1
|
Paromov V, Uversky VN, Cooley A, Liburd LE, Mukherjee S, Na I, Dayhoff GW, Pratap S. The Proteomic Analysis of Cancer-Related Alterations in the Human Unfoldome. Int J Mol Sci 2024; 25:1552. [PMID: 38338831 PMCID: PMC10855131 DOI: 10.3390/ijms25031552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Many proteins lack stable 3D structures. These intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains with intrinsically disordered protein regions (IDPRs) often carry out regulatory functions related to molecular recognition and signal transduction. IDPs/IDPRs constitute a substantial portion of the human proteome and are termed "the unfoldome". Herein, we probe the human breast cancer unfoldome and investigate relations between IDPs and key disease genes and pathways. We utilized bottom-up proteomics, MudPIT (Multidimensional Protein Identification Technology), to profile differentially expressed IDPs in human normal (MCF-10A) and breast cancer (BT-549) cell lines. Overall, we identified 2271 protein groups in the unfoldome of normal and cancer proteomes, with 148 IDPs found to be significantly differentially expressed in cancer cells. Further analysis produced annotations of 140 IDPs, which were then classified to GO (Gene Ontology) categories and pathways. In total, 65% (91 of 140) IDPs were related to various diseases, and 20% (28 of 140) mapped to cancer terms. A substantial portion of the differentially expressed IDPs contained disordered regions, confirmed by in silico characterization. Overall, our analyses suggest high levels of interactivity in the human cancer unfoldome and a prevalence of moderately and highly disordered proteins in the network.
Collapse
Affiliation(s)
- Victor Paromov
- Meharry Proteomics Core, RCMI Research Capacity Core, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA; (V.N.U.); (I.N.)
| | - Ayorinde Cooley
- Meharry Bioinformatics Core, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Lincoln E. Liburd
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA (S.M.)
| | - Shyamali Mukherjee
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA (S.M.)
| | - Insung Na
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA; (V.N.U.); (I.N.)
| | - Guy W. Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL 33613, USA;
| | - Siddharth Pratap
- Meharry Proteomics Core, RCMI Research Capacity Core, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
- Meharry Bioinformatics Core, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
2
|
Geens R, Stanisich J, Beyens O, D'Hondt S, Thiberge J, Ryckebosch A, De Groot A, Magez S, Vertommen D, Amino R, De Winter H, Volkov AN, Tompa P, Sterckx YG. Biophysical characterization of the Plasmodium falciparum circumsporozoite protein's N-terminal domain. Protein Sci 2024; 33:e4852. [PMID: 38059674 PMCID: PMC10749493 DOI: 10.1002/pro.4852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
The circumsporozoite protein (CSP) is the main surface antigen of the Plasmodium sporozoite (SPZ) and forms the basis of the currently only licensed anti-malarial vaccine (RTS,S/AS01). CSP uniformly coats the SPZ and plays a pivotal role in its immunobiology, in both the insect and the vertebrate hosts. Although CSP's N-terminal domain (CSPN ) has been reported to play an important role in multiple CSP functions, a thorough biophysical and structural characterization of CSPN is currently lacking. Here, we present an alternative method for the recombinant production and purification of CSPN from Plasmodium falciparum (PfCSPN ), which provides pure, high-quality protein preparations with high yields. Through an interdisciplinary approach combining in-solution experimental methods and in silico analyses, we provide strong evidence that PfCSPN is an intrinsically disordered region displaying some degree of compaction.
Collapse
Affiliation(s)
- Rob Geens
- Laboratory of Medical Biochemistry (LMB)University of AntwerpAntwerpBelgium
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Jessica Stanisich
- Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Olivier Beyens
- Laboratory of Medicinal Chemistry (UAMC)University of AntwerpAntwerpBelgium
| | - Stijn D'Hondt
- Laboratory of Medicinal Chemistry (UAMC)University of AntwerpAntwerpBelgium
| | | | - Amber Ryckebosch
- Laboratory of Medical Biochemistry (LMB)University of AntwerpAntwerpBelgium
| | - Anke De Groot
- Laboratory of Medical Biochemistry (LMB)University of AntwerpAntwerpBelgium
| | - Stefan Magez
- Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
- Ghent University Global CampusIncheonSouth Korea
| | - Didier Vertommen
- de Duve Institute and MASSPROT Platform, UCLouvainBrusselsBelgium
| | - Rogerio Amino
- Unit of Malaria Infection & ImmunityInstitut PasteurParisFrance
| | - Hans De Winter
- Laboratory of Medicinal Chemistry (UAMC)University of AntwerpAntwerpBelgium
| | - Alexander N. Volkov
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
- VIB‐VUB Center for Structural BiologyVlaams Instituut voor Biotechnologie (VIB)BrusselsBelgium
- Jean Jeener NMR CentreVrije Universiteit BrusselBrusselsBelgium
| | - Peter Tompa
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
- VIB‐VUB Center for Structural BiologyVlaams Instituut voor Biotechnologie (VIB)BrusselsBelgium
- Institute of Enzymology, Biological Research CenterHungarian Academy of SciencesBudapestHungary
| | - Yann G.‐J. Sterckx
- Laboratory of Medical Biochemistry (LMB)University of AntwerpAntwerpBelgium
| |
Collapse
|
3
|
Rethi-Nagy Z, Abraham E, Udvardy K, Klement E, Darula Z, Pal M, Katona RL, Tubak V, Pali T, Kota Z, Sinka R, Udvardy A, Lipinszki Z. STABILON, a Novel Sequence Motif That Enhances the Expression and Accumulation of Intracellular and Secreted Proteins. Int J Mol Sci 2022; 23:ijms23158168. [PMID: 35897744 PMCID: PMC9332151 DOI: 10.3390/ijms23158168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
The dynamic balance of transcriptional and translational regulation together with degron-controlled proteolysis shapes the ever-changing cellular proteome. While a large variety of degradation signals has been characterized, our knowledge of cis-acting protein motifs that can in vivo stabilize otherwise short-lived proteins is very limited. We have identified and characterized a conserved 13-mer protein segment derived from the p54/Rpn10 ubiquitin receptor subunit of the Drosophila 26S proteasome, which fulfills all the characteristics of a protein stabilization motif (STABILON). Attachment of STABILON to various intracellular as well as medically relevant secreted model proteins resulted in a significant increase in their cellular or extracellular concentration in mammalian cells. We demonstrate that STABILON acts as a universal and dual function motif that, on the one hand, increases the concentration of the corresponding mRNAs and, on the other hand, prevents the degradation of short-lived fusion proteins. Therefore, STABILON may lead to a breakthrough in biomedical recombinant protein production.
Collapse
Affiliation(s)
- Zsuzsanna Rethi-Nagy
- Biological Research Centre, Institute of Biochemistry, MTA SZBK Lendület Laboratory of Cell Cycle Regulation, ELKH, H-6726 Szeged, Hungary; (Z.R.-N.); (E.A.); (K.U.); (M.P.)
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Edit Abraham
- Biological Research Centre, Institute of Biochemistry, MTA SZBK Lendület Laboratory of Cell Cycle Regulation, ELKH, H-6726 Szeged, Hungary; (Z.R.-N.); (E.A.); (K.U.); (M.P.)
| | - Katalin Udvardy
- Biological Research Centre, Institute of Biochemistry, MTA SZBK Lendület Laboratory of Cell Cycle Regulation, ELKH, H-6726 Szeged, Hungary; (Z.R.-N.); (E.A.); (K.U.); (M.P.)
| | - Eva Klement
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), H-6726 Szeged, Hungary; (E.K.); (Z.D.)
- Biological Research Centre, Laboratory of Proteomics Research, ELKH, H-6726 Szeged, Hungary
| | - Zsuzsanna Darula
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), H-6726 Szeged, Hungary; (E.K.); (Z.D.)
- Biological Research Centre, Laboratory of Proteomics Research, ELKH, H-6726 Szeged, Hungary
| | - Margit Pal
- Biological Research Centre, Institute of Biochemistry, MTA SZBK Lendület Laboratory of Cell Cycle Regulation, ELKH, H-6726 Szeged, Hungary; (Z.R.-N.); (E.A.); (K.U.); (M.P.)
| | | | - Vilmos Tubak
- Creative Laboratory Ltd., H-6726 Szeged, Hungary;
| | - Tibor Pali
- Biological Research Centre, Institute of Biophysics, ELKH, H-6726 Szeged, Hungary; (T.P.); (Z.K.)
| | - Zoltan Kota
- Biological Research Centre, Institute of Biophysics, ELKH, H-6726 Szeged, Hungary; (T.P.); (Z.K.)
| | - Rita Sinka
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
- Correspondence: (R.S.); (A.U.); (Z.L.)
| | - Andor Udvardy
- Biological Research Centre, Institute of Biochemistry, MTA SZBK Lendület Laboratory of Cell Cycle Regulation, ELKH, H-6726 Szeged, Hungary; (Z.R.-N.); (E.A.); (K.U.); (M.P.)
- Correspondence: (R.S.); (A.U.); (Z.L.)
| | - Zoltan Lipinszki
- Biological Research Centre, Institute of Biochemistry, MTA SZBK Lendület Laboratory of Cell Cycle Regulation, ELKH, H-6726 Szeged, Hungary; (Z.R.-N.); (E.A.); (K.U.); (M.P.)
