1
|
Hoh JFY. Developmental, Physiological and Phylogenetic Perspectives on the Expression and Regulation of Myosin Heavy Chains in Craniofacial Muscles. Int J Mol Sci 2024; 25:4546. [PMID: 38674131 PMCID: PMC11050549 DOI: 10.3390/ijms25084546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review deals with the developmental origins of extraocular, jaw and laryngeal muscles, the expression, regulation and functional significance of sarcomeric myosin heavy chains (MyHCs) that they express and changes in MyHC expression during phylogeny. Myogenic progenitors from the mesoderm in the prechordal plate and branchial arches specify craniofacial muscle allotypes with different repertoires for MyHC expression. To cope with very complex eye movements, extraocular muscles (EOMs) express 11 MyHCs, ranging from the superfast extraocular MyHC to the slowest, non-muscle MyHC IIB (nmMyH IIB). They have distinct global and orbital layers, singly- and multiply-innervated fibres, longitudinal MyHC variations, and palisade endings that mediate axon reflexes. Jaw-closing muscles express the high-force masticatory MyHC and cardiac or limb MyHCs depending on the appropriateness for the acquisition and mastication of food. Laryngeal muscles express extraocular and limb muscle MyHCs but shift toward expressing slower MyHCs in large animals. During postnatal development, MyHC expression of craniofacial muscles is subject to neural and hormonal modulation. The primary and secondary myotubes of developing EOMs are postulated to induce, via different retrogradely transported neurotrophins, the rich diversity of neural impulse patterns that regulate the specific MyHCs that they express. Thyroid hormone shifts MyHC 2A toward 2B in jaw muscles, laryngeal muscles and possibly extraocular muscles. This review highlights the fact that the pattern of myosin expression in mammalian craniofacial muscles is principally influenced by the complex interplay of cell lineages, neural impulse patterns, thyroid and other hormones, functional demands and body mass. In these respects, craniofacial muscles are similar to limb muscles, but they differ radically in the types of cell lineage and the nature of their functional demands.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Reggiani C, Murgia M. Comment on "Fiber-type traps: revisiting common misconceptions about skeletal muscle fiber types with application to motor control, biomechanics, physiology, and biology". J Appl Physiol (1985) 2024; 136:437-438. [PMID: 38353629 DOI: 10.1152/japplphysiol.00008.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
3
|
Taglietti V, Kefi K, Rivera L, Bergiers O, Cardone N, Coulpier F, Gioftsidi S, Drayton-Libotte B, Hou C, Authier FJ, Pietri-Rouxel F, Robert M, Bremond-Gignac D, Bruno C, Fiorillo C, Malfatti E, Lafuste P, Tiret L, Relaix F. Thyroid-stimulating hormone receptor signaling restores skeletal muscle stem cell regeneration in rats with muscular dystrophy. Sci Transl Med 2023; 15:eadd5275. [PMID: 36857434 DOI: 10.1126/scitranslmed.add5275] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe and progressive myopathy leading to motor and cardiorespiratory impairment. We analyzed samples from patients with DMD and a preclinical rat model of severe DMD and determined that compromised repair capacity of muscle stem cells in DMD is associated with early and progressive muscle stem cell senescence. We also found that extraocular muscles (EOMs), which are spared by the disease in patients, contain muscle stem cells with long-lasting regenerative potential. Using single-cell transcriptomics analysis of muscles from a rat model of DMD, we identified the gene encoding thyroid-stimulating hormone receptor (Tshr) as highly expressed in EOM stem cells. Further, TSHR activity was involved in preventing senescence. Forskolin, which activates signaling downstream of TSHR, was found to reduce senescence of skeletal muscle stem cells, increase stem cell regenerative potential, and promote myogenesis, thereby improving muscle function in DMD rats. These findings indicate that stimulation of adenylyl cyclase leads to muscle repair in DMD, potentially providing a therapeutic approach for patients with the disease.
Collapse
Affiliation(s)
| | - Kaouthar Kefi
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Lea Rivera
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Oriane Bergiers
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Nastasia Cardone
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Fanny Coulpier
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | | | | | - Cyrielle Hou
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - François-Jérôme Authier
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France.,AP-HP, Hôpital Mondor, FHU SENEC, Service d'histologie, F-94010 Créteil, France
| | - France Pietri-Rouxel
- Sorbonne Université, INSERM, UMRS974, Center for Research in Myology, F-75013, Paris, France
| | - Matthieu Robert
- Borelli centre, UMR 9010, CNRS - SSA - ENS Paris Saclay - Université Paris Cité, F-75016, Paris, France.,Ophthalmology Department, Necker Enfants Malades University Hospital, AP-HP, F-75015, Paris, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker Enfants Malades University Hospital, AP-HP, F-75015, Paris, France.,INSERM, UMRS1138, Team 17, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Gaslini Institute, DINOGMI, University of Genova, 16147, Genova, Italy
| | - Chiara Fiorillo
- Center of Translational and Experimental Myology, IRCCS Gaslini Institute, DINOGMI, University of Genova, 16147, Genova, Italy
| | - Edoardo Malfatti
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France.,AP-HP, Hôpital Mondor, FHU SENEC, Service d'histologie, F-94010 Créteil, France
| | - Peggy Lafuste
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Laurent Tiret
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France.,École nationale vétérinaire d'Alfort, IMRB, F-94700, Maisons-Alfort, France
| | - Frédéric Relaix
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France.,AP-HP, Hôpital Mondor, FHU SENEC, Service d'histologie, F-94010 Créteil, France.,École nationale vétérinaire d'Alfort, IMRB, F-94700, Maisons-Alfort, France.,EFS, IMRB, F-94010, Creteil, France
| |
Collapse
|
4
|
Murgia M, Ciciliot S, Nagaraj N, Reggiani C, Schiaffino S, Franchi MV, Pišot R, Šimunič B, Toniolo L, Blaauw B, Sandri M, Biolo G, Flück M, Narici MV, Mann M. Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics. PNAS NEXUS 2022; 1:pgac086. [PMID: 36741463 PMCID: PMC9896895 DOI: 10.1093/pnasnexus/pgac086] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Astronauts experience dramatic loss of muscle mass, decreased strength, and insulin resistance, despite performing daily intense physical exercise that would lead to muscle growth on Earth. Partially mimicking spaceflight, prolonged bed rest causes muscle atrophy, loss of force, and glucose intolerance. To unravel the underlying mechanisms, we employed highly sensitive single fiber proteomics to detail the molecular remodeling caused by unloading and inactivity during bed rest and changes of the muscle proteome of astronauts before and after a mission on the International Space Station. Muscle focal adhesions, involved in fiber-matrix interaction and insulin receptor stabilization, are prominently downregulated in both bed rest and spaceflight and restored upon reloading. Pathways of antioxidant response increased strongly in slow but not in fast muscle fibers. Unloading alone upregulated markers of neuromuscular damage and the pathway controlling EIF5A hypusination. These proteomic signatures of mechanical unloading in muscle fiber subtypes contribute to disentangle the effect of microgravity from the pleiotropic challenges of spaceflight.
