1
|
Dafun AS, Živković D, Leon-Icaza SA, Möller S, Froment C, Bonnet D, de Jesus AA, Alric L, Quaranta-Nicaise M, Ferrand A, Cougoule C, Meunier E, Burlet-Schiltz O, Ebstein F, Goldbach-Mansky R, Krüger E, Bousquet MP, Marcoux J. Establishing 20S Proteasome Genetic, Translational and Post-Translational Status from Precious Biological and Patient Samples with Top-Down MS. Cells 2023; 12:cells12060844. [PMID: 36980185 PMCID: PMC10047880 DOI: 10.3390/cells12060844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
The mammalian 20S catalytic core of the proteasome is made of 14 different subunits (α1-7 and β1-7) but exists as different subtypes depending on the cell type. In immune cells, for instance, constitutive catalytic proteasome subunits can be replaced by the so-called immuno-catalytic subunits, giving rise to the immunoproteasome. Proteasome activity is also altered by post-translational modifications (PTMs) and by genetic variants. Immunochemical methods are commonly used to investigate these PTMs whereby protein-tagging is necessary to monitor their effect on 20S assembly. Here, we present a new miniaturized workflow combining top-down and bottom-up mass spectrometry of immunopurified 20S proteasomes that analyze the proteasome assembly status as well as the full proteoform footprint, revealing PTMs, mutations, single nucleotide polymorphisms (SNPs) and induction of immune-subunits in different biological samples, including organoids, biopsies and B-lymphoblastoid cell lines derived from patients with proteasome-associated autoinflammatory syndromes (PRAAS). We emphasize the benefits of using top-down mass spectrometry in preserving the endogenous conformation of protein modifications, while enabling a rapid turnaround (1 h run) and ensuring high sensitivity (1–2 pmol) and demonstrate its capacity to semi-quantify constitutive and immune proteasome subunits.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Dušan Živković
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Stephen Adonai Leon-Icaza
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Sophie Möller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Delphine Bonnet
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université de Toulouse III—Paul Sabatier (UPS), 31300 Toulouse, France
- Internal Medicine Department of Digestive Disease, Rangueil Hospital, Université de Toulouse III—Paul Sabatier (UPS), 31400 Toulouse, France
| | - Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laurent Alric
- Internal Medicine Department of Digestive Disease, Rangueil Hospital, Université de Toulouse III—Paul Sabatier (UPS), 31400 Toulouse, France
| | - Muriel Quaranta-Nicaise
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université de Toulouse III—Paul Sabatier (UPS), 31300 Toulouse, France
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université de Toulouse III—Paul Sabatier (UPS), 31300 Toulouse, France
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, LCIM, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (M.-P.B.); (J.M.)
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (M.-P.B.); (J.M.)
| |
Collapse
|
2
|
Britt HM, Cragnolini T, Thalassinos K. Integration of Mass Spectrometry Data for Structural Biology. Chem Rev 2021; 122:7952-7986. [PMID: 34506113 DOI: 10.1021/acs.chemrev.1c00356] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mass spectrometry (MS) is increasingly being used to probe the structure and dynamics of proteins and the complexes they form with other macromolecules. There are now several specialized MS methods, each with unique sample preparation, data acquisition, and data processing protocols. Collectively, these methods are referred to as structural MS and include cross-linking, hydrogen-deuterium exchange, hydroxyl radical footprinting, native, ion mobility, and top-down MS. Each of these provides a unique type of structural information, ranging from composition and stoichiometry through to residue level proximity and solvent accessibility. Structural MS has proved particularly beneficial in studying protein classes for which analysis by classic structural biology techniques proves challenging such as glycosylated or intrinsically disordered proteins. To capture the structural details for a particular system, especially larger multiprotein complexes, more than one structural MS method with other structural and biophysical techniques is often required. Key to integrating these diverse data are computational strategies and software solutions to facilitate this process. We provide a background to the structural MS methods and briefly summarize other structural methods and how these are combined with MS. We then describe current state of the art approaches for the integration of structural MS data for structural biology. We quantify how often these methods are used together and provide examples where such combinations have been fruitful. To illustrate the power of integrative approaches, we discuss progress in solving the structures of the proteasome and the nuclear pore complex. We also discuss how information from structural MS, particularly pertaining to protein dynamics, is not currently utilized in integrative workflows and how such information can provide a more accurate picture of the systems studied. We conclude by discussing new developments in the MS and computational fields that will further enable in-cell structural studies.
Collapse
Affiliation(s)
- Hannah M Britt
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| |
Collapse
|
3
|
Lesne J, Locard-Paulet M, Parra J, Zivković D, Menneteau T, Bousquet MP, Burlet-Schiltz O, Marcoux J. Conformational maps of human 20S proteasomes reveal PA28- and immuno-dependent inter-ring crosstalks. Nat Commun 2020; 11:6140. [PMID: 33262340 PMCID: PMC7708635 DOI: 10.1038/s41467-020-19934-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/06/2020] [Indexed: 01/17/2023] Open
Abstract
Hydrogen-Deuterium eXchange coupled to Mass Spectrometry (HDX-MS) is now common practice in structural biology. However, it is most of the time applied to rather small oligomeric complexes. Here, we report on the use of HDX-MS to investigate conformational differences between the human standard 20S (std20S) and immuno 20S (i20s) proteasomes alone or in complex with PA28αβ or PA28γ activators. Their solvent accessibility is analyzed through a dedicated bioinformatic pipeline including stringent statistical analysis and 3D visualization. These data confirm the existence of allosteric differences between the std20S and i20S at the surface of the α-ring triggered from inside the catalytic β-ring. Additionally, binding of the PA28 regulators to the 20S proteasomes modify solvent accessibility due to conformational changes of the β-rings. This work is not only a proof-of-concept that HDX-MS can be used to get structural insights on large multi-protein complexes in solution, it also demonstrates that the binding of the std20S or i20S subtype to any of its PA28 activator triggers allosteric changes that are specific to this 20S/PA28 pair.
Collapse
Affiliation(s)
- Jean Lesne
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de Biologie Structurale, CNRS, Université de Montpellier, INSERM, 34090, Montpellier, France
| | - Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Julien Parra
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dušan Zivković
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thomas Menneteau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
How Do the Different Proteomic Strategies Cope with the Complexity of Biological Regulations in a Multi-Omic World? Critical Appraisal and Suggestions for Improvements. Proteomes 2020; 8:proteomes8030023. [PMID: 32899323 PMCID: PMC7564458 DOI: 10.3390/proteomes8030023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
In this second decade of the 21st century, we are lucky enough to have different types of proteomic analyses at our disposal. Furthermore, other functional omics such as transcriptomics have also undergone major developments, resulting in mature tools. However, choice equals questions, and the major question is how each proteomic strategy is fit for which purpose. The aim of this opinion paper is to reposition the various proteomic strategies in the frame of what is known in terms of biological regulations in order to shed light on the power, limitations, and paths for improvement for the different proteomic setups. This should help biologists to select the best-suited proteomic strategy for their purposes in order not to be driven by raw availability or fashion arguments but rather by the best fitness for purpose. In particular, knowing the limitations of the different proteomic strategies helps in interpreting the results correctly and in devising the validation experiments that should be made downstream of the proteomic analyses.
Collapse
|
5
|
Marcus K, Lelong C, Rabilloud T. What Room for Two-Dimensional Gel-Based Proteomics in a Shotgun Proteomics World? Proteomes 2020; 8:proteomes8030017. [PMID: 32781532 PMCID: PMC7563651 DOI: 10.3390/proteomes8030017] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Two-dimensional gel electrophoresis was instrumental in the birth of proteomics in the late 1980s. However, it is now often considered as an outdated technique for proteomics—a thing of the past. Although this opinion may be true for some biological questions, e.g., when analysis depth is of critical importance, for many others, two-dimensional gel electrophoresis-based proteomics still has a lot to offer. This is because of its robustness, its ability to separate proteoforms, and its easy interface with many powerful biochemistry techniques (including western blotting). This paper reviews where and why two-dimensional gel electrophoresis-based proteomics can still be profitably used. It emerges that, rather than being a thing of the past, two-dimensional gel electrophoresis-based proteomics is still highly valuable for many studies. Thus, its use cannot be dismissed on simple fashion arguments and, as usual, in science, the tree is to be judged by the fruit.