- Correspondence: (R.S.); (A.U.); (Z.L.)
| |
Collapse
|
4
|
Bychkova VE, Dolgikh DA, Balobanov VA, Finkelstein AV. The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception. Molecules 2022; 27:molecules27144361. [PMID: 35889244 PMCID: PMC9319461 DOI: 10.3390/molecules27144361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/01/2023] Open
Abstract
Quite a long time ago, Oleg B. Ptitsyn put forward a hypothesis about the possible functional significance of the molten globule (MG) state for the functioning of proteins. MG is an intermediate between the unfolded and the native state of a protein. Its experimental detection and investigation in a cell are extremely difficult. In the last decades, intensive studies have demonstrated that the MG-like state of some globular proteins arises from either their modifications or interactions with protein partners or other cell components. This review summarizes such reports. In many cases, MG was evidenced to be functionally important. Thus, the MG state is quite common for functional cellular proteins. This supports Ptitsyn’s hypothesis that some globular proteins may switch between two active states, rigid (N) and soft (MG), to work in solution or interact with partners.
Collapse
Affiliation(s)
- Valentina E. Bychkova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow, Russia;
| | - Vitalii A. Balobanov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
- Correspondence:
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| |
Collapse
|
5
|
Park H, Yamanaka T, Nukina N. Proteomic analysis of heat-stable proteins revealed an increased proportion of proteins with compositionally biased regions. Sci Rep 2022; 12:4347. [PMID: 35289333 PMCID: PMC8921518 DOI: 10.1038/s41598-022-08044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) have been in the spotlight for their unique properties, such as their lack of secondary structures and low sequence complexity. Alpha-synuclein and tau are representative disease-related IDPs with low complexity regions in their sequences, accumulating in the brains of patients with Parkinson disease and Alzheimer disease, respectively. Their heat resistance in particular was what attracted our attention. We assumed that there exist many other unidentified proteins that are resistant to heat-treatment, referred to as heat-stable proteins, which would also have low sequence complexity. In this study, we performed proteomic analysis of heat-stable proteins of mouse brains and found that proteins with compositionally biased regions are abundant in the heat-stable proteins. The proteins related to neurodegeneration are known to undergo different types of post-translational modifications (PTMs) such as phosphorylation and ubiquitination. We then investigated the heat-stability and aggregation properties of phosphorylated synuclein and tau with different phosphorylation sites. We suggest that PTMs can be important factors that determine the heat-stability and aggregation properties of a protein. IDPs identified in the heat-stable proteins of mouse brains would be candidates for the pathogenic proteins for neurodegeneration.
Collapse
Affiliation(s)
- Hongsun Park
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan.,Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan.
| |
Collapse
|
6
|
Ansari MZ, Alom SE, Swaminathan R. Ordered structure induced in human c-Myc PEST region upon forming a disulphide bonded dimer. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01889-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Pelham JF, Dunlap JC, Hurley JM. Intrinsic disorder is an essential characteristic of components in the conserved circadian circuit. Cell Commun Signal 2020; 18:181. [PMID: 33176800 PMCID: PMC7656774 DOI: 10.1186/s12964-020-00658-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The circadian circuit, a roughly 24 h molecular feedback loop, or clock, is conserved from bacteria to animals and allows for enhanced organismal survival by facilitating the anticipation of the day/night cycle. With circadian regulation reportedly impacting as high as 80% of protein coding genes in higher eukaryotes, the protein-based circadian clock broadly regulates physiology and behavior. Due to the extensive interconnection between the clock and other cellular systems, chronic disruption of these molecular rhythms leads to a decrease in organismal fitness as well as an increase of disease rates in humans. Importantly, recent research has demonstrated that proteins comprising the circadian clock network display a significant amount of intrinsic disorder. MAIN BODY In this work, we focus on the extent of intrinsic disorder in the circadian clock and its potential mechanistic role in circadian timing. We highlight the conservation of disorder by quantifying the extent of computationally-predicted protein disorder in the core clock of the key eukaryotic circadian model organisms Drosophila melanogaster, Neurospora crassa, and Mus musculus. We further examine previously published work, as well as feature novel experimental evidence, demonstrating that the core negative arm circadian period drivers FREQUENCY (Neurospora crassa) and PERIOD-2 (PER2) (Mus musculus), possess biochemical characteristics of intrinsically disordered proteins. Finally, we discuss the potential contributions of the inherent biophysical principals of intrinsically disordered proteins that may explain the vital mechanistic roles they play in the clock to drive their broad evolutionary conservation in circadian timekeeping. CONCLUSION The pervasive conservation of disorder amongst the clock in the crown eukaryotes suggests that disorder is essential for optimal circadian timing from fungi to animals, providing vital homeostatic cellular maintenance and coordinating organismal physiology across phylogenetic kingdoms. Video abstract.
Collapse
Affiliation(s)
- Jacqueline F. Pelham
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Jay C. Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - Jennifer M. Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12018 USA
| |
Collapse
|
8
|
Ansari MZ, Swaminathan R. Structure and dynamics at N- and C-terminal regions of intrinsically disordered human c-Myc PEST degron reveal a pH-induced transition. Proteins 2020; 88:889-909. [PMID: 31999378 DOI: 10.1002/prot.25880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/09/2019] [Accepted: 01/25/2020] [Indexed: 12/11/2022]
Abstract
We investigated the structure and Brownian rotational motion of the PEST region (201-268) from human c-Myc oncoprotein, whose overexpression/dysregulation is associated with various types of cancer. The 77-residue PEST fragment revealed a large Stokes radius (~3.1 nm) and CD spectrum highlighting abundance of disordered structure. Changes in structure/dynamics at two specific sites in PEST degron were observed using time-resolved fluorescence spectroscopy by labeling Cys9 near N-terminal with dansyl probe and inserting a Trp70 near C-terminal (PEST M1). Trp in PEST M1 at pH 3 was inaccessible to quencher, showed hindered segmental motion and slow global rotation (~30 ns) in contrast to N-terminal where the dansyl probe was free, exposed with fast global rotation (~5 ns). Remarkably, this large monomeric structure at acidic pH was retained irrespective of ionic strength (0.03-0.25 M) and partially so in presence of 6 M Gdn.HCl. With gradual increase in pH, a structural transition (~pH 4.8) into a more exposed and freely rotating Trp was noticeable. Interestingly, the induced structure at C-terminal also influenced the dynamics of dansyl probe near N-terminal, which otherwise remained unstructured at pH > 5. FRET measurements confirmed a 11 Å decrease in distance between dansyl and indole at pH 4 compared to pH 9, coinciding with enhanced ANS binding and increase in strand/helix population in both PEST fragments. The protonation of glutamate/aspartate residues in C-terminal region of PEST is implicated in this disorder-order transition. This may have a bearing on the role of PEST in endocytic trafficking of eukaryotic proteins.
Collapse
Affiliation(s)
- Mohd Ziauddin Ansari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajaram Swaminathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
9
|
Skupien-Rabian B, Jankowska U, Kedracka-Krok S. Analysis of a Nuclear Intrinsically Disordered Proteome. Methods Mol Biol 2020; 2175:181-196. [PMID: 32681491 DOI: 10.1007/978-1-0716-0763-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intrinsically disordered proteins (IDPs) play crucial roles in cell functioning, although they do not possess defined three-dimensional architecture. They are highly abundant in the cell nucleus, and the vast majority of transcription factors (TFs) contain extended regions of intrinsic disorder. IDPs do not respond to denaturing conditions in a standard manner, and this can be used for their separation from structured proteins. Here we describe a protocol for the isolation and characterization of nuclear IDPs in which heat treatment is used for enrichment of IDPs in samples. The whole workflow comprises the following steps: nuclei isolation from HEK293 (human embryonic kidney) cells, protein extraction, enrichment of IDPs, sample preparation for mass spectrometric analysis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, in silico assessment of protein disorder, and Gene Ontology analysis.
Collapse
Affiliation(s)
- Bozena Skupien-Rabian
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Urszula Jankowska
- Laboratory of Proteomics and Mass Spectrometry, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
10
|
Myers N, Olender T, Savidor A, Levin Y, Reuven N, Shaul Y. The Disordered Landscape of the 20S Proteasome Substrates Reveals Tight Association with Phase Separated Granules. Proteomics 2018; 18:e1800076. [PMID: 30039638 DOI: 10.1002/pmic.201800076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/28/2018] [Indexed: 12/11/2022]
Abstract
Proteasomal degradation is the main route of regulated proteostasis. The 20S proteasome is the core particle (CP) responsible for the catalytic activity of all proteasome complexes. Structural constraints mean that only unfolded, extended polypeptide chains may enter the catalytic core of the 20S proteasome. It has been previously shown that the 20S CP is active in degradation of certain intrinsically disordered proteins (IDP) lacking structural constrains. Here, a comprehensive analysis of the 20S CP substrates in vitro is conducted. It is revealed that the 20S CP substrates are highly disordered. However, not all the IDPs are 20S CP substrates. The group of the IDPs that are 20S CP substrates, termed 20S-IDPome are characterized by having significantly more protein binding partners, more posttranslational modification sites, and are highly enriched for RNA binding proteins. The vast majority of them are involved in splicing, mRNA processing, and translation. Remarkably, it is found that low complexity proteins with prion-like domain (PrLD), which interact with GR or PR di-peptide repeats, are the most preferential 20S CP substrates. The finding suggests roles of the 20S CP in gene transcription and formation of phase-separated granules.
