1
|
Wang C, Cheng H, Xu W, Xue J, Hua X, Tong G, Ma X, Yang C, Lan X, Shen SY, Yang Z, Huang J, Cheng Y. Arabidopsis pollen-specific glycerophosphodiester phosphodiesterase-like genes are essential for pollen tube tip growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2001-2017. [PMID: 37014030 DOI: 10.1111/jipb.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
In angiosperms, pollen tube growth is critical for double fertilization and seed formation. Many of the factors involved in pollen tube tip growth are unknown. Here, we report the roles of pollen-specific GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE-LIKE (GDPD-LIKE) genes in pollen tube tip growth. Arabidopsis thaliana GDPD-LIKE6 (AtGDPDL6) and AtGDPDL7 were specifically expressed in mature pollen grains and pollen tubes and green fluorescent protein (GFP)-AtGDPDL6 and GFP-AtGDPDL7 fusion proteins were enriched at the plasma membrane at the apex of forming pollen tubes. Atgdpdl6 Atgdpdl7 double mutants displayed severe sterility that was rescued by genetic complementation with AtGDPDL6 or AtGDPDL7. This sterility was associated with defective male gametophytic transmission. Atgdpdl6 Atgdpdl7 pollen tubes burst immediately after initiation of pollen germination in vitro and in vivo, consistent with the thin and fragile walls in their tips. Cellulose deposition was greatly reduced along the mutant pollen tube tip walls, and the localization of pollen-specific CELLULOSE SYNTHASE-LIKE D1 (CSLD1) and CSLD4 was impaired to the apex of mutant pollen tubes. A rice pollen-specific GDPD-LIKE protein also contributed to pollen tube tip growth, suggesting that members of this family have conserved functions in angiosperms. Thus, pollen-specific GDPD-LIKEs mediate pollen tube tip growth, possibly by modulating cellulose deposition in pollen tube walls.
Collapse
Affiliation(s)
- Chong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Wenjing Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jingshi Xue
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xinguo Hua
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Guimin Tong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xingguo Lan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shi-Yi Shen
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhongnan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
2
|
Kundu S, Jaiswal M, Craig KC, Guo J, Guo Z. Labeling cell surface glycosylphosphatidylinositol-anchored proteins through metabolic engineering using an azide-modified phosphatidylinositol. Biochem Biophys Res Commun 2023; 645:103-109. [PMID: 36682329 PMCID: PMC9899547 DOI: 10.1016/j.bbrc.2023.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchorage is one of the most common mechanisms to attach proteins to the plasma membrane of eukaryotic cells. GPI-anchored proteins (GPI-APs) play a critical role in many biological processes but are difficult to study. Here, a new method was developed for the effective and selective metabolic engineering and labeling of cell surface GPI-APs with an azide-modified phosphatidylinositol (PI) as the biosynthetic precursor of GPIs. It was demonstrated that this azido-PI derivative was taken up by HeLa cells and incorporated into the biosynthetic pathway of GPIs to present azide-labeled GPI-APs on the live cell surface. The azido group was used as a molecular handle to install other labels through a biocompatible click reaction to enable various biological studies, e.g., fluorescent imaging and protein pull-down, which can help explore the functions of GPI-APs and discover new GPI-APs.
Collapse
Affiliation(s)
| | | | | | | | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Deletion of a Putative GPI-Anchored Protein-Encoding Gene Aog185 Impedes the Growth and Nematode-Trapping Efficiency of Arthrobotrys oligospora by Disrupting Transmembrane Transport Homeostasis. Cell Microbiol 2022. [DOI: 10.1155/2022/8738290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nematode-trapping fungus (NTF) is a crucial predator of nematodes, which can capture nematodes by developing specific trapping devices. However, there is limited understanding of the role and mechanism of cell surface proteins attached to the surface of mycelia or trapping cells. Here, the effects of a putative GPI-anchored protein-encoding gene Aog185 on the growth and nematode-trapping efficiency of A. oligospora were investigated. Compared to the wild-type (WT) strain, the ΔAog185 mutant grew more slowly, exhibited a 20% decrease in conidiation, delayed conidial germination, generated fewer traps, attenuated nematode trapping efficiency, and was more sensitive to chemical stressors. Transcriptomic analysis indicated that a large number of transmembrane transport-related genes were differentially expressed between the WT and ΔAog185 mutant strains. Aog185 deletion could damage the intrinsic components of the membrane and cytoskeleton. Specifically, knockout of Aog185 disrupted transmembrane transport homeostasis during the phagocytosis, cell autophagy, and oxidative phosphorylation processes, which were associated with the fusion of cells and organelle membranes, transport of ions and substrates, and energy metabolism. Hence, the putative GPI-anchored protein-encoding gene Aog185 may contribute to the lifestyle switch of NTF and nematode capture, and the effect of Aog185 gene on cell transmembrane transport is considered key to this process. Our findings provide new insights into the mechanism of Aog185 gene during the process of nematode trapping by NTF.
Collapse
|
4
|
Zhou K. The regulation of the cell wall by glycosylphosphatidylinositol-anchored proteins in Arabidopsis. Front Cell Dev Biol 2022; 10:904714. [PMID: 36036018 PMCID: PMC9412048 DOI: 10.3389/fcell.2022.904714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
A polysaccharides-based cell wall covers the plant cell, shaping it and protecting it from the harsh environment. Cellulose microfibrils constitute the cell wall backbone and are embedded in a matrix of pectic and hemicellulosic polysaccharides and glycoproteins. Various environmental and developmental cues can regulate the plant cell wall, and diverse glycosylphosphatidylinositol (GPI)-anchored proteins participate in these regulations. GPI is a common lipid modification on eukaryotic proteins, which covalently tethers the proteins to the membrane lipid bilayer. Catalyzed by a series of enzymic complexes, protein precursors are post-translationally modified at their hydrophobic carboxyl-terminus in the endomembrane system and anchored to the lipid bilayer through an oligosaccharidic GPI modification. Ultimately, mature proteins reach the plasma membrane via the secretory pathway facing toward the apoplast and cell wall in plants. In Arabidopsis, more than three hundred GPI-anchored proteins (GPI-APs) have been predicted, and many are reported to be involved in diverse regulations of the cell wall. In this review, we summarize GPI-APs involved in cell wall regulation. GPI-APs are proposed to act as structural components of the cell wall, organize cellulose microfibrils at the cell surface, and during cell wall integrity signaling transduction. Besides regulating protein trafficking, the GPI modification is potentially governed by a GPI shedding system that cleaves and releases the GPI-anchored proteins from the plasma membrane into the cell wall.
Collapse
|
5
|
Arabinogalactan Proteins: Focus on the Role in Cellulose Synthesis and Deposition during Plant Cell Wall Biogenesis. Int J Mol Sci 2022; 23:ijms23126578. [PMID: 35743022 PMCID: PMC9223364 DOI: 10.3390/ijms23126578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Arabinogalactan proteins (AGPs) belong to a family of glycoproteins that are widely present in plants. AGPs are mostly composed of a protein backbone decorated with complex carbohydrate side chains and are usually anchored to the plasma membrane or secreted extracellularly. A trickle of compelling biochemical and genetic evidence has demonstrated that AGPs make exciting candidates for a multitude of vital activities related to plant growth and development. However, because of the diversity of AGPs, functional redundancy of AGP family members, and blunt-force research tools, the precise functions of AGPs and their mechanisms of action remain elusive. In this review, we put together the current knowledge about the characteristics, classification, and identification of AGPs and make a summary of the biological functions of AGPs in multiple phases of plant reproduction and developmental processes. In addition, we especially discuss deeply the potential mechanisms for AGP action in different biological processes via their impacts on cellulose synthesis and deposition based on previous studies. Particularly, five hypothetical models that may explain the AGP involvement in cellulose synthesis and deposition during plant cell wall biogenesis are proposed. AGPs open a new avenue for understanding cellulose synthesis and deposition in plants.
Collapse
|
6
|
OUP accepted manuscript. Glycobiology 2022; 32:588-599. [DOI: 10.1093/glycob/cwac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/12/2022] Open
|
7
|
Pinski A, Roujol D, Pouzet C, Bordes L, San Clemente H, Hoffmann L, Jamet E. Comparison of mass spectrometry data and bioinformatics predictions to assess the bona fide localization of proteins identified in cell wall proteomics studies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110979. [PMID: 34315595 DOI: 10.1016/j.plantsci.2021.110979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/18/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Plant cell walls have complex architectures made of polysaccharides among which cellulose, hemicelluloses, pectins and cell wall proteins (CWPs). Some CWPs are anchored in the plasma membrane through a glycosylphosphatidylinositol (GPI)-anchor. The secretion pathway is the classical route to reach the extracellular space. Based on experimental data, a canonical signal peptide (SP) has been defined, and bioinformatics tools allowing the prediction of the sub-cellular localization of proteins have been designed. In the same way, the presence of GPI-anchor attachment sites can be predicted using bioinformatics programs. This article aims at comparing the bioinformatics predictions of the sub-cellular localization of proteins assumed to be CWPs to mass spectrometry (MS) data. The sub-cellular localization of a few CWPs exhibiting particular features has been checked by cell biology approaches. Although the prediction of SP length is confirmed in most cases, it is less conclusive for GPI-anchors. Three main observations were done: (i) the variability observed at the N-terminus of a few mature CWPs could play a role in the regulation of their biological activity; (ii) one protein was shown to have a double sub-cellular localization in the cell wall and the chloroplasts; and (iii) peptides were found to be located at the C-terminus of several CWPs previously identified in GPI-anchored proteomes, thus raising the issue of their actual anchoring to the plasma membrane.