Collapse
Affiliation(s)
- Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty & Medical Proteome Analysis, Center for Proteindiagnostics (PRODI) Ruhr-University Bochum Gesundheitscampus, 4 44801 Bochum, Germany;
| | - Cécile Lelong
- CBM UMR CNRS5249, Université Grenoble Alpes, CEA, CNRS, 17 rue des Martyrs, CEDEX 9, 38054 Grenoble, France;
| | - Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Université Grenoble Alpes, CNRS, 38054 Grenoble, France
- Correspondence: ; Tel.: +33-438-783-212
| |
Collapse
|
6
|
Lakshmanan R, Loo JA. Top-Down Protein Identification using a Time-of-Flight Mass Spectrometer and Data Independent Acquisition. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 435:136-144. [PMID: 31105465 PMCID: PMC6519736 DOI: 10.1016/j.ijms.2018.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Top-down mass spectrometry and direct dissociation of gas phase intact proteins have been demonstrated to be a powerful platform for identifying proteins from complex mixtures and for elucidating post-translational modifications (PTMs). Fragmentation of proteins in the atmospheric pressure/vacuum interface of the electrospray ionization mass spectrometer is an effective dissociation technique that can be utilized for on-line HPLC top-down analysis. We demonstrate the capability to perform intact protein identifications in a single-stage time-of- flight (TOF) mass spectrometer in a data independent (DIA) acquisition fashion by rapidly switching the in-source dissociation (ISD) energy during protein elution from a liquid chromatography (LC) column. The intact protein and product ion masses obtained at low and high ISD energies, respectively, were measured using a TOF mass analyzer. By coupling on-line protein separations to dissociation in the atmospheric pressure/vacuum interface region of the mass spectrometer, we identified proteins in simple complexity mixtures, including subunits from the human 20S proteasome complex, and PTMs such as phosphorylation and N-terminal acetylation events. This proof-of-principle study demonstrates that a data-independent pseudo- MS/MS method could be a relatively in-expensive platform for top-down MS.
Collapse
Affiliation(s)
- Rajeswari Lakshmanan
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
7
|
Moussa EM, Huang H, Thézénas ML, Fischer R, Ramaprasad A, Sisay-Joof F, Jallow M, Pain A, Kwiatkowski D, Kessler BM, Casals-Pascual C. Proteomic profiling of the plasma of Gambian children with cerebral malaria. Malar J 2018; 17:337. [PMID: 30249265 PMCID: PMC6154937 DOI: 10.1186/s12936-018-2487-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a severe neurological complication of Plasmodium falciparum infection. A number of pathological findings have been correlated with pediatric CM including sequestration, platelet accumulation, petechial haemorrhage and retinopathy. However, the molecular mechanisms leading to death in CM are not yet fully understood. METHODS A shotgun plasma proteomic study was conducted using samples form 52 Gambian children with CM admitted to hospital. Based on clinical outcome, children were assigned to two groups: reversible and fatal CM. Label-free liquid chromatography-tandem mass spectrometry was used to identify and compare plasma proteins that were differentially regulated in children who recovered from CM and those who died. Candidate biomarkers were validated using enzyme immunoassays. RESULTS The plasma proteomic signature of children with CM identified 266 proteins differentially regulated in children with fatal CM. Proteins from the coagulation cascade were consistently decreased in fatal CM, whereas the plasma proteomic signature associated with fatal CM underscored the importance of endothelial activation, tissue damage, inflammation, haemolysis and glucose metabolism. The concentration of circulating proteasomes or PSMB9 in plasma was not significantly different in fatal CM when compared with survivors. Plasma PSMB9 concentration was higher in patients who presented with seizures and was significantly correlated with the number of seizures observed in patients with CM during admission. CONCLUSIONS The results indicate that increased tissue damage and hypercoagulability may play an important role in fatal CM. The diagnostic value of this molecular signature to identify children at high risk of dying to optimize patient referral practices should be validated prospectively.
Collapse
Affiliation(s)
- Ehab M Moussa
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- King Abdulla University of Science and Technology, Thuwal, Saudi Arabia
| | - Honglei Huang
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | | | - Roman Fischer
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Abhinay Ramaprasad
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- King Abdulla University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | - Arnab Pain
- King Abdulla University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | - Climent Casals-Pascual
- Wellcome Trust Centre for Human Genetics, Oxford, UK.
- Hospital Clinic i Provincial de Barcelona, CDB and ISGlobal, Barcelona, Spain.
| |
Collapse
|
8
|
Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29. Sci Rep 2016; 6:27873. [PMID: 27302526 PMCID: PMC4908598 DOI: 10.1038/srep27873] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
The proteasome degrades many short-lived proteins that are labeled with an ubiquitin chain. The identification of phosphorylation sites on the proteasome subunits suggests that degradation of these substrates can also be regulated at the proteasome. In yeast and humans, the unstructured C-terminal region of α7 contains an acidic patch with serine residues that are phosphorylated. Although these were identified more than a decade ago, the molecular implications of α7 phosphorylation have remained unknown. Here, we showed that yeast Ecm29, a protein involved in proteasome quality control, requires the phosphorylated tail of α7 for its association with proteasomes. This is the first example of proteasome phosphorylation dependent binding of a proteasome regulatory factor. Ecm29 is known to inhibit proteasomes and is often found enriched on mutant proteasomes. We showed that the ability of Ecm29 to bind to mutant proteasomes requires the α7 tail binding site, besides a previously characterized Rpt5 binding site. The need for these two binding sites, which are on different proteasome subcomplexes, explains the specificity of Ecm29 for proteasome holoenzymes. We propose that alterations in the relative position of these two sites in different conformations of the proteasome provides Ecm29 the ability to preferentially bind specific proteasome conformations.
Collapse
|
9
|
Mammalian proteasome subtypes: Their diversity in structure and function. Arch Biochem Biophys 2015; 591:132-40. [PMID: 26724758 DOI: 10.1016/j.abb.2015.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
Abstract
The 20S proteasome is a multicatalytic proteinase catalysing the degradation of the majority of intracellular proteins. Thereby it is involved in almost all basic cellular processes, which is facilitated by its association with various regulator complexes so that it appears in different disguises like 26S proteasome, hybrid-proteasome and others. The 20S proteasome has a cylindrical structure built up by four stacked rings composed of α- and β-subunits. Since the three active site-containing β-subunits can all or in part be replaced by immuno-subunits, three main subpopulations exist, namely standard-, immuno- and intermediate-proteasomes. Due to posttranslational modifications or/and genetic variations all α- and β-subunits occur in multiple iso- or proteoforms. This leads to the fact that each of the three subpopulations is composed of a variety of 20S proteasome subtypes. This review summarizes the knowledge of proteasome subtypes in mammalian cells and tissues and their possible biological and medical relevancy.
Collapse
|
10
|
Gersch M, Hackl M, Dubiella C, Dobrinevski A, Groll M, Sieber S. A Mass Spectrometry Platform for a Streamlined Investigation of Proteasome Integrity, Posttranslational Modifications, and Inhibitor Binding. ACTA ACUST UNITED AC 2015; 22:404-11. [DOI: 10.1016/j.chembiol.2015.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 10/23/2022]
|
11
|
Erath S, Groettrup M. No evidence for immunoproteasomes in chicken lymphoid organs and activated lymphocytes. Immunogenetics 2014; 67:51-60. [PMID: 25403261 DOI: 10.1007/s00251-014-0814-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
Abstract
The proteasome is the main protein-degrading machine within the cell, producing ligands for MHC class I molecules. It is a cylindrical multicatalytic protease complex, and the catalytic activity is mediated by the three subunits β1, β2, and β5 which possess caspase-, trypsin-, and chymotrypsin-like activities, respectively. By stimulation with interferon (IFN)-γ the replacement of these subunits by β1i, β2i, and β5i is induced leading to formation of immunoproteasomes with altered proteolytic and antigen processing properties. The genes coding for these immunosubunits are restricted to jawed vertebrates but have so far not been found in the genomes of birds, e.g., chicken, turkey, quail, black grouse and zebra finch. However, the chicken genome sequences are not completely assigned; therefore, we investigated the presence of immunoproteasome on protein level. 20S proteasome was purified from the chicken brain, blood, spleen, and bursa of Fabricius, followed by separation via two-dimensional (2D) gel electrophoresis. We analyzed the protein spots derived from the spleen and brain by mass spectrometry and could identify all 14 proteasomal subunits, but there were no differences detectable in the spot patterns. Moreover, we stimulated the chicken spleen cells with phorbol 12-myristate 13-acetate (PMA) and ionomycin aiming at the induction of immunoproteasome, but in spite of the induction of proliferation and IFN-γ, no evidence for immunoproteasome formation in chicken could be obtained. This result was substantiated by the finding that 20S proteasomes isolated from immune and non-immune tissues showed very similar peptidolytic activities. Taken together, our results indicate that chicken lack immunoproteasomes also on protein level.