Collapse
Affiliation(s)
- Nadav Myers
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| | - Alon Savidor
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| |
Collapse
|
11
|
Cui J, Yang D, Zeng X, Zhou N, Liu H. Recent progress on the structure separation of single-wall carbon nanotubes. NANOTECHNOLOGY 2017; 28:452001. [PMID: 28877034 DOI: 10.1088/1361-6528/aa8ac9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The mass production of single-structure, single-wall carbon nanotubes (SWCNTs) with identical properties is critical for their basic research and technical applications in the fields of electronics, optics and optoelectronics. Great efforts have been made to control the structures of SWCNTs since their discovery. Recently, the structure separation of SWCNTs has been making great progress. Various solution-sorting methods have been developed to achieve not only the separation of metallic and semiconducting species, but also the sorting of distinct (n, m) single-chirality species and even their enantiomers. This progress would dramatically accelerate the application of SWCNTs in the next-generation electronic devices. Here, we review the recent progress in the structure sorting of SWCNTs and outline the challenges and prospects of the structure separation of SWCNTs.
Collapse
Affiliation(s)
- Jiaming Cui
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, People's Republic of China. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Tedeschi G, Mangiagalli M, Chmielewska S, Lotti M, Natalello A, Brocca S. Aggregation properties of a disordered protein are tunable by pH and depend on its net charge per residue. Biochim Biophys Acta Gen Subj 2017; 1861:2543-2550. [PMID: 28890401 DOI: 10.1016/j.bbagen.2017.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
Abstract
Intrinsically disordered proteins (IDPs) possess a peculiar amino acid composition that makes them very soluble. Nevertheless, they can encounter aggregation in physiological and pathological contexts. In this work, we addressed the issue of how electrostatic charges can influence aggregation propensity by using the N-terminus moiety of the measles virus phosphoprotein, PNT, as a model IDP. Taking advantage of the high sequence designability of IDPs, we have produced an array of PNT variants sharing the same hydrophobicity, but differing in net charges per residue and isoelectric points (pI). The solubility and conformational properties of these proteins were analysed through biochemical and biophysical techniques in a wide range of pH values and compared with those of the green fluorescence protein (GFP), a globular protein with lower net charge per residue, but similar hydrophobicity. Tested proteins showed a solubility minimum close to their pI, as expected, but the pH-dependent decrease of solubility was not uniform and driven by the net charge per residue of each variant. A parallel behaviour was observed also in fusion proteins between PNT variants and GFP, which minimally contributes to the solubility of chimeras. Our data suggest that the overall solubility of a protein can be dictated by protein regions endowed with higher net charge per residue and, hence, prompter to respond to pH changes. This finding could be exploited for biotechnical purposes, such as the design of solubility/aggregation tags, and in studies aimed to clarify the pathological and physiological behaviour of IDPs.
Collapse
Affiliation(s)
- Giulia Tedeschi
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Milano, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Milano, Italy
| | - Sara Chmielewska
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Milano, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Milano, Italy.
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
13
|
Effect of Phosphorylation on a Human-like Osteopontin Peptide. Biophys J 2017; 112:1586-1596. [PMID: 28445750 PMCID: PMC5406370 DOI: 10.1016/j.bpj.2017.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/25/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
The last decade established that the dynamic properties of the phosphoproteome are central to function and its modulation. The temporal dimension of phosphorylation effects remains nonetheless poorly understood, particularly for intrinsically disordered proteins. Osteopontin, selected for this study due to its key role in biomineralization, is expressed in many species and tissues to play a range of distinct roles. A notable property of highly phosphorylated isoforms of osteopontin is their ability to sequester nanoclusters of calcium phosphate to form a core-shell structure, in a fluid that is supersaturated but stable. In Biology, this process enables soft and hard tissues to coexist in the same organism with relative ease. Here, we extend our understanding of the effect of phosphorylation on a disordered protein, the recombinant human-like osteopontin rOPN. The solution structures of the phosphorylated and unphosphorylated rOPN were investigated by small-angle x-ray scattering and no significant changes were detected on the radius of gyration or maximum interatomic distance. The picosecond-to-nanosecond dynamics of the hydrated powders of the two rOPN forms were further compared by elastic and quasi-elastic incoherent neutron scattering. Phosphorylation was found to block some nanosecond side-chain motions while increasing the flexibility of other side chains on the faster timescale. Phosphorylation can thus selectively change the dynamic behavior of even a highly disordered protein such as osteopontin. Through such an effect on rOPN, phosphorylation can direct allosteric mechanisms, interactions with substrates, cofactors and, in this case, amorphous or crystalline biominerals.
Collapse
|
14
|
Lee C, Kim DH, Lee SH, Su J, Han KH. Structural investigation on the intrinsically disordered N-terminal region of HPV16 E7 protein. BMB Rep 2017; 49:431-6. [PMID: 27418281 PMCID: PMC5070730 DOI: 10.5483/bmbrep.2016.49.8.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 11/28/2022] Open
Abstract
Human papillomavirus (HPV) is the major cause of cervical cancer, a deadly threat to millions of females. The early oncogene product (E7) of the high-risk HPV16 is the primary agent associated with HPV-related cervical cancers. In order to understand how E7 contributes to the transforming activity, we investigated the structural features of the flexible N-terminal region (46 residues) of E7 by carrying out N-15 heteronuclear NMR experiments and replica exchange molecular dynamics simulations. Several NMR parameters as well as simulation ensemble structures indicate that this intrinsically disordered region of E7 contains two transient (10-20% populated) helical pre-structured motifs that overlap with important target binding moieties such as an E2F-mimic motif and a pRb-binding LXCXE segment. Presence of such target-binding motifs in HPV16 E7 provides a reasonable explanation for its promiscuous target-binding behavior associated with its transforming activity. [BMB Reports 2016; 49(8): 431-436]
Collapse
Affiliation(s)
- Chewook Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Do-Hyoung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Si-Hyung Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jiulong Su
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141; Department of Bioinformatics, University of Science and Technology, Daejeon 34113, Korea
| | - Kyou-Hoon Han
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141; Department of Bioinformatics, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
15
|
Ghag G, Wolf LM, Reed RG, Van Der Munnik NP, Mundoma C, Moss MA, Rangachari V. Fully reduced granulin-B is intrinsically disordered and displays concentration-dependent dynamics. Protein Eng Des Sel 2016; 29:177-86. [PMID: 26957645 PMCID: PMC4830411 DOI: 10.1093/protein/gzw005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
Granulins (Grns) are a family of small, cysteine-rich proteins that are generated upon proteolytic cleavage of their precursor, progranulin (Pgrn). All seven Grns (A-G) contain 12 conserved cysteines that form 6 intramolecular disulfide bonds, rendering this family of proteins unique. Grns are known to play multi-functional roles, including wound healing, embryonic growth, and inflammation and are implicated in neurodegenerative diseases. Despite their manifold functions, there exists a dearth of information regarding their structure-function relationship. Here, we sought to establish the role of disulfide bonds in promoting structure by investigating the fully reduced GrnB (rGrnB). We report that monomeric rGrnB is an intrinsically disordered protein (IDP) at low concentrations. rGrnB undergoes dimerization at higher concentrations to form a fuzzy complex without a net gain in the structure-a behavior increasingly identified as a hallmark of some IDPs. Interestingly, we show that rGrnB is also able to activate NF-κB in human neuroblastoma cells in a concentration-dependent manner. This activation correlates with the observed monomer-dimer dynamics. Collectively, the presented data establish that the intrinsic disorder of rGrnB governs conformational dynamics within the reduced form of the protein, and suggest that the overall structure of Grns could be entirely dictated by disulfide bonds.
Collapse
Affiliation(s)
- Gaurav Ghag
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | | - Randi G Reed
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | | - Claudius Mundoma
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Melissa A Moss
- Biomedical Engineering Program and Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
16
|
Urbanowicz A, Lewandowski D, Szpotkowski K, Figlerowicz M. Tick receptor for outer surface protein A from Ixodes ricinus - the first intrinsically disordered protein involved in vector-microbe recognition. Sci Rep 2016; 6:25205. [PMID: 27112540 PMCID: PMC4844993 DOI: 10.1038/srep25205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/12/2016] [Indexed: 01/02/2023] Open
Abstract
The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut.
Collapse
Affiliation(s)
- Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Dominik Lewandowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Kamil Szpotkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland.,Institute of Computing Science, University of Technology, Poznan, 60-965, Poland
| |
Collapse
|
17
|
Proteomic and bioinformatic analysis of a nuclear intrinsically disordered proteome. J Proteomics 2016; 130:76-84. [DOI: 10.1016/j.jprot.2015.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 02/08/2023]
|
18
|
Lenton S, Seydel T, Nylander T, Holt C, Härtlein M, Teixeira S, Zaccai G. Dynamic footprint of sequestration in the molecular fluctuations of osteopontin. J R Soc Interface 2015; 12:0506. [PMID: 26354827 PMCID: PMC4614460 DOI: 10.1098/rsif.2015.0506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/19/2015] [Indexed: 11/12/2022] Open
Abstract
The sequestration of calcium phosphate by unfolded proteins is fundamental to the stabilization of biofluids supersaturated with respect to hydroxyapatite, such as milk, blood or urine. The unfolded state of osteopontin (OPN) is thought to be a prerequisite for this activity, which leads to the formation of core-shell calcium phosphate nanoclusters. We report on the structures and dynamics of a native OPN peptide from bovine milk, studied by neutron spectroscopy and small-angle X-ray and neutron scattering. The effects of sequestration are quantified on the nanosecond- ångström resolution by elastic incoherent neutron scattering. The molecular fluctuations of the free phosphopeptide are in agreement with a highly flexible protein. An increased resilience to diffusive motions of OPN is corroborated by molecular fluctuations similar to those observed for globular proteins, yet retaining conformational flexibilities. The results bring insight into the modulation of the activity of OPN and phosphopeptides with a role in the control of biomineralization. The quantification of such effects provides an important handle for the future design of new peptides based on the dynamics-activity relationship.