Collapse
Affiliation(s)
| | - Stefano Ciciliot
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy,Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy,Science and Research Center Koper, Institute for Kinesiology Research, Garibaldijeva Street 1, 6000 Koper, Slovenia
| | | | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Rado Pišot
- Science and Research Center Koper, Institute for Kinesiology Research, Garibaldijeva Street 1, 6000 Koper, Slovenia
| | - Boštjan Šimunič
- Science and Research Center Koper, Institute for Kinesiology Research, Garibaldijeva Street 1, 6000 Koper, Slovenia
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy,Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy,Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy
| | - Gianni Biolo
- Clinical Department of Medical, Surgical and Health Sciences, Strada di Fiume 447, 34149 Trieste, Italy
| | - Martin Flück
- Department of Medicine, University of Fribourg, Chemin du Musee 5, 1700 Fribourg, Switzerland
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy,Science and Research Center Koper, Institute for Kinesiology Research, Garibaldijeva Street 1, 6000 Koper, Slovenia,CIR-MYO Myology Center, Viale G Colombo 3, 35121 Padua, Italy
| | - Matthias Mann
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany,NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, Building 6.1, 2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Mass Spectrometric Profiling of Extraocular Muscle and Proteomic Adaptations in the mdx-4cv Model of Duchenne Muscular Dystrophy. Life (Basel) 2021; 11:life11070595. [PMID: 34206383 PMCID: PMC8304255 DOI: 10.3390/life11070595] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Extraocular muscles (EOMs) represent a specialized type of contractile tissue with unique cellular, physiological, and biochemical properties. In Duchenne muscular dystrophy, EOMs stay functionally unaffected in the course of disease progression. Therefore, it was of interest to determine their proteomic profile in dystrophinopathy. The proteomic survey of wild type mice and the dystrophic mdx-4cv model revealed a broad spectrum of sarcomere-associated proteoforms, including components of the thick filament, thin filament, M-band and Z-disk, as well as a variety of muscle-specific markers. Interestingly, the mass spectrometric analysis revealed unusual expression levels of contractile proteins, especially isoforms of myosin heavy chain. As compared to diaphragm muscle, both proteomics and immunoblotting established isoform MyHC14 as a new potential marker in wild type EOMs, in addition to the previously identified isoforms MyHC13 and MyHC15. Comparative proteomics was employed to establish alterations in the protein expression profile between normal EOMs and dystrophin-lacking EOMs. The analysis of mdx-4cv EOMs identified elevated levels of glycolytic enzymes and molecular chaperones, as well as decreases in mitochondrial enzymes. These findings suggest a process of adaptation in dystrophin-deficient EOMs via a bioenergetic shift to more glycolytic metabolism, as well as an efficient cellular stress response in EOMs in dystrophinopathy.
Collapse
|
6
|
Hoh JFY. Myosin heavy chains in extraocular muscle fibres: Distribution, regulation and function. Acta Physiol (Oxf) 2021; 231:e13535. [PMID: 32640094 DOI: 10.1111/apha.13535] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
This review examines kinetic properties and distribution of the 11 isoforms of myosin heavy chain (MyHC) expressed in extraocular muscle (EOM) fibre types and the regulation and function of these MyHCs. Although recruitment and discharge characteristics of ocular motoneurons during fixation and eye movements are well documented, work directly linking these properties with motor unit contractile speed and MyHC composition is lacking. Recruitment of motor units according to Henneman's size principle has some support in EOMs but needs consolidation. Both neurogenic and myogenic mechanisms regulate MyHC expression as in other muscle allotypes. Developmentally, multiply-innervated (MIFs) and singly-innervated fibres (SIFs) are derived presumably from distinct myoblast lineages, ending up expressing MyHCs in the slow and fast ends of the kinetic spectrum respectively. They modulate the synaptic inputs of their motoneurons through different retrogradely transported neurotrophins, thereby specifying their tonic and phasic impulse patterns. Immunohistochemical analyses of EOMs regenerating in situ and in limb muscle beds suggest that the very impulse patterns driving various ocular movements equip effectors with appropriate MyHC compositions and speeds to accomplish their tasks. These experiments also suggest that satellite cells of SIFs and MIFs are distinct lineages expressing different MyHCs during regeneration. MyHC compositions and functional characteristics of orbital fibres show longitudinal variations that facilitate linear ocular rotation during saccades. Palisade endings on global MIFs are postulated to respond to active and passive tensions by triggering axon reflexes that play important roles during fixation, saccades and vergence. How EOMs implement Listings law during ocular rotation is discussed.
Collapse
Affiliation(s)
- Joseph F. Y. Hoh
- Discipline of Physiology and the Bosch Institute School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| |
Collapse
|
7
|
Czajkowski ER, Cisneros M, Garcia BS, Shen J, Cripps RM. The Drosophila CG1674 gene encodes a synaptopodin 2-like related protein that localizes to the Z-disc and is required for normal flight muscle development and function. Dev Dyn 2021; 250:99-110. [PMID: 32893414 PMCID: PMC7902442 DOI: 10.1002/dvdy.250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/12/2020] [Accepted: 09/01/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND To identify novel myofibrillar components of the Drosophila flight muscles, we carried out a proteomic analysis of chemically demembranated flight muscle myofibrils, and characterized the knockdown phenotype of a novel gene identified in the screen, CG1674. RESULTS The CG1674 protein has some similarity to vertebrate synaptopodin 2-like, and when expressed as a FLAG-tagged fusion protein, it was localized during development to the Z-disc and cytoplasm. Knockdown of CG1674 expression affected the function of multiple muscle types, and defective flight in adults was accompanied by large actin-rich structures in the flight muscles that resembled overgrown Z-discs. Localization of CG1674 to the Z-disc depended predominantly upon presence of the Z-disc component alpha-actinin, but also depended upon other Z-disc components, including Mask, Zasp52, and Sals. We also observed re-localization of FLAG-CG1674 to the nucleus in Alpha-actinin and sals knockdown animals. CONCLUSIONS These studies identify and characterize a previously unreported myofibrillar component of Drosophila muscle that is necessary for proper myofibril assembly during development.