Collapse
Affiliation(s)
- Sonja Erath
- Department of Immunology, University of Konstanz, Universitaetsstrasse 10, 78464, Konstanz, Germany
| | | |
Collapse
|
12
|
Artamonova TO, Khodorkovskii MA, Tsimokha AS. Mass spectrometric analysis of affinity-purified proteasomes from the human myelogenous leukemia K562 cell line. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014; 40:720-34. [DOI: 10.1134/s1068162014060041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Klockenbusch C, Walsh GM, Brown LM, Hoffman MD, Ignatchenko V, Kislinger T, Kast J. Global proteome analysis identifies active immunoproteasome subunits in human platelets. Mol Cell Proteomics 2014; 13:3308-19. [PMID: 25146974 DOI: 10.1074/mcp.m113.031757] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The discovery of new functions for platelets, particularly in inflammation and immunity, has expanded the role of these anucleate cell fragments beyond their primary hemostatic function. Here, four in-depth human platelet proteomic data sets were generated to explore potential new functions for platelets based on their protein content and this led to the identification of 2559 high confidence proteins. During a more detailed analysis, consistently high expression of the proteasome was discovered, and the composition and function of this complex, whose role in platelets has not been thoroughly investigated, was examined. Data set mining resulted in identification of nearly all members of the 26S proteasome in one or more data sets, except the β5 subunit. However, β5i, a component of the immunoproteasome, was identified. Biochemical analyses confirmed the presence of all catalytically active subunits of the standard 20S proteasome and immunoproteasome in human platelets, including β5, which was predominantly found in its precursor form. It was demonstrated that these components were assembled into the proteasome complex and that standard proteasome as well as immunoproteasome subunits were constitutively active in platelets. These findings suggest potential new roles for platelets in the immune system. For example, the immunoproteasome may be involved in major histocompatibility complex I (MHC I) peptide generation, as the MHC I machinery was also identified in our data sets.
Collapse
Affiliation(s)
- Cordula Klockenbusch
- From the ‡The Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Geraldine M Walsh
- From the ‡The Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; §The Centre for Blood Research, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lyda M Brown
- From the ‡The Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michael D Hoffman
- From the ‡The Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; ¶The Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Vladimir Ignatchenko
- ‖Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Thomas Kislinger
- ‖Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada; **Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Juergen Kast
- From the ‡The Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; §The Centre for Blood Research, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; ¶The Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| |
Collapse
|
14
|
Moiseeva TN, Bottrill A, Melino G, Barlev NA. DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity. Oncotarget 2014; 4:1338-48. [PMID: 23907514 PMCID: PMC3824523 DOI: 10.18632/oncotarget.1060] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stability of proteins is largely controlled by post-translational covalent modifications. Among those, ubiquitylation plays a central role as it marks the proteins for proteasome-dependent degradation. Proteolytic activities of proteasomes are critical for execution of various cellular processes, including DNA damage signaling and repair. However, very little is known about the regulation of proteasomal activity in cells during genotoxic stress. Here we investigated post-translational modifications of the 20S proteasomal subunits upon DNA damage induced by doxorubicin. Using mass-spectrometry, we found novel sites of phosphorylation and ubiquitylation in multiple proteasome subunits upon doxorubicin treatment. Ectopic co-expression of proteasome subunits and tagged ubiquitin confirmed the presence of ubiquitylated forms of PSMA5, PSMA1, PSMA3 and PSMB5 in cells. Moreover, we demonstrated that ubiquitylation in vitro inhibited chymotrypsin-like and caspase-like activities of proteasomes. In vivo, doxorubicin increased the activity of proteasomes, paralleling with attenuation of the overall level of proteasome ubiquitylation. Collectively, our results suggest a novel mechanism whereby the proteolytic activities of proteasomes are dynamically regulated by ubiquitylation upon DNA damage.
Collapse
Affiliation(s)
- Tatiana N Moiseeva
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | | | | | | |
Collapse
|
15
|
Camargo R, Faria LO, Kloss A, Favali CBF, Kuckelkorn U, Kloetzel PM, de Sá CM, Lima BD. Trypanosoma cruzi infection down-modulates the immunoproteasome biosynthesis and the MHC class I cell surface expression in HeLa cells. PLoS One 2014; 9:e95977. [PMID: 24752321 PMCID: PMC3994161 DOI: 10.1371/journal.pone.0095977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
Generally, Trypanosoma cruzi infection in human is persistent and tends to chronicity, suggesting that the parasite evade the immune surveillance by down regulating the intracellular antigen processing routes. Within the MHC class I pathway, the majority of antigenic peptides are generated by the proteasome. However, upon IFN-γ stimulation, the catalytic constitutive subunits of the proteasome are replaced by the subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 to form the immunoproteasome. In this scenario, we analyzed whether the expression and activity of the constitutive and the immunoproteasome as well as the expression of other components of the MHC class I pathway are altered during the infection of HeLa cells with T. cruzi. By RT-PCR and two-dimensional gel electrophoresis analysis, we showed that the expression and composition of the constitutive proteasome is not affected by the parasite. In contrast, the biosynthesis of the β1i, β2i, β5i immunosubunits, PA28β, TAP1 and the MHC class I molecule as well as the proteasomal proteolytic activities were down-regulated in infected-IFN-γ-treated cell cultures. Taken together, our results provide evidence that the protozoan T. cruzi specifically modulates its infection through an unknown posttranscriptional mechanism that inhibits the expression of the MHC class I pathway components.
Collapse
Affiliation(s)
- Ricardo Camargo
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Liliam O. Faria
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Alexander Kloss
- Institute für Biochimie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cecília B. F. Favali
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Ulrike Kuckelkorn
- Institute für Biochimie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Cezar Martins de Sá
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Beatriz D. Lima
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
16
|
Lakshmanan R, Wolff JJ, Alvarado R, Loo JA. Top-down protein identification of proteasome proteins with nanoLC-FT-ICR-MS employing data-independent fragmentation methods. Proteomics 2014; 14:1271-82. [PMID: 24478249 DOI: 10.1002/pmic.201300339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/24/2013] [Accepted: 11/27/2013] [Indexed: 11/10/2022]
Abstract
A comparison of different data-independent fragmentation methods combined with LC coupled to high-resolution FT-ICR-MS/MS is presented for top-down MS of protein mixtures. Proteins composing the 20S and 19S proteasome complexes and their PTMs were identified using a 15 T FT-ICR mass spectrometer. The data-independent fragmentation modes with LC timescales allowed for higher duty-cycle measurements that better suit online LC-FT-ICR-MS. Protein top-down dissociation was effected by funnel-skimmer collisionally activated dissociation (FS-CAD) and CASI (continuous accumulation of selected ions)-CAD. The N-termini for 9 of the 14 20S proteasome proteins were found to be modified, and the α3 protein was found to be phosphorylated; these results are consistent with previous reports. Mass-measurement accuracy with the LC-FT-ICR system for the 20- to 30-kDa 20S proteasome proteins was 1 ppm. The intact mass of the 100-kDa Rpn1 subunit from the 19S proteasome complex regulatory particle was measured with a deviation of 17 ppm. The CASI-CAD technique is a complementary tool for intact-protein fragmentation and is an effective addition to the growing inventory of dissociation methods that are compatible with online protein separation coupled to FT-ICR-MS.
Collapse
Affiliation(s)
- Rajeswari Lakshmanan
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
17
|
Baker TA, Bach HH, Gamelli RL, Love RB, Majetschak M. Proteasomes in lungs from organ donors and patients with end-stage pulmonary diseases. Physiol Res 2014; 63:311-9. [PMID: 24564596 DOI: 10.33549/physiolres.932607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteasomes appear to be involved in the pathophysiology of various acute and chronic lung diseases. Information on the human lung proteasome in health and disease, however, is sparse. Therefore, we studied whether end-stage pulmonary diseases are associated with alterations in lung 20S/26S proteasome content, activity and 20S subunit composition. Biopsies were obtained from donor lungs (n=7) and explanted lungs from patients undergoing lung transplantation because of end stage chronic obstructive pulmonary disease (COPD; n=7), idiopathic pulmonary fibrosis (IPF, n=7) and pulmonary sarcoidosis (n=5). 20S/26S proteasomes in lung extracts were quantified by ELISA, chymotrypsin-like proteasome peptidase activities measured and 20S proteasome beta subunits analyzed by Western blot. As compared with donor lungs, proteasome content was increased in IPF and sarcoidosis, but not in COPD. The relative distribution of free 20S and 26S proteasomes was similar; 20S proteasome was predominant in all extracts. Proteasome peptidase activities in donor and diseased lungs were indistinguishable. All extracts contained a mixed composition of inducible 20S beta immuno-subunits and their constitutive counterparts; a disease associated distribution could not be identified. A higher content of lung proteasomes in IPF and pulmonary sarcoidosis may contribute to the pathophysiology of human fibrotic lung diseases.