Collapse
Affiliation(s)
- S Lenton
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France Environment, Physical Sciences and Applied Mathematics Research Institute, Keele University, Staffordshire ST5 5BG, UK
| | - T Seydel
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - T Nylander
- Division of Physical Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - C Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - M Härtlein
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - S Teixeira
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France Environment, Physical Sciences and Applied Mathematics Research Institute, Keele University, Staffordshire ST5 5BG, UK
| | - G Zaccai
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France C.N.R.S., Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|
19
|
Chui AJ, López CJ, Brooks EK, Chua KC, Doupey TG, Foltz GN, Kamel JG, Larrosa E, Sadiki A, Bridges MD. Multiple structural states exist throughout the helical nucleation sequence of the intrinsically disordered protein stathmin, as reported by electron paramagnetic resonance spectroscopy. Biochemistry 2015; 54:1717-28. [PMID: 25715079 DOI: 10.1021/bi500894q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The intrinsically disordered protein (IDP) stathmin plays an important regulatory role in cytoskeletal maintenance through its helical binding to tubulin and microtubules. However, it lacks a stable fold in the absence of its binding partner. Although stathmin has been a focus of research over the past two decades, the solution-phase conformational dynamics of this IDP are poorly understood. It has been reported that stathmin is purely monomeric in solution and that it bears a short helical region of persistent foldedness, which may act to nucleate helical folding in the C-terminal direction. Here we report a comprehensive study of the structural equilibria local to this region in stathmin that contradicts these two claims. Using the technique of electron paramagnetic resonance (EPR) spectroscopy on spin-labeled stathmin mutants in the solution-phase and when immobilized on Sepharose solid support, we show that all sites in the helical nucleation region of stathmin exhibit multiple spectral components that correspond to dynamic states of differing mobilities and stabilities. Importantly, a state with relatively low mobility dominates each spectrum with an average population greater than 50%, which we suggest corresponds to an oligomerized state of the protein. This is in contrast to a less populated, more mobile state, which likely represents a helically folded monomeric state of stathmin, and a highly mobile state, which we propose is the random coil conformer of the protein. Our interpretation of the EPR data is confirmed by further characterization of the protein using the techniques of native and SDS PAGE, gel filtration chromatography, and multiangle and dynamic light scattering, all of which show the presence of oligomeric stathmin in solution. Collectively, these data suggest that stathmin exists in a diverse equilibrium of states throughout the purported helical nucleation region and that this IDP exhibits a propensity toward oligomerization.
Collapse
Affiliation(s)
- Ashley J Chui
- Department of Chemistry and Biochemistry, California State University Fullerton , Fullerton, California 92831-6866, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Moosavi-Movahedi Z, Gharibi H, Hadi-Alijanvand H, Akbarzadeh M, Esmaili M, Atri MS, Sefidbakht Y, Bohlooli M, Nazari K, Javadian S, Hong J, Saboury AA, Sheibani N, Moosavi-Movahedi AA. Caseoperoxidase, mixed β-casein-SDS-hemin-imidazole complex: a nano artificial enzyme. J Biomol Struct Dyn 2015; 33:2619-32. [PMID: 25562503 DOI: 10.1080/07391102.2014.1003196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A novel peroxidase-like artificial enzyme, named "caseoperoxidase", was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme-imidazole-β-casein-SDS exhibited high activity growth and k(cat) performance toward the native horseradish peroxidase demonstrated by the steady state kinetics using UV-vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein) was selected as an appropriate apo-protein for the heme active site because of its innate flexibility and exalted hydrophobicity. This selection was confirmed by homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation and provided a suitable protective role for the heme active-site. Additional experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme.
Collapse
Affiliation(s)
| | - Hussein Gharibi
- b Faculty of Science, Department of Chemistry , Tarbiat Modares University , Tehran , Iran
| | - Hamid Hadi-Alijanvand
- c Department of Biological Sciences , Institute for Advanced Studies in Basic Sciences (IASBS) , Zanjan , Iran
| | - Mohammad Akbarzadeh
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | - Mansoore Esmaili
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | - Maliheh S Atri
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | - Yahya Sefidbakht
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | - Mousa Bohlooli
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | | | - Soheila Javadian
- b Faculty of Science, Department of Chemistry , Tarbiat Modares University , Tehran , Iran
| | - Jun Hong
- f College of Life Science , Henan University , Kaifeng 475000 , China
| | - Ali A Saboury
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran.,g Center of Excellence in Biothermodynamics, University of Tehran , Tehran , Iran
| | - Nader Sheibani
- h Department of Ophthalmology and Visual Sciences , Biomedical Engineering, University of Wisconsin School of Medicine and Public Health , Madison , WI , USA.,i McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| | - Ali A Moosavi-Movahedi
- d Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran.,g Center of Excellence in Biothermodynamics, University of Tehran , Tehran , Iran.,i McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| |
Collapse
|
21
|
de Cássia Ruy P, Torrieri R, Toledo JS, de Souza Alves V, Cruz AK, Ruiz JC. Intrinsically disordered proteins (IDPs) in trypanosomatids. BMC Genomics 2014; 15:1100. [PMID: 25496281 PMCID: PMC4378006 DOI: 10.1186/1471-2164-15-1100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022] Open
Abstract
Background Proteins are composed of one or more amino acid chains and exhibit several structure levels. IDPs (intrinsically disordered proteins) represent a class of proteins that do not fold into any particular conformation and exist as dynamic ensembles in their native state. Due to their intrinsic adaptability, IDPs participate in many regulatory biological processes, including parasite immune escape. Using the information from trypanosomatids proteomes, we developed a pipeline for the identification, characterization and analysis of IDPs. The pipeline employs six disorder prediction methodologies and integrates structural and functional annotation information, subcellular location prediction and physicochemical properties. At the core of the IDP pipeline, there is a relational database that describes the protein disorder knowledge in a logically consistent manner. Results The results obtained from the IDP pipeline showed that Leishmania and Trypanosoma species have approximately 70% and 55% IDPs, respectively. Our results indicate that IDPs in trypanosomatids contain disorder-promoting amino acids and order-promoting amino acids. The functional annotation analysis demonstrated enrichment of selected Gene Ontology terms. A relevant association was observed between the disordered residue numbers within predicted IDPs and their subcellular location, lack of transmembrane domains and lack of predicted function. We validated our computational findings with 2D electrophoresis designed for IDP identification and found that 100% of the identified protein spots were predicted in silico. Conclusions Because there is no pipeline or database addressing IDPs in trypanosomatids, the pipeline described here represents the first attempt to establish possible correlations between protein function and structural disorder in these eukaryotes. Interestingly, all significant associations detected in the contingency analysis were observed when the protein disorder content reached approximately 40%. The exploratory data analysis allowed us to develop hypotheses regarding the IDPs’ association with key biological features of these parasites, including transcription and transcriptional regulation, RNA processing and splicing, and cytoskeleton. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1100) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeronimo Conceição Ruiz
- Informática de Biossistemas, Centro de Pesquisas René Rachou - Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG, Brasil.
| |
Collapse
|
22
|
Denatured mammalian protein mixtures exhibit unusually high solubility in nucleic acid-free pure water. PLoS One 2014; 9:e113295. [PMID: 25405999 PMCID: PMC4236158 DOI: 10.1371/journal.pone.0113295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/22/2014] [Indexed: 11/19/2022] Open
Abstract
Preventing protein aggregation is a major goal of biotechnology. Since protein aggregates are mainly comprised of unfolded proteins, protecting against denaturation is likely to assist solubility in an aqueous medium. Contrary to this concept, we found denatured total cellular protein mixture from mammalian cell kept high solubility in pure water when the mixture was nucleic acids free. The lysates were prepared from total cellular protein pellet extracted by using guanidinium thiocyanate-phenol-chloroform mixture of TRIzol, denatured and reduced total protein mixtures remained soluble after extensive dialysis against pure water. The total cell protein lysates contained fully disordered proteins that readily formed large aggregates upon contact with nucleic acids or salts. These findings suggested that the highly flexible mixtures of disordered proteins, which have fully ionized side chains, are protected against aggregation. Interestingly, this unusual solubility is characteristic of protein mixtures from higher eukaryotes, whereas most prokaryotic protein mixtures were aggregated under identical conditions. This unusual solubility of unfolded protein mixtures could have implications for the study of intrinsically disordered proteins in a variety of cells.
