hippo pathway. The Hippo pathway is frequently dysregulated in cancer. Here, the authors identify NUAK2 as negative regulator of the Hippo pathway from a siRNA kinome screen and show that NUAK2 promotes YAP/TAZ nuclear localisation while NUAK2 is a transcriptional target of YAP/TAZ, thus providing a feed forward loop to promote tumorigenesis.
Collapse
Affiliation(s)
- Mandeep K Gill
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Tania Christova
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Ying Y Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Alex Gregorieff
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Pathology, McGill University and Research Institute of the McGill University Health Center, Montreal, H4A 3J1, QC, Canada
| | - Liang Zhang
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 999077, Hong Kong, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| | - Masahiro Narimatsu
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Siyuan Song
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Shawn Xiong
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Amber L Couzens
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Jiefei Tong
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jonathan R Krieger
- SPARC BioCentre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Michael F Moran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Program in Cell Biology, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,SPARC BioCentre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Alexandre R Zlotta
- Department of Surgery, Division of Urology, University of Toronto, Mount Sinai Hospital and University Health Network, Toronto, M5G 1X5, ON, Canada
| | - Theodorus H van der Kwast
- Department of Pathology, Toronto General Hospital, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Frank Sicheri
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Jeffrey L Wrana
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
30
|
Activation mechanisms of the Hippo kinase signaling cascade. Biosci Rep 2018; 38:BSR20171469. [PMID: 30038061 PMCID: PMC6131212 DOI: 10.1042/bsr20171469] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 11/21/2022] Open
Abstract
First discovered two decades ago through genetic screens in Drosophila, the Hippo pathway has been shown to be conserved in metazoans and controls organ size and tissue homeostasis through regulating the balance between cell proliferation and apoptosis. Dysregulation of the Hippo pathway leads to aberrant tissue growth and tumorigenesis. Extensive studies in Drosophila and mammals have identified the core components of Hippo signaling, which form a central kinase cascade to ultimately control gene expression. Here, we review recent structural, biochemical, and cellular studies that have revealed intricate phosphorylation-dependent mechanisms in regulating the formation and activation of the core kinase complex in the Hippo pathway. These studies have established the dimerization-mediated activation of the Hippo kinase (mammalian Ste20-like 1 and 2 (MST1/2) in mammals), the dynamic scaffolding and allosteric roles of adaptor proteins in downstream kinase activation, and the importance of multisite linker autophosphorylation by Hippo and MST1/2 in fine-tuning the signaling strength and robustness of the Hippo pathway. We highlight the gaps in our knowledge in this field that will require further mechanistic studies.
Collapse
|
31
|
Xiong S, Lorenzen K, Couzens AL, Templeton CM, Rajendran D, Mao DYL, Juang YC, Chiovitti D, Kurinov I, Guettler S, Gingras AC, Sicheri F. Structural Basis for Auto-Inhibition of the NDR1 Kinase Domain by an Atypically Long Activation Segment. Structure 2018; 26:1101-1115.e6. [PMID: 29983373 PMCID: PMC6087429 DOI: 10.1016/j.str.2018.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/28/2018] [Accepted: 05/17/2018] [Indexed: 11/27/2022]
Abstract
The human NDR family kinases control diverse aspects of cell growth, and are regulated through phosphorylation and association with scaffolds such as MOB1. Here, we report the crystal structure of the human NDR1 kinase domain in its non-phosphorylated state, revealing a fully resolved atypically long activation segment that blocks substrate binding and stabilizes a non-productive position of helix αC. Consistent with an auto-inhibitory function, mutations within the activation segment of NDR1 dramatically enhance in vitro kinase activity. Interestingly, NDR1 catalytic activity is further potentiated by MOB1 binding, suggesting that regulation through modulation of the activation segment and by MOB1 binding are mechanistically distinct. Lastly, deleting the auto-inhibitory activation segment of NDR1 causes a marked increase in the association with upstream Hippo pathway components and the Furry scaffold. These findings provide a point of departure for future efforts to explore the cellular functions and the mechanism of NDR1.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Binding Sites
- Cell Cycle Proteins
- Cell Line, Tumor
- Cloning, Molecular
- Crystallography, X-Ray
- Epithelial Cells/cytology
- Epithelial Cells/enzymology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Gene Expression Regulation
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- HEK293 Cells
- Hepatocyte Growth Factor/chemistry
- Hepatocyte Growth Factor/genetics
- Hepatocyte Growth Factor/metabolism
- Humans
- Kinetics
- Microtubule-Associated Proteins/chemistry
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Models, Molecular
- Mutation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Serine-Threonine Kinases/chemistry
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Serine-Threonine Kinase 3
- Signal Transduction
- Substrate Specificity
Collapse
Affiliation(s)
- Shawn Xiong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kristina Lorenzen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Amber L Couzens
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Catherine M Templeton
- Divisions of Structural Biology and Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Dushyandi Rajendran
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Daniel Y L Mao
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Yu-Chi Juang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - David Chiovitti
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Igor Kurinov
- Cornell University, Department of Chemistry and Chemical Biology, NE-CAT, Advanced Photon Source, Bldg. 436E, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Sebastian Guettler
- Divisions of Structural Biology and Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK.