Collapse
Affiliation(s)
| | - Marilyn Cisneros
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Bianca S. Garcia
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jim Shen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Richard M. Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
8
|
Dominguez-Hernandez E, Salaseviciene A, Ertbjerg P. Low-temperature long-time cooking of meat: Eating quality and underlying mechanisms. Meat Sci 2018; 143:104-113. [PMID: 29730528 DOI: 10.1016/j.meatsci.2018.04.032] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
Abstract
Heat treatment of meat at temperatures between 50 and 65 °C, for extended periods of time, is known as low-temperature long-time (LTLT) cooking. This cooking method produces meat that has increased tenderness and better appearance than when cooked at higher temperatures. Public concerns regarding this method have focused on the ability to design heat treatments that can reach microbiological safety. The heat treatment induces modification of the meat structure and its constituents, which can explain the desirable eating quality traits obtained. Denaturation, aggregation, and degradation of myofibrillar, sarcoplasmic and connective tissue proteins occur depending on the combination of time and temperature during the heat treatment. The protein changes, especially in relation to collagen denaturation, along with proteolytic activity, have often been regarded to be the main contributors to the increased meat tenderness. The mechanisms involved and the possible contribution of other factors are reviewed and discussed.
Collapse
Affiliation(s)
| | | | - Per Ertbjerg
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
9
|
Murgia M, Toniolo L, Nagaraj N, Ciciliot S, Vindigni V, Schiaffino S, Reggiani C, Mann M. Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging. Cell Rep 2018; 19:2396-2409. [PMID: 28614723 DOI: 10.1016/j.celrep.2017.05.054] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/10/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle is a key tissue in human aging, which affects different muscle fiber types unequally. We developed a highly sensitive single muscle fiber proteomics workflow to study human aging and show that the senescence of slow and fast muscle fibers is characterized by diverging metabolic and protein quality control adaptations. Whereas mitochondrial content declines with aging in both fiber types, glycolysis and glycogen metabolism are upregulated in slow but downregulated in fast muscle fibers. Aging mitochondria decrease expression of the redox enzyme monoamine oxidase A. Slow fibers upregulate a subset of actin and myosin chaperones, whereas an opposite change happens in fast fibers. These changes in metabolism and sarcomere quality control may be related to the ability of slow, but not fast, muscle fibers to maintain their mass during aging. We conclude that single muscle fiber analysis by proteomics can elucidate pathophysiology in a sub-type-specific manner.
Collapse
Affiliation(s)
- Marta Murgia
- Max-Planck-Institute of Biochemistry, Martinsried 82152, Germany; Department of Biomedical Science, University of Padova, Padua 35121, Italy.
| | - Luana Toniolo
- Department of Biomedical Science, University of Padova, Padua 35121, Italy
| | | | - Stefano Ciciliot
- Venetian Institute of Molecular Medicine, Padua 35129, Italy; Department of Medicine, University of Padua, Padua 35128, Italy
| | - Vincenzo Vindigni
- Department of Neurosciences, University of Padova, Padua 35128, Italy
| | | | - Carlo Reggiani
- Department of Biomedical Science, University of Padova, Padua 35121, Italy
| | - Matthias Mann
- Max-Planck-Institute of Biochemistry, Martinsried 82152, Germany.
| |
Collapse
|
10
|
Agarwal AB, Feng CY, Altick AL, Quilici DR, Wen D, Johnson LA, von Bartheld CS. Altered Protein Composition and Gene Expression in Strabismic Human Extraocular Muscles and Tendons. Invest Ophthalmol Vis Sci 2017; 57:5576-5585. [PMID: 27768799 PMCID: PMC5080916 DOI: 10.1167/iovs.16-20294] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose To determine whether structural protein composition and expression of key regulatory genes are altered in strabismic human extraocular muscles. Methods Samples from strabismic horizontal extraocular muscles were obtained during strabismus surgery and compared with normal muscles from organ donors. We used proteomics, standard and customized PCR arrays, and microarrays to identify changes in major structural proteins and changes in gene expression. We focused on muscle and connective tissue and its control by enzymes, growth factors, and cytokines. Results Strabismic muscles showed downregulation of myosins, tropomyosins, troponins, and titin. Expression of collagens and regulators of collagen synthesis and degradation, the collagenase matrix metalloproteinase (MMP)2 and its inhibitors, tissue inhibitor of metalloproteinase (TIMP)1 and TIMP2, was upregulated, along with tumor necrosis factor (TNF), TNF receptors, and connective tissue growth factor (CTGF), as well as proteoglycans. Growth factors controlling extracellular matrix (ECM) were also upregulated. Among 410 signaling genes examined by PCR arrays, molecules with downregulation in the strabismic phenotype included GDNF, NRG1, and PAX7; CTGF, CXCR4, NPY1R, TNF, NTRK1, and NTRK2 were upregulated. Signaling molecules known to control extraocular muscle plasticity were predominantly expressed in the tendon rather than the muscle component. The two horizontal muscles, medial and lateral rectus, displayed similar changes in protein and gene expression, and no obvious effect of age. Conclusions Quantification of proteins and gene expression showed significant differences in the composition of extraocular muscles of strabismic patients with respect to important motor proteins, elements of the ECM, and connective tissue. Therefore, our study supports the emerging view that the molecular composition of strabismic muscles is substantially altered.