Collapse
|
23
|
Uversky VN. Proteins without unique 3D structures: biotechnological applications of intrinsically unstable/disordered proteins. Biotechnol J 2014; 10:356-66. [PMID: 25287424 DOI: 10.1002/biot.201400374] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/23/2014] [Accepted: 08/27/2014] [Indexed: 11/09/2022]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are functional proteins or regions that do not have unique 3D structures under functional conditions. Therefore, from the viewpoint of their lack of stable 3D structure, IDPs/IDPRs are inherently unstable. As much as structure and function of normal ordered globular proteins are determined by their amino acid sequences, the lack of unique 3D structure in IDPs/IDPRs and their disorder-based functionality are also encoded in the amino acid sequences. Because of their specific sequence features and distinctive conformational behavior, these intrinsically unstable proteins or regions have several applications in biotechnology. This review introduces some of the most characteristic features of IDPs/IDPRs (such as peculiarities of amino acid sequences of these proteins and regions, their major structural features, and peculiar responses to changes in their environment) and describes how these features can be used in the biotechnology, for example for the proteome-wide analysis of the abundance of extended IDPs, for recombinant protein isolation and purification, as polypeptide nanoparticles for drug delivery, as solubilization tools, and as thermally sensitive carriers of active peptides and proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Faculty of Science, Biology Department, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
24
|
Affiliation(s)
- Johnny Habchi
- Aix-Marseille Université , Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 13288, Marseille, France
| | | | | | | |
Collapse
|
25
|
Sterckx YGJ, Volkov AN, Vranken WF, Kragelj J, Jensen MR, Buts L, Garcia-Pino A, Jové T, Van Melderen L, Blackledge M, van Nuland NAJ, Loris R. Small-angle X-ray scattering- and nuclear magnetic resonance-derived conformational ensemble of the highly flexible antitoxin PaaA2. Structure 2014; 22:854-65. [PMID: 24768114 DOI: 10.1016/j.str.2014.03.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 11/26/2022]
Abstract
Antitoxins from prokaryotic type II toxin-antitoxin modules are characterized by a high degree of intrinsic disorder. The description of such highly flexible proteins is challenging because they cannot be represented by a single structure. Here, we present a combination of SAXS and NMR data to describe the conformational ensemble of the PaaA2 antitoxin from the human pathogen E. coli O157. The method encompasses the use of SAXS data to filter ensembles out of a pool of conformers generated by a custom NMR structure calculation protocol and the subsequent refinement by a block jackknife procedure. The final ensemble obtained through the method is validated by an established residual dipolar coupling analysis. We show that the conformational ensemble of PaaA2 is highly compact and that the protein exists in solution as two preformed helices, connected by a flexible linker, that probably act as molecular recognition elements for toxin inhibition.
Collapse
Affiliation(s)
- Yann G J Sterckx
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Alexander N Volkov
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Wim F Vranken
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jaka Kragelj
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel CNRS-CEA-UJF UMR 5075, 41 Rue Jules Horowitz, 38027 Grenoble Cedex, France
| | - Malene Ringkjøbing Jensen
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel CNRS-CEA-UJF UMR 5075, 41 Rue Jules Horowitz, 38027 Grenoble Cedex, France
| | - Lieven Buts
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Thomas Jové
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires Faculté des Sciences, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Laurence Van Melderen
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires Faculté des Sciences, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Martin Blackledge
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel CNRS-CEA-UJF UMR 5075, 41 Rue Jules Horowitz, 38027 Grenoble Cedex, France
| | - Nico A J van Nuland
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
26
|
Hurley JM, Larrondo LF, Loros JJ, Dunlap JC. Conserved RNA helicase FRH acts nonenzymatically to support the intrinsically disordered neurospora clock protein FRQ. Mol Cell 2013; 52:832-43. [PMID: 24316221 DOI: 10.1016/j.molcel.2013.11.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/08/2013] [Accepted: 10/31/2013] [Indexed: 11/24/2022]
Abstract
Protein conformation dictates a great deal of protein function. A class of naturally unstructured proteins, termed intrinsically disordered proteins (IDPs), demonstrates that flexibility in structure can be as important mechanistically as rigid structure. At the core of the circadian transcription/translation feedback loop in Neurospora crassa is the protein FREQUENCY (FRQ), shown here shown to share many characteristics of IDPs. FRQ in turn binds to FREQUENCY-Interacting RNA Helicase (FRH), whose clock function has been assumed to relate to its predicted helicase function. However, mutational analyses reveal that the helicase function of FRH is not essential for the clock, and a region of FRH distinct from the helicase region is essential for stabilizing FRQ against rapid degradation via a pathway distinct from its typical ubiquitin-mediated turnover. These data lead to the hypothesis that FRQ is an IDP and that FRH acts nonenzymatically, stabilizing FRQ to enable proper clock circuitry/function.
Collapse
Affiliation(s)
- Jennifer M Hurley
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Luis F Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Jennifer J Loros
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
27
|
A novel interplay between the ubiquitin–proteasome system and serine proteases during Drosophila development. Biochem J 2013; 454:571-83. [PMID: 23805892 DOI: 10.1042/bj20130040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 11/17/2022]
Abstract
The concentrations of the Drosophila proteasomal and extraproteasomal polyubiquitin receptors fluctuate in a developmentally regulated fashion. This fluctuation is generated by a previously unidentified proteolytic activity. In the present paper, we describe the purification, identification and characterization of this protease (endoproteinase I). Its expression increases sharply at the L1-L2 larval stages, remains high until the second half of the L3 stage, then declines dramatically. This sharp decrease coincides precisely with the increase of polyubiquitin receptor concentrations in late L3 larvae, which suggests a tight developmental co-regulation. RNAi-induced down-regulation of endoproteinase I results in pupal lethality. Interestingly, we found a cross-talk between the 26S proteasome and this larval protease: transgenic overexpression of the in vivo target of endoproteinase I, the C-terminal half of the proteasomal polyubiquitin receptor subunit p54/Rpn10 results in transcriptional down-regulation of endoproteinase I and consequently a lower level of proteolytic elimination of the polyubiquitin receptors. Another larval protease, Jonah65A-IV, which degrades only unfolded proteins and exhibits similar cross-talk with the proteasome has also been purified and characterized. It may prevent the accumulation of polyubiquitylated proteins in larvae contrary to the low polyubiquitin receptor concentration.
Collapse
|
28
|
Lakkaraju A, van der Goot F. Calnexin Controls the STAT3-Mediated Transcriptional Response to EGF. Mol Cell 2013; 51:386-96. [DOI: 10.1016/j.molcel.2013.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/10/2013] [Accepted: 06/26/2013] [Indexed: 01/05/2023]
|
29
|
Tantos A, Tompa P. Identification of intrinsically disordered proteins by a special 2D electrophoresis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 896:215-22. [PMID: 22821526 DOI: 10.1007/978-1-4614-3704-8_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure under physiological conditions. They constitute a significant fraction of various proteomes and have significant roles in key cellular processes. Here we report the development of a two-dimensional electrophoresis technique for their de novo recognition and characterization. This technique consists of the combination of native and 8 M urea electrophoresis of heat-treated proteins where IDPs are expected to run into the diagonal of the gel, whereas globular proteins either precipitate upon heat treatment or unfold and run off the diagonal in the second dimension.
Collapse
Affiliation(s)
- Agnes Tantos
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|
30
|
Lee SH, Ju SK, Lee TY, Huh SH, Han KH. TIP30 directly binds p53 tumor suppressor protein in vitro. Mol Cells 2012; 34:495-500. [PMID: 23178973 PMCID: PMC3887794 DOI: 10.1007/s10059-012-0232-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 01/03/2023] Open
Abstract
TIP30 (30 kDa HIV-1 TAT-interacting protein), also called HTATIP2 or CC3, is a tumor suppressor protein that acts as an angiogenesis inhibitor. TIP30 blocks nuclear import of the mRNA-binding protein HuR, and thereby promotes the cytoplasmic accumulation of HuR by binding to importin-β, which is known to facilitate the cytoplasm-tonuclear transport of HuR. Accumulation of HuR in the cytoplasm, in turn, enhances the expression of the transcription factor p53, a tumor suppressor that plays an essential role in preserving genome stability and inhibiting cancer growth. In addition to such a post-transcriptional mechanism via which TIP30 increases the p53 level, it has been proposed that TIP30 may regulate p53 protein at the protein level by directly binding to it. In order to investigate the possibility of direct interaction between p53 and TIP30, we have used on three functional regions in p53 and examined their interactions with TIP30 using GST pull-down assay and surface plasmon resonance technique. The results show that that TIP30 binds to the DNA-binding domain and the C-terminal domain of p53.
Collapse
Affiliation(s)
- Si-Hyung Lee
- Biomedical Translational Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
- Department of Biochemistry, Graduate School, Chungnam National University, Daejeon 305-764,
Korea
| | - Sung-Kyu Ju
- Department of Bioscience and Biotechnology, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Tae-Young Lee
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Sung-Ho Huh
- Department of Biochemistry, Graduate School, Chungnam National University, Daejeon 305-764,
Korea
| | - Kyou-Hoon Han
- Biomedical Translational Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
- Department of Bioinformatics, University of Science and Technology, Daejeon 305-333,
Korea
| |
Collapse
|
31
|
Johnson DE, Xue B, Sickmeier MD, Meng J, Cortese MS, Oldfield CJ, Le Gall T, Dunker AK, Uversky VN. High-throughput characterization of intrinsic disorder in proteins from the Protein Structure Initiative. J Struct Biol 2012; 180:201-15. [PMID: 22651963 DOI: 10.1016/j.jsb.2012.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/11/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
The identification of intrinsically disordered proteins (IDPs) among the targets that fail to form satisfactory crystal structures in the Protein Structure Initiative represents a key to reducing the costs and time for determining three-dimensional structures of proteins. To help in this endeavor, several Protein Structure Initiative Centers were asked to send samples of both crystallizable proteins and proteins that failed to crystallize. The abundance of intrinsic disorder in these proteins was evaluated via computational analysis using predictors of natural disordered regions (PONDR®) and the potential cleavage sites and corresponding fragments were determined. Then, the target proteins were analyzed for intrinsic disorder by their resistance to limited proteolysis. The rates of tryptic digestion of sample target proteins were compared to those of lysozyme/myoglobin, apomyoglobin, and α-casein as standards of ordered, partially disordered and completely disordered proteins, respectively. At the next stage, the protein samples were subjected to both far-UV and near-UV circular dichroism (CD) analysis. For most of the samples, a good agreement between CD data, predictions of disorder and the rates of limited tryptic digestion was established. Further experimentation is being performed on a smaller subset of these samples in order to obtain more detailed information on the ordered/disordered nature of the proteins.
