1
|
Plaza‐Florido A, Santos‐Lozano A, López‐Ortiz S, Gálvez BG, Arenas J, Martín MA, Valenzuela PL, Pinós T, Lucia A, Fiuza‐Luces C. Aerobic capacity and muscle proteome: Insights from a mouse model. Exp Physiol 2025; 110:293-306. [PMID: 39572863 PMCID: PMC11782188 DOI: 10.1113/ep092308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 02/01/2025]
Abstract
We explored the association between aerobic capacity (AC) and the skeletal muscle proteome of McArdle (n = 10) and wild-type (n = 8) mice, as models of intrinsically 'low' and 'normal' AC, respectively. AC was determined as total distance achieved in treadmill running until exhaustion. The quadriceps muscle proteome was studied using liquid chromatography with tandem mass spectrometry, with the Search Tool for the Retrieval of Interacting Genes/Proteins database used to generate protein-protein interaction (PPI) networks and enrichment analyses. AC was significantly associated (P-values ranging from 0.0002 to 0.049) with 73 (McArdle) and 61 (wild-type) proteins (r-values from -0.90 to 0.94). These proteins were connected in PPI networks that enriched biological processes involved in skeletal muscle structure/function in both groups (false discovery rate <0.05). In McArdle mice, the proteins associated with AC were involved in skeletal muscle fibre differentiation/development, lipid oxidation, mitochondrial function and calcium homeostasis, whereas in wild-type animals AC-associated proteins were related to cytoskeleton structure (intermediate filaments), cell cycle regulation and endocytic trafficking. Two proteins (WEE2, THYG) were associated with AC (negatively and positively, respectively) in both groups. Only 14 of the 132 proteins (∼11%) associated with AC in McArdle or wild-type mice were also associated with those previously reported to be modified by aerobic training in these mice, providing preliminary evidence for a large divergence in the muscle proteome signature linked to aerobic training or AC, irrespective of AC (intrinsically low or normal) levels. Our findings might help to gain insight into the molecular mechanisms underlying AC at the muscle tissue level.
Collapse
Affiliation(s)
- Abel Plaza‐Florido
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of MedicineUniversity of California IrvineIrvineCaliforniaUSA
| | | | | | - Beatriz G. Gálvez
- Department of Biochemistry and Molecular Biology, Faculty of PharmacyUniversidad Complutense de MadridMadridSpain
- Physical Activity and HEalth Reseach Group (PAHERG)Research Institute of the Hospital 12 de Octubre (‘imas12’)MadridSpain
| | - Joaquín Arenas
- Physical Activity and HEalth Reseach Group (PAHERG)Research Institute of the Hospital 12 de Octubre (‘imas12’)MadridSpain
- Unit 701Spanish Network for Biomedical Research in Rare Diseases (CIBERER)MadridSpain
| | - Miguel A. Martín
- Physical Activity and HEalth Reseach Group (PAHERG)Research Institute of the Hospital 12 de Octubre (‘imas12’)MadridSpain
- Unit 701Spanish Network for Biomedical Research in Rare Diseases (CIBERER)MadridSpain
| | - Pedro L. Valenzuela
- Physical Activity and HEalth Reseach Group (PAHERG)Research Institute of the Hospital 12 de Octubre (‘imas12’)MadridSpain
- Department of Systems BiologyUniversidad de AlcaláMadridSpain
| | - Tomàs Pinós
- Unit 701Spanish Network for Biomedical Research in Rare Diseases (CIBERER)MadridSpain
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de RecercaUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Alejandro Lucia
- Faculty of Sport SciencesUniversidad Europea de MadridMadridSpain
| | - Carmen Fiuza‐Luces
- Physical Activity and HEalth Reseach Group (PAHERG)Research Institute of the Hospital 12 de Octubre (‘imas12’)MadridSpain
- Centre of EnergyEnvironment and Technical Research (CIEMAT)MadridSpain
| |
Collapse
|
2
|
Lisi-Vega LE, Pievani A, García-Fernández M, Forte D, Williams TL, Serafini M, Méndez-Ferrer S. Bone marrow mesenchymal stromal cells support translation in refractory acute myeloid leukemia. Cell Rep 2025; 44:115151. [PMID: 39932190 PMCID: PMC7617453 DOI: 10.1016/j.celrep.2024.115151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 03/05/2025] Open
Abstract
In acute myeloid leukemia (AML), malignant cells surviving chemotherapy rely on high mRNA translation and their microenvironmental metabolic support to drive relapse. However, the role of translational reprogramming in the niche is unclear. Here, we found that relapsing AML cells increase translation in their bone marrow (BM) niches, where BM mesenchymal stromal cells (BMSCs) become a source of eIF4A-cap-dependent translation machinery that is transferred to AML cells via extracellular vesicles (EVs) to meet their translational demands. In two independent models of highly chemo-resistant AML driven by MLL-AF9 or FLT3-ITD (internal tandem duplication) and nucleophosmin (NPMc) mutations, protein synthesis levels increase in refractory AML dependent on nestin+ BMSCs. Inhibiting cap-dependent translation in BMSCs abolishes their chemoprotective ability, while EVs from BMSCs carrying eIF4A boost AML cell translation and survival. Consequently, eIF4A inhibition synergizes with conventional chemotherapy. Together, these results suggest that AML cells rely on BMSCs to maintain an oncogenic translational program required for relapse.
Collapse
Affiliation(s)
- Livia E Lisi-Vega
- Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge CB2 0AW, UK
| | - Alice Pievani
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, 20900 Monza, Italy
| | - María García-Fernández
- Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge CB2 0AW, UK
| | - Dorian Forte
- Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge CB2 0AW, UK
| | - Tim L Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Marta Serafini
- Tettamanti Center, Fondazione IRCCS San Gerardo Dei Tintori, 20900 Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Simón Méndez-Ferrer
- Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge CB2 0AW, UK; Instituto de Biomedicina de Sevilla-IBiS (Hospitales Universitarios Virgen Del Rocío y Macarena/CSIC/Universidad de Sevilla), 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain.
| |
Collapse
|
3
|
Villalba-Orero M, López-Olañeta M, Campos-Olmo B, Jimenez-Carretero D, Sánchez L, Sánchez-Cabo F, Ausiello A, Cañas-Álvaro R, Camafeita E, Vázquez J, García-Pavía P, Pascual-Figal D, Lara-Pezzi E. Unraveling Comorbidities Contribution to Cardiac Diastolic Dysfunction and Heart Failure. Circ Heart Fail 2025; 18:e011724. [PMID: 39611257 DOI: 10.1161/circheartfailure.124.011724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/17/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a major public health problem characterized by multiple simultaneous comorbidities whose specific contribution is challenging to disentangle in humans, leading to a generalized therapeutic approach that may not account for the underlying pathology. METHODS We followed distinct mouse models of major HFpEF comorbidities for 2.5 years to unveil their specific contribution to the syndrome. RESULTS All comorbidities contributed to HFpEF through partially distinct routes. Aging alone resulted in HFpEF in old age, with delayed left ventricular relaxation and kidney fibrosis. Obesity induced a faster deterioration of relaxation associated with enlarged left ventricle and liver fibrosis. Hypertension caused delayed ventricular relaxation independent from structural changes that preceded left atrial dilatation linked to aortic stiffness and increased fibrosis in myocardium and kidney. Chronic intermittent hypoxia led to HFpEF and relaxation impairment associated with pulmonary hypertension. Hyperglycemia accelerated diastolic dysfunction and HFpEF onset associated with reduced arterial flow and left ventricular remodeling. Therefore, the pathological substrates contributing to HFpEF included cardiac and noncardiac alterations with differential features for each comorbidity. Critically, the characteristics linked to diastolic dysfunction and HFpEF across the various comorbidities agreed with phenogroups observed in human patients. CONCLUSIONS The identification of time-dependent pathological features provides a comprehensive picture of HFpEF progression associated with each comorbidity.
Collapse
Affiliation(s)
- María Villalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain (M.V.-O.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Marina López-Olañeta
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Belén Campos-Olmo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Daniel Jimenez-Carretero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Lucía Sánchez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Antonella Ausiello
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Rodrigo Cañas-Álvaro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., J.V., P.G.-P., D.P.-F., E.L.-P.)
| | - Pablo García-Pavía
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., J.V., P.G.-P., D.P.-F., E.L.-P.)
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain (P.G.-P.)
- Universidad Francisco de Vitoria, Madrid, Spain (P.G.-P.)
| | - Domingo Pascual-Figal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., J.V., P.G.-P., D.P.-F., E.L.-P.)
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain (D.P.-F.)
- Medicine Department, University of Murcia, Spain (D.P.-F.)
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (M.V.-O., M.L.-O., B.C.-O., D.J.-C., L.S., F.S.-C., A.A., R.C.-Á., E.C., J.V., P.G.-P., D.P.-F., E.L.-P.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain (M.V.-O., J.V., P.G.-P., D.P.-F., E.L.-P.)
| |
Collapse
|
4
|
Núñez E, Gómez-Serrano M, Calvo E, Bonzon-Kulichenko E, Trevisan-Herraz M, Rodríguez JM, García-Marqués F, Magni R, Lara-Pezzi E, Martín-Ventura JL, Camafeita E, Vázquez J. A Multiplexed Quantitative Proteomics Approach to the Human Plasma Protein Signature. Biomedicines 2024; 12:2118. [PMID: 39335631 PMCID: PMC11428418 DOI: 10.3390/biomedicines12092118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the plasma proteome being able to provide a unique insight into the health and disease status of individuals, holding singular promise as a source of protein biomarkers that could be pivotal in the context of personalized medicine, only around 100 proteins covering a few human conditions have been approved as biomarkers by the US Food and Drug Administration (FDA) so far. Mass spectrometry (MS) currently has enormous potential for high-throughput analysis in clinical research; however, plasma proteomics remains challenging mainly due to the wide dynamic range of plasma protein abundances and the time-consuming procedures required. We applied a new MS-based multiplexed proteomics workflow to quantitate proteins, encompassing 67 FDA-approved biomarkers, in >1300 human plasma samples from a clinical cohort. Our results indicate that this workflow is suitable for large-scale clinical studies, showing good accuracy and reproducibility (coefficient of variation (CV) < 20 for 90% of the proteins). Furthermore, we identified plasma signature proteins (stable in time on an individual basis), stable proteins (exhibiting low biological variability and high temporal stability), and highly variable proteins (with low temporal stability) that can be used for personalized health monitoring and medicine.