Collapse
Affiliation(s)
- Andrea B Agarwal
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States
| | - Cheng-Yuan Feng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States
| | - Amy L Altick
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States
| | - David R Quilici
- Mick Hitchcock Nevada Proteomics Center, University of Nevada, Reno, Nevada, United States
| | - Dan Wen
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - L Alan Johnson
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States 4Sierra Eye Associates, Reno, Nevada, United States
| | - Christopher S von Bartheld
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States
| |
Collapse
|
11
|
Schiaffino S, Murgia M, Leinwand LA, Reggiani C. Letter to the editor: Comments on Stuart et al. (2016): "Myosin content of individual human muscle fibers isolated by laser capture microdissection". Am J Physiol Cell Physiol 2016; 311:C1048-C1049. [PMID: 27956413 DOI: 10.1152/ajpcell.00294.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padua, Italy.,Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany; and
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| |
Collapse
|
12
|
Le Bihan MC, Barrio-Hernandez I, Mortensen TP, Henningsen J, Jensen SS, Bigot A, Blagoev B, Butler-Browne G, Kratchmarova I. Cellular Proteome Dynamics during Differentiation of Human Primary Myoblasts. J Proteome Res 2015; 14:3348-61. [DOI: 10.1021/acs.jproteome.5b00397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marie-Catherine Le Bihan
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Inigo Barrio-Hernandez
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Tenna Pavia Mortensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Jeanette Henningsen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Søren Skov Jensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Anne Bigot
- Center
for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS975, CNRS FRE3617, 75013 Paris, France
| | - Blagoy Blagoev
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Gillian Butler-Browne
- Center
for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS975, CNRS FRE3617, 75013 Paris, France
| | - Irina Kratchmarova
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
13
|
Perkins AD, Tanentzapf G. An ongoing role for structural sarcomeric components in maintaining Drosophila melanogaster muscle function and structure. PLoS One 2014; 9:e99362. [PMID: 24915196 PMCID: PMC4051695 DOI: 10.1371/journal.pone.0099362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/14/2014] [Indexed: 11/29/2022] Open
Abstract
Animal muscles must maintain their function while bearing substantial mechanical loads. How muscles withstand persistent mechanical strain is presently not well understood. The basic unit of muscle is the sarcomere, which is primarily composed of cytoskeletal proteins. We hypothesized that cytoskeletal protein turnover is required to maintain muscle function. Using the flight muscles of Drosophila melanogaster, we confirmed that the sarcomeric cytoskeleton undergoes turnover throughout adult life. To uncover which cytoskeletal components are required to maintain adult muscle function, we performed an RNAi-mediated knockdown screen targeting the entire fly cytoskeleton and associated proteins. Gene knockdown was restricted to adult flies and muscle function was analyzed with behavioural assays. Here we analyze the results of that screen and characterize the specific muscle maintenance role for several hits. The screen identified 46 genes required for muscle maintenance: 40 of which had no previously known role in this process. Bioinformatic analysis highlighted the structural sarcomeric proteins as a candidate group for further analysis. Detailed confocal and electron microscopic analysis showed that while muscle architecture was maintained after candidate gene knockdown, sarcomere length was disrupted. Specifically, we found that ongoing synthesis and turnover of the key sarcomere structural components Projectin, Myosin and Actin are required to maintain correct sarcomere length and thin filament length. Our results provide in vivo evidence of adult muscle protein turnover and uncover specific functional defects associated with reduced expression of a subset of cytoskeletal proteins in the adult animal.
Collapse
Affiliation(s)
- Alexander D. Perkins
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
|
15
|
Rashed RM, El-Alfy SH. Ultrastructural organization of muscle fiber types and their distribution in the rat superior rectus extraocular muscle. Acta Histochem 2012; 114:217-25. [PMID: 21621253 DOI: 10.1016/j.acthis.2011.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/18/2011] [Accepted: 04/28/2011] [Indexed: 11/16/2022]
Abstract
Extraocular muscles (EOMs) are unique as they show greater variation in anatomical and physiological properties than any other skeletal muscles. To investigate the muscle fiber types and to understand better the structure-function correlation of the extraocular muscles, the present study examined the ultrastructural characteristics of the superior rectus muscle of rat. The superior rectus muscle is organized into two layers: a central global layer of mainly large-diameter fibers and an outer C-shaped orbital layer of principally small-diameter fibers. Six morphologically distinct fiber types were identified within the superior rectus muscle. Four muscle fiber types, three single innervated fibers (SIFs) and one multiple innervated fiber (MIF), were recognized in the global layer. The single innervated fibers included red, white and intermediate fibers. They differed from one another with respect to diameter, mitochondrial size and distribution, sarcoplasmic reticulum and myofibrillar size. The orbital layer contained two distinct MIFs in addition to the red and intermediate SIFs. The orbital MIFs were categorized into low oxidative and high oxidative types according to their mitochondrial content and distribution. The highly specialized function of the superior rectus extraocular muscle is reflected in the multiplicity of its fiber types, which exhibit unique structural features. The unique ultrastructural features of the extraocular muscles and their possible relation to muscle function are discussed.
Collapse
|
16
|
Drexler HCA, Ruhs A, Konzer A, Mendler L, Bruckskotten M, Looso M, Günther S, Boettger T, Krüger M, Braun T. On marathons and Sprints: an integrated quantitative proteomics and transcriptomics analysis of differences between slow and fast muscle fibers. Mol Cell Proteomics 2011; 11:M111.010801. [PMID: 22210690 DOI: 10.1074/mcp.m111.010801] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle tissue contains slow as well as fast twitch muscle fibers that possess different metabolic and contractile properties. Although the distribution of individual proteins in fast and slow fibers has been investigated extensively, a comprehensive proteomic analysis, which is key for any systems biology approach to muscle tissues, is missing. Here, we compared the global protein levels and gene expression profiles of the predominantly slow soleus and fast extensor digitorum longus muscles using the principle of in vivo stable isotope labeling with amino acids based on a fully lysine-6 labeled SILAC-mouse. We identified 551 proteins with significant quantitative differences between slow soleus and fast extensor digitorum longus fibers out of >2000 quantified proteins, which greatly extends the repertoire of proteins differentially regulated between both muscle types. Most of the differentially regulated proteins mediate cellular contraction, ion homeostasis, glycolysis, and oxidation, which reflect the major functional differences between both muscle types. Comparison of proteomics and transcriptomics data uncovered the existence of fiber-type specific posttranscriptional regulatory mechanisms resulting in differential accumulation of Myosin-8 and α-protein kinase 3 proteins and mRNAs among others. Phosphoproteome analysis of soleus and extensor digitorum longus muscles identified 2573 phosphosites on 973 proteins including 1040 novel phosphosites. The in vivo stable isotope labeling with amino acids-mouse approach used in our study provides a comprehensive view into the protein networks that direct fiber-type specific functions and allows a detailed dissection of the molecular composition of slow and fast muscle tissues with unprecedented resolution.