Collapse
Affiliation(s)
- Derrick E Johnson
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Guan G, Moreau E, Liu J, Ma M, Rogniaux H, Liu A, Niu Q, Li Y, Ren Q, Luo J, Chauvin A, Yin H. BQP35 is a novel member of the intrinsically unstructured protein (IUP) family which is a potential antigen for the sero-diagnosis of Babesia sp. BQ1 (Lintan) infection. Vet Parasitol 2012; 187:421-30. [PMID: 22317784 DOI: 10.1016/j.vetpar.2012.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 01/04/2012] [Accepted: 01/13/2012] [Indexed: 11/19/2022]
Abstract
A new gene of Babesia sp. BQ1 (Lintan) (BQP35) was cloned by screening a merozoite cDNA expression library with infected sheep serum and using rapid amplification of cDNA ends (RACE). The nucleotide sequence of the cDNA was 1140bp with an open reading frame (ORF) of 936bp encoding a 35-kDa predicted polypeptide with 311 amino acid residues. Comparison of BQP35 cDNA and genomic DNA sequences showed that BQP35 does not possess an intron. Recombinant BQP35 (rBQP35), expressed in a prokaryotic expression system, showed abnormally slow migration on SDS-PAGE. Gel shifting, amino acid sequence and in silico disorder region prediction indicated that BQP35 protein has characteristics of intrinsically unstructured proteins (IUPs). This is the first description of such proteins in the Babesia genus. BQP35 induced antibodies production as early as one week after Babesia sp. BQ1 (Lintan) infection in sheep. No cross-reaction was observed with sera from sheep infected with other ovine piroplasms dominant in China, except with Babesia sp. Tianzhu. The interest of BQP35 as a diagnostic antigen is discussed.
Collapse
Affiliation(s)
- Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu 730046, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tsvetkov P, Myers N, Moscovitz O, Sharon M, Prilusky J, Shaul Y. Thermo-resistant intrinsically disordered proteins are efficient 20S proteasome substrates. MOLECULAR BIOSYSTEMS 2011; 8:368-73. [PMID: 22027891 DOI: 10.1039/c1mb05283g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Based on software prediction, intrinsically disordered proteins (IDPs) are widely represented in animal cells where they play important instructive roles. Despite the predictive power of the available software programs we nevertheless need simple experimental tools to validate the predictions. IDPs were reported to be preferentially thermo-resistant and also are susceptible to degradation by the 20S proteasome. Analysis of a set of proteins revealed that thermo-resistant proteins are preferred 20S proteasome substrates. Positive correlations are evident between the percent of protein disorder and the level of thermal stability and 20S proteasomal susceptibility. The data obtained from these two assays do not fully overlap but in combination provide a more reliable experimental IDP definition. The correlation was more significant when the IUPred was used as the IDPs predicting software. We demonstrate in this work a simple experimental strategy to improve IDPs identification.
Collapse
Affiliation(s)
- Peter Tsvetkov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
34
|
Serafini L, Hann JB, Kültz D, Tomanek L. The proteomic response of sea squirts (genus Ciona) to acute heat stress: a global perspective on the thermal stability of proteins. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:322-34. [PMID: 21839695 DOI: 10.1016/j.cbd.2011.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/15/2011] [Accepted: 07/18/2011] [Indexed: 01/08/2023]
Abstract
Congeners belonging to the genus Ciona have disparate distributions limited by temperature. Ciona intestinalis is more widespread with a cosmopolitan distribution ranging from tropical to sub-arctic zones, while Ciona savignyi is limited to temperate-latitudes of the northern Pacific Ocean. To compare the heat stress response between congeners, we quantified changes in protein expression using proteomics. Animals were exposed to 22°C, 25°C, and 28°C for 6h, then recovered at a control temperature (13°C) for 16h (high heat stress experiment). In a second experiment we exposed animals to lower levels of heat stress at 18°C, 20°C, and 23°C, with a 16°C control. A quantitative analysis, using 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry (with a 69% and 93% identification rate for Ciona intestinalis and Ciona savignyi, respectively), showed changes in a number of protein functional groups, including molecular chaperones, extracellular matrix proteins, calcium-binding proteins, cytoskeletal proteins and proteins involved in energy metabolism. Our results indicate that C. intestinalis maintains higher constitutive levels of molecular chaperones than C. savignyi, suggesting that it is prepared to respond faster to thermal stress. Systematic discrepancies between estimated versus predicted molecular masses of identified proteins differed between protein families and were more pronounced under high heat conditions, suggesting that thermal sensitivities are lower for cytoskeletal proteins and ATP-synthase than for any other protein group represented on 2D gels.
Collapse
Affiliation(s)
- Loredana Serafini
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Sciences, Environmental Proteomics Laboratory, San Luis Obispo, CA 93407-0401, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Proteins provide much of the scaffolding for life, as well as undertaking a variety of essential catalytic reactions. These characteristic functions have led us to presuppose that proteins are in general functional only when well structured and correctly folded. As we begin to explore the repertoire of possible protein sequences inherent in the human and other genomes, two stark facts that belie this supposition become clear: firstly, the number of apparent open reading frames in the human genome is significantly smaller than appears to be necessary to code for all of the diverse proteins in higher organisms, and secondly that a significant proportion of the protein sequences that would be coded by the genome would not be expected to form stable three-dimensional (3D) structures. Clearly the genome must include coding for a multitude of alternative forms of proteins, some of which may be partly or fully disordered or incompletely structured in their functional states. At the same time as this likelihood was recognized, experimental studies also began to uncover examples of important protein molecules and domains that were incompletely structured or completely disordered in solution, yet remained perfectly functional. In the ensuing years, we have seen an explosion of experimental and genome-annotation studies that have mapped the extent of the intrinsic disorder phenomenon and explored the possible biological rationales for its widespread occurrence. Answers to the question 'why would a particular domain need to be unstructured?' are as varied as the systems where such domains are found. This review provides a survey of recent new directions in this field, and includes an evaluation of the role not only of intrinsically disordered proteins but also of partially structured and highly dynamic members of the disorder-order continuum.
Collapse
|
36
|
Szasz CS, Alexa A, Toth K, Rakacs M, Langowski J, Tompa P. Protein disorder prevails under crowded conditions. Biochemistry 2011; 50:5834-44. [PMID: 21634433 DOI: 10.1021/bi200365j] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crowding caused by the high concentrations of macromolecules in the living cell changes chemical equilibria, thus promoting aggregation and folding reactions of proteins. The possible magnitude of this effect is particularly important with respect to the physiological structure of intrinsically disordered proteins (IDPs), which are devoid of well-defined three-dimensional structures in vitro. To probe this effect, we have studied the structural state of three IDPs, α-casein, MAP2c, and p21(Cip1), in the presence of the crowding agents Dextran and Ficoll 70 at concentrations up to 40%, and also the small-molecule osmolyte, trimethylamine N-oxide (TMAO), at concentrations up to 3.6 M. The structures of IDPs under highly diluted and crowded conditions were compared by a variety of techniques, fluorescence spectroscopy, acrylamide quenching, 1-anilino-8-naphthalenesulfonic acid (ANS) binding, fluorescence correlation spectroscopy (FCS), and far-UV and near-UV circular dichroism (CD) spectroscopy, which allow us to visualize various levels of structural organization within these proteins. We observed that crowding causes limited structural changes, which seem to reflect the functional requirements of these IDPs. α-Casein, a protein of nutrient function in milk, changes least under crowded conditions. On the other hand, MAP2c and, to a lesser degree, p21(Cip1), which carry out their functions by partner binding and accompanying partially induced folding, show signs of local structuring and also some global compaction upon crowded conditions, in particular in the presence of TMAO. The observations are compatible with the possible preformation of binding-competent conformations in these proteins. The magnitude of these changes, however, is far from that of the cooperative folding transitions elicited by crowding in denatured globular proteins; i.e., these IDPs do remain in a state of rapidly interconverting structural ensemble. Altogether, our results underline that structural disorder is the physiological state of these proteins.
Collapse
Affiliation(s)
- C S Szasz
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
37
|
Uversky VN. Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D(2) concept. Expert Rev Proteomics 2010; 7:543-64. [PMID: 20653509 DOI: 10.1586/epr.10.36] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many biologically active proteins, which are usually called intrinsically disordered or natively unfolded proteins, lack stable tertiary and/or secondary structure under physiological conditions in vitro. Their functions complement the functional repertoire of ordered proteins, with intrinsically disordered proteins (IDPs) often being involved in regulation, signaling and control. Their amino acid sequences and compositions are very different from those of ordered proteins, making reliable identification of IDPs possible at the proteome level. IDPs are highly abundant in various human diseases, including neurodegeneration and other protein dysfunction maladies and, therefore, represent attractive novel drug targets. Some of the aspects of IDPs, as well as their roles in neurodegeneration and protein dysfunction diseases, are discussed in this article, together with the peculiarities of IDPs as potential drug targets.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Institute for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
38
|
Szeltner Z, Morawski M, Juhász T, Szamosi I, Liliom K, Csizmók V, Tölgyesi F, Polgár L. GAP43 shows partial co-localisation but no strong physical interaction with prolyl oligopeptidase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:2162-76. [PMID: 20869470 DOI: 10.1016/j.bbapap.2010.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 09/08/2010] [Accepted: 09/15/2010] [Indexed: 11/13/2022]
Abstract
It has recently been proposed that prolyl oligopeptidase (POP), the cytosolic serine peptidase with neurological implications, binds GAP43 (Growth-Associated Protein 43) and is implicated in neuronal growth cone formation, axon guidance and synaptic plasticity. We investigated the interaction between GAP43 and POP with various biophysical and biochemical methods in vitro and studied the co-localisation of the two proteins in differentiated HeLa cells. GAP43 and POP showed partial co-localisation in the cell body as well as in the potential growth cone structures. We could not detect significant binding between the recombinantly expressed POP and GAP43 using gel filtration, CD, ITC and BIACORE studies, pull-down experiments, glutaraldehyde cross-linking and limited proteolysis. However, glutaraldehyde cross-linking suggested a weak and transient interaction between the proteins. Both POP and GAP43 interacted with artificial lipids in our in vitro model system, but the presence of lipids did not evoke binding between them. In native polyacrylamide gel electrophoresis, GAP43 interacted with one of the three forms of a polyhistidine-tagged prolyl oligopeptidase. The interaction of the two proteins was also evident in ELISA and we have observed co-precipitation of the two proteins during co-incubation at higher concentrations. Our results indicate that there is no strong and direct interaction between POP and GAP43 at physiological conditions.