Collapse
Affiliation(s)
- Artur Pinski
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France; Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - David Roujol
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France
| | - Cécile Pouzet
- FR AIB-TRI Imaging Platform Facilities, Université de Toulouse, CNRS, Auzeville Tolosane, France
| | - Luc Bordes
- FR AIB-TRI Imaging Platform Facilities, Université de Toulouse, CNRS, Auzeville Tolosane, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France
| | - Laurent Hoffmann
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France.
| |
Collapse
|
8
|
Nalbantoglu S, Karadag A. Metabolomics bridging proteomics along metabolites/oncometabolites and protein modifications: Paving the way toward integrative multiomics. J Pharm Biomed Anal 2021; 199:114031. [PMID: 33857836 DOI: 10.1016/j.jpba.2021.114031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
Systems biology adopted functional and integrative multiomics approaches enable to discover the whole set of interacting regulatory components such as genes, transcripts, proteins, metabolites, and metabolite dependent protein modifications. This interactome build up the midpoint of protein-protein/PTM, protein-DNA/RNA, and protein-metabolite network in a cell. As the key drivers in cellular metabolism, metabolites are precursors and regulators of protein post-translational modifications [PTMs] that affect protein diversity and functionality. The precisely orchestrated core pattern of metabolic networks refer to paradigm 'metabolites regulate PTMs, PTMs regulate enzymes, and enzymes modulate metabolites' through a multitude of feedback and feed-forward pathway loops. The concept represents a flawless PTM-metabolite-enzyme(protein) regulomics underlined in reprogramming cancer metabolism. Immense interconnectivity of those biomolecules in their spectacular network of intertwined metabolic pathways makes integrated proteomics and metabolomics an excellent opportunity, and the central component of integrative multiomics framework. It will therefore be of significant interest to integrate global proteome and PTM-based proteomics with metabolomics to achieve disease related altered levels of those molecules. Thereby, present update aims to highlight role and analysis of interacting metabolites/oncometabolites, and metabolite-regulated PTMs loop which may function as translational monitoring biomarkers along the reprogramming continuum of oncometabolism.
Collapse
Affiliation(s)
- Sinem Nalbantoglu
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Molecular, Oncology Laboratory, Gebze, Kocaeli, Turkey.
| | - Abdullah Karadag
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Molecular, Oncology Laboratory, Gebze, Kocaeli, Turkey
| |
Collapse
|
9
|
Desnoyer N, Palanivelu R. Bridging the GAPs in plant reproduction: a comparison of plant and animal GPI-anchored proteins. PLANT REPRODUCTION 2020; 33:129-142. [PMID: 32945906 DOI: 10.1007/s00497-020-00395-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/07/2020] [Indexed: 05/29/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GAPs) are a unique type of membrane-associated proteins in eukaryotes. GPI and GAP biogenesis and function have been well studied in non-plant models and play an important role in the fertility of mouse sperm and egg. Although GPI and GAP biogenesis and function in plants are less known, they are critical for flowering plant reproduction because of their essential roles in the fertility of the male and female gametophytes. In Eukaryotes, GPI, a glycolipid molecule, can be post-translationally attached to proteins to serve as an anchor in the plasma membrane. GPI-anchoring, compared to other modes of membrane attachment and lipidation processes, localizes proteins to the extracellular portion of the plasma membrane and confers several unique attributes including specialized sorting during secretion, molecular painting onto membranes, and enzyme-mediated release of protein through anchor cleavage. While the biosynthesis, structure, and role of GPI are mostly studied in mammals, yeast and protists, the function of GPI and GAPs in plants is being discovered, particularly in gametophyte development and function. Here, we review GPI biosynthesis, protein attachment, and remodeling in plants with insights about this process in mammals. Additionally, we summarize the reproductive phenotypes of all loss of function mutations in Arabidopsis GPI biosynthesis and GAP genes and compare these to the reproductive phenotypes seen in mice to serve as a framework to identify gaps in our understanding of plant GPI and GAPs. In addition, we present an analysis on the gametophyte expression of all Arabidopsis GAPs to assist in further research on the role of GPI and GAPs in all aspects of the gametophyte generation in the life cycle of a plant.
Collapse
Affiliation(s)
- Nicholas Desnoyer
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | | |
Collapse
|
10
|
Jaiswal M, Zhu S, Jiang W, Guo Z. Synthesis and evaluation of N α,N ε-diacetyl-l-lysine-inositol conjugates as cancer-selective probes for metabolic engineering of GPIs and GPI-anchored proteins. Org Biomol Chem 2020; 18:2938-2948. [PMID: 32242600 DOI: 10.1039/d0ob00333f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two myo-inositol derivatives having an Nα,Nε-diacetyl-l-lysine (Ac2Lys) moiety linked to the inositol 1-O-position through a self-cleavable linker and a metabolically stable 2-azidoethyl group linked to the inositol 3-O- and 4-O-positions, respectively, were designed and synthesized. The Ac2Lys moiety blocking the inositol 1-O-position required for GPI biosynthesis was expected to be removable by a combination of two enzymes, histone deacetylase (HDAC) and cathepsin L (CTSL), abundantly expressed in cancer cells, but not in normal cells, to transform these inositol derivatives into biosynthetically useful products with a free 1-O-position. As a result, it was found that these inositol derivatives could be incorporated into the glycosylphosphatidylinositol (GPI) biosynthetic pathway by cancer cells, but not by normal cells, to express azide-labeled GPIs and GPI-anchored proteins on cell surfaces. Consequently, this study has established a novel strategy and new molecular tools for selective metabolic labeling of cancer cells, which should be useful for various biological studies and applications.
Collapse
Affiliation(s)
- Mohit Jaiswal
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Sanyong Zhu
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Wenjie Jiang
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
11
|
Dynamics and Endocytosis of Flot1 in Arabidopsis Require CPI1 Function. Int J Mol Sci 2020; 21:ijms21051552. [PMID: 32106431 PMCID: PMC7084554 DOI: 10.3390/ijms21051552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/15/2023] Open
Abstract
Membrane microdomains are nano-scale domains (10–200 nm) enriched in sterols and sphingolipids. They have many important biological functions, including vesicle transport, endocytosis, and pathogen invasion. A previous study reported that the membrane microdomain-associated protein Flotillin1 (Flot1) was involved in plant development in Arabidopsis thaliana; however, whether sterols affect the plant immunity conveyed by Flot1 is unknown. Here, we showed that the root length in sterol-deficient cyclopropylsterol isomerase 1 (cpi1-1) mutants expressing Flot1 was significantly shorter than in control seedlings. The cotyledon epidermal cells in cpi1-1 mutants expressing Flot1 were smaller than in controls. Moreover, variable-angle total internal reflection fluorescence microscopy (VA-TIRFM) and single-particle tracking (SPT) analysis demonstrated that the long-distance Flot1-GFP movement was decreased significantly in cpi1-1 mutants compared with the control seedlings. Meanwhile, the value of the diffusion coefficient Ĝ was dramatically decreased in cpi1-1 mutants after flagelin22 (flg22) treatment compared with the control seedlings, indicating that sterols affect the lateral mobility of Flot1-GFP within the plasma membrane. Importantly, using confocal microscopy, we determined that the endocytosis of Flot1-GFP was decreased in cpi1-1 mutants, which was confirmed by fluorescence cross spectroscopy (FCS) analysis. Hence, these results demonstrate that sterol composition plays a critical role in the plant defense responses of Flot1.
Collapse
|
12
|
Plasma membrane proteome analyses of Arabidopsis thaliana suspension-cultured cells during cold or ABA treatment: Relationship with freezing tolerance and growth phase. J Proteomics 2020; 211:103528. [DOI: 10.1016/j.jprot.2019.103528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/28/2019] [Accepted: 09/15/2019] [Indexed: 11/22/2022]
|
13
|
Millar AH, Heazlewood JL, Giglione C, Holdsworth MJ, Bachmair A, Schulze WX. The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:119-151. [PMID: 30786234 DOI: 10.1146/annurev-arplant-050718-100211] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Assessing posttranslational modification (PTM) patterns within protein molecules and reading their functional implications present grand challenges for plant biology. We combine four perspectives on PTMs and their roles by considering five classes of PTMs as examples of the broader context of PTMs. These include modifications of the N terminus, glycosylation, phosphorylation, oxidation, and N-terminal and protein modifiers linked to protein degradation. We consider the spatial distribution of PTMs, the subcellular distribution of modifying enzymes, and their targets throughout the cell, and we outline the complexity of compartmentation in understanding of PTM function. We also consider PTMs temporally in the context of the lifetime of a protein molecule and the need for different PTMs for assembly, localization, function, and degradation. Finally, we consider the combined action of PTMs on the same proteins, their interactions, and the challenge ahead of integrating PTMs into an understanding of protein function in plants.