Collapse
Affiliation(s)
- T A Baker
- Loyola University Chicago, Maywood, IL, USA.
| | | | | | | | | |
Collapse
|
18
|
Wang X, Guerrero C, Kaiser P, Huang L. Proteomics of proteasome complexes and ubiquitinated proteins. Expert Rev Proteomics 2014; 4:649-65. [DOI: 10.1586/14789450.4.5.649] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Yuan F, Lu J, You P, Yang Z, Yang P, Ma Q, Tao T. Proteomic profiling of expression of proteasomal subunits from livers of mice treated with diethylnitrosamine. Proteomics 2012. [DOI: 10.1002/pmic.201200288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Fuqiang Yuan
- School of Life Sciences; Xiamen University; Xiamen; Fujian; P. R. China
| | - Jia Lu
- School of Life Sciences; Xiamen University; Xiamen; Fujian; P. R. China
| | - Pan You
- School of Life Sciences; Xiamen University; Xiamen; Fujian; P. R. China
| | - Zengming Yang
- School of Life Sciences; Xiamen University; Xiamen; Fujian; P. R. China
| | - Pengyuan Yang
- Department of Chemistry and Institute of Biomedical Sciences; Fudan University; Shanghai; P. R. China
| | - Qiling Ma
- Department of Neurology; The First Hospital affiliated to Xiamen University; Xiamen; Fujian; China
| | - Tao Tao
- School of Life Sciences; Xiamen University; Xiamen; Fujian; P. R. China
| |
Collapse
|
20
|
Bousquet-Dubouch MP, Fabre B, Monsarrat B, Burlet-Schiltz O. Proteomics to study the diversity and dynamics of proteasome complexes: from fundamentals to the clinic. Expert Rev Proteomics 2012; 8:459-81. [PMID: 21819302 DOI: 10.1586/epr.11.41] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This article covers the latest contributions of proteomics to the structural and functional characterization of proteasomes and their associated proteins, but also to the detection of proteasomes as clinical biomarkers in diseases. Proteasomes are highly heterogenous supramolecular complexes and constitute important cellular proteases controlling the pool of proteins involved in key cellular functions. The comprehension of the structure/function relationship of proteasomes is therefore of major interest in biology. Numerous biochemical methods have been employed to purify proteasomes, and have led to the identification of complexes of various compositions - depending on the experimental conditions and the type of strategy used. In association with protein separation and enrichment techniques, modern mass spectrometry instruments and mass spectrometry-based quantitative methods, they have led to unprecedented breakthroughs in the in-depth analysis of the diversity and dynamics of proteasome composition and localization under various stimuli or pathological contexts. Proteasome inhibitors are now used in clinics for the treatment of cancer, and recent studies propose that the proteasome should be considered as a predictive biomarker for various pathologies.
Collapse
|
21
|
Riksen EA, Petzold C, Brookes S, Lyngstadaas SP, Reseland JE. Human osteoblastic cells discriminate between 20-kDa amelogenin isoforms. Eur J Oral Sci 2012; 119 Suppl 1:357-65. [PMID: 22243268 DOI: 10.1111/j.1600-0722.2011.00912.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enamel matrix derivative (EMD) is used to stimulate healing of alveolar bone after destructive marginal periodontitis; however, the roles of the different EMD constituents are unclear. The aim here was to compare the effect of two EMD fractions (A1 and A2) on primary human osteoblasts cultured in the presence of 50 μg ml(-1) of A1, A2, or EMD. SDS-PAGE showed that A1 and A2 were comprised of amelogenins migrating at around 20 kDa. Fourier transform infrared (FTIR) analysis revealed that A1 and A2 had different secondary structures, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) identified different peptide mass values. Osteoblasts responded differently to A1 and A2. Whereas A1 enhanced the proliferation [measured by the incorporation of 5-bromo-2'-deoxyuridine (BrdU)] of osteoblasts, the expression of runt-related transcription factor-2 (RUNX2) mRNA, and the secretion of interleukin 6 (IL-6) into the cell culture medium, exposure to A2 resulted in increased alkaline phosphatase (ALP) activity, increased expression of CD44 mRNA, and increased secretion of osteoprotegrin (OPG) and receptor activator of nuclear factor-kappaB ligand (RANKL). The level of osteocalcin in the cell culture medium was increased after all treatments, while A2 stimulated the expression of dentin matrix protein 1 (DMP1) mRNA. The results suggest that both A1 and A2 participate in the observed effect of EMD, but have different effects on the expression of osteoblast mRNA and the secretion of osteoblast protein, and thus might facilitate the differentiation of a different phenotype.
Collapse
Affiliation(s)
- Elisabeth A Riksen
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
22
|
Wang X, Zhao Z, Luo Y, Chen G, Li Z. Gel-based proteomics analysis of the heterogeneity of 20S proteasomes from four human pancreatic cancer cell lines. Proteomics Clin Appl 2011; 5:484-92. [PMID: 21751412 DOI: 10.1002/prca.201000149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 05/11/2011] [Accepted: 05/30/2011] [Indexed: 11/06/2022]
Abstract
PURPOSE The 20S proteasome is a multicatalytic protein complex, which plays a major role in intracellular protein degradation. In mammalian cells, it consists of 28 subunits arranged in four stacked rings (α1-7β1-7β1-7α1-7). The aim of this study is to characterize and compare subunit composition and heterogeneity (or subtypes) of the 20S proteasome from four human pancreatic cancer cell lines. EXPERIMENTAL DESIGN To study subunit compositions and heterogeneity of 20S proteasome from human pancreatic cancer cell lines, in the present study, 20S proteasome from four different pancreatic cancer cell lines (SW1990, a human exocrine adenocarcinoma, derived from spleen metastasis; PANC-1, a human ductal carcinoma in situ; BxPC-3, a human ductal carcinoma in situ; and CFPAC-1, a human ductal adenocarcinoma, derived from liver metastasis) were subjected to a gel-based proteomics analysis, respectively. RESULTS It was found that the differences in the subunit compositions and subtypes of the 20S proteasomes among four pancreatic cancer cell lines exist. Gel-based proteomics analysis showed that more than 60 subunits spots were separated and identified by MS. Our study revealed the presence of various isoforms for each of the subunits and different subtypes of the 20S proteasome. The significant differences among four cell lines are the relative abundances of immunoproteasome subunits, β1i and β2i, indicating that different subtypes of immunoproteasome among four cell lines exist. CONCLUSIONS AND CLINICAL RELEVANCE The 20S proteasome from four human pancreatic cancer cell lines was characterized. The different expression levels of immunoproteasome subunits, β1i and β2i, indicate that the 20S proteasome may have different subtypes among four cell lines, which may be related to cancer cell property and be useful for the establishment of personalized therapy using proteasome inhibitors in future.
Collapse
Affiliation(s)
- Xinli Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, P. R. China
| | | | | | | | | |
Collapse
|
23
|
Wang X, Chen G, Liu H, Zhao Z, Li Z. Four-Dimensional Orthogonal Electrophoresis System for Screening Protein Complexes and Protein−Protein Interactions Combined with Mass Spectrometry. J Proteome Res 2010; 9:5325-34. [DOI: 10.1021/pr100581x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaodong Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Guoqiang Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Hui Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Zhiyun Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Zhili Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
24
|
Pasini EM, Mann M, Thomas AW. Red blood cell proteomics. Transfus Clin Biol 2010; 17:151-64. [PMID: 20655788 DOI: 10.1016/j.tracli.2010.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/21/2010] [Indexed: 12/23/2022]
Abstract
Since its discovery in the 17th century, the red blood cell, recognized in time as the critical cell component for survival, has been the focus of much attention. Its unique role in gas exchange (oxygen/CO(2) transport) and its distinct characteristics (absence of nucleus; biconcave cell shape) together with an - in essence - unlimited supply lead to extensive targeted biochemical, molecular and structural studies. A quick PubMed query with the word "erythrocyte" results in 198 013 scientific articles of which 162 are red blood cell proteomics studies, indicating that this new technique has been only recently applied to the red blood cell and related fields. Standard and comparative proteomics have been widely used to study different blood components. A growing body of proteomics literature has since developed, which deals with the characterization of red blood cells in health and disease. The possibility offered by proteomics to obtain a global snapshot of the whole red blood cell protein make-up, has provided unique insights to many fields including transfusion medicine, anaemia studies, intra-red blood cell parasite biology and translational research. While the contribution of proteomics is beyond doubt, a full red blood cell understanding will ultimately require, in addition to proteomics, lipidomics, glycomics, interactomics and study of post-translational modifications. In this review we will briefly discuss the methodology and limitations of proteomics, the contribution it made to the understanding of the erythrocyte and the advances in red blood cell-related fields brought about by comparative proteomics.