Collapse
Affiliation(s)
- Estefanía Núñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany;
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Elena Bonzon-Kulichenko
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
| | - Marco Trevisan-Herraz
- International Center for Life, Newcastle University, Newcastle upon Tyne NE1 4EP, UK;
| | - José Manuel Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
| | | | - Ricardo Magni
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - José Luis Martín-Ventura
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- IIS-Fundación Jiménez-Díaz, 28015 Madrid, Spain
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; (E.N.); (E.C.); (E.B.-K.); (J.M.R.); (R.M.); (E.L.-P.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
| |
Collapse
|
5
|
Martin-Blazquez A, Martin-Lorenzo M, Santiago-Hernandez A, Heredero A, Donado A, Lopez JA, Anfaiha-Sanchez M, Ruiz-Jimenez R, Esteban V, Vazquez J, Aldamiz-Echevarria G, Alvarez-Llamas G. Analysis of Vascular Smooth Muscle Cells from Thoracic Aortic Aneurysms Reveals DNA Damage and Cell Cycle Arrest as Hallmarks in Bicuspid Aortic Valve Patients. J Proteome Res 2024; 23:3012-3024. [PMID: 38594816 PMCID: PMC11301675 DOI: 10.1021/acs.jproteome.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/26/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Thoracic aortic aneurysm (TAA) is mainly sporadic and with higher incidence in the presence of a bicuspid aortic valve (BAV) for unknown reasons. The lack of drug therapy to delay TAA progression lies in the limited knowledge of pathophysiology. We aimed to identify the molecular hallmarks that differentiate the aortic dilatation associated with BAV and tricuspid aortic valve (TAV). Aortic vascular smooth muscle cells (VSMCs) isolated from sporadic TAA patients with BAV or TAV were analyzed by mass spectrometry. DNA oxidative damage assay and cell cycle profiling were performed in three independent cohorts supporting proteomics data. The alteration of secreted proteins was confirmed in plasma. Stress phenotype, oxidative stress, and enhanced DNA damage response (increased S-phase arrest and apoptosis) were found in BAV-TAA patients. The increased levels of plasma C1QTNF5, LAMA2, THSB3, and FAP confirm the enhanced stress in BAV-TAA. Plasma FAP and BGN point to an increased inflammatory condition in TAV. The arterial wall of BAV patients shows a limited capacity to counteract drivers of sporadic TAA. The molecular pathways identified support the need of differential molecular diagnosis and therapeutic approaches for BAV and TAV patients, showing specific markers in plasma which may serve to monitor therapy efficacy.
Collapse
Affiliation(s)
- Ariadna Martin-Blazquez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Marta Martin-Lorenzo
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | | | - Angeles Heredero
- Cardiac
Surgery Service, Fundación Jiménez
Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Alicia Donado
- Cardiac
Surgery Service, Fundación Jiménez
Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Juan A Lopez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER
de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Miriam Anfaiha-Sanchez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Rocio Ruiz-Jimenez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Vanesa Esteban
- Department
of Allergy and Immunology, IIS-Fundación
Jiménez Díaz, Fundación Jiménez Díaz
Hospital-UAM, 28040 Madrid, Spain
- Faculty
of Medicine and Biomedicine, Alfonso X El
Sabio University, 28691 Madrid, Spain
| | - Jesus Vazquez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER
de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | | | - Gloria Alvarez-Llamas
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
- RICORS2040, Fundación Jiménez Díaz, 28040 Madrid, Spain
- Department
of Biochemistry and Molecular Biology, Complutense
University, 28040 Madrid, Spain
| |
Collapse
|
6
|
Santiago-Hernandez A, Martin-Lorenzo M, Gómez-Serrano M, Lopez JA, Martin-Blazquez A, Vellosillo P, Minguez P, Martinez PJ, Vázquez J, Ruiz-Hurtado G, Barderas MG, Sarafidis P, Segura J, Ruilope LM, Alvarez-Llamas G. The Urinary Glycopeptide Profile Differentiates Early Cardiorenal Risk in Subjects Not Meeting Criteria for Chronic Kidney Disease. Int J Mol Sci 2024; 25:7005. [PMID: 39000114 PMCID: PMC11241500 DOI: 10.3390/ijms25137005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Early diagnosis and treatment of chronic kidney disease (CKD) is a worldwide challenge. Subjects with albumin-to-creatinine ratio (ACR) ≥ 30 mg/g and preserved renal function are considered to be at no cardiorenal risk in clinical practice, but prospective clinical studies evidence increased risk, even at the high-normal (HN) ACR range (10-30 mg/g), supporting the need to identify other molecular indicators for early assessment of patients at higher risk. Following our previous studies, here we aim to stratify the normoalbuminuria range according to cardiorenal risk and identify the glycoproteins and N-glycosylation sites associated with kidney damage in subclinical CKD. Glycoproteins were analyzed in urine from hypertensive patients within the HN ACR range compared to control group (C; ACR < 10 mg/g) by mass spectrometry. A different cohort was analyzed for confirmation (ELISA) and sex perspective was evaluated. Patients' follow-up for 8 years since basal urine collection revealed higher renal function decline and ACR progression for HN patients. Differential N-glycopeptides and their N -glycosylation sites were also identified, together with their pathogenicity. N-glycosylation may condition pathological protein deregulation, and a panel of 62 glycoproteins evidenced alteration in normoalbuminuric subjects within the HN range. Haptoglobin-related protein, haptoglobin, afamin, transferrin, and immunoglobulin heavy constant gamma 1 (IGHG1) and 2 (IGHG2) showed increased levels in HN patients, pointing to disturbed iron metabolism and tubular reabsorption and supporting the tubule as a target of interest in the early progression of CKD. When analyzed separately, haptoglobin, afamin, transferrin, and IGHG2 remained significant in HN, in both women and men. At the peptide level, 172 N-glycopeptides showed differential abundance in HN patients, and 26 showed high pathogenicity, 10 of them belonging to glycoproteins that do not show variation between HN and C groups. This study highlights the value of glycosylation in subjects not meeting KDIGO criteria for CKD. The identified N-glycopeptides and glycosylation sites showed novel targets, for both the early assessment of individual cardiorenal risk and for intervention aimed at anticipating CKD progression.
Collapse
Grants
- PI16/01334, PI20/01103, IF08/3667-1, CPII20/00022, CPII21/00015, CP22/00100, FI21/00128, PRB3 [IPT17/0019-ISCIII-SGEFI/ERDF], RICORS2040 [RD21/0005/0001] Instituto de Salud Carlos III
- PID2021-122348NB-I00, PLEC2022-009235 and PLEC2022-009298 Ministerio de Ciencia, Innovación y Universidades
- PEJ-2020-AI/BMD-17899; PEJD-2019-PRE/BMD-16992, 2018-T2/BMD-11561, P2022/BMD-7333 Comunidad de Madrid
- N/A Fundación SENEFRO/SEN
- N/A Fundación Mutua Madrileña
- HR17-00247 and LCF/PR/HR22/52420019 La Caixa Banking Foundation
- N/A Fundación Conchita Rábago
Collapse
Affiliation(s)
- Aranzazu Santiago-Hernandez
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
| | - Marta Martin-Lorenzo
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
| | - María Gómez-Serrano
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; (M.G.-S.); (J.A.L.); (J.V.)
- Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Juan Antonio Lopez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; (M.G.-S.); (J.A.L.); (J.V.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28041 Madrid, Spain; (G.R.-H.); (L.M.R.)
| | - Ariadna Martin-Blazquez
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
| | - Perceval Vellosillo
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
- Bioinformatics Unit, Genetics Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
| | - Pablo Minguez
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
- Bioinformatics Unit, Genetics Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
| | - Paula J. Martinez
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; (M.G.-S.); (J.A.L.); (J.V.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28041 Madrid, Spain; (G.R.-H.); (L.M.R.)
| | - Gema Ruiz-Hurtado
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28041 Madrid, Spain; (G.R.-H.); (L.M.R.)
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, 45004 Toledo, Spain;
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, IDISCAM, 45004 Toledo, Spain
| | - Pantelis Sarafidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Julian Segura
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Hypertension Unit, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Luis M. Ruilope
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28041 Madrid, Spain; (G.R.-H.); (L.M.R.)
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- School of Doctoral Studies and Research, European University of Madrid, 28005 Madrid, Spain
| | - Gloria Alvarez-Llamas
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
- RICORS2040, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
7
|
Polo-Generelo S, Rodríguez-Mateo C, Torres B, Pintor-Tortolero J, Guerrero-Martínez JA, König J, Vázquez J, Bonzón-Kulichenco E, Padillo-Ruiz J, de la Portilla F, Reyes JC, Pintor-Toro JA. Serpine1 mRNA confers mesenchymal characteristics to the cell and promotes CD8+ T cells exclusion from colon adenocarcinomas. Cell Death Discov 2024; 10:116. [PMID: 38448406 PMCID: PMC10917750 DOI: 10.1038/s41420-024-01886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Serine protease inhibitor clade E member 1 (SERPINE1) inhibits extracellular matrix proteolysis and cell detachment. However, SERPINE1 expression also promotes tumor progression and plays a crucial role in metastasis. Here, we solve this apparent paradox and report that Serpine1 mRNA per se, independent of its protein-coding function, confers mesenchymal properties to the cell, promoting migration, invasiveness, and resistance to anoikis and increasing glycolytic activity by sequestering miRNAs. Expression of Serpine1 mRNA upregulates the expression of the TRA2B splicing factor without affecting its mRNA levels. Through transcriptional profiling, we found that Serpine1 mRNA expression downregulates through TRA2B the expression of genes involved in the immune response. Analysis of human colon tumor samples showed an inverse correlation between SERPINE1 mRNA expression and CD8+ T cell infiltration, unveiling the potential value of SERPINE1 mRNA as a promising therapeutic target for colon tumors.
Collapse
Affiliation(s)
- Salvador Polo-Generelo
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092, Sevilla, Spain
| | - Cristina Rodríguez-Mateo
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092, Sevilla, Spain
| | - Belén Torres
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092, Sevilla, Spain
| | - José Pintor-Tortolero
- Colorectal Surgery Unit, Department of General and Digestive Surgery, Virgen del Rocío University Hospital, IBIS, CSIC, University of Sevilla, Sevilla, Spain
| | - José A Guerrero-Martínez
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092, Sevilla, Spain
| | - Julian König
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Jesús Vázquez
- Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Elena Bonzón-Kulichenco
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Javier Padillo-Ruiz
- Hepatobiliary Surgery Unit, Department of General and Digestive Surgery, Virgen del Rocío University Hospital, IBIS, CSIC, University of Sevilla, Sevilla, Spain
| | - Fernando de la Portilla
- Colorectal Surgery Unit, Department of General and Digestive Surgery, Virgen del Rocío University Hospital, IBIS, CSIC, University of Sevilla, Sevilla, Spain
| | - José C Reyes
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092, Sevilla, Spain
| | - José A Pintor-Toro
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092, Sevilla, Spain.
| |
Collapse
|
8
|
Curtabbi A, Guarás A, Cabrera-Alarcón JL, Rivero M, Calvo E, Rosa-Moreno M, Vázquez J, Medina M, Enríquez JA. Regulation of respiratory complex I assembly by FMN cofactor targeting. Redox Biol 2024; 69:103001. [PMID: 38145589 PMCID: PMC10767280 DOI: 10.1016/j.redox.2023.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023] Open
Abstract
Respiratory complex I plays a crucial role in the mitochondrial electron transport chain and shows promise as a therapeutic target for various human diseases. While most studies focus on inhibiting complex I at the Q-site, little is known about inhibitors targeting other sites within the complex. In this study, we demonstrate that diphenyleneiodonium (DPI), a N-site inhibitor, uniquely affects the stability of complex I by reacting with its flavin cofactor FMN. Treatment with DPI blocks the final stage of complex I assembly, leading to the complete and reversible degradation of complex I in different cellular models. Growing cells in medium lacking the FMN precursor riboflavin or knocking out the mitochondrial flavin carrier gene SLC25A32 results in a similar complex I degradation. Overall, our findings establish a direct connection between mitochondrial flavin homeostasis and complex I stability and assembly, paving the way for novel pharmacological strategies to regulate respiratory complex I.