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
32
|
Kulaberoglu Y, Lin K, Holder M, Gai Z, Gomez M, Assefa Shifa B, Mavis M, Hoa L, Sharif AAD, Lujan C, Smith ESJ, Bjedov I, Tapon N, Wu G, Hergovich A. Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control. Nat Commun 2017; 8:695. [PMID: 28947795 PMCID: PMC5612953 DOI: 10.1038/s41467-017-00795-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/28/2017] [Indexed: 01/07/2023] Open
Abstract
The Hippo tumor suppressor pathway is essential for development and tissue growth control, encompassing a core cassette consisting of the Hippo (MST1/2), Warts (LATS1/2), and Tricornered (NDR1/2) kinases together with MOB1 as an important signaling adaptor. However, it remains unclear which regulatory interactions between MOB1 and the different Hippo core kinases coordinate development, tissue growth, and tumor suppression. Here, we report the crystal structure of the MOB1/NDR2 complex and define key MOB1 residues mediating MOB1's differential binding to Hippo core kinases, thereby establishing MOB1 variants with selective loss-of-interaction. By studying these variants in human cancer cells and Drosophila, we uncovered that MOB1/Warts binding is essential for tumor suppression, tissue growth control, and development, while stable MOB1/Hippo binding is dispensable and MOB1/Trc binding alone is insufficient. Collectively, we decrypt molecularly, cell biologically, and genetically the importance of the diverse interactions of Hippo core kinases with the pivotal MOB1 signal transducer.The Hippo tumor suppressor pathway is essential for development and tissue growth control. Here the authors employ a multi-disciplinary approach to characterize the interactions of the three Hippo kinases with the signaling adaptor MOB1 and show how they differently affect development, tissue growth and tumor suppression.
Collapse
Affiliation(s)
- Yavuz Kulaberoglu
- Tumour Suppressor Signalling Network Laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Kui Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Maxine Holder
- Apoptosis and Proliferation Control Laboratory, Francis Crick Institute, London, NW1 1BF, UK
| | - Zhongchao Gai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Marta Gomez
- Tumour Suppressor Signalling Network Laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Belul Assefa Shifa
- Tumour Suppressor Signalling Network Laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Merdiye Mavis
- Tumour Suppressor Signalling Network Laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Lily Hoa
- Tumour Suppressor Signalling Network Laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Ahmad A D Sharif
- Tumour Suppressor Signalling Network Laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Celia Lujan
- Molecular Biology of Cancer laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Ivana Bjedov
- Molecular Biology of Cancer laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, Francis Crick Institute, London, NW1 1BF, UK
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Alexander Hergovich
- Tumour Suppressor Signalling Network Laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
33
|
Leroux AE, Schulze JO, Biondi RM. AGC kinases, mechanisms of regulation and innovative drug development. Semin Cancer Biol 2017; 48:1-17. [PMID: 28591657 DOI: 10.1016/j.semcancer.2017.05.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022]
Abstract
The group of AGC kinases consists of 63 evolutionarily related serine/threonine protein kinases comprising PDK1, PKB/Akt, SGK, PKC, PRK/PKN, MSK, RSK, S6K, PKA, PKG, DMPK, MRCK, ROCK, NDR, LATS, CRIK, MAST, GRK, Sgk494, and YANK, while two other families, Aurora and PLK, are the most closely related to the group. Eight of these families are physiologically activated downstream of growth factor signalling, while other AGC kinases are downstream effectors of a wide range of signals. The different AGC kinase families share aspects of their mechanisms of inhibition and activation. In the present review, we update the knowledge of the mechanisms of regulation of different AGC kinases. The conformation of the catalytic domain of many AGC kinases is regulated allosterically through the modulation of the conformation of a regulatory site on the small lobe of the kinase domain, the PIF-pocket. The PIF-pocket acts like an ON-OFF switch in AGC kinases with different modes of regulation, i.e. PDK1, PKB/Akt, LATS and Aurora kinases. In this review, we make emphasis on how the knowledge of the molecular mechanisms of regulation can guide the discovery and development of small allosteric modulators. Molecular probes stabilizing the PIF-pocket in the active conformation are activators, while compounds stabilizing the disrupted site are allosteric inhibitors. One challenge for the rational development of allosteric modulators is the lack of complete structural information of the inhibited forms of full-length AGC kinases. On the other hand, we suggest that the available information derived from molecular biology and biochemical studies can already guide screening strategies for the identification of innovative mode of action molecular probes and the development of selective allosteric drugs for the treatment of human diseases.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina.
| | - Jörg O Schulze
- Research Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina; Research Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|