Collapse
Affiliation(s)
- E M Pasini
- Biomedical Primate Research Centre, Lange Kleiweg 139, 2288 GJ Rijswijk, The Netherlands
| | | | | |
Collapse
|
25
|
Phosphorylation and methylation of proteasomal proteins of the haloarcheon Haloferax volcanii. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010:481725. [PMID: 20671954 PMCID: PMC2910475 DOI: 10.1155/2010/481725] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 05/08/2010] [Indexed: 01/10/2023]
Abstract
Proteasomes are composed of 20S core particles (CPs) of alpha- and beta-type subunits that associate with regulatory particle AAA ATPases such as the proteasome-activating nucleotidase (PAN) complexes of archaea. In this study, the roles and additional sites of post-translational modification of proteasomes were investigated using the archaeon Haloferax volcanii as a model. Indicative of phosphorylation, phosphatase-sensitive isoforms of alpha1 and alpha2 were detected by 2-DE immunoblot. To map these and other potential sites of post-translational modification, proteasomes were purified and analyzed by tandem mass spectrometry (MS/MS). Using this approach, several phosphosites were mapped including alpha1 Thr147, alpha2 Thr13/Ser14 and PAN-A Ser340. Multiple methylation sites were also mapped to alpha1, thus, revealing a new type of proteasomal modification. Probing the biological role of alpha1 and PAN-A phosphorylation by site-directed mutagenesis revealed dominant negative phenotypes for cell viability and/or pigmentation for alpha1 variants including Thr147Ala, Thr158Ala and Ser58Ala. An H. volcanii Rio1p Ser/Thr kinase homolog was purified and shown to catalyze autophosphorylation and phosphotransfer to alpha1. The alpha1 variants in Thr and Ser residues that displayed dominant negative phenotypes were significantly reduced in their ability to accept phosphoryl groups from Rio1p, thus, providing an important link between cell physiology and proteasomal phosphorylation.
Collapse
|
26
|
Oxidative protein damage and the proteasome. Amino Acids 2010; 42:23-38. [DOI: 10.1007/s00726-010-0646-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 05/29/2010] [Indexed: 12/24/2022]
|
27
|
Schmidt F, Dahlmann B, Hustoft HK, Koehler CJ, Strozynski M, Kloss A, Zimny-Arndt U, Jungblut PR, Thiede B. Quantitative proteome analysis of the 20S proteasome of apoptotic Jurkat T cells. Amino Acids 2010; 41:351-61. [PMID: 20364280 DOI: 10.1007/s00726-010-0575-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/17/2010] [Indexed: 01/27/2023]
Abstract
Regulated proteolysis plays important roles in cell biology and pathological conditions. A crosstalk exists between apoptosis and the ubiquitin-proteasome system, two pathways responsible for regulated proteolysis executed by different proteases. To investigate whether the apoptotic process also affects the 20S proteasome, we performed three independent SILAC-based quantitative proteome approaches: 1-DE/MALDI-MS, small 2-DE/MALDI-MS and large 2-DE/nano-LC-ESI-MS. Taking the results of all experiments together, no quantitative changes were observed for the α- and β-subunits of the 20S proteasome except for subunit α7. This protein was identified in two protein spots with a down-regulation of the more acidic protein species (α7a) and up-regulation of the more basic protein species (α7b) during apoptosis. The difference in these two α7 protein species could be attributed to oxidation of cysteine-41 to cysteine sulfonic acid and phosphorylation at serine-250 near the C terminus in α7a, whereas these modifications were missing in α7b. These results pointed to the biological significance of posttranslational modifications of proteasome subunit α7 after induction of apoptosis.
Collapse
Affiliation(s)
- Frank Schmidt
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalleen 21, Blindern, P.O. Box 1125, 0317, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pasini EM, Lutz HU, Mann M, Thomas AW. Red Blood Cell (RBC) membrane proteomics — Part II: Comparative proteomics and RBC patho-physiology. J Proteomics 2010; 73:421-35. [DOI: 10.1016/j.jprot.2009.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/07/2009] [Accepted: 07/13/2009] [Indexed: 12/23/2022]
|
29
|
Eang R, Girbal-Neuhauser E, Xu B, Gairin JE. Characterization and differential expression of a newly identified phosphorylated isoform of the human 20S proteasome beta7 subunit in tumor vs. normal cell lines. Fundam Clin Pharmacol 2009; 23:215-24. [PMID: 19645816 DOI: 10.1111/j.1472-8206.2009.00665.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The search of new pharmacological targets with original mechanism of action within the ubiquitin-proteasome pathway is still a goal to be reached in oncopharmacology. Modification by phosphorylation/dephosphorylation has been found to be involved in cancer and to regulate functional activity of proteasome. Until now, phosphorylated forms of alpha subunits of the 20S human proteasome have been mostly reported. Here, we have rationally designed a polyclonal antibody specifically directed against a phosphorylated peptide sequence bearing the beta7 subunit Ser249 residue of the human 20S proteasome. This anti-beta7 phosphoSer249 antibody appeared to be a probe of choice to detect the presence of a phosphorylated isoform of the beta7 subunit of the human 20S proteasome using mono or two-dimensional gel electrophoresis. PhosphoSer249 was sensitive to acid phosphatase treatment of native 20S proteasome. Dephosphorylation affected the peptidylglutamyl-peptide hydrolyzing activity whereas the chymotrypsin-like and trypsin-like activities remained unchanged. A comparative analysis between human normal and tumor cells showed a differential expression of the phosphoSer249 beta7 isoform with a significantly lower detection in the proteasome isolated from tumor cells, suggesting its possible use as a biomarker.
Collapse
Affiliation(s)
- Rothmony Eang
- Centre de Recherche en Pharmacologie-Santé, UMR 2587 CNRS-Pierre Fabre, ISTMT, 3 rue des satellites, 31400 Toulouse, France
| | | | | | | |
Collapse
|
30
|
Matondo M, Bousquet-Dubouch MP, Gallay N, Uttenweiler-Joseph S, Recher C, Payrastre B, Manenti S, Monsarrat B, Burlet-Schiltz O. Proteasome inhibitor-induced apoptosis in acute myeloid leukemia: a correlation with the proteasome status. Leuk Res 2009; 34:498-506. [PMID: 19811823 DOI: 10.1016/j.leukres.2009.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 09/07/2009] [Accepted: 09/14/2009] [Indexed: 12/31/2022]
Abstract
The proteasome plays a critical role in the regulation of many cellular processes, including the cell cycle and tumor growth. The proteasome inhibitor bortezomib has recently been approved for the treatment of relapsed and refractory multiple myeloma. In this study, we investigated the induction of apoptosis by proteasome inhibitors in several human acute myeloid leukemia (AML) cell lines and in primary cells from patients. We demonstrate that these drugs induce a high level of apoptosis in the KG1a cell line, in which the therapeutic drug daunorubicin is poorly active, compared to other AML cell lines. In parallel, we found that significantly different levels of apoptosis were induced in primary cells from patients depending on the FAB-based differentiation status of these cells. Moreover, the level of 20S proteasome in KG1a cells was also high compared to other AML cell lines, suggesting a relationship between the high sensitivity to proteasome inhibitors and an elevated amount of 20S proteasome. In good accordance, we identified two groups of patient cells expressing high and low levels of 20S proteasome, with respective high and low sensitivity to proteasome inhibitors. Further comparison of the proteasome status in KG1a and U937 cells also suggests that a high proportion of the 19S regulatory complex in U937 cells compared to the 20S core complex may explain an increased proteasome activity. Altogether, our results suggest that various AML subtypes may present different responses to proteasome inhibitors, that these molecules can be potentially considered as interesting therapeutic alternatives for these pathologies, and that the amount of 20S proteasome in AML cells may be predictive of the cellular response to these inhibitors.
Collapse
Affiliation(s)
- Mariette Matondo
- CNRS, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, F-31077 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen G, Luo Y, Wang X, Zhao Z, Liu H, Zhang H, Li Z. A relatively simple and economical protocol for proteomic analyses of human 20S proteasome: Compatible with both scaled-up and scaled-down purifications. Electrophoresis 2009; 30:2422-30. [DOI: 10.1002/elps.200800802] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Bousquet-Dubouch MP, Nguen S, Bouyssié D, Burlet-Schiltz O, French SW, Monsarrat B, Bardag-Gorce F. Chronic ethanol feeding affects proteasome-interacting proteins. Proteomics 2009; 9:3609-22. [PMID: 19609968 PMCID: PMC2766596 DOI: 10.1002/pmic.200800959] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 04/05/2009] [Indexed: 12/20/2022]
Abstract
Studies on alcoholic liver injury mechanisms show a significant inhibition of the proteasome activity. To investigate this phenomenon, we isolated proteasome complexes from the liver of rats fed ethanol chronically, and from the liver of their pair-fed controls, using a non-denaturing multiple centrifugations procedure to preserve proteasome-interacting proteins (PIPs). ICAT and MS/MS spectral counting, further confirmed by Western blot, showed that the levels of several PIPs were significantly decreased in the isolated ethanol proteasome fractions. This was the case of PA28alpha/beta proteasome activator subunits, and of three proteasome-associated deubiquitinases, Rpn11, ubiquitin C-terminal hydrolase 14, and ubiquitin carboxyl-terminal hydrolase L5. Interestingly, Rpn13 C-terminal end was missing in the ethanol proteasome fraction, which probably altered the linking of ubiquitin carboxyl-terminal hydrolase L5 to the proteasome. 20S proteasome and most 19S subunits were however not changed but Ecm29, a protein known to stabilize the interactions between the 20S and its activators, was decreased in the isolated ethanol proteasome fractions. It is proposed that ethanol metabolism causes proteasome inhibition by several mechanisms, including by altering PIPs and proteasome regulatory complexes binding to the proteasome.