Collapse
Affiliation(s)
- Andrea Curtabbi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Adela Guarás
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - José Luis Cabrera-Alarcón
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Maribel Rivero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marina Rosa-Moreno
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
9
|
Santamans AM, Cicuéndez B, Mora A, Villalba-Orero M, Rajlic S, Crespo M, Vo P, Jerome M, Macías Á, López JA, Leiva M, Rocha SF, León M, Rodríguez E, Leiva L, Pintor Chocano A, García Lunar I, García-Álvarez A, Hernansanz-Agustín P, Peinado VI, Barberá JA, Ibañez B, Vázquez J, Spinelli JB, Daiber A, Oliver E, Sabio G. MCJ: A mitochondrial target for cardiac intervention in pulmonary hypertension. SCIENCE ADVANCES 2024; 10:eadk6524. [PMID: 38241373 PMCID: PMC10798563 DOI: 10.1126/sciadv.adk6524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024]
Abstract
Pulmonary hypertension (PH) can affect both pulmonary arterial tree and cardiac function, often leading to right heart failure and death. Despite the urgency, the lack of understanding has limited the development of effective cardiac therapeutic strategies. Our research reveals that MCJ modulates mitochondrial response to chronic hypoxia. MCJ levels elevate under hypoxic conditions, as in lungs of patients affected by COPD, mice exposed to hypoxia, and myocardium from pigs subjected to right ventricular (RV) overload. The absence of MCJ preserves RV function, safeguarding against both cardiac and lung remodeling induced by chronic hypoxia. Cardiac-specific silencing is enough to protect against cardiac dysfunction despite the adverse pulmonary remodeling. Mechanistically, the absence of MCJ triggers a protective preconditioning state mediated by the ROS/mTOR/HIF-1α axis. As a result, it preserves RV systolic function following hypoxia exposure. These discoveries provide a potential avenue to alleviate chronic hypoxia-induced PH, highlighting MCJ as a promising target against this condition.
Collapse
Affiliation(s)
- Ayelén M. Santamans
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Beatriz Cicuéndez
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alfonso Mora
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Oncology Programme, Organ crosstalk in metabolic diseases groupOrgan crosstalk in metabolic diseases group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - María Villalba-Orero
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Sanela Rajlic
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
- Department of Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany
| | - María Crespo
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Paula Vo
- Program in Molecular Medicine, UMass Chan Medical School, Worcester MA 01605
| | - Madison Jerome
- Program in Molecular Medicine, UMass Chan Medical School, Worcester MA 01605
| | - Álvaro Macías
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan Antonio López
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Novel mechanisms of Atherocleroclerosis Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Magdalena Leiva
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Susana F. Rocha
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta León
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Elena Rodríguez
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Oncology Programme, Organ crosstalk in metabolic diseases groupOrgan crosstalk in metabolic diseases group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Luis Leiva
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Oncology Programme, Organ crosstalk in metabolic diseases groupOrgan crosstalk in metabolic diseases group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Aránzazu Pintor Chocano
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Inés García Lunar
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, University Hospital La Moraleja, Madrid, Spain
| | - Ana García-Álvarez
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, Hospital Clínic Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Pablo Hernansanz-Agustín
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Víctor I. Peinado
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC-IDIBAPS), Barcelona, Spain
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joan Albert Barberá
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Borja Ibañez
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Novel mechanisms of Atherocleroclerosis Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jessica B. Spinelli
- Program in Molecular Medicine, UMass Chan Medical School, Worcester MA 01605
- UMass Chan Medical School Cancer Center, Worcester MA 01605
| | - Andreas Daiber
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Eduardo Oliver
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro de Investigaciones biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Guadalupe Sabio
- Cardiovascular Risk Factors and Brain Function Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Molecular Oncology Programme, Organ crosstalk in metabolic diseases groupOrgan crosstalk in metabolic diseases group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| |
Collapse
|
10
|
Binek A, Castans C, Jorge I, Bagwan N, Rodríguez JM, Fernández-Jiménez R, Galán-Arriola C, Oliver E, Gómez M, Clemente-Moragón A, Ibanez B, Camafeita E, Vázquez J. Oxidative Post-translational Protein Modifications upon Ischemia/Reperfusion Injury. Antioxidants (Basel) 2024; 13:106. [PMID: 38247530 PMCID: PMC10812827 DOI: 10.3390/antiox13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
While reperfusion, or restoration of coronary blood flow in acute myocardial infarction, is a requisite for myocardial salvage, it can paradoxically induce a specific damage known as ischemia/reperfusion (I/R) injury. Our understanding of the precise pathophysiological molecular alterations leading to I/R remains limited. In this study, we conducted a comprehensive and unbiased time-course analysis of post-translational modifications (PTMs) in the post-reperfused myocardium of two different animal models (pig and mouse) and evaluated the effect of two different cardioprotective therapies (ischemic preconditioning and neutrophil depletion). In pigs, a first wave of irreversible oxidative damage was observed at the earliest reperfusion time (20 min), impacting proteins essential for cardiac contraction. A second wave, characterized by irreversible oxidation on different residues and reversible Cys oxidation, occurred at late stages (6-12 h), affecting mitochondrial, sarcomere, and inflammation-related proteins. Ischemic preconditioning mitigated the I/R damage caused by the late oxidative wave. In the mouse model, the two-phase pattern of oxidative damage was replicated, and neutrophil depletion mitigated the late wave of I/R-related damage by preventing both Cys reversible oxidation and irreversible oxidation. Altogether, these data identify protein PTMs occurring late after reperfusion as an actionable therapeutic target to reduce the impact of I/R injury.
Collapse
Grants
- PGC2018-097019-B-I00, PID2021-122348NB-I00, PID2022-140176OB-I00 Spanish Ministry of Science, Innovation and Universities
- Fondo de Investigación Sanitaria grant PRB3 PT17/0019/0003- ISCIII-SGEFI / ERDF, ProteoRed Instituto de Salud Carlos III
- IMMUNO-VAR, P2022/BMD-7333, and RENIM-CM, P2022/BMD-7403 Comunidad de Madrid
- HR17-00247, HR22-00533 and HR22-00253 "la Caixa" Banking Foundation
- ERC Consolidator Grant "MATRIX", 819775 European Commission
- grant PI22/01560 ISCIII-Fondo de Investigación Sanitaria and European Union
- FP7-PEOPLE-2013-ITN-Cardionext European Union's Seventh Framework Programme
- Formacion del Profesorado Universitario (FPU14/05292) Spanish Ministry of Education, Culture and Sports
- PID2021-133167OB-100, RYC2020-028884-I, CEX2020-001041-S MCIN/AEI/10.13039/501100011033
Collapse
Affiliation(s)
- Aleksandra Binek
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Celia Castans
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Inmaculada Jorge
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Navratan Bagwan
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - José Manuel Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Cardiology, Hospital Universitario Clínico San Carlos, Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Mónica Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Agustín Clemente-Moragón
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- IIS-Fundación Jiménez Díaz Hospital, Avenida Reyes Católicos, 2, 28040 Madrid, Spain
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
11
|
Romero-Becerra R, Cruz FM, Mora A, Lopez JA, Ponce-Balbuena D, Allan A, Ramos-Mondragón R, González-Terán B, León M, Rodríguez ME, Leiva-Vega L, Guerrero-Serna G, Jimenez-Vazquez EN, Filgueiras-Rama D, Vázquez J, Jalife J, Sabio G. p38γ/δ activation alters cardiac electrical activity and predisposes to ventricular arrhythmia. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1204-1220. [PMID: 39196141 DOI: 10.1038/s44161-023-00368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/19/2023] [Indexed: 08/29/2024]
Abstract
Ventricular fibrillation (VF) is a leading immediate cause of sudden cardiac death. There is a strong association between aging and VF, although the mechanisms are unclear, limiting the availability of targeted therapeutic interventions. Here we found that the stress kinases p38γ and p38δ are activated in the ventricles of old mice and mice with genetic or drug-induced arrhythmogenic conditions. We discovered that, upon activation, p38γ and p38δ cooperatively increase the susceptibility to stress-induced VF. Mechanistically, our data indicate that activated p38γ and p38δ phosphorylate ryanodine receptor 2 (RyR2) disrupt Kv4.3 channel localization, promoting sarcoplasmic reticulum calcium leak, Ito current reduction and action potential duration prolongation. In turn, this led to aberrant intracellular calcium handling, premature ventricular complexes and enhanced susceptibility to VF. Blocking this pathway protected genetically modified animals from VF development and reduced the VF duration in aged animals. These results indicate that p38γ and p38δ are a potential therapeutic target for sustained VF prevention.
Collapse
Affiliation(s)
| | - Francisco M Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan Antonio Lopez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Daniela Ponce-Balbuena
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Allan
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Roberto Ramos-Mondragón
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bárbara González-Terán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Gladstone Institutes, San Francisco, CA, USA
| | - Marta León
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Guadalupe Guerrero-Serna
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Eric N Jimenez-Vazquez
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David Filgueiras-Rama
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
12
|
Santamaría R, Cruz-Caballero J, Gkontra P, Jiménez-Montiel A, Clemente C, López JA, Villalba-Orero M, Vázquez J, Hutloff A, Lara-Pezzi E, Arroyo AG. Capillary pruning couples tissue perfusion and oxygenation with cardiomyocyte maturation in the postnatal mouse heart. Front Cell Dev Biol 2023; 11:1256127. [PMID: 38020883 PMCID: PMC10661946 DOI: 10.3389/fcell.2023.1256127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Removal of poorly perfused capillaries by pruning contributes to remodeling the microvasculature to optimize oxygen and nutrient delivery. Blood flow drives this process by promoting the intravascular migration of endothelial cells in developing networks, such as in the yolk sac, zebrafish brain or postnatal mouse retina. Methods: In this study, we have implemented innovative tools to recognize capillary pruning in the complex 3D coronary microvasculature of the postnatal mouse heart. We have also experimentally tested the impact of decreasing pruning on the structure and function of this network by altering blood flow with two different vasodilators: losartan and prazosin. Results: Although both drugs reduced capillary pruning, a combination of experiments based on ex vivo imaging, proteomics, electron microscopy and in vivo functional approaches showed that losartan treatment resulted in an inefficient coronary network, reduced myocardial oxygenation and metabolic changes that delayed the arrest of cardiomyocyte proliferation, in contrast to the effects of prazosin, probably due to its concomitant promotion of capillary expansion. Discussion: Our work demonstrates that capillary pruning contributes to proper maturation and function of the heart and that manipulation of blood flow may be a novel strategy to refine the microvasculature and improve tissue perfusion after damage.