Collapse
Affiliation(s)
- Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine, Röntgenstr 20, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ohlendieck K. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques. Skelet Muscle 2011; 1:6. [PMID: 21798084 PMCID: PMC3143904 DOI: 10.1186/2044-5040-1-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/01/2011] [Indexed: 01/08/2023] Open
Abstract
Background Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. Results Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. Conclusions This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Muscle Biology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.
| |
Collapse
|
18
|
Rashed RM, El-Alfy SH, Mohamed IK. Histochemical analysis of muscle fiber types of rat superior rectus extraocular muscle. Acta Histochem 2010; 112:536-45. [PMID: 19608220 DOI: 10.1016/j.acthis.2009.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/05/2009] [Accepted: 05/19/2009] [Indexed: 11/15/2022]
Abstract
Extraocular muscles (EOMs) represent a distinctive class among mammalian skeletal muscles in exhibiting unique anatomical and physiological properties. To gain insight into the basis for the unique structural/functional diversity of EOM fiber types and to explain their high fatigue resistance, rat superior rectus muscle (SRM) was studied using histochemical techniques. Muscle fibers were typed with regard to their oxidative and glycolytic profiles generated from succinic dehydrogenase (SDH) and phosphorylase activities in combination with their morphologic characteristics. Superior rectus muscle is organized into two layers, a central global layer (GL) of mainly large diameter fibers and an outer C-shaped orbital layer (OL) of principally small diameter fibers. Five muscle fiber types were recognized within the SRM: I, II, III, IV and V. In the global layer, four muscle fiber types were identified: type I (18.25±0.96μm; 32%) showed intermediate SDH (coarse type) and high phosphorylase activity. Type II fibers (14.45±0.82μm; 22%) exhibited high SDH (fine type) and intermediate phosphorylase activity. Low SDH (granular type) and high phosphorylase activity were demonstrated by type III fibers (22.65±1.73μm; 36%). Type IV fibers (26.24±1.32μm; 10%) were recognized by their low oxidative and glycolytic reactions. In the orbital region, only three muscle fiber types were recognized; fiber types I and II were found to compose approximately two-thirds of the layer. The third orbital fiber type (type V, 10.05±0.99μm) exhibited low SDH and low phosphorylase profiles. In this paper, the functional significance of the histochemical characteristics of the EOM fiber types is discussed.
Collapse
Affiliation(s)
- Rashed M Rashed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
19
|
Huff Lonergan E, Zhang W, Lonergan SM. Biochemistry of postmortem muscle — Lessons on mechanisms of meat tenderization. Meat Sci 2010; 86:184-95. [DOI: 10.1016/j.meatsci.2010.05.004] [Citation(s) in RCA: 491] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 04/30/2010] [Accepted: 05/05/2010] [Indexed: 01/09/2023]
|
20
|
Raja SJ, Charapitsa I, Conrad T, Vaquerizas JM, Gebhardt P, Holz H, Kadlec J, Fraterman S, Luscombe NM, Akhtar A. The nonspecific lethal complex is a transcriptional regulator in Drosophila. Mol Cell 2010; 38:827-41. [PMID: 20620954 DOI: 10.1016/j.molcel.2010.05.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 01/27/2010] [Accepted: 04/06/2010] [Indexed: 01/20/2023]
Abstract
Here, we report the biochemical characterization of the nonspecific lethal (NSL) complex (NSL1, NSL2, NSL3, MCRS2, MBD-R2, and WDS) that associates with the histone acetyltransferase MOF in both Drosophila and mammals. Chromatin immunoprecipitation-Seq analysis revealed association of NSL1 and MCRS2 with the promoter regions of more than 4000 target genes, 70% of these being actively transcribed. This binding is functional, as depletion of MCRS2, MBD-R2, and NSL3 severely affects gene expression genome wide. The NSL complex members bind to their target promoters independently of MOF. However, depletion of MCRS2 affects MOF recruitment to promoters. NSL complex stability is interdependent and relies mainly on the presence of NSL1 and MCRS2. Tethering of NSL3 to a heterologous promoter leads to robust transcription activation and is sensitive to the levels of NSL1, MCRS2, and MOF. Taken together, we conclude that the NSL complex acts as a major transcriptional regulator in Drosophila.
Collapse
Affiliation(s)
- Sunil Jayaramaiah Raja
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zeiger U, Mitchell CH, Khurana TS. Superior calcium homeostasis of extraocular muscles. Exp Eye Res 2010; 91:613-22. [PMID: 20696159 DOI: 10.1016/j.exer.2010.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/29/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
Abstract
Extraocular muscles (EOMs) are a unique group of skeletal muscles with unusual physiological properties such as being able to undergo rapid twitch contractions over extended periods and escape damage in the presence of excess intracellular calcium (Ca(2+)) in Duchenne's muscular dystrophy (DMD). Enhanced Ca(2+) buffering has been proposed as a contributory mechanism to explain these properties; however, the mechanisms are not well understood. We investigated mechanisms modulating Ca(2+) levels in EOM and tibialis anterior (TA) limb muscles. Using Fura-2 based ratiometric Ca(2+) imaging of primary myotubes we found that EOM myotubes reduced elevated Ca(2+) ˜2-fold faster than TA myotubes, demonstrating more efficient Ca(2+) buffering. Quantitative PCR (qPCR) and western blotting revealed higher expression of key components of the Ca(2+) regulation system in EOM, such as the cardiac/slow isoforms sarcoplasmic Ca(2+)-ATPase 2 (Serca2) and calsequestrin 2 (Casq2). Interestingly EOM expressed monomeric rather than multimeric forms of phospholamban (Pln), which was phosphorylated at threonine 17 (Thr17) but not at the serine 16 (Ser16) residue. EOM Pln remained monomeric and unphosphorylated at Ser16 despite protein kinase A (PKA) treatment, suggesting differential signalling and modulation cascades involving Pln-mediated Ca(2+) regulation in EOM. Increased expression of Ca(2+)/SR mRNA, proteins, differential post-translational modification of Pln and superior Ca(2+) buffering is consistent with the improved ability of EOM to handle elevated intracellular Ca(2+) levels. These characteristics provide mechanistic insight for the potential role of superior Ca(2+) buffering in the unusual physiology of EOM and their sparing in DMD.