Collapse
Affiliation(s)
- A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia;
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia;
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell, CNRS UMR9198, F-91198 Gif-sur-Yvette Cedex, France;
| | - Michael J Holdsworth
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria;
| | - Waltraud X Schulze
- Systembiologie der Pflanze, Universität Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
14
|
Zhou K. Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis and One of Their Common Roles in Signaling Transduction. FRONTIERS IN PLANT SCIENCE 2019; 10:1022. [PMID: 31555307 PMCID: PMC6726743 DOI: 10.3389/fpls.2019.01022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/22/2019] [Indexed: 05/17/2023]
Abstract
Diverse proteins are found modified with glycosylphosphatidylinositol (GPI) at their carboxyl terminus in eukaryotes, which allows them to associate with membrane lipid bilayers and anchor on the external surface of the plasma membrane. GPI-anchored proteins (GPI-APs) play crucial roles in various processes, and more and more GPI-APs have been identified and studied. In this review, previous genomic and proteomic predictions of GPI-APs in Arabidopsis have been updated, which reveal their high abundance and complexity. From studies of individual GPI-APs in Arabidopsis, certain GPI-APs have been found associated with partner receptor-like kinases (RLKs), targeting RLKs to their subcellular localization and helping to recognize extracellular signaling polypeptide ligands. Interestingly, the association might also be involved in ligand selection. The analyses suggest that GPI-APs are essential and widely involved in signal transduction through association with RLKs.
Collapse
|
15
|
Plasma Membrane Proteomics of Arabidopsis Suspension-Cultured Cells Associated with Growth Phase Using Nano-LC-MS/MS. Methods Mol Biol 2018; 1696:185-194. [PMID: 29086404 DOI: 10.1007/978-1-4939-7411-5_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Arabidopsis thaliana suspension-cultured cells (T87 line) are important model system for studies of responses to biotic and abiotic stresses at the cellular level in vitro since the cells have certain advantages compared with the whole plant system. However, the physiological and morphological characteristics of the cells are influenced by the progress of the growth phase of cells, which may result in different stress tolerance. To obtain comprehensive proteome profiles of the plasma membrane of Arabidopsis thaliana T87 suspension-cultured cells at the lag, log, or stationary growth phase, a shotgun proteomics method using nano-LC-MS/MS is used. The results obtained indicate that proteome profiles of the plasma membrane with the progress of the growth phase of cells dynamically changed, which may be associated with the physiological and morphological characteristics of the plasma membrane of the suspension-cultured cells. The proteomics results are further applied to explain different responsive patterns in the plasma membrane to cold acclimation and ABA treatment, which lead to understanding of different freezing tolerance associated with the growth phase of the cells.
Collapse
|
16
|
Zhang Y, Li Q, Huang J, Wu Z, Huang J, Huang L, Li Y, Ye J, Zhang X. An Approach to Incorporate Multi-Enzyme Digestion into C-TAILS for C-Terminomics Studies. Proteomics 2017; 18. [PMID: 29152854 DOI: 10.1002/pmic.201700034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 10/18/2017] [Indexed: 11/07/2022]
Abstract
Protein C-termini study is still a challenging task and far behind its counterpart, N-termini study. MS based C-terminomics study is often hampered by the low ionization efficiency of C-terminal peptides and the lack of efficient enrichment methods. We previously optimized the C-terminal amine-based isotope labeling of substrates (C-TAILS) method and identified 369 genuine protein C-termini in Escherichia coli. A key limitation of C-TAILS is that the prior protection of amines and carboxylic groups at protein level makes Arg-C as the only specific enzyme in practice. Herein, we report an approach combining multi-enzyme digestion and C-TAILS, which significantly increases the identification rate of C-terminal peptides and consequently improves the applicability of C-TAILS in biological studies. We carry out a systematic study and confirm that the omission of the prior amine protection at protein level has a negligible influence and allows the application of multi-enzyme digestion. We successfully apply five different enzyme digestions to C-TAILS, including trypsin, Arg-C, Lys-C, Lys-N, and Lysarginase. As a result, we identify a total of 722 protein C-termini in E. coli, which is at least 66% more than the results using any single enzyme. Moreover, the favored enzyme and enzyme combination are discovered. Data are available via ProteomeXchange with identifier PXD004275.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingqing Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingnan Huang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Jichang Huang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin Huang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanhong Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Juanying Ye
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Zhang L, Xu B, Wu T, Wen MX, Fan LX, Feng ZZ, Paoletti E. Transcriptomic analysis of Pak Choi under acute ozone exposure revealed regulatory mechanism against ozone stress. BMC PLANT BIOLOGY 2017; 17:236. [PMID: 29216819 PMCID: PMC5721698 DOI: 10.1186/s12870-017-1202-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 12/01/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Ground-level ozone (O3) is one of the major air pollutants, which cause oxidative injury to plants. The physiological and biochemical mechanisms underlying the responses of plants to O3 stress have been well investigated. However, there are limited reports about the molecular basis of plant responses to O3. In this study, a comparative transcriptomic analysis of Pak Choi (Brassica campestris ssp. chinensis) exposed to different O3 concentrations was conducted for the first time. RESULTS Seedlings of Pak Choi with five leaves were exposed to non-filtered air (NF, 31 ppb) or elevated O3 (E-O3, 252 ppb) for 2 days (8 h per day, from 9:00-17:00). Compared with plants in the NF, a total of 675 differentially expressed genes (DEGs) were identified in plants under E-O3, including 219 DEGs with decreased expressions and 456 DEGs with increased expressions. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that O3 stress invoked multiple cellular defense pathways to mitigate the impaired cellular integrity and metabolism, including 'glutathione metabolism', 'phenylpropanoid biosynthesis', 'sulfur metabolism', 'glucosinolate biosynthesis', 'cutin, suberine and wax biosynthesis' and others. Transcription factors potentially involved in this cellular regulation were also found, such as AP2-ERF, WRKY, JAZ, MYB etc. Based on the RNA-Seq data and previous studies, a working model was proposed integrating O3 caused reactive oxygen burst, oxidation-reduction regulation, jasmonic acid and downstream functional genes for the regulation of cellular homeostasis after acute O3 stress. CONCLUSION The present results provide a valuable insight into the molecular responses of Pak Choi to acute O3 stress and the specific DEGs revealed in this study could be used for further functional identification of key allelic genes determining the O3 sensitivity of Pak Choi.
Collapse
Affiliation(s)
- Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Bin Xu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Tao Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Mu-xuan Wen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Lian-xue Fan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Zhao-zhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Research Council, Florence, Italy
| |
Collapse
|
18
|
Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside? Int J Mol Sci 2017; 18:ijms18061164. [PMID: 28561754 PMCID: PMC5485988 DOI: 10.3390/ijms18061164] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 11/17/2022] Open
Abstract
Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.
Collapse
|
19
|
Brioschi M, Martinez Fernandez A, Banfi C. Exploring the biochemistry of the prenylome and its role in disease through proteomics: progress and potential. Expert Rev Proteomics 2017; 14:515-528. [PMID: 28521569 DOI: 10.1080/14789450.2017.1332998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Protein prenylation is a ubiquitous covalent post-translational modification characterized by the addition of farnesyl or geranylgeranyl isoprenoid groups to a cysteine residue located near the carboxyl terminal of a protein. It is essential for the proper localization and cellular activity of numerous proteins, including Ras family GTPases and G-proteins. In addition to its roles in cellular physiology, the prenylation process has important implications in human diseases and in the recent years, it has become attractive target of inhibitors with therapeutic potential. Areas covered: This review attempts to summarize the basic aspects of prenylation integrating them with biological functions in diseases and giving an account of the current status of prenylation inhibitors as potential therapeutics. We also summarize the methodologies for the characterization of this modification. Expert commentary: The growing body of evidence suggesting an important role of prenylation in diseases and the subsequent development of inhibitors of the enzymes responsible for this modification lead to the urgent need to identify the full spectrum of prenylated proteins that are altered in the disease or affected by drugs. Proteomic tools to analyze prenylated proteins are recently emerging, thanks to the advancement in the field of mass spectrometry coupled to enrichment strategies.
Collapse
|
20
|
Vaddepalli P, Fulton L, Wieland J, Wassmer K, Schaeffer M, Ranf S, Schneitz K. The cell wall-localized atypical β-1,3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana. Development 2017; 144:2259-2269. [PMID: 28507000 DOI: 10.1242/dev.152231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/04/2017] [Indexed: 01/17/2023]
Abstract
Orchestration of cellular behavior in plant organogenesis requires integration of intercellular communication and cell wall dynamics. The underlying signaling mechanisms are poorly understood. Tissue morphogenesis in Arabidopsis depends on the receptor-like kinase STRUBBELIG. Mutations in ZERZAUST were previously shown to result in a strubbelig-like mutant phenotype. Here, we report on the molecular identification and functional characterization of ZERZAUST We show that ZERZAUST encodes a putative GPI-anchored β-1,3 glucanase suggested to degrade the cell wall polymer callose. However, a combination of in vitro, cell biological and genetic experiments indicate that ZERZAUST is not involved in the regulation of callose accumulation. Nonetheless, Fourier-transformed infrared-spectroscopy revealed that zerzaust mutants show defects in cell wall composition. Furthermore, the results indicate that ZERZAUST represents a mobile apoplastic protein, and that its carbohydrate-binding module family 43 domain is required for proper subcellular localization and function whereas its GPI anchor is dispensable. Our collective data reveal that the atypical β-1,3 glucanase ZERZAUST acts in a non-cell-autonomous manner and is required for cell wall organization during tissue morphogenesis.