Collapse
Affiliation(s)
- Ricardo Santamaría
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Polyxeni Gkontra
- Artificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain
| | | | - Cristina Clemente
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Juan A. López
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María Villalba-Orero
- Myocardial Pathology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andreas Hutloff
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
- German Rheumatism Research Centre, A Leibniz Institute, Berlin, Germany
| | - Enrique Lara-Pezzi
- Myocardial Pathology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alicia G. Arroyo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
13
|
Calzada-Fraile D, Iborra S, Ramírez-Huesca M, Jorge I, Dotta E, Hernández-García E, Martín-Cófreces N, Nistal-Villán E, Veiga E, Vázquez J, Pasqual G, Sánchez-Madrid F. Immune synapse formation promotes lipid peroxidation and MHC-I upregulation in licensed dendritic cells for efficient priming of CD8 + T cells. Nat Commun 2023; 14:6772. [PMID: 37880206 PMCID: PMC10600134 DOI: 10.1038/s41467-023-42480-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Antigen cognate dendritic cell (DC)-T cell synaptic interactions drive activation of T cells and instruct DCs. Upon receiving CD4+ T cell help, post-synaptic DCs (psDCs) are licensed to generate CD8+ T cell responses. However, the cellular and molecular mechanisms that enable psDCs licensing remain unclear. Here, we describe that antigen presentation induces an upregulation of MHC-I protein molecules and increased lipid peroxidation on psDCs in vitro and in vivo. We also show that these events mediate DC licensing. In addition, psDC adoptive transfer enhances pathogen-specific CD8+ T responses and protects mice from infection in a CD8+ T cell-dependent manner. Conversely, depletion of psDCs in vivo abrogates antigen-specific CD8+ T cell responses during immunization. Together, our data show that psDCs enable CD8+ T cell responses in vivo during vaccination and reveal crucial molecular events underlying psDC licensing.
Collapse
Affiliation(s)
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | - Inmaculada Jorge
- Centro Nacional de Investigaciones Cardiovasculares, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Enrico Dotta
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Elena Hernández-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Noa Martín-Cófreces
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
- Dynamic Video Microscopy Unit, Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006, Madrid, Spain
| | - Estanislao Nistal-Villán
- Microbiology Section, Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, Boadilla del Monte, 28668, Madrid, Spain
| | - Esteban Veiga
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones Cardiovasculares, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain.
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006, Madrid, Spain.
| |
Collapse
|
14
|
García-Quintáns N, Sacristán S, Márquez-López C, Sánchez-Ramos C, Martinez-de-Benito F, Siniscalco D, González-Guerra A, Camafeita E, Roche-Molina M, Lytvyn M, Morera D, Guillen MI, Sanguino MA, Sanz-Rosa D, Martín-Pérez D, Garcia R, Bernal JA. MYH10 activation rescues contractile defects in arrhythmogenic cardiomyopathy (ACM). Nat Commun 2023; 14:6461. [PMID: 37833253 PMCID: PMC10575922 DOI: 10.1038/s41467-023-41981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The most prevalent genetic form of inherited arrhythmogenic cardiomyopathy (ACM) is caused by mutations in desmosomal plakophilin-2 (PKP2). By studying pathogenic deletion mutations in the desmosomal protein PKP2, here we identify a general mechanism by which PKP2 delocalization restricts actomyosin network organization and cardiac sarcomeric contraction in this untreatable disease. Computational modeling of PKP2 variants reveals that the carboxy-terminal (CT) domain is required for N-terminal domain stabilization, which determines PKP2 cortical localization and function. In mutant PKP2 cells the expression of the interacting protein MYH10 rescues actomyosin disorganization. Conversely, dominant-negative MYH10 mutant expression mimics the pathogenic CT-deletion PKP2 mutant causing actin network abnormalities and right ventricle systolic dysfunction. A chemical activator of non-muscle myosins, 4-hydroxyacetophenone (4-HAP), also restores normal contractility. Our findings demonstrate that activation of MYH10 corrects the deleterious effect of PKP2 mutant over systolic cardiac contraction, with potential implications for ACM therapy.
Collapse
Affiliation(s)
| | - Silvia Sacristán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Fernando Martinez-de-Benito
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - David Siniscalco
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | | | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mariya Lytvyn
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Morera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María I Guillen
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María A Sanguino
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Universidad Europea, Madrid, Spain
| | | | - Ricardo Garcia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
15
|
Abbad-Jaime de Aragón C, Berna-Rico E, Ballester-Martinez MA, Jaén P, Solís J, Barderas MG, Fernández-Friera L, N Mehta N, Gelfand JM, González-Cantero Á. Early Detection and Progression of Subclinical Atherosclerosis in Psoriasis (EDSAP): protocol for an observational, single-centre, prospective cohort study. BMJ Open 2023; 13:e072455. [PMID: 37751953 PMCID: PMC10533786 DOI: 10.1136/bmjopen-2023-072455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023] Open
Abstract
INTRODUCTION Life expectancy of patients with psoriasis is reduced by 4-5 years due to cardiovascular disease with an increased risk of myocardial infarction at an earlier age compared with the general population. This increased risk is independent of traditional cardiovascular risk factors and higher in moderate-to-severe forms of psoriasis. Inflammation may play a key role in the development of atherosclerosis in these patients. METHODS AND ANALYSIS A prospective cohort study, Early Detection and Progression of Subclinical Atherosclerosis in Psoriasis (EDSAP), was initiated in January 2020 to investigate the presence and progression of subclinical atherosclerosis in patients with psoriasis. 120 patients aged 30-65 years and eligible for biological treatment have been recruited at Hospital Ramón y Cajal in Madrid, Spain. Patients undergo a baseline visit, and 1-year follow-up visit after starting biological therapy. Each visit includes: assessment of cardiovascular risk factors, screening for subclinical atherosclerosis by two-dimensional/three-dimensional ultrasound of carotid and femoral arteries, cardiac CT of coronary arteries and blood sampling. All baseline visits were completed by December 2022, and the remaining follow-up visits will be concluded by the end of 2023. The EDSAP study aims to identify new molecular and imaging markers associated with the presence of atherosclerosis and its progression in a chronic inflammatory state such as psoriasis. This has the potential to: (1) help improve primary cardiovascular prevention strategies in these patients; (2) understand the effect of biological drugs on the cardiovascular system; and (3) serve as a model for understanding atherosclerosis in other chronic inflammatory diseases. ETHICS AND DISSEMINATION The study protocol has been approved by the Institutional Review Board of the Hospital Ramón y Cajal in Madrid. We will present our findings at national and international congresses, and peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05858099.
Collapse
Affiliation(s)
| | | | | | - Pedro Jaén
- Dermatology, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Jorge Solís
- Cardiology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Cardiology, Atria Clinic, Madrid, Spain
| | - María G Barderas
- Vascular Physiopathology, Hospital Nacional de Parapléjicos, IDISCAM, Toledo, Spain
| | - Leticia Fernández-Friera
- Cardiology, Atria Clinic, Madrid, Spain
- Centro Integral de Enfermedades Cardiovasculares HM CIEC, HM Hospitales, Madrid, Spain
| | - Nehal N Mehta
- Cardiology, George Washington Medical Center, Washington, DC, USA
| | - Joel M Gelfand
- Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Álvaro González-Cantero
- Dermatology, Hospital Universitario Ramon y Cajal, Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Comunidad de Madrid, Spain
| |
Collapse
|
16
|
Rodríguez-Galán A, Dosil SG, Hrčková A, Fernández-Messina L, Feketová Z, Pokorná J, Fernández-Delgado I, Camafeita E, Gómez MJ, Ramírez-Huesca M, Gutiérrez-Vázquez C, Sánchez-Cabo F, Vázquez J, Vaňáčová Š, Sánchez-Madrid F. ISG20L2: an RNA nuclease regulating T cell activation. Cell Mol Life Sci 2023; 80:273. [PMID: 37646974 PMCID: PMC10468436 DOI: 10.1007/s00018-023-04925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
ISG20L2, a 3' to 5' exoribonuclease previously associated with ribosome biogenesis, is identified here in activated T cells as an enzyme with a preferential affinity for uridylated miRNA substrates. This enzyme is upregulated in T lymphocytes upon TCR and IFN type I stimulation and appears to be involved in regulating T cell function. ISG20L2 silencing leads to an increased basal expression of CD69 and induces greater IL2 secretion. However, ISG20L2 absence impairs CD25 upregulation, CD3 synaptic accumulation and MTOC translocation towards the antigen-presenting cell during immune synapsis. Remarkably, ISG20L2 controls the expression of immunoregulatory molecules, such as AHR, NKG2D, CTLA-4, CD137, TIM-3, PD-L1 or PD-1, which show increased levels in ISG20L2 knockout T cells. The dysregulation observed in these key molecules for T cell responses support a role for this exonuclease as a novel RNA-based regulator of T cell function.
Collapse
Affiliation(s)
- Ana Rodríguez-Galán
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara G Dosil
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Anna Hrčková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lola Fernández-Messina
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Zuzana Feketová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Julie Pokorná
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Irene Fernández-Delgado
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Emilio Camafeita
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Manuel José Gómez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta Ramírez-Huesca
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Gutiérrez-Vázquez
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Štěpánka Vaňáčová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Francisco Sánchez-Madrid
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
17
|
Paredes A, Justo-Méndez R, Jiménez-Blasco D, Núñez V, Calero I, Villalba-Orero M, Alegre-Martí A, Fischer T, Gradillas A, Sant'Anna VAR, Were F, Huang Z, Hernansanz-Agustín P, Contreras C, Martínez F, Camafeita E, Vázquez J, Ruiz-Cabello J, Area-Gómez E, Sánchez-Cabo F, Treuter E, Bolaños JP, Estébanez-Perpiñá E, Rupérez FJ, Barbas C, Enríquez JA, Ricote M. γ-Linolenic acid in maternal milk drives cardiac metabolic maturation. Nature 2023; 618:365-373. [PMID: 37225978 DOI: 10.1038/s41586-023-06068-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/11/2023] [Indexed: 05/26/2023]
Abstract
Birth presents a metabolic challenge to cardiomyocytes as they reshape fuel preference from glucose to fatty acids for postnatal energy production1,2. This adaptation is triggered in part by post-partum environmental changes3, but the molecules orchestrating cardiomyocyte maturation remain unknown. Here we show that this transition is coordinated by maternally supplied γ-linolenic acid (GLA), an 18:3 omega-6 fatty acid enriched in the maternal milk. GLA binds and activates retinoid X receptors4 (RXRs), ligand-regulated transcription factors that are expressed in cardiomyocytes from embryonic stages. Multifaceted genome-wide analysis revealed that the lack of RXR in embryonic cardiomyocytes caused an aberrant chromatin landscape that prevented the induction of an RXR-dependent gene expression signature controlling mitochondrial fatty acid homeostasis. The ensuing defective metabolic transition featured blunted mitochondrial lipid-derived energy production and enhanced glucose consumption, leading to perinatal cardiac dysfunction and death. Finally, GLA supplementation induced RXR-dependent expression of the mitochondrial fatty acid homeostasis signature in cardiomyocytes, both in vitro and in vivo. Thus, our study identifies the GLA-RXR axis as a key transcriptional regulatory mechanism underlying the maternal control of perinatal cardiac metabolism.