Collapse
Affiliation(s)
- Marie-Pierre Bousquet-Dubouch
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | | | - David Bouyssié
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Odile Burlet-Schiltz
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | | | - Bernard Monsarrat
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | | |
Collapse
|
33
|
Visekruna A, Joeris T, Schmidt N, Lawrenz M, Ritz JP, Buhr HJ, Steinhoff U. Comparative expression analysis and characterization of 20S proteasomes in human intestinal tissues: The proteasome pattern as diagnostic tool for IBD patients. Inflamm Bowel Dis 2009; 15:526-33. [PMID: 19067411 DOI: 10.1002/ibd.20805] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The diagnostic differentiation between Crohn's disease (CD) and ulcerative colitis (UC) is sometimes difficult. To date, there are no serological markers that are specific and sensitive enough to differentiate between these 2 diseases. Early and safe prediction of the inflammatory bowel disease (IBD) type is of great importance for the specific treatment of IBD patients. We thus analyzed and compared the expression of catalytic proteasome subunits in the gut of mice and in the normal and inflamed intestines of CD and UC patients and assessed whether the subunit pattern is suitable for diagnostic differentiation. METHODS The 20S proteasomes were isolated from surgical tissue specimens derived from terminal ileum and colon of IBD patients and controls. Spots of 20S proteasomes separated by 2D electrophoresis were analyzed by mass spectrometry. Quick detection of catalytic beta2, beta2i, and beta5i subunits was performed by incubating proteasomes with a biotinylated inhibitor (AdaK(Bio)Ahx3L3VS) and subsequently by streptavidin-horseradish peroxide. RESULTS 20S proteasomes were isolated from the human liver, colon, and terminal ileum. Low expression of the immunosubunits beta1i and beta2i was found in the liver and colon but high amounts in the small intestine. In colon and liver beta5i was found to be associated with the constitutive beta1, beta2 subunits, indicating the existence of mixed proteasomes. Further, inflammation in CD but not UC patients induced massive upregulation of beta1i and beta2i in the colon and terminal ileum, indicating the importance of this protein complex as a disease marker. CONCLUSIONS We here show that CD and UC patients display a characteristic pattern of proteasome subunit composition which can be used as diagnostic tool to differentiate between CD and UC.
Collapse
Affiliation(s)
- Alexander Visekruna
- Department of Surgery I, Charité-Medical School, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Jansen FH, Krijgsveld J, van Rijswijk A, van den Bemd GJ, van den Berg MS, van Weerden WM, Willemsen R, Dekker LJ, Luider TM, Jenster G. Exosomal secretion of cytoplasmic prostate cancer xenograft-derived proteins. Mol Cell Proteomics 2009; 8:1192-205. [PMID: 19204029 DOI: 10.1074/mcp.m800443-mcp200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Novel markers for prostate cancer (PCa) are needed because current established markers such as prostate-specific antigen lack diagnostic specificity and prognostic value. Proteomics analysis of serum from mice grafted with human PCa xenografts resulted in the identification of 44 tumor-derived proteins. Besides secreted proteins we identified several cytoplasmic proteins, among which were most subunits of the proteasome. Native gel electrophoresis and sandwich ELISA showed that these subunits are present as proteasome complexes in the serum from xenograft-bearing mice. We hypothesized that the presence of proteasome subunits and other cytoplasmic proteins in serum of xenografted mice could be explained by the secretion of small vesicles by cancer cells, so-called exosomes. Therefore, mass spectrometry and Western blotting analyses of the protein content of exosomes isolated from PCa cell lines was performed. This resulted in the identification of mainly cytoplasmic proteins of which several had previously been identified in the serum of xenografted mice, including proteasome subunits. The isolated exosomes also contained RNA, including the gene fusion TMPRSS2-ERG product. These observations suggest that although their function is not clearly defined cancer-derived exosomes offer possibilities for the identification of novel biomarkers for PCa.
Collapse
Affiliation(s)
- Flip H Jansen
- Department of Urology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bousquet-Dubouch MP, Baudelet E, Guérin F, Matondo M, Uttenweiler-Joseph S, Burlet-Schiltz O, Monsarrat B. Affinity purification strategy to capture human endogenous proteasome complexes diversity and to identify proteasome-interacting proteins. Mol Cell Proteomics 2009; 8:1150-64. [PMID: 19193609 DOI: 10.1074/mcp.m800193-mcp200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An affinity purification strategy was developed to characterize human proteasome complexes diversity as well as endogenous proteasome-interacting proteins (PIPs). This single step procedure, initially used for 20 S proteasome purification, was adapted to purify all existing physiological proteasome complexes associated to their various regulatory complexes and to their interacting partners. The method was applied to the purification of proteasome complexes and their PIPs from human erythrocytes but can be used to purify proteasomes from any human sample as starting material. The benefit of in vivo formaldehyde cross-linking as a stabilizer of protein-protein interactions was studied by comparing the status of purified proteasomes and the identified proteins in both protocols (with or without formaldehyde cross-linking). Subsequent proteomics analyses identified all proteasomal subunits, known regulators, and recently assigned partners. Moreover other proteins implicated at different levels of the ubiquitin-proteasome system were also identified for the first time as PIPs. One of them, the ubiquitin-specific protease USP7, also known as HAUSP, is an important player in the p53-HDM2 pathway. The specificity of the interaction was further confirmed using a complementary approach that consisted of the reverse immunoprecipitation with HAUSP as a bait. Altogether we provide a valuable tool that should contribute, through the identification of partners likely to affect proteasomal function, to a better understanding of this complex proteolytic machinery in any living human cell and/or organ/tissue and in different cell physiological states.
Collapse
|
36
|
Rotanova TV, Melnikov EE. The ATP-dependent proteases and proteolytic complexes involved into intracellular protein degradation. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2008. [DOI: 10.1134/s1990750808030049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Faria LO, Lima BD, de Sá CM. Trypanosoma cruzi: effect of the infection on the 20S proteasome in non-immune cells. Exp Parasitol 2008; 120:261-8. [PMID: 18789322 DOI: 10.1016/j.exppara.2008.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 07/23/2008] [Accepted: 08/14/2008] [Indexed: 11/17/2022]
Abstract
Human infection with the protozoan Trypanosoma cruzi leads to Chagas disease. After 10-20 years of the normal acute phase, this disease develops to a chronic phase characterized mainly by dilated congestive cardiomyopathy. The mechanisms involved in the chronic phase are poorly understood, and it has been suggested that the parasite evades immune surveillance by down regulating the MHC class I antigen processing pathway. Here we analyzed whether composition or expression of the 20S proteasome, the major proteinase responsible for the generation of MHC class I ligands, were altered upon infection of HeLa cells by T. cruzi. Two-dimensional gel electrophoresis and RT-PCR experiments comparing non-infected and infected cells did not show differences between the composition of 20S proteasome or expression of its subunits. However, the proteasome's trypsin- and chymotrypsin-like activities were 2.5 and 3.6 times higher in infected cells than in non-infected cells. Our results suggest that in vitro T. cruzi infection of human or rat cells do not alter the expression of 20S proteasomal subunits or particle composition, and fails to induce the formation of immunoproteasome. However, a significant increase in the trypsin- and chymotrypsin-like activities of the host proteasome was observed.