Collapse
Affiliation(s)
- Prasad Vaddepalli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Lynette Fulton
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Jennifer Wieland
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Katrin Wassmer
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Milena Schaeffer
- Lehrstuhl für Phytopathologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Stefanie Ranf
- Lehrstuhl für Phytopathologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
21
|
Segura E, Bourdin B, Tétreault MP, Briot J, Allen BG, Mayer G, Parent L. Proteolytic cleavage of the hydrophobic domain in the Ca Vα2δ1 subunit improves assembly and activity of cardiac Ca V1.2 channels. J Biol Chem 2017; 292:11109-11124. [PMID: 28495885 DOI: 10.1074/jbc.m117.784355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/24/2017] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated L-type CaV1.2 channels in cardiomyocytes exist as heteromeric complexes with the pore-forming CaVα1, CaVβ, and CaVα2δ1 subunits. The full complement of subunits is required to reconstitute the native-like properties of L-type Ca2+ currents, but the molecular determinants responsible for the formation of the heteromeric complex are still being studied. Enzymatic treatment with phosphatidylinositol-specific phospholipase C, a phospholipase C specific for the cleavage of glycosylphosphatidylinositol (GPI)-anchored proteins, disrupted plasma membrane localization of the cardiac CaVα2δ1 prompting us to investigate deletions of its hydrophobic transmembrane domain. Patch-clamp experiments indicated that the C-terminally cleaved CaVα2δ1 proteins up-regulate CaV1.2 channels. In contrast, deleting the residues before the single hydrophobic segment (CaVα2δ1 Δ1059-1063) impaired current up-regulation. CaVα2δ1 mutants G1060I and G1061I nearly eliminated the cell-surface fluorescence of CaVα2δ1, indicated by two-color flow cytometry assays and confocal imaging, and prevented CaVα2δ1-mediated increase in peak current density and modulation of the voltage-dependent gating of CaV1.2. These impacts were specific to substitutions with isoleucine residues because functional modulation was partially preserved in CaVα2δ1 G1060A and G1061A proteins. Moreover, C-terminal fragments exhibited significantly altered mobility in denatured immunoblots of CaVα2δ1 G1060I and CaVα2δ1 G1061I, suggesting that these mutant proteins were impaired in proteolytic processing. Finally, CaVα2δ1 Δ1059-1063, but not CaVα2δ1 G1060A, failed to co-immunoprecipitate with CaV1.2. Altogether, our data support a model in which small neutral hydrophobic residues facilitate the post-translational cleavage of the CaVα2δ1 subunit at the predicted membrane interface and further suggest that preventing GPI anchoring of CaVα2δ1 averts its cell-surface expression, its interaction with CaVα1, and modulation of CaV1.2 currents.
Collapse
Affiliation(s)
- Emilie Segura
- From the Départements de Pharmacologie et Physiologie and.,the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Benoîte Bourdin
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Marie-Philippe Tétreault
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Julie Briot
- From the Départements de Pharmacologie et Physiologie and.,the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Bruce G Allen
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada.,Médecine, Faculté de Médecine
| | - Gaétan Mayer
- the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada.,the Faculté de Pharmacie, and
| | - Lucie Parent
- From the Départements de Pharmacologie et Physiologie and .,the Centre de Recherche de l'Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
22
|
Duruflé H, Hervé V, Balliau T, Zivy M, Dunand C, Jamet E. Proline Hydroxylation in Cell Wall Proteins: Is It Yet Possible to Define Rules? FRONTIERS IN PLANT SCIENCE 2017; 8:1802. [PMID: 29089960 PMCID: PMC5651053 DOI: 10.3389/fpls.2017.01802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/04/2017] [Indexed: 05/08/2023]
Abstract
Cell wall proteins (CWPs) play critical and dynamic roles in plant cell walls by contributing to developmental processes and response to environmental cues. Since the CWPs go through the secretion pathway, most of them undergo post-translational modifications (PTMs) which can modify their biological activity. Glycosylation is one of the major PTMs of CWPs and refers to N-glycosylation, O-glycosylation and glypiation. Each of these PTMs occurs in different amino acid contexts which are not all well defined. This article deals with the hydroxylation of Pro residues which is a prerequisite for O-glycosylation of CWPs on hydroxyproline (Hyp) residues. The location of Hyp residues is well described in several structural CWPs, but yet rarely described in other CWPs. In this article, it is studied in detail in five Arabidopsis thaliana proteins using mass spectrometry data: one of them (At4g38770, AtPRP4) is a structural CWP containing 32.5% of Pro residues arranged in typical motifs, the others are either rich (27-28%, At1g31580 and At2g10940) or poor (6-8%, At1g09750 and At3g08030) in Pro residues. The known rules of Pro hydroxylation allowed a good prediction of Hyp location in AtPRP4. However, they could not be applied to the other proteins whatever their Pro content. In addition, variability of the Pro hydroxylation patterns was observed within some amino acid motifs in all the proteins and new patterns of Pro hydroxylation are described. Altogether, this work shows that Hyp residues are present in more protein families than initially described, and that Pro hydroxylation patterns could be different in each of them. This work paves the way for completing the existing Pro hydroxylation code.
Collapse
Affiliation(s)
- Harold Duruflé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vincent Hervé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
- INRS – Institut Armand Frappier, Laval, Canada
| | - Thierry Balliau
- PAPPSO, GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Zivy
- PAPPSO, GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
- *Correspondence: Elisabeth Jamet,
| |
Collapse
|
23
|
Comparative proteomic analysis of membrane microdomains isolated from two hyperlipidemic animal models. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1061-1071. [DOI: 10.1016/j.bbapap.2016.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
|
24
|
One-Step Selective Exoenzymatic Labeling (SEEL) Strategy for the Biotinylation and Identification of Glycoproteins of Living Cells. J Am Chem Soc 2016; 138:11575-11582. [PMID: 27541995 DOI: 10.1021/jacs.6b04049] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Technologies that can visualize, capture, and identify subsets of biomolecules that are not encoded by the genome in the context of healthy and diseased cells will offer unique opportunities to uncover the molecular mechanism of a multitude of physiological and disease processes. We describe here a chemical reporter strategy for labeling of cell surface glycoconjugates that takes advantage of recombinant glycosyltransferases and a corresponding sugar nucleotide functionalized by biotin. The exceptional efficiency of this method, termed one-step selective exoenzymatic labeling, or SEEL, greatly improved the ability to enrich and identify large numbers of tagged glycoproteins by LC-MS/MS. We further demonstrated that this labeling method resulted in far superior enrichment and detection of glycoproteins at the plasma membrane compared to a sulfo-NHS-activated biotinylation or two-step SEEL. This new methodology will make it possible to profile cell surface glycoproteomes with unprecedented sensitivity in the context of physiological and disease states.
Collapse
|
25
|
Takahashi D, Kawamura Y, Uemura M. Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5203-15. [PMID: 27471282 PMCID: PMC5014161 DOI: 10.1093/jxb/erw279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cold acclimation results in changes of the plasma membrane (PM) composition. The PM is considered to contain specific lipid/protein-enriched microdomains which can be extracted as detergent-resistant plasma membrane (DRM). Previous studies in animal cells have demonstrated that glycosylphosphatidylinositol-anchored proteins (GPI-APs) can be targeted to microdomains and/or the apoplast. However, the functional significance of GPI-APs during cold acclimation in plants is not yet fully understood. In this study, we aimed to investigate the responsiveness of GPI-APs to cold acclimation treatment in Arabidopsis We isolated the PM, DRM, and apoplast fractions separately and, in addition, GPI-AP-enriched fractions were prepared from the PM preparation. Label-free quantitative shotgun proteomics identified a number of GPI-APs (163 proteins). Among them, some GPI-APs such as fasciclin-like arabinogalactan proteins and glycerophosphoryldiester phosphodiesterase-like proteins predominantly increased in PM- and GPI-AP-enriched fractions while the changes of GPI-APs in the DRM and apoplast fractions during cold acclimation were considerably different from those of other fractions. These proteins are thought to be associated with cell wall structure and properties. Therefore, this study demonstrated that each GPI-AP responded to cold acclimation in a different manner, suggesting that these changes during cold acclimation are involved in rearrangement of the extracellular matrix including the cell wall towards acquisition of freezing tolerance.
Collapse
Affiliation(s)
- Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan Max-Planck-Institut für Molekulare Pflanzenphysiologie, D -14476 Potsdam, Germany
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan Cryobiofrontier Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
26
|
Chandler KB, Costello CE. Glycomics and glycoproteomics of membrane proteins and cell-surface receptors: Present trends and future opportunities. Electrophoresis 2016; 37:1407-19. [PMID: 26872045 PMCID: PMC4889498 DOI: 10.1002/elps.201500552] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
Abstract
Membrane proteins mediate cell-cell interactions and adhesion, the transfer of ions and metabolites, and the transmission of signals from the extracellular environment to the cell interior. The extracellular domains of most cell membrane proteins are glycosylated, often at multiple sites. There is a growing awareness that glycosylation impacts the structure, interaction, and function of membrane proteins. The application of glycoproteomics and glycomics methods to membrane proteins has great potential. However, challenges also arise from the unique physical properties of membrane proteins. Successful analytical workflows must be developed and disseminated to advance functional glycoproteomics and glycomics studies of membrane proteins. This review explores the opportunities and challenges related to glycomic and glycoproteomic analysis of membrane proteins, including discussion of sample preparation, enrichment, and MS/MS analyses, with a focus on recent successful workflows for analysis of N- and O-linked glycosylation of mammalian membrane proteins.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
27
|
Data for identification of GPI-anchored peptides and ω-sites in cancer cell lines. Data Brief 2016; 7:1302-5. [PMID: 27141528 PMCID: PMC4838930 DOI: 10.1016/j.dib.2016.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/24/2022] Open
Abstract
We present data obtained using a focused proteomics approach to identify the glycosylphosphatidylinositol (GPI)-anchored peptides in 19 human cancer cell lines. GPI-anchored proteins (GPI-APs), which localize to the outer leaflet of the membrane microdomains commonly referred to as lipid rafts play important roles in diverse biological processes. Due to the complex structure of the GPI-anchor moiety, it has been difficult to identify GPI-anchored peptide sequences on the proteomic scale by database searches using tools such as MASCOT. Here we provide data from 73 ω-sites derived from 49 GPI-APs in 19 human cancer cell lines. This article contains data related to the research article entitled "Identification of glycosylphosphatidylinositol-anchored proteins and ω-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment" (Masuishi et al., 2016) [1].