Collapse
Affiliation(s)
- Ana Paredes
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Raquel Justo-Méndez
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Daniel Jiménez-Blasco
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Vanessa Núñez
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Irene Calero
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Villalba-Orero
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Medicina y Cirugía Animal, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Andrea Alegre-Martí
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Thierry Fischer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB/CSIC), Campus Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | | | - Felipe Were
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Pablo Hernansanz-Agustín
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carmen Contreras
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Fernando Martínez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Emilio Camafeita
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Ruiz-Cabello
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense Madrid (UCM), Madrid, Spain
| | - Estela Area-Gómez
- Departament of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Department of Neurology, Columbia University Medical Campus, New York, NY, USA
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Eckardt Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Juan Pedro Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca, CSIC, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Eva Estébanez-Perpiñá
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Francisco Javier Rupérez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - José Antonio Enríquez
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Mercedes Ricote
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
18
|
Fernández-Chacón M, Mühleder S, Regano A, Garcia-Ortega L, Rocha SF, Torroja C, Sanchez-Muñoz MS, Lytvyn M, Casquero-Garcia V, De Andrés-Laguillo M, Muhl L, Orlich MM, Gaengel K, Camafeita E, Vázquez J, Benguría A, Iruela-Arispe ML, Dopazo A, Sánchez-Cabo F, Carter H, Benedito R. Incongruence between transcriptional and vascular pathophysiological cell states. NATURE CARDIOVASCULAR RESEARCH 2023; 2:2023530-549. [PMID: 37745941 PMCID: PMC7615119 DOI: 10.1038/s44161-023-00272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/19/2023] [Indexed: 09/26/2023]
Abstract
The Notch pathway is a major regulator of endothelial transcriptional specification. Targeting the Notch receptors or Delta-like ligand 4 (Dll4) dysregulates angiogenesis. Here, by analyzing single and compound genetic mutants for all Notch signaling members, we find significant differences in the way ligands and receptors regulate liver vascular homeostasis. Loss of Notch receptors caused endothelial hypermitogenic cell-cycle arrest and senescence. Conversely, Dll4 loss triggered a strong Myc-driven transcriptional switch inducing endothelial proliferation and the tip-cell state. Myc loss suppressed the induction of angiogenesis in the absence of Dll4, without preventing the vascular enlargement and organ pathology. Similarly, inhibition of other pro-angiogenic pathways, including MAPK/ERK and mTOR, had no effect on the vascular expansion induced by Dll4 loss; however, anti-VEGFA treatment prevented it without fully suppressing the transcriptional and metabolic programs. This study shows incongruence between single-cell transcriptional states, vascular phenotypes and related pathophysiology. Our findings also suggest that the vascular structure abnormalization, rather than neoplasms, causes the reported anti-Dll4 antibody toxicity.
Collapse
Affiliation(s)
- Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Faculty of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alvaro Regano
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lourdes Garcia-Ortega
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Susana F. Rocha
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Maria S. Sanchez-Muñoz
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mariya Lytvyn
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Verónica Casquero-Garcia
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Macarena De Andrés-Laguillo
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lars Muhl
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Michael M. Orlich
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Emilio Camafeita
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alberto Benguría
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - M. Luisa Iruela-Arispe
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ana Dopazo
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
19
|
Vilaboa N, Lopez JA, de Mesa M, Escudero-Duch C, Winfield N, Bayford M, Voellmy R. Disruption of Proteostasis by Natural Products and Synthetic Compounds That Induce Pervasive Unfolding of Proteins: Therapeutic Implications. Pharmaceuticals (Basel) 2023; 16:ph16040616. [PMID: 37111374 PMCID: PMC10145903 DOI: 10.3390/ph16040616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure of many cancer cells, including multiple myeloma cells, to cytotoxic concentrations of natural products celastrol and withaferin A or synthetic compounds of the IHSF series resulted in denaturation of a luciferase reporter protein. Proteomic analysis of detergent-insoluble extract fractions from HeLa-derived cells revealed that withaferin A, IHSF058 and IHSF115 caused denaturation of 915, 722 and 991 of 5132 detected cellular proteins, respectively, of which 440 were targeted by all three compounds. Western blots showed that important fractions of these proteins, in some cases approaching half of total protein amounts, unfolded. Relatively indiscriminate covalent modification of target proteins was observed; 1178 different proteins were modified by IHSF058. Further illustrating the depth of the induced proteostasis crisis, only 13% of these proteins detectably aggregated, and 79% of the proteins that aggregated were not targets of covalent modification. Numerous proteostasis network components were modified and/or found in aggregates. Proteostasis disruption caused by the study compounds may be more profound than that mediated by proteasome inhibitors. The compounds act by a different mechanism that may be less susceptible to resistance development. Multiple myeloma cells were particularly sensitive to the compounds. Development of an additional proteostasis-disrupting therapy of multiple myeloma is suggested.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - Juan Antonio Lopez
- Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, CIBERCV, 28029 Madrid, Spain
| | - Marco de Mesa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| | - Clara Escudero-Duch
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - Natalie Winfield
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Essex, Saffron Walden CB10 1XL, UK
| | - Melanie Bayford
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Essex, Saffron Walden CB10 1XL, UK
| | | |
Collapse
|
20
|
Albert M, Vázquez J, Falcón-Pérez JM, Balboa MA, Liesa M, Balsinde J, Guerra S. ISG15 Is a Novel Regulator of Lipid Metabolism during Vaccinia Virus Infection. Microbiol Spectr 2022; 10:e0389322. [PMID: 36453897 PMCID: PMC9769738 DOI: 10.1128/spectrum.03893-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Interferon-stimulated gene 15 (ISG15) is a 15-kDa ubiquitin-like modifier that binds to target proteins in a process termed ISGylation. ISG15, first described as an antiviral molecule against many viruses, participates in numerous cellular processes, from immune modulation to the regulation of genome stability. Interestingly, the role of ISG15 as a regulator of cell metabolism has recently gained strength. We previously described ISG15 as a regulator of mitochondrial functions in bone marrow-derived macrophages (BMDMs) in the context of Vaccinia virus (VACV) infection. Here, we demonstrate that ISG15 regulates lipid metabolism in BMDMs and that ISG15 is necessary to modulate the impact of VACV infection on lipid metabolism. We show that Isg15-/- BMDMs demonstrate alterations in the levels of several key proteins of lipid metabolism that result in differences in the lipid profile compared with Isg15+/+ (wild-type [WT]) BMDMs. Specifically, Isg15-/- BMDMs present reduced levels of neutral lipids, reflected by decreased lipid droplet number. These alterations are linked to increased levels of lipases and are independent of enhanced fatty acid oxidation (FAO). Moreover, we demonstrate that VACV causes a dysregulation in the proteomes of BMDMs and alterations in the lipid content of these cells, which appear exacerbated in Isg15-/- BMDMs. Such metabolic changes are likely caused by increased expression of the metabolic regulators peroxisome proliferator-activated receptor-γ (PPARγ) and PPARγ coactivator-1α (PGC-1α). In summary, our results highlight that ISG15 controls BMDM lipid metabolism during viral infections, suggesting that ISG15 is an important host factor to restrain VACV impact on cell metabolism. IMPORTANCE The functions of ISG15 are continuously expanding, and growing evidence supports its role as a relevant modulator of cell metabolism. In this work, we highlight how the absence of ISG15 impacts macrophage lipid metabolism in the context of viral infections and how poxviruses modulate metabolism to ensure successful replication. Our results open the door to new advances in the comprehension of macrophage immunometabolism and the interaction between VACV and the host.
Collapse
Affiliation(s)
- Manuel Albert
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | | | - María A. Balboa
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología y Genética Molecular, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Liesa
- Department of Medicine, Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Institut de Biologia Molecular de Barcelona, IBMB, CSIC, Barcelona, Spain
| | - Jesús Balsinde
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología y Genética Molecular, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
21
|
Etourneau L, Burger T. Challenging Targets or Describing Mismatches? A Comment on Common Decoy Distribution by Madej et al. J Proteome Res 2022; 21:2840-2845. [PMID: 36305797 DOI: 10.1021/acs.jproteome.2c00279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In their recent article, Madej et al. (Madej, D.; Wu, L.; Lam, H.Common Decoy Distributions Simplify False Discovery Rate Estimation in Shotgun Proteomics. J. Proteome Res.2022, 21 (2), 339-348) proposed an original way to solve the recurrent issue of controlling for the false discovery rate (FDR) in peptide-spectrum-match (PSM) validation. Briefly, they proposed to derive a single precise distribution of decoy matches termed the Common Decoy Distribution (CDD) and to use it to control for FDR during a target-only search. Conceptually, this approach is appealing as it takes the best of two worlds, i.e., decoy-based approaches (which leverage a large-scale collection of empirical mismatches) and decoy-free approaches (which are not subject to the randomness of decoy generation while sparing an additional database search). Interestingly, CDD also corresponds to a middle-of-the-road approach in statistics with respect to the two main families of FDR control procedures: Although historically based on estimating the false-positive distribution, FDR control has recently been demonstrated to be possible thanks to competition between the original variables (in proteomics, target sequences) and their fictional counterparts (in proteomics, decoys). Discriminating between these two theoretical trends is of prime importance for computational proteomics. In addition to highlighting why proteomics was a source of inspiration for theoretical biostatistics, it provides practical insights into the improvements that can be made to FDR control methods used in proteomics, including CDD.
Collapse
Affiliation(s)
- Lucas Etourneau
- Univ. Grenoble Alpes, CNRS, CEA, Inserm, ProFI, FR2048Grenoble, France
| | - Thomas Burger
- Univ. Grenoble Alpes, CNRS, CEA, Inserm, ProFI, FR2048Grenoble, France
| |
Collapse
|
22
|
Sánchez-Castillo C, Cuartero MI, Fernández-Rodrigo A, Briz V, López-García S, Jiménez-Sánchez R, López JA, Graupera M, Esteban JA. Functional specialization of different PI3K isoforms for the control of neuronal architecture, synaptic plasticity, and cognition. SCIENCE ADVANCES 2022; 8:eabq8109. [PMID: 36417513 PMCID: PMC9683729 DOI: 10.1126/sciadv.abq8109] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Neuronal connectivity and activity-dependent synaptic plasticity are fundamental properties that support brain function and cognitive performance. Phosphatidylinositol 3-kinase (PI3K) intracellular signaling controls multiple mechanisms mediating neuronal growth, synaptic structure, and plasticity. However, it is still unclear how these pleiotropic functions are integrated at molecular and cellular levels. To address this issue, we used neuron-specific virally delivered Cre expression to delete either p110α or p110β (the two major catalytic isoforms of type I PI3K) from the hippocampus of adult mice. We found that dendritic and postsynaptic structures are almost exclusively supported by p110α activity, whereas p110β controls neurotransmitter release and metabotropic glutamate receptor-dependent long-term depression at the presynaptic terminal. In addition to these separate functions, p110α and p110β jointly contribute to N-methyl-d-aspartate receptor-dependent postsynaptic long-term potentiation. This molecular and functional specialization is reflected in different proteomes controlled by each isoform and in distinct behavioral alterations for learning/memory and sociability in mice lacking p110α or p110β.