Collapse
Affiliation(s)
- Liliam O Faria
- Departamento de Biologia Celular, Universidade de Brasília, Laboratório Biologia do Gene, ICC Ala Sul, Asa Norte 70910-900, Brasília, DF, Brazil.
| | | | | |
Collapse
|
38
|
Garaguso I, Borlak J. Matrix layer sample preparation: An improved MALDI-MS peptide analysis method for proteomic studies. Proteomics 2008; 8:2583-95. [PMID: 18546159 DOI: 10.1002/pmic.200701147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ignazio Garaguso
- Department of Drug Research and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | | |
Collapse
|
39
|
Ducoux-Petit M, Uttenweiler-Joseph S, Brichory F, Bousquet-Dubouch MP, Burlet-Schiltz O, Haeuw JF, Monsarrat B. Scaled-down purification protocol to access proteomic analysis of 20S proteasome from human tissue samples: comparison of normal and tumor colorectal cells. J Proteome Res 2008; 7:2852-9. [PMID: 18510353 DOI: 10.1021/pr8000749] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The proteasome is a proteolytic complex that constitutes the main pathway for degradation of intracellular proteins in eukaryotic cells. It regulates many physiological processes and its dysfunction can lead to several pathologies like cancer. To study the 20S proteasome structure/activity relationship in cells that derive from human biopsy samples, we optimized an immuno-purification protocol for the analysis of samples containing a small number of cells using magnetic beads. This scaled-down protocol was used to purify the cytoplasmic 20S proteasome of adjacent normal and tumor colorectal cells arising from tissue samples of several patients. Proteomic analyses based on two-dimensional gel electrophoresis (2DE) and mass spectrometry showed that the subunit composition of 20S proteasomes from these normal and tumor cells were not significantly different. The proteasome activity was also assessed in the cytoplasmic extracts and was similar or higher in tumor colorectal than in the corresponding normal cells. The scaled-down 20S proteasome purification protocol developed here can be applied to any human clinical tissue samples and is compatible with further proteomic analyses.
Collapse
Affiliation(s)
- Manuelle Ducoux-Petit
- Universite de Toulouse, Institute of Pharmacology and Structural Biology, IPBS, UPS, 205 route de Narbonne, 31077, Toulouse, cedex 4, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Uttenweiler-Joseph S, Claverol S, Sylvius L, Bousquet-Dubouch MP, Burlet-Schiltz O, Monsarrat B. Toward a full characterization of the human 20S proteasome subunits and their isoforms by a combination of proteomic approaches. Methods Mol Biol 2008; 484:111-130. [PMID: 18592176 DOI: 10.1007/978-1-59745-398-1_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The 20S proteasome is a multicatalytic protein complex, present in all eukaryotic cells, that plays a major role in intracellular protein degradation. In mammalian cells, this symmetrical cylindrical complex is composed of two copies each of seven different alpha and beta subunits arranged into four stacked rings (alpha(7)beta(7)beta(7)alpha(7)). Separation by two-dimensional (2D) gel electrophoresis of the human erythrocytes 20S proteasome subunits and mass spectrometry (MS) identification of all the observed spots reveal the presence of multiple isoforms for most of the subunits. These isoforms could correspond to protein variants and/or posttranslational modifications that may influence the 20S proteasome proteolytic activity. Their characterization is therefore important to establish the rules governing structure/activity relationships of the human 20S proteasome. This chapter describes the use of a combination of proteomic approaches to characterize the human 20S proteasome subunit isoforms separated by 2D gel electrophoresis. A "top-down" strategy was developed to determine by electrospray MS the molecular mass of the intact protein after its passive elution from the gel. Comparison of the experimental molecular mass to the theoretical one can reveal the presence of possible modifications. "Bottom-up" proteomic approaches are then performed and, after protein digestion, tandem MS analyses of the modified peptides allow the characterization and location of the modification. These methods are discussed for the study of the human erythrocytes 20S proteasome subunit isoforms.
Collapse
Affiliation(s)
- Sandrine Uttenweiler-Joseph
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089, Centre National de la Recherche Scientifique/Université Paul Sabatier, Toulouse, France
| | | | | | | | | | | |
Collapse
|
41
|
Konstantinova IM, Tsimokha AS, Mittenberg AG. Role of proteasomes in cellular regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:59-124. [PMID: 18544497 DOI: 10.1016/s1937-6448(08)00602-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 26S proteasome is the key enzyme of the ubiquitin-dependent pathway of protein degradation. This energy-dependent nanomachine is composed of a 20S catalytic core and associated regulatory complexes. The eukaryotic 20S proteasomes demonstrate besides several kinds of peptidase activities, the endoribonuclease, protein-chaperone and DNA-helicase activities. Ubiquitin-proteasome pathway controls the levels of the key regulatory proteins in the cell and thus is essential for life and is involved in regulation of crucial cellular processes. Proteasome population in the cell is structurally and functionally heterogeneous. These complexes are subjected to tightly organized regulation, particularly, to a variety of posttranslational modifications. In this review we will summarize the current state of knowledge regarding proteasome participation in the control of cell cycle, apoptosis, differentiation, modulation of immune responses, reprogramming of these particles during these processes, their heterogeneity and involvement in the main levels of gene expression.
Collapse
|
42
|
Bousquet-Dubouch MP, Uttenweiler-Joseph S, Ducoux-Petit M, Matondo M, Monsarrat B, Burlet-Schiltz O. Purification and proteomic analysis of 20S proteasomes from human cells. Methods Mol Biol 2008; 432:301-20. [PMID: 18370027 DOI: 10.1007/978-1-59745-028-7_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The 20S proteasome is a multicatalytic protein complex present in all eukaryotic cells. Associated to regulatory complexes, it plays a major role in cellular protein degradation and in the generation of Major Histocompatibility Complex (MHC) class I antigenic peptides. In mammalian cells, this symmetrical cylindrical complex is composed of two copies of 14 distinct subunits, three of which possess a proteolytic activity. The catalytic standard subunits can be replaced by immunosubunits to form the immunoproteasome, which possesses different proteolytic efficiencies. Both types of 20S proteasomes can be present in cells in varying distributions. The heterogeneity of 20S proteasome complexes in cells leads to different protein degradation patterns. The characterization of the subunit composition of 20S proteasomes in cells thus represents an important step in the understanding of the effect of the heterogeneity of proteasome complexes on their activity. This chapter describes the use of proteomic approaches to study the subunit composition of 20S proteasome complexes purified from human cells. An immunoaffinity purification method is presented. The separation of all 20S proteasome subunits by 2D gel electrophoresis and the subunit identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis and database search are then described. These methods are discussed with the study of 20S proteasomes purified from two human cancer cell lines.
Collapse
Affiliation(s)
- Marie-Pierre Bousquet-Dubouch
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | | | | | |
Collapse
|
43
|
Didier C, Merdes A, Gairin JE, Jabrane-Ferrat N. Inhibition of proteasome activity impairs centrosome-dependent microtubule nucleation and organization. Mol Biol Cell 2007; 19:1220-9. [PMID: 18094058 DOI: 10.1091/mbc.e06-12-1140] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Centrosomes are dynamic organelles that consist of a pair of cylindrical centrioles, surrounded by pericentriolar material. The pericentriolar material contains factors that are involved in microtubule nucleation and organization, and its recruitment varies during the cell cycle. We report here that proteasome inhibition in HeLa cells induces the accumulation of several proteins at the pericentriolar material, including gamma-tubulin, GCP4, NEDD1, ninein, pericentrin, dynactin, and PCM-1. The effect of proteasome inhibition on centrosome proteins does not require intact microtubules and is reversed after removal of proteasome inhibitors. This accrual of centrosome proteins is paralleled by accumulation of ubiquitin in the same area and increased polyubiquitylation of nonsoluble gamma-tubulin. Cells that have accumulated centrosome proteins in response to proteasome inhibition are impaired in microtubule aster formation. Our data point toward a role of the proteasome in the turnover of centrosome proteins, to maintain proper centrosome function.
Collapse
Affiliation(s)
- Christine Didier
- Institut de Sciences et Technologies du Médicament de Toulouse, Unité Mixte de Recherche 2587 Centre National de la Recherche Scientifique-Pierre Fabre, 31400 Toulouse, France
| | | | | | | |
Collapse
|
44
|
Abstract
The ubiquitin proteasome system (UPS) represents a major pathway for intracellular protein degradation. Proteasome dependent protein quality control participates in cell cycle, immune response and apoptosis. Therefore, the UPS is in focus of therapeutic investigations and the development of pharmaceutical agents. Detailed analyses on proteasome structure and function are the foundation for drug development and clinical studies. Proteomic approaches contributed significantly to our current knowledge in proteasome research. In particular, 2-DE has been essential in facilitating the development of current models on molecular composition and assembly of proteasome complexes. Furthermore, developments in MS enabled identification of UPS proteins and their PTMs at high accuracy and high-throughput. First results on global characterization of the UPS are also available. Although the UPS has been intensively investigated within the last two decades, its functional significance and contribution to the regulation of cell and tissue phenotypes remain to be explored. This review recapitulates a variety of applied proteomic approaches in proteasome exploration, and presents an overview of current technologies and their potential in driving further investigations.