Collapse
|
28
|
Masuishi Y, Kimura Y, Arakawa N, Hirano H. Identification of glycosylphosphatidylinositol-anchored proteins and ω-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment. J Proteomics 2016; 139:77-83. [PMID: 26972028 DOI: 10.1016/j.jprot.2016.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
Abstract
UNLABELLED Glycosylphosphatidylinositol anchored proteins (GPI-APs) in the outer leaflet of the membrane microdomains, commonly referred to as lipid rafts, play important roles in many biological processes such as signal transduction, cell adhesion, protein trafficking, and antigen presentation. From a topological viewpoint, elucidating the presence and localization of GPI-anchor modification sites (ω-sites) is important for the study of the biophysical properties and anchoring mechanisms of these proteins. However, very few reports have actually identified ω-sites of GPI-APs. To enable large-scale site-specific analysis of GPI anchoring, we developed a method for identification of ω-sites by mass spectrometry by combining titanium dioxide-based affinity purification and hydrogen fluoride treatment. This method was able to identify ~3-fold more GPI-APs than our previous method: the new technique identified a total of 73 ω-sites derived from 49 GPI-APs. In 13 of the 49 GPI-APs identified, the GPI-anchor attached to multiple amino acids in the C-terminal site, yielding a variety of different protein species. This method allows us to simultaneously identify many GPI-AP protein species with different ω-sites. We also demonstrated the C-terminal GPI anchor attachment signal peptide, based on information about the GPI anchor binding sites of 49 GPI-APs. Thus, our results provide evidence for new insight into the GPI-anchored proteome and the role of GPI anchoring. BIOLOGICAL SIGNIFICANCE GPI-anchored proteins (GPI-APs) are localized to the outer leaflet of the plasma membranes. Because the GPI anchor is a complex structure, the identification of GPI-anchored peptides by mass spectrometry has always been considered difficult. To improve the feasibility of large-scale site-specific analysis of GPI anchoring, we developed a method for identification of GPI-anchored peptides by combining titanium dioxide-based affinity purification with hydrogen fluoride treatment. Using this novel technique, we identified a total of 73 ω-sites derived from 49 GPI-APs. These data may help us to develop a comprehensive understanding of the GPI-anchored proteome and the role of GPI anchoring. Moreover, this method could be used to discover GPI-APs as candidate biomarkers.
Collapse
Affiliation(s)
- Yusuke Masuishi
- Graduate School of Nanobioscience, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan
| | - Yayoi Kimura
- Graduate School of Nanobioscience, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan
| | - Noriaki Arakawa
- Graduate School of Nanobioscience, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan
| | - Hisashi Hirano
- Graduate School of Nanobioscience, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, 8 Kanazawa, Yokohama 236-0004, Japan.
| |
Collapse
|
29
|
de Michele R, McFarlane HE, Parsons HT, Meents MJ, Lao J, González Fernández-Niño SM, Petzold CJ, Frommer WB, Samuels AL, Heazlewood JL. Free-Flow Electrophoresis of Plasma Membrane Vesicles Enriched by Two-Phase Partitioning Enhances the Quality of the Proteome from Arabidopsis Seedlings. J Proteome Res 2016; 15:900-13. [PMID: 26781341 DOI: 10.1021/acs.jproteome.5b00876] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The plant plasma membrane is the interface between the cell and its environment undertaking a range of important functions related to transport, signaling, cell wall biosynthesis, and secretion. Multiple proteomic studies have attempted to capture the diversity of proteins in the plasma membrane using biochemical fractionation techniques. In this study, two-phase partitioning was combined with free-flow electrophoresis to produce a population of highly purified plasma membrane vesicles that were subsequently characterized by tandem mass spectroscopy. This combined high-quality plasma membrane isolation technique produced a reproducible proteomic library of over 1000 proteins with an extended dynamic range including plasma membrane-associated proteins. The approach enabled the detection of a number of putative plasma membrane proteins not previously identified by other studies, including peripheral membrane proteins. Utilizing multiple data sources, we developed a PM-confidence score to provide a value indicating association to the plasma membrane. This study highlights over 700 proteins that, while seemingly abundant at the plasma membrane, are mostly unstudied. To validate this data set, we selected 14 candidates and transiently localized 13 to the plasma membrane using a fluorescent tag. Given the importance of the plasma membrane, this data set provides a valuable tool to further investigate important proteins. The mass spectrometry data are available via ProteomeXchange, identifier PXD001795.
Collapse
Affiliation(s)
- Roberto de Michele
- Department of Plant Biology, Carnegie Institution for Science , Stanford, California 94305, United States.,Institute of Biosciences and Bioresources (CNR-IBBR), National Research Council of Italy , Palermo 90129, Italy
| | - Heather E McFarlane
- Department of Botany, University of British Columbia , Vancouver, BC V6T 1Z4, Canada.,Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany
| | - Harriet T Parsons
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,Department of Plant and Environmental Sciences, University of Copenhagen , Copenhagen C-1871, Denmark
| | - Miranda J Meents
- Department of Botany, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Jeemeng Lao
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Susana M González Fernández-Niño
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Christopher J Petzold
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science , Stanford, California 94305, United States
| | - A Lacey Samuels
- Department of Botany, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Joshua L Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne , Melbourne, Victoria 3010, Australia
| |
Collapse
|
30
|
Suica VI, Uyy E, Boteanu RM, Ivan L, Antohe F. Alteration of actin dependent signaling pathways associated with membrane microdomains in hyperlipidemia. Proteome Sci 2015; 13:30. [PMID: 26628893 PMCID: PMC4666118 DOI: 10.1186/s12953-015-0087-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/24/2015] [Indexed: 01/05/2023] Open
Abstract
Background Membrane microdomains represent dynamic membrane nano-assemblies enriched in signaling molecules suggesting their active involvement in not only physiological but also pathological molecular processes. The hyperlipidemic stress is a major risk factor of atherosclerosis, but its exact mechanisms of action at the membrane microdomains level remain elusive. The aim of the present study was to determine whether membrane-cytoskeleton proteome in the pulmonary tissue could be modulated by the hyperlipidemic stress, a major risk factor of atherosclerosis. Results High resolution mass spectrometry based proteomics analysis was performed for detergent resistant membrane microdomains isolated from lung homogenates of control, ApoE deficient and statin treated ApoE deficient mice. The findings of the study allowed the identification with high confidence of 1925 proteins, 291 of which were found significantly altered by the modified genetic background, by the statin treatment or both conditions. Principal component analysis revealed a proximal partitioning of the biological replicates, but also a distinct spatial scattering of the sample groups, highlighting different quantitative profiles. The statistical significant over-representation of Regulation of actin cytoskeleton, Focal adhesion and Adherens junction Kyoto Encyclopedia of Genes and Genomes signaling pathways was demonstrated through bioinformatics analysis. The three inter-relation maps comprised 29 of regulated proteins, proving membrane-cytoskeleton coupling targeting and alteration by hyperlipidemia and/or statin treatment. Conclusions The findings of the study allowed the identification with high confidence of the main proteins modulated by the hyperlipidemic stress involved in the actin-dependent pathways. Our study provides the basis for future work probing how the protein activities at the membrane-cytoskeleton interface are dependent upon genetic induced hyperlipidemia. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0087-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Viorel-Iulian Suica
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| | - Elena Uyy
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| | - Raluca Maria Boteanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| | - Luminita Ivan
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| | - Felicia Antohe
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| |
Collapse
|
31
|
Cortes LK, Vainauskas S, Dai N, McClung CM, Shah M, Benner JS, Corrêa IR, VerBerkmoes NC, Taron CH. Proteomic identification of mammalian cell surface derived glycosylphosphatidylinositol-anchored proteins through selective glycan enrichment. Proteomics 2015; 14:2471-84. [PMID: 25262930 PMCID: PMC4260145 DOI: 10.1002/pmic.201400148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 11/09/2022]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are an important class of glycoproteins that are tethered to the surface of mammalian cells via the lipid GPI. GPI-APs have been implicated in many important cellular functions including cell adhesion, cell signaling, and immune regulation. Proteomic identification of mammalian GPI-APs en masse has been limited technically by poor sensitivity for these low abundance proteins and the use of methods that destroy cell integrity. Here, we present methodology that permits identification of GPI-APs liberated directly from the surface of intact mammalian cells through exploitation of their appended glycans to enrich for these proteins ahead of LC-MS/MS analyses. We validate our approach in HeLa cells, identifying a greater number of GPI-APs from intact cells than has been previously identified from isolated HeLa membranes and a lipid raft preparation. We further apply our approach to define the cohort of endogenous GPI-APs that populate the distinct apical and basolateral membrane surfaces of polarized epithelial cell monolayers. Our approach provides a new method to achieve greater sensitivity in the identification of low abundance GPI-APs from the surface of live cells and the nondestructive nature of the method provides new opportunities for the temporal or spatial analysis of cellular GPI-AP expression and dynamics.