Collapse
Affiliation(s)
- Carla Sánchez-Castillo
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - María I. Cuartero
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Alba Fernández-Rodrigo
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Víctor Briz
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Sergio López-García
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Raquel Jiménez-Sánchez
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Juan A. López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - José A. Esteban
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| |
Collapse
|
23
|
Alvarez MS, Núñez E, Fuertes-Agudo M, Cucarella C, Fernandez-Velasco M, Boscá L, Vázquez J, Rossignol R, Martin-Sanz P, Casado M. Quantitative Proteomics Analysis Reveals That Cyclooxygenase-2 Modulates Mitochondrial Respiratory Chain Complex IV in Cardiomyocytes. Int J Mol Sci 2022; 23:13476. [PMID: 36362254 PMCID: PMC9655412 DOI: 10.3390/ijms232113476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 10/10/2023] Open
Abstract
The biochemical mechanisms of cell injury and myocardial cell death after myocardial infarction remain unresolved. Cyclooxygenase 2 (COX-2), a key enzyme in prostanoid synthesis, is expressed in human ischemic myocardium and dilated cardiomyopathy, but it is absent in healthy hearts. To assess the role of COX-2 in cardiovascular physiopathology, we developed transgenic mice that constitutively express functional human COX-2 in cardiomyocytes under the control of the α-myosin heavy chain promoter. These animals had no apparent phenotype but were protected against ischemia-reperfusion injury in isolated hearts, with enhanced functional recovery and diminished cellular necrosis. To further explore the phenotype of this animal model, we carried out a differential proteome analysis of wild-type vs. transgenic cardiomyocytes. The results revealed a tissue-specific proteomic profile dominated by mitochondrial proteins. In particular, an increased expression of respiratory chain complex IV proteins was observed. This correlated with increased catalytic activity, enhanced respiratory capacity, and increased ATP levels in the heart of COX-2 transgenic mice. These data suggest a new link between COX-2 and mitochondria, which might contribute to the protective cardiac effects of COX-2 against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Maria Soledad Alvarez
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain
| | - Estefanía Núñez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Marina Fuertes-Agudo
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Carme Cucarella
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Maria Fernandez-Velasco
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, IDIPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Lisardo Boscá
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Rodrigue Rossignol
- Laboratoire Maladies Rares, CHU Pellegrin Place Amelie Rab, 33076 Bordeaux, France
| | - Paloma Martin-Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
24
|
Quantification of Farnesylated Progerin in Hutchinson-Gilford Progeria Patient Cells by Mass Spectrometry. Int J Mol Sci 2022; 23:ijms231911733. [PMID: 36233036 PMCID: PMC9569443 DOI: 10.3390/ijms231911733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal disorder characterized by premature aging and death at a median age of 14.5 years. The most common cause of HGPS (affecting circa 90% of patients) is a de novo heterozygous synonymous single-base substitution (c.1824C>T; p.G608G) in the LMNA gene that results in the accumulation of progerin, an aberrant form of lamin A that, unlike mature lamin A, remains permanently farnesylated. The ratio of progerin to mature lamin A correlates with disease severity in HGPS patients, and can be used to assess the effectiveness of therapies aimed at lessening aberrant splicing or progerin farnesylation. We recently showed that the endogenous content of lamin A and progerin can be measured by mass spectrometry (MS), providing an alternative to immunological methods, which lack the necessary specificity and quantitative accuracy. Here, we present the first non-immunological method that reliably quantifies the levels of wild-type lamin A and farnesylated progerin in cells from HGPS patients. This method, which is based on a targeted MS approach and the use of isotope-labeled internal standards, could be applied in ongoing clinical trials evaluating the efficacy of drugs that inhibit progerin farnesylation.
Collapse
|
25
|
Polo-Generelo S, Torres B, Guerrero-Martínez JA, Camafeita E, Vázquez J, Reyes JC, Pintor-Toro JA. TGF-β-Upregulated Lnc-Nr6a1 Acts as a Reservoir of miR-181 and Mediates Assembly of a Glycolytic Complex. Noncoding RNA 2022; 8:ncrna8050062. [PMID: 36136852 PMCID: PMC9498520 DOI: 10.3390/ncrna8050062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as key regulators in a wide range of biological processes. Here, we identified a mouse miRNA-host gene lncRNA (lnc-Nr6a1) upregulated early during epithelial-to-mesenchymal transition (EMT). We show that when lncRNA is processed, it gives rise to two abundant polyadenylated isoforms, lnc-Nr6a1-1 and lnc-Nr6a1-2, and a longer non-polyadenylated microprocessor-driven lnc-pri-miRNA containing clustered pre-miR-181a2 and pre-miR-181b2 hairpins. Ectopic expression of the lnc-Nr6a1-1 or lnc-Nr6a1-2 isoform enhanced cell migration and the invasive capacity of the cells, whereas the expression of the isoforms and miR-181a2 and miR-181b2 conferred anoikis resistance. Lnc-Nr6a1 gene deletion resulted in cells with lower adhesion capacity and reduced glycolytic metabolism, which are restored by lnc-Nr6a1-1 isoform expression. We performed identification of direct RNA interacting proteins (iDRIP) to identify proteins interacting directly with the lnc-Nr6a1-1 isoform. We defined a network of interacting proteins, including glycolytic enzymes, desmosome proteins and chaperone proteins; and we demonstrated that the lnc-Nr6a1-1 isoform directly binds and acts as a scaffold molecule for the assembly of ENO1, ALDOA, GAPDH, and PKM glycolytic enzymes, along with LDHA, supporting substrate channeling for efficient glycolysis. Our results unveil a role of Lnc-Nr6a1 as a multifunctional lncRNA acting as a backbone for multiprotein complex formation and primary microRNAs.
Collapse
Affiliation(s)
- Salvador Polo-Generelo
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
| | - Belén Torres
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
| | - José A. Guerrero-Martínez
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
| | - Emilio Camafeita
- Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José C. Reyes
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
| | - José A. Pintor-Toro
- Department of Cell Signalling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), 41092 Sevilla, Spain
- Correspondence: ; Tel.: +34-954467995
| |
Collapse
|
26
|
Izquierdo-Serrano R, Fernández-Delgado I, Moreno-Gonzalo O, Martín-Gayo E, Calzada-Fraile D, Ramírez-Huesca M, Jorge I, Camafeita E, Abián J, Vicente-Manzanares M, Veiga E, Vázquez J, Sánchez-Madrid F. Extracellular vesicles from Listeria monocytogenes-infected dendritic cells alert the innate immune response. Front Immunol 2022; 13:946358. [PMID: 36131943 PMCID: PMC9483171 DOI: 10.3389/fimmu.2022.946358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Communication through cell-cell contacts and extracellular vesicles (EVs) enables immune cells to coordinate their responses against diverse types of pathogens. The function exerted by EVs in this context depends on the proteins and nucleic acids loaded into EVs, which elicit specific responses involved in the resolution of infection. Several mechanisms control protein and nucleic acid loading into EVs; in this regard, acetylation has been described as a mechanism of cellular retention during protein sorting to exosomes. HDAC6 is a deacetylase involved in the control of cytoskeleton trafficking, organelle polarity and cell migration, defense against Listeria monocytogenes (Lm) infection and other immune related functions. Here, we show that the protein content of dendritic cells (DCs) and their secreted EVs (DEVs) vary during Lm infection, is enriched in proteins related to antiviral functions compared to non-infected cells and depends on HDAC6 expression. Analyses of the post-translational modifications revealed an alteration of the acetylation and ubiquitination profiles upon Lm infection both in DC lysates and DEVs. Functionally, EVs derived from infected DCs upregulate anti-pathogenic genes (e.g. inflammatory cytokines) in recipient immature DCs, which translated into protection from subsequent infection with vaccinia virus. Interestingly, absence of Listeriolysin O in Lm prevents DEVs from inducing this anti-viral state. In summary, these data underscore a new mechanism of communication between bacteria-infected DC during infection as they alert neighboring, uninfected DCs to promote antiviral responses.
Collapse
Affiliation(s)
- Raúl Izquierdo-Serrano
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Irene Fernández-Delgado
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Department of Immunology, Instituto Investigación Sanitaria Hospital Universitario La Princesa (IIS-HUP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Olga Moreno-Gonzalo
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Department of Immunology, Instituto Investigación Sanitaria Hospital Universitario La Princesa (IIS-HUP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Enrique Martín-Gayo
- Department of Immunology, Instituto Investigación Sanitaria Hospital Universitario La Princesa (IIS-HUP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Diego Calzada-Fraile
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Marta Ramírez-Huesca
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Department of Immunology, Instituto Investigación Sanitaria Hospital Universitario La Princesa (IIS-HUP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Inmaculada Jorge
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Emilio Camafeita
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Joaquín Abián
- Biological and Environmental Proteomics, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain
| | - Esteban Veiga
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Jesús Vázquez
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Department of Immunology, Instituto Investigación Sanitaria Hospital Universitario La Princesa (IIS-HUP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- *Correspondence: Francisco Sánchez-Madrid,
| |
Collapse
|
27
|
El Abdellaoui-Soussi F, Yunes-Leites PS, López-Maderuelo D, García-Marqués F, Vázquez J, Redondo JM, Gómez-del Arco P. Interplay between the Chd4/NuRD Complex and the Transcription Factor Znf219 Control Cardiac Cell Identity. Int J Mol Sci 2022; 23:ijms23179565. [PMID: 36076959 PMCID: PMC9455175 DOI: 10.3390/ijms23179565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The sarcomere regulates striated muscle contraction. This structure is composed of several myofibril proteins, isoforms of which are encoded by genes specific to either the heart or skeletal muscle. The chromatin remodeler complex Chd4/NuRD regulates the transcriptional expression of these specific sarcomeric programs by repressing genes of the skeletal muscle sarcomere in the heart. Aberrant expression of skeletal muscle genes induced by the loss of Chd4 in the heart leads to sudden death due to defects in cardiomyocyte contraction that progress to arrhythmia and fibrosis. Identifying the transcription factors (TFs) that recruit Chd4/NuRD to repress skeletal muscle genes in the myocardium will provide important information for understanding numerous cardiac pathologies and, ultimately, pinpointing new therapeutic targets for arrhythmias and cardiomyopathies. Here, we sought to find Chd4 interactors and their function in cardiac homeostasis. We therefore describe a physical interaction between Chd4 and the TF Znf219 in cardiac tissue. Znf219 represses the skeletal-muscle sarcomeric program in cardiomyocytes in vitro and in vivo, similarly to Chd4. Aberrant expression of skeletal-muscle sarcomere proteins in mouse hearts with knocked down Znf219 translates into arrhythmias, accompanied by an increase in PR interval. These data strongly suggest that the physical and genetic interaction of Znf219 and Chd4 in the mammalian heart regulates cardiomyocyte identity and myocardial contraction.