Collapse
Affiliation(s)
- Zoltán Szeltner
- Institute of Enzymology, BRC, Hungarian Academy of Sciences, Budapest, H-1113, Karolina út 29, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Burra PV, Kalmar L, Tompa P. Reduction in structural disorder and functional complexity in the thermal adaptation of prokaryotes. PLoS One 2010; 5:e12069. [PMID: 20711457 PMCID: PMC2920320 DOI: 10.1371/journal.pone.0012069] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/07/2010] [Indexed: 01/20/2023] Open
Abstract
Genomic correlates of evolutionary adaptation to very low or very high optimal growth temperature (OGT) values have been the subject of many studies. Whereas these provided a protein-structural rationale of the activity and stability of globular proteins/enzymes, the point has been neglected that adaptation to extreme temperatures could also have resulted from an increased use of intrinsically disordered proteins (IDPs), which are resistant to these conditions in vitro. Contrary to these expectations, we found a conspicuously low level of structural disorder in bacteria of very high (and very low) OGT values. This paucity of disorder does not reflect phylogenetic relatedness, i.e. it is a result of genuine adaptation to extreme conditions. Because intrinsic disorder correlates with important regulatory functions, we asked how these bacteria could exist without IDPs by studying transcription factors, known to harbor a lot of function-related intrinsic disorder. Hyperthermophiles have much less transcription factors, which have reduced disorder compared to their mesophilic counterparts. On the other hand, we found by systematic categorization of proteins with long disordered regions that there are certain functions, such as translation and ribosome biogenesis that depend on structural disorder even in hyperthermophiles. In all, our observations suggest that adaptation to extreme conditions is achieved by a significant functional simplification, apparent at both the level of the genome and individual genes/proteins.
Collapse
Affiliation(s)
- Prasad V. Burra
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Lajos Kalmar
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter Tompa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
40
|
Habchi J, Mamelli L, Darbon H, Longhi S. Structural disorder within Henipavirus nucleoprotein and phosphoprotein: from predictions to experimental assessment. PLoS One 2010; 5:e11684. [PMID: 20657787 PMCID: PMC2908138 DOI: 10.1371/journal.pone.0011684] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 06/21/2010] [Indexed: 12/30/2022] Open
Abstract
Henipaviruses are newly emerged viruses within the Paramyxoviridae family. Their negative-strand RNA genome is packaged by the nucleoprotein (N) within alpha-helical nucleocapsid that recruits the polymerase complex made of the L protein and the phosphoprotein (P). To date structural data on Henipaviruses are scarce, and their N and P proteins have never been characterized so far. Using both computational and experimental approaches we herein show that Henipaviruses N and P proteins possess large intrinsically disordered regions. By combining several disorder prediction methods, we show that the N-terminal domain of P (PNT) and the C-terminal domain of N (NTAIL) are both mostly disordered, although they contain short order-prone segments. We then report the cloning, the bacterial expression, purification and characterization of Henipavirus PNT and NTAIL domains. By combining gel filtration, dynamic light scattering, circular dichroism and nuclear magnetic resonance, we show that both NTAIL and PNT belong to the premolten globule sub-family within the class of intrinsically disordered proteins. This study is the first reported experimental characterization of Henipavirus P and N proteins. The evidence that their respective N-terminal and C-terminal domains are highly disordered under native conditions is expected to be invaluable for future structural studies by helping to delineate N and P protein domains amenable to crystallization. In addition, following previous hints establishing a relationship between structural disorder and protein interactivity, the present results suggest that Henipavirus PNT and NTAIL domains could be involved in manifold protein-protein interactions.
Collapse
Affiliation(s)
- Johnny Habchi
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Campus de Luminy, Marseille, France
| | - Laurent Mamelli
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Campus de Luminy, Marseille, France
| | - Hervé Darbon
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Campus de Luminy, Marseille, France
| | - Sonia Longhi
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Campus de Luminy, Marseille, France
| |
Collapse
|
41
|
Defining Structural Domains of an Intrinsically Disordered Protein: Sic1, the Cyclin-Dependent Kinase Inhibitor of Saccharomyces cerevisiae. Mol Biotechnol 2010; 47:34-42. [DOI: 10.1007/s12033-010-9309-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Uversky VN, Dunker AK. Understanding protein non-folding. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1231-64. [PMID: 20117254 PMCID: PMC2882790 DOI: 10.1016/j.bbapap.2010.01.017] [Citation(s) in RCA: 925] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/09/2010] [Accepted: 01/21/2010] [Indexed: 02/07/2023]
Abstract
This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of a specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that a unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: how were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases?
Collapse
Affiliation(s)
- Vladimir N Uversky
- Institute for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
43
|
The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol 2010; 2010:568068. [PMID: 20011072 PMCID: PMC2789583 DOI: 10.1155/2010/568068] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 09/10/2009] [Indexed: 01/10/2023] Open
Abstract
Contrarily to the general believe, many biologically active proteins lack stable tertiary and/or secondary structure under physiological conditions in vitro. These intrinsically disordered proteins (IDPs) are highly abundant in nature and many of them are associated with various human diseases. The functional repertoire of IDPs complements the functions of ordered proteins. Since IDPs constitute a significant portion of any given proteome, they can be combined in an unfoldome; which is a portion of the proteome including all IDPs (also known as natively unfolded proteins, therefore, unfoldome), and describing their functions, structures, interactions, evolution, and so forth. Amino acid sequence and compositions of IDPs are very different from those of ordered proteins, making possible reliable identification of IDPs at the proteome level by various computational means. Furthermore, IDPs possess a number of unique structural properties and are characterized by a peculiar conformational behavior, including their high stability against low pH and high temperature and their structural indifference toward the unfolding by strong denaturants. These peculiarities were shown to be useful for elaboration of the experimental techniques for the large-scale identification of IDPs in various organisms. Some of the computational and experimental tools for the unfoldome discovery are discussed in this review.
Collapse
|
44
|
Yousefi R, Shchutskaya YY, Zimny J, Gaudin JC, Moosavi-Movahedi AA, Muronetz VI, Zuev YF, Chobert JM, Haertlé T. Chaperone-like activities of different molecular forms of beta-casein. Importance of polarity of N-terminal hydrophilic domain. Biopolymers 2009; 91:623-32. [PMID: 19322774 DOI: 10.1002/bip.21190] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As a member of intrinsically unstructured protein family, beta-casein (beta-CN) contains relatively high amount of prolyl residues, adopts noncompact and flexible structure and exhibits chaperone-like activity in vitro. Like many chaperones, native beta-CN does not contain cysteinyl residues and exhibits strong tendencies for self-association. The chaperone-like activities of three recombinant beta-CNs wild type (WT) beta-CN, C4 beta-CN (with cysteinyl residue in position 4) and C208 beta-CN (with cysteinyl residue in position 208), expressed and purified from E. coli, which, consequently, lack the phosphorylated residues, were examined and compared with that of native beta-CN using insulin and alcohol dehydrogenase as target/substrate proteins. The dimers (beta-CND) of C4-beta-CN and C208 beta-CN were also studied and their chaperone-like activities were compared with those of their monomeric forms. Lacking phosphorylation, WT beta-CN, C208 beta-CN, C4 beta-CN and C4 beta-CND exhibited significantly lower chaperone-like activities than native beta-CN. Dimerization of C208 beta-CN with two distal hydrophilic domains considerably improved its chaperone-like activity in comparison with its monomeric form. The obtained results demonstrate the significant role played by the polar contributions of phosphorylated residues and N-terminal hydrophilic domain as important functional elements in enhancing the chaperone-like activity of native beta-CN. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 623-632, 2009.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.