Collapse
|
32
|
Gao X, Li D, Tong Y, Ge D, Tang Y, Zhang D, Li J. Highly sensitive fluorescence detection of glycoprotein based on energy transfer between CuInS2 QDs and rhodamine B. LUMINESCENCE 2015; 30:1389-94. [PMID: 25866153 DOI: 10.1002/bio.2911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/01/2015] [Accepted: 03/01/2015] [Indexed: 01/17/2023]
Abstract
A highly sensitive fluorescence method for glycoprotein detection has been established based on fluorescence resonance energy transfer (FRET) between CuInS2 quantum dots (QDs) and rhodamine B (RB). Lectins comprise a group of proteins with unique affinities toward carbohydrate structures, so the process of FRET can occur between lectin-coated QDs (CuInS2 QDs-Con A conjugates, acceptors) and carbohydrate-coated RB (RB-NH2-glu conjugates, donors). The fluorescence of lectin-coated QDs was recovered in the presence of a glycoprotein such as glucose oxidase (GOx) and transferrin (TRF), which significantly reduced the FRET efficiency between the donor and the acceptor. Under optimal conditions, a linear correlation was established between the fluorescence intensity ratio I654/I577 and the TRF concentration over the range of 6.90 × 10(-10) to 3.45 × 10(-8) mol/L, with a detection limit of 2.5 × 10(-10) mol/L. The linear range for GOx is 3.35 × 10(-10) to 6.70 × 10(-8) mol/L, with a detection limit of 1.5 × 10(-10) mol/L. The proposed method was applied to the determination of glycoprotein in human serum and cell-extract samples with satisfactory results. Furthermore, CuInS2 QDs-Con A conjugates are used as safe and efficient optical nanoprobes in HepG2 cell imaging.
Collapse
Affiliation(s)
- Xue Gao
- College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou, 121013, People's Republic of China
| | - Dan Li
- College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou, 121013, People's Republic of China
| | - Ying Tong
- College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou, 121013, People's Republic of China
| | - Dan Ge
- College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou, 121013, People's Republic of China
| | - Yiwei Tang
- College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou, 121013, People's Republic of China
| | - Defu Zhang
- College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou, 121013, People's Republic of China
| | - Jianrong Li
- College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou, 121013, People's Republic of China
| |
Collapse
|
33
|
Grison MS, Brocard L, Fouillen L, Nicolas W, Wewer V, Dörmann P, Nacir H, Benitez-Alfonso Y, Claverol S, Germain V, Boutté Y, Mongrand S, Bayer EM. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. THE PLANT CELL 2015; 27:1228-50. [PMID: 25818623 PMCID: PMC4558693 DOI: 10.1105/tpc.114.135731] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/18/2015] [Accepted: 03/05/2015] [Indexed: 05/18/2023]
Abstract
Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes.
Collapse
Affiliation(s)
- Magali S Grison
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Lysiane Brocard
- Plant Imaging Platform, Bordeaux Imaging Centre, INRA, 33883 Villenave-d'Ornon Cedex, France University of Bordeaux/CNRS/UMS3420 and University of Bordeaux/Institut National de la Santé et de la Recherche Médicale/US004, 33000 Bordeaux, France
| | - Laetitia Fouillen
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France Functional Genomic Centre, Métabolome/Lipidome Platform, INRA-CNRS-University of Bordeaux, 33883 Villenave-d'Ornon Cedex, France
| | - William Nicolas
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Vera Wewer
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Houda Nacir
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Yoselin Benitez-Alfonso
- Centre for Plant Sciences, School of Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Stéphane Claverol
- Functional Genomic Centre, Métabolome/Lipidome Platform, INRA-CNRS-University of Bordeaux, 33883 Villenave-d'Ornon Cedex, France
| | - Véronique Germain
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Yohann Boutté
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Sébastien Mongrand
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Emmanuelle M Bayer
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
34
|
Costa A, Barbaro MR, Sicilia F, Preger V, Krieger-Liszkay A, Sparla F, De Lorenzo G, Trost P. AIR12, a b-type cytochrome of the plasma membrane of Arabidopsis thaliana is a negative regulator of resistance against Botrytis cinerea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:32-43. [PMID: 25711811 DOI: 10.1016/j.plantsci.2015.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/27/2014] [Accepted: 01/03/2015] [Indexed: 05/27/2023]
Abstract
AIR12 (Auxin Induced in Root culture) is a single gene of Arabidopsis that codes for a mono-heme cytochrome b. Recombinant AIR12 from Arabidopsis accepted electrons from ascorbate or superoxide, and donated electrons to either monodehydroascorbate or oxygen. AIR12 was found associated in vivo to the plasma membrane. Though linked to the membrane by a glycophosphatidylinositol anchor, AIR12 is a hydrophilic and glycosylated protein predicted to be fully exposed to the apoplast. The expression pattern of AIR12 in Arabidopsis is developmentally regulated and correlated to sites of controlled cell separation (e.g. micropilar endosperm during germination, epidermal cells surrounding the emerging lateral root) and cells around wounds. Arabidopsis (Landsberg erecta-0) mutants with altered levels of AIR12 did not show any obvious phenotype. However, AIR12-overexpressing plants accumulated ROS (superoxide, hydrogen peroxide) and lipid peroxides in leaves, indicating that AIR12 may alter the redox state of the apoplast under particular conditions. On the other hand, AIR12-knock out plants displayed a strongly decreased susceptibility to Botrytis cinerea infection, which in turn induced AIR12 expression in susceptible wild type plants. Altogether, the results suggest that AIR12 plays a role in the regulation of the apoplastic redox state and in the response to necrotrophic pathogens. Possible relationships between these functions are discussed.
Collapse
Affiliation(s)
- Alex Costa
- Dipartimento di Bioscienze, Università di Milano, Via G. Celoria 24, 20133 Milano, Italy
| | - Maria Raffaella Barbaro
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Francesca Sicilia
- Dipartimento di Biologia e Biotecnologia "C. Darwin," Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Valeria Preger
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Anja Krieger-Liszkay
- Commissariat à l'Energie Atomique et aux énergies alternatives (CEA) Saclay, Institut de Biologie et Technologie de Saclay, Centre National de la Recherche Scientifique UMR 8221, 91191 Gif-sur-Yvette Cedex, France
| | - Francesca Sparla
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologia "C. Darwin," Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy.
| | - Paolo Trost
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| |
Collapse
|
35
|
Tapken W, Murphy AS. Membrane nanodomains in plants: capturing form, function, and movement. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1573-86. [PMID: 25725094 DOI: 10.1093/jxb/erv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains.
Collapse
Affiliation(s)
- Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
36
|
Mo J, Li J. In silico analysis for structure, function and T-cell epitopes of a hypothetical conserved (HP-C) protein coded by PVX_092425 in Plasmodium vivax. Pathog Glob Health 2015; 109:61-7. [PMID: 25706099 DOI: 10.1179/2047773215y.0000000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE Plasmodium spp. merozoite glycosylphosphatidylinositol-anchored proteins (GPI-APs) considered as protective immunogen in novel vaccines against malaria. To analyze the structure and function of a hypothetical conserved (HP-C) GPI-AP coded by gene PVX_092425 from Plasmodium vivax, and find its potential T-cell epitopes for further vivax malaria vaccine study. METHODS The structure, function and T-cell epitopes of the HP-C protein named Pvx_092425 were analyzed and predicted by online and offline bioinformatics software. RESULTS The bioinformatics data showed that the Pvx_092425 is an 830 amino acid (AA) long polypeptide encoded by five exons gene PVX_092425.It contains a pectin lyase-like superfamily, an AA repeats region, a cys-rich region and a transmembrane domain (TM) in C-terminal region. The alignment analysis drew it has a unique AA repeats region among Plasmodium spp. It was located in the cytoplasm, secretory system or cellular nucleus of P. vivax merozoite. For the sequence, the fragment of I823-V829 inserts in the interior side of the membrane, and M1--A812 belongs to the cytoplasmic tail. It has seven protein-protein binding sites. The peptides with the best predicted binding affinities were human leucocyte antigen (HLA) HLA-A*0203, HLA-DRB1*0101 and HLA- DRB1*0701.Among these predicted peptides, 582FLWDKALFD590 epitope interacted with HLA-DRB1*0101 allele showed best binding affinity compared to others. Structural analysis explained that the epitope fits well into the epitope-binding groove of HLA-DRB1*0101. CONCLUSIONS It proposes that the Pvx_092425 plays a key role during erythrocyte stage and generates information that is useful for development of blood-stage vaccine to block the merozoites invasion.