Collapse
Affiliation(s)
- Fadoua El Abdellaoui-Soussi
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Paula S. Yunes-Leites
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Dolores López-Maderuelo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Fernando García-Marqués
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Pablo Gómez-del Arco
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
28
|
Nuñez E, Orera I, Carmona-Rodríguez L, Paño JR, Vázquez J, Corrales FJ. Mapping the Serum Proteome of COVID-19 Patients; Guidance for Severity Assessment. Biomedicines 2022; 10:1690. [PMID: 35884998 PMCID: PMC9313396 DOI: 10.3390/biomedicines10071690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), whose outbreak in 2019 led to an ongoing pandemic with devastating consequences for the global economy and human health. According to the World Health Organization, COVID-19 has affected more than 481 million people worldwide, with 6 million confirmed deaths. The joint efforts of the scientific community have undoubtedly increased the pace of production of COVID-19 vaccines, but there is still so much uncharted ground to cover regarding the mechanisms of SARS-CoV-2 infection, replication and host response. These issues can be approached by proteomics with unprecedented capacity paving the way for the development of more efficient strategies for patient care. In this study, we present a deep proteome analysis that has been performed on a cohort of 72 COVID-19 patients aiming to identify serum proteins assessing the dynamics of the disease at different age ranges. A panel of 53 proteins that participate in several functions such as acute-phase response and inflammation, blood coagulation, cell adhesion, complement cascade, endocytosis, immune response, oxidative stress and tissue injury, have been correlated with patient severity, suggesting a molecular basis for their clinical stratification. Eighteen protein candidates were further validated by targeted proteomics in an independent cohort of 84 patients including a group of individuals that had satisfactorily resolved SARS-CoV-2 infection. Remarkably, all protein alterations were normalized 100 days after leaving the hospital, which further supports the reliability of the selected proteins as hallmarks of COVID-19 progression and grading. The optimized protein panel may prove its value for optimal severity assessment as well as in the follow up of COVID-19 patients.
Collapse
Affiliation(s)
- Estefanía Nuñez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Cardiovascular Proteomics Laboratory, Centro Nacional de Enfermedades Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Irene Orera
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain;
| | | | - José Ramón Paño
- Division of Infectious Diseases, Hospital Clínico Universitario, IIS Aragón, Ciberinfec, 50009 Zaragoza, Spain;
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Cardiovascular Proteomics Laboratory, Centro Nacional de Enfermedades Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Fernando J. Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain;
| |
Collapse
|
29
|
Jorge I, Ruiz V, Lavado-García J, Vázquez J, Hayashi C, Rojo FJ, Atienza JM, Elices M, Guinea GV, Pérez-Rigueiro J. Expression of spidroin proteins in the silk glands of golden orb-weaver spiders. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:241-253. [PMID: 34981640 DOI: 10.1002/jez.b.23117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The expression of spidroins in the major ampullate, minor ampullate, flagelliform, and tubuliform silk glands of Trichonephila clavipes spiders was analyzed using proteomics analysis techniques. Spidroin peptides were identified and assigned to different gene products based on sequence concurrence when compared with the whole genome of the spider. It was found that only a relatively low proportion of the spidroin genes are expressed as proteins in any of the studied glands. In addition, the expression of spidroin genes in different glands presents a wide range of patterns, with some spidroins being found in a single gland exclusively, while others appear in the content of several glands. The combination of precise genomics, proteomics, microstructural, and mechanical data provides new insights both on the design principles of these materials and how these principles might be translated for the production of high-performance bioinspired artificial fibers.
Collapse
Affiliation(s)
- Inmaculada Jorge
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Víctor Ruiz
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Jesús Lavado-García
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departament d'Enginyeria Química, Grup d'Enginyeria Cel·lular i de Bioprocessos (GECIB), Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Cheryl Hayashi
- Division of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, USA
| | - Francisco J Rojo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - José M Atienza
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Elices
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
30
|
Heil LR, Fondrie WE, McGann CD, Federation AJ, Noble WS, MacCoss MJ, Keich U. Building Spectral Libraries from Narrow-Window Data-Independent Acquisition Mass Spectrometry Data. J Proteome Res 2022; 21:1382-1391. [PMID: 35549345 DOI: 10.1021/acs.jproteome.1c00895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advances in library-based methods for peptide detection from data-independent acquisition (DIA) mass spectrometry have made it possible to detect and quantify tens of thousands of peptides in a single mass spectrometry run. However, many of these methods rely on a comprehensive, high-quality spectral library containing information about the expected retention time and fragmentation patterns of peptides in the sample. Empirical spectral libraries are often generated through data-dependent acquisition and may suffer from biases as a result. Spectral libraries can be generated in silico, but these models are not trained to handle all possible post-translational modifications. Here, we propose a false discovery rate-controlled spectrum-centric search workflow to generate spectral libraries directly from gas-phase fractionated DIA tandem mass spectrometry data. We demonstrate that this strategy is able to detect phosphorylated peptides and can be used to generate a spectral library for accurate peptide detection and quantitation in wide-window DIA data. We compare the results of this search workflow to other library-free approaches and demonstrate that our search is competitive in terms of accuracy and sensitivity. These results demonstrate that the proposed workflow has the capacity to generate spectral libraries while avoiding the limitations of other methods.
Collapse
Affiliation(s)
- Lilian R Heil
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - William E Fondrie
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Christopher D McGann
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Alexander J Federation
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States.,Paul G. Allen School for Computer Science and Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Uri Keich
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
31
|
Roldán-Montero R, Pérez-Sáez JM, Cerro-Pardo I, Oller J, Martinez-Lopez D, Nuñez E, Maller SM, Gutierrez-Muñoz C, Mendez-Barbero N, Escola-Gil JC, Michel JB, Mittelbrunn M, Vázquez J, Blanco-Colio LM, Rabinovich GA, Martin-Ventura JL. Galectin-1 prevents pathological vascular remodeling in atherosclerosis and abdominal aortic aneurysm. SCIENCE ADVANCES 2022; 8:eabm7322. [PMID: 35294231 PMCID: PMC8926342 DOI: 10.1126/sciadv.abm7322] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pathological vascular remodeling is the underlying cause of atherosclerosis and abdominal aortic aneurysm (AAA). Here, we analyzed the role of galectin-1 (Gal-1), a β-galactoside-binding protein, as a therapeutic target for atherosclerosis and AAA. Mice lacking Gal-1 (Lgals1-/-) developed severe atherosclerosis induced by pAAV/D377Y-mPCSK9 adenovirus and displayed higher lipid levels and lower expression of contractile markers of vascular smooth muscle cells (VSMCs) in plaques than wild-type mice. Proteomic analysis of Lgals1-/- aortas showed changes in markers of VSMC phenotypic switch and altered composition of mitochondrial proteins. Mechanistically, Gal-1 silencing resulted in increased foam cell formation and mitochondrial dysfunction in VSMCs, while treatment with recombinant Gal-1 (rGal-1) prevented these effects. Furthermore, rGal-1 treatment attenuated atherosclerosis and elastase-induced AAA, leading to higher contractile VSMCs in aortic tissues. Gal-1 expression decreased in human atheroma and AAA compared to control tissue. Thus, Gal-1-driven circuits emerge as potential therapeutic strategies in atherosclerosis and AAA.
Collapse
Affiliation(s)
- Raquel Roldán-Montero
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan M. Pérez-Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Isabel Cerro-Pardo
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
| | - Jorge Oller
- Centro de Biología Molecular Severo Ochoa, Centro Superior de Investigaciones Científicas-UAM, Madrid, Spain
- Instituto de Investigación del Hospital 12 de Octubre, Madrid, Spain
| | | | - Estefania Nuñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Sebastian M. Maller
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | | | - Nerea Mendez-Barbero
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Maria Mittelbrunn
- Centro de Biología Molecular Severo Ochoa, Centro Superior de Investigaciones Científicas-UAM, Madrid, Spain
- Instituto de Investigación del Hospital 12 de Octubre, Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Luis M. Blanco-Colio
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428AGE Buenos Aires, Argentina
- Corresponding author. (J.L.M.-V.); (G.A.R.)
| | - Jose L. Martin-Ventura
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Corresponding author. (J.L.M.-V.); (G.A.R.)
| |
Collapse
|
32
|
García-García M, Sánchez-Perales S, Jarabo P, Calvo E, Huyton T, Fu L, Ng SC, Sotodosos-Alonso L, Vázquez J, Casas-Tintó S, Görlich D, Echarri A, Del Pozo MA. Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP. Nat Commun 2022; 13:1174. [PMID: 35246520 PMCID: PMC8897400 DOI: 10.1038/s41467-022-28693-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Mechanical forces regulate multiple essential pathways in the cell. The nuclear translocation of mechanoresponsive transcriptional regulators is an essential step for mechanotransduction. However, how mechanical forces regulate the nuclear import process is not understood. Here, we identify a highly mechanoresponsive nuclear transport receptor (NTR), Importin-7 (Imp7), that drives the nuclear import of YAP, a key regulator of mechanotransduction pathways. Unexpectedly, YAP governs the mechanoresponse of Imp7 by forming a YAP/Imp7 complex that responds to mechanical cues through the Hippo kinases MST1/2. Furthermore, YAP behaves as a dominant cargo of Imp7, restricting the Imp7 binding and the nuclear translocation of other Imp7 cargoes such as Smad3 and Erk2. Thus, the nuclear import process is an additional regulatory layer indirectly regulated by mechanical cues, which activate a preferential Imp7 cargo, YAP, which competes out other cargoes, resulting in signaling crosstalk. The translation of mechanical cues into gene expression changes is dependent on the nuclear import of mechanoresponsive transcriptional regulators. Here the authors identify that Importin-7 drives the nuclear import of one such regulator YAP while YAP then controls Importin-7 response to mechanical cues and restricts Importin-7 binding to other cargoes.