Collapse
Affiliation(s)
- Ulrike Zeiger
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
22
|
Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, Wilm M, Muir TW, Müller J. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 2010; 465:243-7. [PMID: 20436459 PMCID: PMC3182123 DOI: 10.1038/nature08966] [Citation(s) in RCA: 613] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 02/25/2010] [Indexed: 12/23/2022]
Abstract
Polycomb group (PcG) proteins are transcriptional repressors that control processes ranging from the maintenance of cell fate decisions and stem cell pluripotency in animals to the control of flowering time in plants. In Drosophila, genetic studies identified more than 15 different PcG proteins that are required to repress homeotic (HOX) and other developmental regulator genes in cells where they must stay inactive. Biochemical analyses established that these PcG proteins exist in distinct multiprotein complexes that bind to and modify chromatin of target genes. Among those, Polycomb repressive complex 1 (PRC1) and the related dRing-associated factors (dRAF) complex contain an E3 ligase activity for monoubiquitination of histone H2A (refs 1-4). Here we show that the uncharacterized Drosophila PcG gene calypso encodes the ubiquitin carboxy-terminal hydrolase BAP1. Biochemically purified Calypso exists in a complex with the PcG protein ASX, and this complex, named Polycomb repressive deubiquitinase (PR-DUB), is bound at PcG target genes in Drosophila. Reconstituted recombinant Drosophila and human PR-DUB complexes remove monoubiquitin from H2A but not from H2B in nucleosomes. Drosophila mutants lacking PR-DUB show a strong increase in the levels of monoubiquitinated H2A. A mutation that disrupts the catalytic activity of Calypso, or absence of the ASX subunit abolishes H2A deubiquitination in vitro and HOX gene repression in vivo. Polycomb gene silencing may thus entail a dynamic balance between H2A ubiquitination by PRC1 and dRAF, and H2A deubiquitination by PR-DUB.
Collapse
|
23
|
Ketterer C, Zeiger U, Budak MT, Rubinstein NA, Khurana TS. Identification of the neuromuscular junction transcriptome of extraocular muscle by laser capture microdissection. Invest Ophthalmol Vis Sci 2010; 51:4589-99. [PMID: 20393109 DOI: 10.1167/iovs.09-4893] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To examine and characterize the profile of genes expressed at the synapses or neuromuscular junctions (NMJs) of extraocular muscles (EOMs) compared with those expressed at the tibialis anterior (TA). METHODS Adult rat eyeballs with rectus EOMs attached and TAs were dissected, snap frozen, serially sectioned, and stained for acetylcholinesterase (AChE) to identify the NMJs. Approximately 6000 NMJs for rectus EOM (EOMsyn), 6000 NMJs for TA (TAsyn), equal amounts of NMJ-free fiber regions (EOMfib, TAfib), and underlying myonuclei and RNAs were captured by laser capture microdissection (LCM). RNA was processed for microarray-based expression profiling. Expression profiles and interaction lists were generated for genes differentially expressed at synaptic and nonsynaptic regions of EOM (EOMsyn versus EOMfib) and TA (TAsyn versus TAfib). Profiles were validated by using real-time quantitative polymerase chain reaction (qPCR). RESULTS The regional transcriptomes associated with NMJs of EOMs and TAs were identified. Two hundred seventy-five genes were preferentially expressed in EOMsyn (compared with EOMfib), 230 in TAsyn (compared with TAfib), and 288 additional transcripts expressed in both synapses. Identified genes included novel genes as well as well-known, evolutionarily conserved synaptic markers (e.g., nicotinic acetylcholine receptor (AChR) alpha (Chrna) and epsilon (Chrne) subunits and nestin (Nes). CONCLUSIONS Transcriptome level differences exist between EOM synaptic regions and TA synaptic regions. The definition of the synaptic transcriptome provides insight into the mechanism of formation and functioning of the unique synapses of EOM and their differential involvement in diseases noted in the EOM allotype.
Collapse
Affiliation(s)
- Caroline Ketterer
- Department of Cell and Developmental Biology, Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
The extraocular muscles (EOMs) are a unique group of muscles that are anatomically and physiologically distinct from other muscles. We and others have shown that EOMs have a unique transcriptome and proteome. Here we investigated the expression pattern of microRNAs (miRNAs), as they may play a role in generating the unique EOM allotype. We isolated RNA and screened LC Sciences miRNA microarrays covering the sequences of miRBase 10.0 to define the microRNAome of normal mouse EOM and tibialis anterior (TA) limb muscle. Seventy-four miRNAs were found to be differentially regulated (P value <0.05) of which 31 (14 upregulated, 17 downregulated) were differentially regulated at signal strength >500. Muscle-specific miRNAs miR-206 and miR-499 were upregulated and miR-1, miR-133a, and miR-133b were downregulated in EOM. Quantitative PCR (qPCR) analysis was used to validate the differential expression. Bioinformatic tools were used to identify potential miRNA-mRNA-protein interactions and integrate data with previous transcriptome and proteomic profiling data. Luciferase assays using cotransfection of precursor miRNAs with reporter constructs containing the 3'-untranslated region of predicted target genes were used to validate targeting by identified miRNAs. The definition of the EOM microRNAome complements existing transcriptome and proteome data about the molecular makeup of EOM and provides further insight into regulation of muscle genes. These data will also help to further explain the unique EOM muscle allotype and its differential sensitivity to diseases such as Duchenne muscular dystrophy and may assist in development of therapeutic strategies.
Collapse
Affiliation(s)
- Ulrike Zeiger
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
25
|
Timms JF, Cutillas PR. Overview of quantitative LC-MS techniques for proteomics and activitomics. Methods Mol Biol 2010; 658:19-45. [PMID: 20839096 DOI: 10.1007/978-1-60761-780-8_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
LC-MS is a useful technique for protein and peptide quantification. In addition, as a powerful tool for systems biology research, LC-MS can also be used to quantify post-translational modifications and metabolites that reflect biochemical pathway activity. This review discusses the different analytical techniques that use LC-MS for the quantification of proteins, their modifications and activities in a multiplex manner.