Collapse
Affiliation(s)
- Reza Yousefi
- Biopolymères Interactions Assemblages, INRA, équipe Fonctions et Interactions des Protéines Laitières, Nantes Cedex 3, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Balázs A, Csizmok V, Buday L, Rakács M, Kiss R, Bokor M, Udupa R, Tompa K, Tompa P. High levels of structural disorder in scaffold proteins as exemplified by a novel neuronal protein, CASK-interactive protein1. FEBS J 2009; 276:3744-56. [PMID: 19523119 DOI: 10.1111/j.1742-4658.2009.07090.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CASK-interactive protein1 is a newly recognized post-synaptic density protein in mammalian neurons. Although its N-terminal region contains several well-known functional domains, its entire C-terminal proline-rich region of 800 amino acids lacks detectable sequence homology to any previously characterized protein. We used multiple techniques for the structural characterization of this region and its three fragments. By bioinformatics predictions, CD spectroscopy, wide-line and 1H-NMR spectroscopy, limited proteolysis and gel filtration chromatography, we provided evidence that the entire proline-rich region of CASK-interactive protein1 is intrinsically disordered. We also showed that the proline-rich region is biochemically functional, as it interacts with the adaptor protein Abl-interactor-2. To extend the finding of a high level of disorder in this scaffold protein, we collected 74 scaffold proteins (also including proteins denoted as anchor and docking), and predicted their disorder by three different algorithms. We found that a very high fraction (53.6; on average) of the residues fall into local disorder and their ordered domains are connected by linker regions which are mostly disordered (64.5 on average). Because of this high frequency of disorder, the usual design of scaffold proteins of short globular domains (86 amino acids on average) connected by longer linker regions (140 amino acids on average) and the noted binding functions of these regions in both CASK-interactive protein1 and the other proteins studied, we suggest that structurally disordered regions prevail and play key recognition roles in scaffold proteins.
Collapse
Affiliation(s)
- Annamária Balázs
- Department of Medical Chemistry, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Galea CA, High AA, Obenauer JC, Mishra A, Park CG, Punta M, Schlessinger A, Ma J, Rost B, Slaughter CA, Kriwacki RW. Large-scale analysis of thermostable, mammalian proteins provides insights into the intrinsically disordered proteome. J Proteome Res 2009; 8:211-26. [PMID: 19067583 DOI: 10.1021/pr800308v] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins are predicted to be highly abundant and play broad biological roles in eukaryotic cells. In particular, by virtue of their structural malleability and propensity to interact with multiple binding partners, disordered proteins are thought to be specialized for roles in signaling and regulation. However, these concepts are based on in silico analyses of translated whole genome sequences, not on large-scale analyses of proteins expressed in living cells. Therefore, whether these concepts broadly apply to expressed proteins is currently unknown. Previous studies have shown that heat-treatment of cell extracts lead to partial enrichment of soluble, disordered proteins. On the basis of this observation, we sought to address the current dearth of knowledge about expressed, disordered proteins by performing a large-scale proteomics study of thermostable proteins isolated from mouse fibroblast cells. With the use of novel multidimensional chromatography methods and mass spectrometry, we identified a total of 1320 thermostable proteins from these cells. Further, we used a variety of bioinformatics methods to analyze the structural and biological properties of these proteins. Interestingly, more than 900 of these expressed proteins were predicted to be substantially disordered. These were divided into two categories, with 514 predicted to be predominantly disordered and 395 predicted to exhibit both disordered and ordered/folded features. In addition, 411 of the thermostable proteins were predicted to be folded. Despite the use of heat treatment (60 min at 98 degrees C) to partially enrich for disordered proteins, which might have been expected to select for small proteins, the sequences of these proteins exhibited a wide range of lengths (622 +/- 555 residues (average length +/- standard deviation) for disordered proteins and 569 +/- 598 residues for folded proteins). Computational structural analyses revealed several unexpected features of the thermostable proteins: (1) disordered domains and coiled-coil domains occurred together in a large number of disordered proteins, suggesting functional interplay between these domains; and (2) more than 170 proteins contained lengthy domains (>300 residues) known to be folded. Reference to Gene Ontology Consortium functional annotations revealed that, while disordered proteins play diverse biological roles in mouse fibroblasts, they do exhibit heightened involvement in several functional categories, including, cytoskeletal structure and cell movement, metabolic and biosynthetic processes, organelle structure, cell division, gene transcription, and ribonucleoprotein complexes. We believe that these results reflect the general properties of the mouse intrinsically disordered proteome (IDP-ome) although they also reflect the specialized physiology of fibroblast cells. Large-scale identification of expressed, thermostable proteins from other cell types in the future, grown under varied physiological conditions, will dramatically expand our understanding of the structural and biological properties of disordered eukaryotic proteins.
Collapse
Affiliation(s)
- Charles A Galea
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Szőllősi E, Bokor M, Bodor A, Perczel A, Klement E, Medzihradszky KF, Tompa K, Tompa P. Intrinsic Structural Disorder of DF31, a Drosophila Protein of Chromatin Decondensation and Remodeling Activities. J Proteome Res 2008; 7:2291-9. [DOI: 10.1021/pr700720c] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Edit Szőllősi
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| | - Monika Bokor
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| | - Andrea Bodor
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| | - Andras Perczel
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| | - Eva Klement
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| | - Katalin F. Medzihradszky
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| | - Kalman Tompa
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| | - Peter Tompa
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| |
Collapse
|
48
|
Hegedus T, Serohijos AWR, Dokholyan NV, He L, Riordan JR. Computational studies reveal phosphorylation-dependent changes in the unstructured R domain of CFTR. J Mol Biol 2008; 378:1052-63. [PMID: 18423665 DOI: 10.1016/j.jmb.2008.03.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 03/11/2008] [Accepted: 03/15/2008] [Indexed: 01/09/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent chloride channel that is mutated in cystic fibrosis, an inherited disease of high morbidity and mortality. The phosphorylation of its approximately 200 amino acid R domain by protein kinase A is obligatory for channel gating under normal conditions. The R domain contains more than ten PKA phosphorylation sites. No individual site is essential but phosphorylation of increasing numbers of sites enables progressively greater channel activity. In spite of numerous studies of the role of the R domain in CFTR regulation, its mechanism of action remains largely unknown. This is because neither its structure nor its interactions with other parts of CFTR have been completely elucidated. Studies have shown that the R domain lacks well-defined secondary structural elements and is an intrinsically disordered region of the channel protein. Here, we have analyzed the disorder pattern and employed computational methods to explore low-energy conformations of the R domain. The specific disorder and secondary structure patterns detected suggest the presence of molecular recognition elements (MoREs) that may mediate phosphorylation-regulated intra- and inter-domain interactions. Simulations were performed to generate an ensemble of accessible R domain conformations. Although the calculated structures may represent more compact conformers than occur in vivo, their secondary structure propensities are consistent with predictions and published experimental data. Equilibrium simulations of a mimic of a phosphorylated R domain showed that it exhibited an increased radius of gyration. In one possible interpretation of these findings, by changing its size, the globally unstructured R domain may act as an entropic spring to perturb the packing of membrane-spanning sequences that constitute the ion permeability pathway and thereby activate channel gating.
Collapse
Affiliation(s)
- Tamás Hegedus
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
49
|
Hegyi H, Tompa P. Intrinsically disordered proteins display no preference for chaperone binding in vivo. PLoS Comput Biol 2008; 4:e1000017. [PMID: 18369417 PMCID: PMC2265518 DOI: 10.1371/journal.pcbi.1000017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 01/31/2008] [Indexed: 01/09/2023] Open
Abstract
Intrinsically disordered/unstructured proteins (IDPs) are extremely sensitive to proteolysis in vitro, but show no enhanced degradation rates in vivo. Their existence and functioning may be explained if IDPs are preferentially associated with chaperones in the cell, which may offer protection against degradation by proteases. To test this inference, we took pairwise interaction data from high-throughput interaction studies and analyzed to see if predicted disorder correlates with the tendency of chaperone binding by proteins. Our major finding is that disorder predicted by the IUPred algorithm actually shows negative correlation with chaperone binding in E. coli, S. cerevisiae, and metazoa species. Since predicted disorder positively correlates with the tendency of partner binding in the interactome, the difference between the disorder of chaperone-binding and non-binding proteins is even more pronounced if normalized to their overall tendency to be involved in pairwise protein–protein interactions. We argue that chaperone binding is primarily required for folding of globular proteins, as reflected in an increased preference for chaperones of proteins in which at least one Pfam domain exists. In terms of the functional consequences of chaperone binding of mostly disordered proteins, we suggest that its primary reason is not the assistance of folding, but promotion of assembly with partners. In support of this conclusion, we show that IDPs that bind chaperones also tend to bind other proteins. Intrinsically disordered/unstructured proteins (IDPs) defy the classical structure–function paradigm because they exist and function without a well-defined 3-D structure. These proteins are extremely sensitive to degradation in the test tube, but show no enhanced degradation rates in the cell. To resolve this apparent contradiction, we tested whether IDPs are protected by interaction with accessory proteins, chaperones, often implicated in guarding other proteins in the cell. Our major finding is that disorder predicted by the IUPred algorithm actually shows negative correlation with chaperone binding in various species. To explain this finding, we argue that IDPs are protected in the cell from proteases by their special amino acid composition, and also by the tight regulation of intracellular proteases. Thus, the primary reason for their chaperone binding is not protection from degradation, but promotion of assembly with partners.
Collapse
Affiliation(s)
- Hedi Hegyi
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|
50
|
Abstract
The recent advance in our understanding of the relation of protein structure and function cautions that many proteins, or regions of proteins, exist and function without a well-defined three-dimensional structure. These intrinsically disordered/unstructured proteins (IDP/IUP) are frequent in proteomes and carry out essential functions, but their lack of stable structures hampers efforts of solving structures at high resolution by x-ray crystallography and/or NMR. Thus, filtering such proteins/regions out of high-throughput structural genomics pipelines would be of significant benefit in terms of cost and success rate. This chapter outlines the theoretical background of structural disorder, and provides practical advice on the application of advanced bioinformatic predictors to this end, that is to recognize fully/mostly disordered proteins or regions, which are incompatible with structure determination. An emphasis is also given to a somewhat different approach, in which ordered/disordered regions are explicitly delineated to the end of making constructs amenable for structure determination even when disordered regions are present.
Collapse
Affiliation(s)
- Zsuzsanna Dosztányi
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|