Collapse
|
37
|
Chen F, Zhang X, Bi D, Xia L, Lin Y, Zhang W, Liu W, Cao Y. RETRACTED ARTICLE: Screening research on membrane protein of dermal stem/progenitor cells with different differentiation potential. Cytotechnology 2015; 67:175. [PMID: 23475157 PMCID: PMC4294848 DOI: 10.1007/s10616-012-9475-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 06/08/2012] [Indexed: 10/27/2022] Open
Affiliation(s)
- Fuguo Chen
- />Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, No.639 Zhi Zaoju Road, Shanghai, 200011 People’s Republic of China
| | - Xiaoping Zhang
- />Department of Nuclear Medicine, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 People’s Republic of China
| | - Dan Bi
- />Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, No.639 Zhi Zaoju Road, Shanghai, 200011 People’s Republic of China
| | - Linlin Xia
- />Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, No.639 Zhi Zaoju Road, Shanghai, 200011 People’s Republic of China
| | - Yang Lin
- />Department of Nuclear Medicine, Shanghai 10th People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 People’s Republic of China
| | - Wenjie Zhang
- />Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, No.639 Zhi Zaoju Road, Shanghai, 200011 People’s Republic of China
| | - Wei Liu
- />Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, No.639 Zhi Zaoju Road, Shanghai, 200011 People’s Republic of China
| | - Yilin Cao
- />Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, No.639 Zhi Zaoju Road, Shanghai, 200011 People’s Republic of China
| |
Collapse
|
38
|
Falter C, Ellinger D, von Hülsen B, Heim R, Voigt CA. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis. FRONTIERS IN PLANT SCIENCE 2015; 6:194. [PMID: 25870605 PMCID: PMC4375982 DOI: 10.3389/fpls.2015.00194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/11/2015] [Indexed: 05/08/2023]
Abstract
The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape - liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.
Collapse
Affiliation(s)
| | | | | | | | - Christian A. Voigt
- *Correspondence: Christian A. Voigt, Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| |
Collapse
|
39
|
Pan S, Carter CJ, Raikhel NV. Understanding protein trafficking in plant cells through proteomics. Expert Rev Proteomics 2014; 2:781-92. [PMID: 16209656 DOI: 10.1586/14789450.2.5.781] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The functions of approximately one-third of the proteins encoded by the Arabidopsis thaliana genome are completely unknown. Moreover, many annotations of the remainder of the genome supply tentative functions, at best. Knowing the ultimate localization of these proteins, as well as the pathways used for getting there, may provide clues as to their functions. The putative localization of most proteins currently relies on in silico-based bioinformatics approaches, which, unfortunately, often result in erroneous predictions. Emerging proteomics techniques coupled with other systems biology approaches now provide researchers with a plethora of methods for elucidating the final location of these proteins on a large scale, as well as the ability to dissect protein-sorting pathways in plants.
Collapse
Affiliation(s)
- Songqin Pan
- WM Keck Proteomics Laboratory, Center for Plant Cell Biology, Botany & Plant Sciences, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
40
|
Raimondo F, Ceppi P, Guidi K, Masserini M, Foletti C, Pitto M. Proteomics of plasma membrane microdomains. Expert Rev Proteomics 2014; 2:793-807. [PMID: 16209657 DOI: 10.1586/14789450.2.5.793] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Plasma membrane microdomains represent subcompartments of the plasma membrane characterized by a specific lipid and protein composition. The recognition of microdomains in nearly all the eukaryotic membranes has accredited them with specialized functions in health and disease. Several proteomic studies have recently addressed the specific composition of plasma membrane microdomains, and will be reviewed in this paper. Peculiar information has been obtained, but a comprehensive view of the main protein classes required to define the microdomain proteome is still missing. The achievement of this information is slowed by the difficulties encountered in resolving and analyzing hydrophobic proteins, but it could help in understanding the overall function of plasma membrane microdomains and their involvement in human pathology.
Collapse
Affiliation(s)
- Francesca Raimondo
- Department of Experimental, Environmental Medicine & Biotechnology, University of Milano-Bicocca, 20052 Monza, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Panfoli I, Ravera S, Bruschi M, Candiano G, Morelli A. Proteomics unravels the exportability of mitochondrial respiratory chains. Expert Rev Proteomics 2014; 8:231-9. [DOI: 10.1586/epr.11.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
De Storme N, Geelen D. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. FRONTIERS IN PLANT SCIENCE 2014; 5:138. [PMID: 24795733 PMCID: PMC4001042 DOI: 10.3389/fpls.2014.00138] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/23/2014] [Indexed: 05/18/2023]
Abstract
Plasmodesmata are membrane-lined channels that are located in the plant cell wall and that physically interconnect the cytoplasm and the endoplasmic reticulum (ER) of adjacent cells. Operating as controllable gates, plasmodesmata regulate the symplastic trafficking of micro- and macromolecules, such as endogenous proteins [transcription factors (TFs)] and RNA-based signals (mRNA, siRNA, etc.), hence mediating direct cell-to-cell communication and long distance signaling. Besides this physiological role, plasmodesmata also form gateways through which viral genomes can pass, largely facilitating the pernicious spread of viral infections. Plasmodesmatal trafficking is either passive (e.g., diffusion) or active and responses both to developmental and environmental stimuli. In general, plasmodesmatal conductivity is regulated by the controlled build-up of callose at the plasmodesmatal neck, largely mediated by the antagonistic action of callose synthases (CalSs) and β-1,3-glucanases. Here, in this theory and hypothesis paper, we outline the importance of callose metabolism in PD SEL control, and highlight the main molecular factors involved. In addition, we also review other proteins that regulate symplastic PD transport, both in a developmental and stress-responsive framework, and discuss on their putative role in the modulation of PD callose turn-over. Finally, we hypothesize on the role of structural sterols in the regulation of (PD) callose deposition and outline putative mechanisms by which this regulation may occur.
Collapse
Affiliation(s)
| | - Danny Geelen
- *Correspondence: Danny Geelen, Laboratory for In Vitro Biology and Horticulture, Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
43
|
Edstam MM, Blomqvist K, Eklöf A, Wennergren U, Edqvist J. Coexpression patterns indicate that GPI-anchored non-specific lipid transfer proteins are involved in accumulation of cuticular wax, suberin and sporopollenin. PLANT MOLECULAR BIOLOGY 2013; 83:625-49. [PMID: 23893219 DOI: 10.1007/s11103-013-0113-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/12/2013] [Indexed: 05/03/2023]
Abstract
The non-specific lipid transfer proteins (nsLTP) are unique to land plants. The nsLTPs are characterized by a compact structure with a central hydrophobic cavity and can be classified to different types based on sequence similarity, intron position or spacing between the cysteine residues. The type G nsLTPs (LTPGs) have a GPI-anchor in the C-terminal region which attaches the protein to the exterior side of the plasma membrane. The function of these proteins, which are encoded by large gene families, has not been systematically investigated so far. In this study we have explored microarray data to investigate the expression pattern of the LTPGs in Arabidopsis and rice. We identified that the LTPG genes in each plant can be arranged in three expression modules with significant coexpression within the modules. According to expression patterns and module sizes, the Arabidopsis module AtI is functionally equivalent to the rice module OsI, AtII corresponds to OsII and AtIII is functionally comparable to OsIII. Starting from modules AtI, AtII and AtIII we generated extended networks with Arabidopsis genes coexpressed with the modules. Gene ontology analyses of the obtained networks suggest roles for LTPGs in the synthesis or deposition of cuticular waxes, suberin and sporopollenin. The AtI-module is primarily involved with cuticular wax, the AtII-module with suberin and the AtIII-module with sporopollenin. Further transcript analysis revealed that several transcript forms exist for several of the LTPG genes in both Arabidopsis and rice. The data suggests that the GPI-anchor attachment and localization of LTPGs may be controlled to some extent by alternative splicing.
Collapse
|
44
|
Srivastava V, Malm E, Sundqvist G, Bulone V. Quantitative proteomics reveals that plasma membrane microdomains from poplar cell suspension cultures are enriched in markers of signal transduction, molecular transport, and callose biosynthesis. Mol Cell Proteomics 2013; 12:3874-85. [PMID: 24051156 DOI: 10.1074/mcp.m113.029033] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The plasma membrane (PM) is a highly dynamic interface that contains detergent-resistant microdomains (DRMs). The aim of this work was to determine the main functions of such microdomains in poplar through a proteomic analysis using gel-based and solution (iTRAQ) approaches. A total of 80 proteins from a limited number of functional classes were found to be significantly enriched in DRM relative to PM. The enriched proteins are markers of signal transduction, molecular transport at the PM, or cell wall biosynthesis. Their intrinsic properties are presented and discussed together with the biological significance of their enrichment in DRM. Of particular importance is the significant and specific enrichment of several callose [(1 → 3)-β-glucan] synthase isoforms, whose catalytic activity represents a final response to stress, leading to the deposition of callose plugs at the surface of the PM. An integrated functional model that connects all DRM-enriched proteins identified is proposed. This report is the only quantitative analysis available to date of the protein composition of membrane microdomains from a tree species.
Collapse
Affiliation(s)
- Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
45
|
Masuishi Y, Nomura A, Okayama A, Kimura Y, Arakawa N, Hirano H. Mass spectrometric identification of glycosylphosphatidylinositol-anchored peptides. J Proteome Res 2013; 12:4617-26. [PMID: 24001144 DOI: 10.1021/pr4004807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring is a post-translational modification widely observed among eukaryotic membrane proteins. GPI anchors are attached to proteins via the carboxy-terminus in the outer leaflet of the cell membrane, where GPI-anchored proteins (GPI-APs) perform important functions as coreceptors and enzymes. Precursors of GPI-APs (Pre-GPI-APs) contain a C-terminal hydrophobic sequence that is involved in cleavage of the signal sequence from the protein and addition of the GPI anchor by the transamidase complex. In order to confirm that a given protein contains a GPI anchor, it is essential to identify the C-terminal peptide containing the GPI-anchor modification site (ω-site). Previously, efficient identification of GPI-anchored C-terminal peptides by mass spectrometry has been difficult, in part because of complex structure of the GPI-anchor moiety. We developed a method to experimentally identify GPI-APs and their ω-sites. In this method, a part of GPI-anchor moieties are removed from GPI-anchored peptides using phosphatidylinositol-specific phospholipase C (PI-PLC) and aqueous hydrogen fluoride (HF), and peptide sequence is then determined by mass spectrometry. Using this method, we successfully identified 10 GPI-APs and 12 ω-sites in the cultured ovarian adenocarcinoma cells, demonstrating that this method is useful for identifying efficiently GPI-APs.