Collapse
Affiliation(s)
- John F Timms
- Cancer Proteomics Laboratory, EGA Institute for Women's Health, University College London, London, UK
| | | |
Collapse
|
26
|
|
27
|
Parker KC, Walsh RJ, Salajegheh M, Amato AA, Krastins B, Sarracino DA, Greenberg SA. Characterization of Human Skeletal Muscle Biopsy Samples Using Shotgun Proteomics. J Proteome Res 2009; 8:3265-77. [DOI: 10.1021/pr800873q] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenneth C. Parker
- Harvard Partners Center for Genetics and Genomics, Cambridge, MA, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, and Informatics Program, Children’s Hospital Boston, Harvard Medical School, Boston, MA
| | - Ronan J. Walsh
- Harvard Partners Center for Genetics and Genomics, Cambridge, MA, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, and Informatics Program, Children’s Hospital Boston, Harvard Medical School, Boston, MA
| | - Mohammad Salajegheh
- Harvard Partners Center for Genetics and Genomics, Cambridge, MA, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, and Informatics Program, Children’s Hospital Boston, Harvard Medical School, Boston, MA
| | - Anthony A. Amato
- Harvard Partners Center for Genetics and Genomics, Cambridge, MA, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, and Informatics Program, Children’s Hospital Boston, Harvard Medical School, Boston, MA
| | - Bryan Krastins
- Harvard Partners Center for Genetics and Genomics, Cambridge, MA, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, and Informatics Program, Children’s Hospital Boston, Harvard Medical School, Boston, MA
| | - David A. Sarracino
- Harvard Partners Center for Genetics and Genomics, Cambridge, MA, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, and Informatics Program, Children’s Hospital Boston, Harvard Medical School, Boston, MA
| | - Steven A. Greenberg
- Harvard Partners Center for Genetics and Genomics, Cambridge, MA, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, and Informatics Program, Children’s Hospital Boston, Harvard Medical School, Boston, MA
| |
Collapse
|
28
|
Doran P, Donoghue P, O'Connell K, Gannon J, Ohlendieck K. Proteomics of skeletal muscle aging. Proteomics 2009; 9:989-1003. [DOI: 10.1002/pmic.200800365] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Zhang SZ, Xie HQ, Xu Y, Li XQ, Wei RQ, Zhi W, Deng L, Qiu L, Yang ZM. Regulation of cell proliferation by fast Myosin light chain 1 in myoblasts derived from extraocular muscle, diaphragm and gastrocnemius. Exp Biol Med (Maywood) 2009; 233:1374-84. [PMID: 18957633 DOI: 10.3181/0804-rm-134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extraocular muscle (EOM) suffers much less injury from Duchenne muscular dystrophy (DMD) than other skeletal muscles such as diaphragm and gastrocnemius. The present study was undertaken to test the hypothesis that differential expression of regulatory proteins between the EOM and other skeletal muscles is responsible for the observed difference in the sensitivity to DMD-associated damage. Protein expression in the tissue samples obtained from EOM, diaphragm or gastrocnemius of C57BL/6 mice was analyzed by two-dimensional gel electrophoresis and mass spectrometry. There were 35 proteins that were identified to be differentially expressed among different skeletal muscle tissues. Among the 35 proteins, a fast skeletal muscle isoform myosin light chain 1 (MLC1f) protein was further studied in relation to muscle cell proliferation. The EOM-derived myoblasts had much lower levels of MLC1f and higher rate of cell proliferation in contrast to the myoblasts derived from diaphragm or gastrocnemius, which displayed a higher expression of MLC1f along with a slow proliferation. Deletion of MLC1f using siRNA targeting MLC1f resulted in an increased rate of cell proliferation in the myoblasts. Cell cycle analysis revealed that MLC1f inhibited the transition of the cell cycle from the G1 to the S phase. Therefore, the present study demonstrates that MLC1f may negatively regulate proliferation of myoblasts through inhibition of the transition from the G1 to the S phase of the cell cycle. Low levels of MLC1f in myoblasts of EOM may ensure cell proliferation and enhance the repair process for EOM under the DMD disease condition, thus making EOM suffer less injury from DMD.
Collapse
Affiliation(s)
- Su-Zhen Zhang
- West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pacheco-Pinedo EC, Budak MT, Zeiger U, Jørgensen LH, Bogdanovich S, Schrøder HD, Rubinstein NA, Khurana TS. Transcriptional and functional differences in stem cell populations isolated from extraocular and limb muscles. Physiol Genomics 2008; 37:35-42. [PMID: 19116248 DOI: 10.1152/physiolgenomics.00051.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The extraocular muscles (EOMs) are a distinct muscle group that displays an array of unique contractile, structural, and regenerative properties. They also have differential sensitivity to certain diseases and are enigmatically spared in Duchenne muscular dystrophy (DMD). The EOMs are so distinct from other skeletal muscles that the term "allotype" has been coined to highlight EOM group-specific properties. We hypothesized that increased and distinct stem cells may underlie the continual myogenesis noted in EOM. The side population (SP) stem cells were isolated and studied. EOMs had 15x higher SP cell content compared with limb muscles. Expression profiling revealed 348 transcripts that define the EOM-SP transcriptome. Over 92% of transcripts were SP specific, because they were absent in previous whole muscle microarray studies. Cultured EOM-SP cells revealed superior in vitro proliferative capacity. Finally, assays of the committed progenitors or satellite cells performed on myofibers isolated from EOM and limb muscles independently validated the increased proliferative capacity of these muscles. We suggest a model in which unique EOM stem cells contribute to the continual myogenesis noted in EOM and consistent with a role for their sparing in DMD. We believe the greater numbers of stem cells, their unique transcriptome, the greater proliferative capacity of EOM stem cells, and the greater number of satellite cells also offer clues for novel cell-based therapeutic strategies.