Collapse
Affiliation(s)
- Oliver Drews
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
45
|
Drews O, Wildgruber R, Zong C, Sukop U, Nissum M, Weber G, Gomes AV, Ping P. Mammalian proteasome subpopulations with distinct molecular compositions and proteolytic activities. Mol Cell Proteomics 2007; 6:2021-31. [PMID: 17660509 DOI: 10.1074/mcp.m700187-mcp200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteasome-dependent protein degradation participates in multiple essential cellular processes. Modulation of proteasomal activities may alter cardiac function and disease phenotypes. However, cardiovascular studies reported thus far have yielded conflicting results. We hypothesized that a contributing factor to the contradicting literature may be caused by existing proteasome heterogeneity in the myocardium. In this investigation, we provide the very first direct demonstration of distinct proteasome subpopulations in murine hearts. The cardiac proteasome subpopulations differ in their molecular compositions and proteolytic activities. Furthermore they were distinguished from proteasome subpopulations identified in murine livers. The study was facilitated by the development of novel protocols for in-solution isoelectric focusing of multiprotein complexes in a laminar flow that support an average resolution of 0.04 pH units. Utilizing these protocols, the majority of cardiac proteasome complexes displayed an isoelectric point of 5.26 with additional subpopulations focusing in the range from pH 5.10 to 5.33. In contrast, the majority of hepatic 20 S proteasomes had a pI of 5.05 and focused from pH 5.01 to 5.29. Importantly proteasome subpopulations degraded specific model peptides with different turnover rates. Among cardiac subpopulations, proteasomes with an approximate pI of 5.21 showed 40% higher trypsin-like activity than those with pI 5.28. Distinct proteasome assembly may be a contributing factor to variations in proteolytic activities because proteasomes with pI 5.21 contained 58% less of the inducible subunit beta 2i compared with those with pI 5.28. In addition, dephosphorylation of 20 S proteasomes demonstrated that besides molecular composition posttranslational modifications largely contribute to their pI values. These data suggest the possibility of mixed 20 S proteasome assembly, a departure from the currently hypothesized two subpopulations: constitutive and immuno forms. The identification of multiple distinct proteasome subpopulations in heart provides key mechanistic insights for achieving selective and targeted regulation of this essential protein degradation machinery. Thus, proteasome subpopulations may serve as novel therapeutic targets in the myocardium.
Collapse
Affiliation(s)
- Oliver Drews
- Department of Physiology, Division of Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Castro-Borges W, Cartwright J, Ashton PD, Braschi S, Guerra Sa R, Rodrigues V, Wilson RA, Curwen RS. The 20S proteasome ofSchistosoma mansoni: A proteomic analysis. Proteomics 2007; 7:1065-75. [PMID: 17390295 DOI: 10.1002/pmic.200600166] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proteasomes are molecular machines found in virtually all cells that provide one of the mechanisms for protein turnover. We have analysed the 20S proteasome of Schistosoma mansoni, the first multimeric complex isolated from this helminth parasite. Three chromatographic steps were employed to yield a highly homogeneous preparation. 2-DE of the purified complex revealed 58 spots, of which 46 could be assigned either an alpha or a beta proteasome signature by MS. Most of the 14 transcripts (7alpha and 7beta) encoded by the parasite genome were represented by multiple spots and we suggest that this diversity is due to PTMs of subunits. For most of the isoforms, variations in pI predominated although alterations in mass were also observed. 2-DE separations of extracts from infective cercariae and blood-dwelling adult worms probed by Western blotting, using a human anti-alpha subunit antibody, revealed different patterns of reactivity, most probably in alpha3 and alpha6 subunits, on the basis of sequence conservation. This difference was rapidly lost following transformation of the cercaria to the skin schistosomulum stage, suggesting that changes in the proteasome structure, likely caused by the introduction of a new set of PTMs, precede remodelling of the parasite body prior to intravascular migration.
Collapse
|
47
|
Gillardon F, Kloss A, Berg M, Neumann M, Mechtler K, Hengerer B, Dahlmann B. The 20S proteasome isolated from Alzheimer's disease brain shows post-translational modifications but unchanged proteolytic activity. J Neurochem 2007; 101:1483-90. [PMID: 17286585 DOI: 10.1111/j.1471-4159.2006.04438.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic neurodegenerative diseases are characterized by the accumulation of aggregated protein species, and functional impairment of the ubiquitin proteasome system has been hypothesized to contribute to neuronal cell loss. Decreased proteolytic activity of the 20S proteasome has been shown postmortem in crude brain lysates from Alzheimer's disease (AD) patients. In the present study, we demonstrate, however, that catalytic activity of the 20S proteasome increases during chromatographic purification from AD brains as compared with age-matched controls. By two-dimensional difference gel electrophoresis we detected pI shifts in several proteasome subunits in AD samples pointing to differential post-translational modifications. Moreover, we identified N-terminal acetylation and dephosphorylation of subunit alpha7 in AD by tandem mass spectrometry. Thus, reduced peptidase activity in AD brain extracts is not an intrinsic property of the 20S proteasome, but may be resulting from the presence of endogenous inhibitory proteins or substrates. Post-translational modifications of non-catalytic subunits in situ may contribute to the trend towards enhanced hydrolytic activity of the isolated 20S proteasome after removal of the endogenous inhibitors.
Collapse
Affiliation(s)
- Frank Gillardon
- Boehringer Ingelheim Pharma GmbH & Co, KG, CNS Research, Biberach an der Riss, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Ponnappan S, Ovaa H, Ponnappan U. Lower expression of catalytic and structural subunits of the proteasome contributes to decreased proteolysis in peripheral blood T lymphocytes during aging. Int J Biochem Cell Biol 2007; 39:799-809. [PMID: 17317272 DOI: 10.1016/j.biocel.2007.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/27/2006] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
Aging, in the immune system, is characterized by a decreased ability to respond to exogenous insults, resulting in increased susceptibility to infections and blunted response to vaccination. While significant age-associated deficits in immune function have been documented, the underlying molecular mechanisms are still being investigated. A consistent decline in the proteolytic activity of the proteasome has been demonstrated with advancing age, implicating an important role for the proteasome in immune senescence, by studies that largely employed proteasome-enriched preparations from cell lysates. With the availability of novel cell permeable active site probes designed specifically for assaying proteasomal activity in live cells, we now confirm our earlier data demonstrating lower catalytic activity of the proteasome in primary human T cells obtained from the elderly when compared to those from young donors. Loss in proteasomal catalytic activity translated into a loss in functional activity, as was observed in a degradation assay employing an ubiquitinated protein substrate, Ub-IkappaBalpha. Unlike fluorogenic peptide substrates, use of ubiquitinated protein substrates not only confer greater stringency in terms of proteasomal hydrolysis, but also involve the participation of the 19S regulatory component. This age-associated loss in proteasomal activity is accompanied by alteration in the levels of catalytic, structural and regulatory subunits, with no change in that of the 11S activator or the inhibitor PAAF1. Oxidative modification, such as carbonylation and lipid-peroxidation, of proteasomal subunits was also detected in T cells from the elderly. Thus, oxidative modification and lower levels of proteasomal subunits contribute to decreased proteolytic activity during immune-senescence.
Collapse
Affiliation(s)
- Subramaniam Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, and Central Arkansas VA Health Care System, Little Rock, AR 72205, United States.
| | | | | |
Collapse
|
49
|
Steverding D. The proteasome as a potential target for chemotherapy of African trypanosomiasis. Drug Dev Res 2007. [DOI: 10.1002/ddr.20188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Voss P, Grune T. The nuclear proteasome and the degradation of oxidatively damaged proteins. Amino Acids 2006; 32:527-34. [PMID: 17103119 DOI: 10.1007/s00726-006-0428-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Accepted: 09/01/2006] [Indexed: 10/23/2022]
Abstract
The accumulation of oxidized proteins is known to be linked to some severe neurodegenerative diseases like Alzheimer's, Parkinson's and Huntington's disease. Furthermore, the aging process is also accompanied by an ongoing aggregation of misfolded and damaged proteins. Therefore, mammalian cells have developed potent degradation systems, which selectively degrade damaged and misfolded proteins. The proteasomal system is largely responsible for the removal of oxidatively damaged proteins form the cellular environment. Not only cytosolic proteins are prone to oxidative stress, also nuclear proteins are readily oxidized. The nuclear proteasomal system is responsible for the degradation of these proteins. This review is focused on the specific degradation of oxidized nuclear proteins, the role of the proteasome in this process and the regulation of the nuclear proteasomal system under oxidative conditions.
Collapse
Affiliation(s)
- P Voss
- Research Institute of Environmental Medicine, Heinrich Heine University, Duesseldorf, Germany
| | | |
Collapse
|