Collapse
Affiliation(s)
- Yusuke Masuishi
- Graduate School of Medical Life Science and ‡Advanced Medical Research Center, Yokohama City University , Yokohama, Kanagawa 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Silva DCF, Silva RC, Ferreira RC, Briones MRS. Examining marginal sequence similarities between bacterial type III secretion system components and Trypanosoma cruzi surface proteins: horizontal gene transfer or convergent evolution? Front Genet 2013; 4:143. [PMID: 23967008 PMCID: PMC3744899 DOI: 10.3389/fgene.2013.00143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/13/2013] [Indexed: 11/13/2022] Open
Abstract
The cell invasion mechanism of Trypanosoma cruzi has similarities with some intracellular bacterial taxa especially regarding calcium mobilization. This mechanism is not observed in other trypanosomatids, suggesting that the molecules involved in this type of cell invasion were a product of (1) acquisition by horizontal gene transfer (HGT); (2) secondary loss in the other trypanosomatid lineages of the mechanism inherited since the bifurcation Bacteria-Neomura (1.9 billion to 900 million years ago); or (3) de novo evolution from non-homologous proteins via convergent evolution. Similar to T. cruzi, several bacterial genera require increased host cell cytosolic calcium for intracellular invasion. Among intracellular bacteria, the mechanism of host cell invasion of genus Salmonella is the most similar to T. cruzi. The invasion of Salmonella occurs by contact with the host's cell surface and is mediated by the type III secretion system (T3SS) that promotes the contact-dependent translocation of effector proteins directly into host's cell cytoplasm. Here we provide evidence of distant sequence similarities and structurally conserved domains between T. cruzi and Salmonella spp T3SS proteins. Exhaustive database searches were directed to a wide range of intracellular bacteria and trypanosomatids, exploring sequence patterns for comparison of structural similarities and Bayesian phylogenies. Based on our data we hypothesize that T. cruzi acquired genes for calcium mobilization mediated invasion by ancient HGT from ancestral Salmonella lineages.
Collapse
Affiliation(s)
- Danielle C F Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo São Paulo, Brazil ; Laboratório de Genômica Evolutiva e Biocomplexidade, Universidade Federal de São Paulo São Paulo, Brazil
| | | | | | | |
Collapse
|
47
|
Li S, Ge FR, Xu M, Zhao XY, Huang GQ, Zhou LZ, Wang JG, Kombrink A, McCormick S, Zhang XS, Zhang Y. Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:486-97. [PMID: 23384085 DOI: 10.1111/tpj.12139] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/29/2013] [Accepted: 01/31/2012] [Indexed: 05/06/2023]
Abstract
Successful reproduction of flowering plants requires constant communication between female tissues and growing pollen tubes. Female cells secrete molecules and peptides as nutrients or guidance cues for fast and directional tube growth, which is executed by dynamic changes of intracellular activities within pollen tubes. Compared with the extensive interest in female cues and intracellular activities of pollen tubes, how female cues are sensed and interpreted intracellularly in pollen is poorly understood. We show here that COBL10, a glycosylphosphatidylinositol (GPI)-anchored protein, is one component of this pollen tube internal machinery. Mutations in COBL10 caused gametophytic male sterility due to reduced pollen tube growth and compromised directional sensing in the female transmitting tract. Deposition of the apical pectin cap and cellulose microfibrils was disrupted in cobl10 pollen tubes. Pollen tube localization of COBL10 at the apical plasma membrane is critical for its function and relies on proper GPI processing and its C-terminal hydrophobic residues. GPI-anchored proteins are widespread cell sensors in mammals, especially during egg-sperm communication. Our results that COBL10 is critical for directional growth of pollen tubes suggest that they play critical roles in cell-cell communications in plants.
Collapse
Affiliation(s)
- Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yadeta KA, Elmore JM, Coaker G. Advancements in the analysis of the Arabidopsis plasma membrane proteome. FRONTIERS IN PLANT SCIENCE 2013; 4:86. [PMID: 23596451 PMCID: PMC3622881 DOI: 10.3389/fpls.2013.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/22/2013] [Indexed: 05/09/2023]
Abstract
The plasma membrane (PM) regulates diverse processes essential to plant growth, development, and survival in an ever-changing environment. In addition to maintaining normal cellular homeostasis and plant nutrient status, PM proteins perceive and respond to a myriad of environmental cues. Here we review recent advances in the analysis of the plant PM proteome with a focus on the model plant Arabidopsis thaliana. Due to membrane heterogeneity, hydrophobicity, and low relative abundance, analysis of the PM proteome has been a special challenge. Various experimental techniques to enrich PM proteins and different protein and peptide separation strategies have facilitated the identification of thousands of integral and membrane-associated proteins. Numerous classes of proteins are present at the PM with diverse biological functions. PM microdomains have attracted much attention. However, it still remains a challenge to characterize these cell membrane compartments. Dynamic changes in the PM proteome in response to different biotic and abiotic stimuli are highlighted. Future prospects for PM proteomics research are also discussed.
Collapse
Affiliation(s)
- Koste A. Yadeta
- Department of Plant Pathology, University of California DavisDavis, CA, USA
| | - J. Mitch Elmore
- Department of Plant Pathology, University of California DavisDavis, CA, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California DavisDavis, CA, USA
| |
Collapse
|
49
|
Huang GQ, Gong SY, Xu WL, Li W, Li P, Zhang CJ, Li DD, Zheng Y, Li FG, Li XB. A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. PLANT PHYSIOLOGY 2013; 161:1278-90. [PMID: 23349362 PMCID: PMC3585596 DOI: 10.1104/pp.112.203760] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/22/2013] [Indexed: 05/17/2023]
Abstract
Arabinogalactan proteins (AGPs) are involved in many aspects of plant development. In this study, biochemical and genetic approaches demonstrated that AGPs are abundant in developing fibers and may be involved in fiber initiation and elongation. To further investigate the role of AGPs during fiber development, a fasciclin-like arabinogalactan protein gene (GhFLA1) was identified in cotton (Gossypium hirsutum). Overexpression of GhFLA1 in cotton promoted fiber elongation, leading to an increase in fiber length. In contrast, suppression of GhFLA1 expression in cotton slowed down fiber initiation and elongation. As a result, the mature fibers of the transgenic plants were significantly shorter than those of the wild type. In addition, expression levels of GhFLAs and the genes related to primary cell wall biosynthesis were remarkably enhanced in the GhFLA1 overexpression transgenic fibers, whereas the transcripts of these genes were dramatically reduced in the fibers of GhFLA1 RNA interference plants. An immunostaining assay indicated that both AGP composition and primary cell wall composition were changed in the transgenic fibers. The levels of glucose, arabinose, and galactose were also altered in the primary cell wall of the transgenic fibers compared with those of the wild type. Together, our results suggested that GhFLA1 may function in fiber initiation and elongation by affecting AGP composition and the integrity of the primary cell wall matrix.
Collapse
Affiliation(s)
| | | | - Wen-Liang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| | - Wen Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| | - Peng Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| | - Chao-Jun Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| | - Deng-Di Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| | - Fu-Guang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China (G.-Q.H., S.-Y.G., W.-L.X., W.L., P.L., D.-D.L., Y.Z., X.-B.L.); and State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang, Henan 455000, People’s Republic of China (C.-J.Z., F.-G.L.)
| |
Collapse
|
50
|
Zheng H, Loh HH, Law PY. Posttranslation modification of G protein-coupled receptor in relationship to biased agonism. Methods Enzymol 2013; 522:391-408. [PMID: 23374194 DOI: 10.1016/b978-0-12-407865-9.00018-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biased signaling has been reported with a series of G protein-coupled receptors (GPCRs), including β(2)-adrenergic receptor and μ-opioid receptor (OPRM1). The concept of biased signaling suggests that the agonists of one particular receptor may activate the downstream signaling pathways with different efficacies. Thus in an extreme case, agonists might activate different sets of signaling pathways, which provide a new route to develop drugs with increased efficacies and decreased side effects. Among the many factors, posttranslation modifications of receptor proteins have major roles in influencing the biased signaling. Take OPRM1, for example, the phosphorylation and palmitoylation of receptor can regulate the biased signaling induced by agonists. Thus, by modulating these posttranslation modifications, the biased signaling of GPCRs can be regulated. In addition, although it is not considered as posttranslation modification normally, the distribution of GPCRs on cell membrane, especially the distribution between lipid-raft and non-raft microdomains, also contributes to the biased signaling. Thus in this chapter, we described the methods used in our laboratory to study receptor phosphorylation, receptor palmitoylation, and membrane distribution of receptor by using OPRM1 as a model. A functional model was also provided on these posttranslational modifications at the last section of this chapter.
Collapse
Affiliation(s)
- Hui Zheng
- Stem Cell and Cancer Biology Group, Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | | | | |
Collapse
|