Collapse
Affiliation(s)
- Eugenia C Pacheco-Pinedo
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ravenscroft G, Colley SM, Walker KR, Clement S, Bringans S, Lipscombe R, Fabian VA, Laing NG, Nowak KJ. Expression of cardiac α-actin spares extraocular muscles in skeletal muscle α-actin diseases – Quantification of striated α-actins by MRM-mass spectrometry. Neuromuscul Disord 2008; 18:953-8. [DOI: 10.1016/j.nmd.2008.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/09/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
|
32
|
Thoma C, Fraterman S, Gentzel M, Wilm M, Hentze MW. Translation initiation by the c-myc mRNA internal ribosome entry sequence and the poly(A) tail. RNA (NEW YORK, N.Y.) 2008; 14:1579-89. [PMID: 18556416 PMCID: PMC2491467 DOI: 10.1261/rna.1043908] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 04/21/2008] [Indexed: 05/25/2023]
Abstract
Eukaryotic mRNAs possess a poly(A) tail that enhances translation via the (7)mGpppN cap structure or internal ribosome entry sequences (IRESs). Here we address the question of how cellular IRESs recruit the ribosome and how recruitment is augmented by the poly(A) tail. We show that the poly(A) tail enhances 48S complex assembly by the c-myc IRES. Remarkably, this process is independent of the poly(A) binding protein (PABP). Purification of native 48S initiation complexes assembled on c-myc IRES mRNAs and quantitative label-free analysis by liquid chromatography and mass spectrometry directly identify eIFs 2, 3, 4A, 4B, 4GI, and 5 as components of the c-myc IRES 48S initiation complex. Our results demonstrate for the first time that the poly(A) tail augments the initiation step of cellular IRES-driven translation and implicate a distinct subset of translation initiation factors in this process. The mechanistic distinctions from cap-dependent translation may allow specific translational control of the c-myc mRNA and possibly other cellular mRNAs that initiate translation via IRESs.
Collapse
Affiliation(s)
- Christian Thoma
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
33
|
Allikian MJ, Bhabha G, Dospoy P, Heydemann A, Ryder P, Earley JU, Wolf MJ, Rockman HA, McNally EM. Reduced life span with heart and muscle dysfunction in Drosophila sarcoglycan mutants. Hum Mol Genet 2007; 16:2933-43. [PMID: 17855453 DOI: 10.1093/hmg/ddm254] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In humans, genetically diverse forms of muscular dystrophy are associated with a disrupted sarcoglycan complex. The sarcoglycan complex resides at the muscle plasma membrane where it associates with dystrophin. There are six known sarcoglycan proteins in mammals whereas there are only three in Drosophila melanogaster. Using imprecise P element excision, we generated three different alleles at the Drosophila delta-sarcoglycan locus. Each of these deletions encompassed progressively larger regions of the delta-sarcoglycan gene. Line 840 contained a large deletion of the delta-sarcoglycan gene, and this line displayed progressive impairment in locomotive ability, reduced heart tube function and a shortened life span. In line 840, deletion of the Drosophila delta-sarcoglycan gene produced disrupted flight muscles with shortened sarcomeres and disorganized M lines. Unlike mammalian muscle where degeneration is coupled with ongoing regeneration, no evidence for regeneration was seen in this Drosophila sarcoglycan mutant. In contrast, line 28 was characterized with a much smaller deletion that affected only a portion of the cytoplasmic region of the delta-sarcoglycan protein and left intact the transmembrane and extracellular domains. Line 28 had a very mild phenotype with near normal life span, intact cardiac function and normal locomotive activity. Together, these data demonstrate the essential nature of the transmembrane and extracellular domains of Drosophila delta-sarcoglycan for normal muscle structure and function.
Collapse
|
34
|
Fraterman S, Zeiger U, Khurana TS, Rubinstein NA, Wilm M. Combination of peptide OFFGEL fractionation and label-free quantitation facilitated proteomics profiling of extraocular muscle. Proteomics 2007; 7:3404-16. [PMID: 17708596 DOI: 10.1002/pmic.200700382] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Several label-free quantitation strategies have been introduced that obliterate the need for expensive isotopically labeled molecules. However label-free approaches have considerably higher demands in respect of repeatability of sample preparation and fractionation than multiplexing isotope labeling-based strategies. OFFGEL fractionation promises the necessary separation efficiency and repeatability. To test this platform, 12-fraction peptide OFFGEL electrophoresis and online reversed-phase LC connected to a quadrupole TOF mass spectrometer were used to determine differences of the physiological, pathological and biochemical distinct extraocular muscle allotype in comparison to hind-limb muscle. Close to 70% of the peptides separated by OFFGEL electrophoresis were detected only in a single fraction. To determine the separation repeatability of four samples, we compared the ion volumes of multiple peptides deriving from the thick filament-associated protein titin over several fractions and determined a coefficient of variation below 20%. Of the 474 proteins identified, 61 proteins were differently expressed between the two muscle allotypes and were involved in metabolism, muscle contraction, stress response, or gene expression. Several expression differences were validated using immunohistochemistry and Western blot analysis. We therefore consider peptide OFFGEL fractionation an effective and efficient addition to our label-free quantitative proteomics workflow.
Collapse
Affiliation(s)
- Sven Fraterman
- Gene Expression Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
35
|
Nekrasov M, Klymenko T, Fraterman S, Papp B, Oktaba K, Köcher T, Cohen A, Stunnenberg HG, Wilm M, Müller J. Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. EMBO J 2007; 26:4078-88. [PMID: 17762866 PMCID: PMC1964751 DOI: 10.1038/sj.emboj.7601837] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/31/2007] [Indexed: 01/25/2023] Open
Abstract
PRC2 is thought to be the histone methyltransferase (HMTase) responsible for H3-K27 trimethylation at Polycomb target genes. Here we report the biochemical purification and characterization of a distinct form of Drosophila PRC2 that contains the Polycomb group protein polycomblike (Pcl). Like PRC2, Pcl-PRC2 is an H3-K27-specific HMTase that mono-, di- and trimethylates H3-K27 in nucleosomes in vitro. Analysis of Drosophila mutants that lack Pcl unexpectedly reveals that Pcl-PRC2 is required to generate high levels of H3-K27 trimethylation at Polycomb target genes but is dispensable for the genome-wide H3-K27 mono- and dimethylation that is generated by PRC2. In Pcl mutants, Polycomb target genes become derepressed even though H3-K27 trimethylation at these genes is only reduced and not abolished, and even though targeting of the Polycomb protein complexes PhoRC and PRC1 to Polycomb response elements is not affected. Pcl-PRC2 is thus the HMTase that generates the high levels of H3-K27 trimethylation in Polycomb target genes that are needed to maintain a Polycomb-repressed chromatin state.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas Köcher
- Gene Expression Programme, EMBL, Heidelberg, Germany
| | - Adrian Cohen
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Matthias Wilm
- Gene Expression Programme, EMBL, Heidelberg, Germany
| | - Jürg Müller
- Gene Expression Programme, EMBL, Heidelberg, Germany
- Gene Expression Programme, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Germany. Tel.: +49 6221 387629; Fax: +49 6221 387518; E-mail:
| |
Collapse
|