Collapse
Affiliation(s)
- María García-García
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Sara Sánchez-Perales
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Patricia Jarabo
- Instituto Cajal-CSIC, Avda. Doctor Arce, 37, 28002, Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit. Area of Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Liran Fu
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Sheung Chun Ng
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Laura Sotodosos-Alonso
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Jesús Vázquez
- Proteomics Unit. Area of Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
33
|
Lechuga-Vieco AV, Latorre-Pellicer A, Calvo E, Torroja C, Pellico J, Acín-Pérez R, García-Gil ML, Santos A, Bagwan N, Bonzon-Kulichenko E, Magni R, Benito M, Justo-Méndez R, Simon AK, Sánchez-Cabo F, Vázquez J, Ruíz-Cabello J, Enríquez JA. Heteroplasmy of Wild Type Mitochondrial DNA Variants in Mice Causes Metabolic Heart Disease With Pulmonary Hypertension and Frailty. Circulation 2022; 145:1084-1101. [PMID: 35236094 PMCID: PMC8969846 DOI: 10.1161/circulationaha.121.056286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: In most eukaryotic cells, the mitochondrial DNA (mtDNA) is uniparentally transmitted and present in multiple copies derived from the clonal expansion of maternally inherited mtDNA. All copies are therefore near-identical, or homoplasmic. The presence of more than one mtDNA variant in the same cytoplasm can arise naturally or result from new medical technologies aimed at preventing mitochondrial genetic diseases and improving fertility. The latter is called divergent non-pathological mtDNAs heteroplasmy (DNPH). We hypothesized that DNPH is maladaptive and usually prevented by the cell. Methods: We engineered and characterized DNPH mice throughout their lifespan using transcriptomic, metabolomic, biochemical, physiological and phenotyping techniques. We focused on in vivo imaging techniques for non-invasive assessment of cardiac and pulmonary energy metabolism. Results: We show that DNPH impairs mitochondrial function, with profound consequences in critical tissues that cannot resolve heteroplasmy, particularly cardiac and skeletal muscle. Progressive metabolic stress in these tissues leads to severe pathology in adulthood, including pulmonary hypertension and heart failure, skeletal muscle wasting, frailty, and premature death. Symptom severity is strongly modulated by the nuclear context. Conclusions: Medical interventions that may generate DNPH should address potential incompatibilities between donor and recipient mtDNA.
Collapse
Affiliation(s)
- Ana Victoria Lechuga-Vieco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom; Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ana Latorre-Pellicer
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain; Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, ISS-Aragon, Zaragoza, Spain
| | - Enrique Calvo
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain
| | - Carlos Torroja
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain
| | - Juan Pellico
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain; Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Rebeca Acín-Pérez
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain
| | - María Luisa García-Gil
- Centro Nacional de Microscopia Electrónica (ICTS-CNME), Universidad Complutense de Madrid, Madrid, Spain
| | - Arnoldo Santos
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain; ITC, Ingeniería y Técnicas Clínicas, Madrid, Spain
| | - Navratan Bagwan
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain
| | - Elena Bonzon-Kulichenko
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ricardo Magni
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | - Raquel Justo-Méndez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Anna Katharina Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | | | - Jesús Vázquez
- Ciber de Fragilidad y Envejecimiento Saludable (CIBERFES) Madrid, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Ruíz-Cabello
- CIC biomaGUNE, 2014, Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Spain; Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
34
|
Sastre-Oliva T, Corbacho-Alonso N, Albo-Escalona D, Lopez JA, Lopez-Almodovar LF, Vázquez J, Padial LR, Mourino-Alvarez L, Barderas MG. The Influence of Coronary Artery Disease in the Development of Aortic Stenosis and the Importance of the Albumin Redox State. Antioxidants (Basel) 2022; 11:antiox11020317. [PMID: 35204200 PMCID: PMC8868205 DOI: 10.3390/antiox11020317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Calcific aortic valve and coronary artery diseases are related cardiovascular pathologies in which common processes lead to the calcification of the corresponding affected tissue. Among the mechanisms involved in calcification, the oxidative stress that drives the oxidation of sulfur-containing amino acids such ascysteines is of particular interest. However, there are important differences between calcific aortic valve disease and coronary artery disease, particularly in terms of the reactive oxygen substances and enzymes involved. To evaluate what effect coronary artery disease has on aortic valves, we analyzed valve tissue from patients with severe calcific aortic stenosis with and without coronary artery disease. Proteins and peptides with oxidized cysteines sites were quantified, leading to the identification of 16 proteins with different levels of expression between the two conditions studied, as well as differences in the redox state of the tissue. We also identified two specific sites of cysteine oxidation in albumin that have not been described previously. These results provide evidence that coronary artery disease affects valve calcification, modifying the molecular profile of aortic valve tissue. In addition, the redox proteome is also altered when these conditions coincide, notably affecting human serum albumin.
Collapse
Affiliation(s)
- Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Diego Albo-Escalona
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Juan A. Lopez
- Cardiovascular Proteomics Laboratory and Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBER-CV), Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.A.L.); (J.V.)
| | - Luis F. Lopez-Almodovar
- Cardiac Surgery, Hospital Virgen de la Salud, Servicio de Salud de Castilla-La Mancha (SESCAM), 45004 Toledo, Spain;
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory and Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBER-CV), Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.A.L.); (J.V.)
| | - Luis R. Padial
- Department of cardiology, Hospital Virgen de la Salud, Servicio de Salud de Castilla-La Mancha (SESCAM), 45004 Toledo, Spain;
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
- Correspondence: or (L.M.-A.); or (M.G.B.); Tel.: +34-9253-96826 (L.M.A. & M.G.B.)
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
- Correspondence: or (L.M.-A.); or (M.G.B.); Tel.: +34-9253-96826 (L.M.A. & M.G.B.)
| |
Collapse
|
35
|
Unbiased plasma proteomics discovery of biomarkers for improved detection of subclinical atherosclerosis. EBioMedicine 2022; 76:103874. [PMID: 35152150 PMCID: PMC8844841 DOI: 10.1016/j.ebiom.2022.103874] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 01/21/2023] Open
Abstract
Background Imaging of subclinical atherosclerosis improves cardiovascular risk prediction on top of traditional risk factors. However, cardiovascular imaging is not universally available. This work aims to identify circulating proteins that could predict subclinical atherosclerosis. Methods Hypothesis-free proteomics was used to analyze plasma from 444 subjects from PESA cohort study (222 with extensive atherosclerosis on imaging, and 222 matched controls) at two timepoints (three years apart) for discovery, and from 350 subjects from AWHS cohort study (175 subjects with extensive atherosclerosis on imaging and 175 matched controls) for external validation. A selected three-protein panel was further validated by immunoturbidimetry in the AWHS population and in 2999 subjects from ILERVAS cohort study. Findings PIGR, IGHA2, APOA, HPT and HEP2 were associated with subclinical atherosclerosis independently from traditional risk factors at both timepoints in the discovery and validation cohorts. Multivariate analysis rendered a potential three-protein biomarker panel, including IGHA2, APOA and HPT. Immunoturbidimetry confirmed the independent associations of these three proteins with subclinical atherosclerosis in AWHS and ILERVAS. A machine-learning model with these three proteins was able to predict subclinical atherosclerosis in ILERVAS (AUC [95%CI]:0.73 [0.70–0.74], p < 1 × 10−99), and also in the subpopulation of individuals with low cardiovascular risk according to FHS 10-year score (0.71 [0.69–0.73], p < 1 × 10−69). Interpretation Plasma levels of IGHA2, APOA and HPT are associated with subclinical atherosclerosis independently of traditional risk factors and offers potential to predict this disease. The panel could improve primary prevention strategies in areas where imaging is not available.
Collapse
|
36
|
Santiago-Hernandez A, Martin-Lorenzo M, Martínez PJ, Gómez-Serrano M, Lopez JA, Cannata P, Esteban V, Heredero A, Aldamiz-Echevarria G, Vázquez J, Ruiz-Hurtado G, Barderas MG, Segura J, Ruilope LM, Alvarez-Llamas G. Early renal and vascular damage within the normoalbuminuria condition. J Hypertens 2021; 39:2220-2231. [PMID: 34261953 DOI: 10.1097/hjh.0000000000002936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE A continuous association between albuminuria and cardiorenal risk exists further below moderately increased albuminuria ranges. If only based in albumin to creatinine ratio (ACR) higher than 30 mg/g, a significant percentage of individuals may be out of the scope for therapeutic management. Despite epidemiological outcomes, the identification of biochemical changes linked to early albuminuria is underexplored, and normoalbuminuric individuals are usually considered at no risk in clinical practice. Here, we aimed to identify early molecular alterations behind albuminuria development. METHODS Hypertensive patients under renin-angiotensin system (RAS) suppression were classified as control, (ACR < 10 mg/g) or high-normal (ACR = 10-30 mg/g). Urinary protein alterations were quantified and confirmed by untargeted and targeted mass spectrometry. Coordinated protein responses with biological significance in albuminuria development were investigated. Immunohistochemistry assays were performed in human kidney and arterial tissue to in situ evaluate the associated damage. RESULTS A total of 2663 identified proteins reflect inflammation, immune response, ion transport and lipids metabolism (P value ≤ 0.01). A1AT, VTDB and KNG1 varied in high-normal individuals (P value < 0.05), correlated with ACR and associated with the high-normal condition (odds ratio of 20.76, 6.00 and 7.04 were found, respectively (P value < 0.001)). After 12 months, protein variations persist and aggravate in progressors to moderately increased albuminuria. At tissue level, differential protein expression was found in kidney from individuals with moderately increased albuminuria and atherosclerotic aortas for the three proteins, confirming their capacity to reflect subclinical organ damage. CONCLUSION Early renal and vascular damage is molecularly evidenced within the normoalbuminuria condition.
Collapse
Affiliation(s)
| | - Marta Martin-Lorenzo
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundación Jiménez Díaz, UAM
| | - Paula J Martínez
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundación Jiménez Díaz, UAM
| | - María Gómez-Serrano
- Laboratory of Cardiovascular Proteomics, CNIC
- Institute for Tumor Immunology, Philipps University of Marburg, Marburg, Germany
| | - Juan Antonio Lopez
- Laboratory of Cardiovascular Proteomics, CNIC
- CIBER de Enfermedades Cardiovasculares (CIBERCV)
| | | | - Vanesa Esteban
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, UAM
- Red de asma, reacciones adversas y alérgicas (ARADyAL)
- Faculty of Medicine and Biomedicine, Alfonso X El Sabio University
| | | | | | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, CNIC
- CIBER de Enfermedades Cardiovasculares (CIBERCV)
| | - Gema Ruiz-Hurtado
- CIBER de Enfermedades Cardiovasculares (CIBERCV)
- Cardiorenal Translational Laboratory, Hospital Universitario 12 de Octubre, Madrid
| | - Maria G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos SESCAM, Toledo
| | - Julian Segura
- Hypertension Unit, Hospital Universitario 12 de Octubre
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Hospital Universitario 12 de Octubre, Madrid
| | - Gloria Alvarez-Llamas
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundación Jiménez Díaz, UAM
- Red de Investigación Renal (REDINREN), Madrid, Spain
| |
Collapse
|
37
|
Bárcena B, Salamanca A, Pintado C, Mazuecos L, Villar M, Moltó E, Bonzón-Kulichenko E, Vázquez J, Andrés A, Gallardo N. Aging Induces Hepatic Oxidative Stress and Nuclear Proteomic Remodeling in Liver from Wistar Rats. Antioxidants (Basel) 2021; 10:antiox10101535. [PMID: 34679670 PMCID: PMC8533122 DOI: 10.3390/antiox10101535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is a continuous, universal, and irreversible process that determines progressive loss of adaptability. The liver is a critical organ that supports digestion, metabolism, immunity, detoxification, vitamin storage, and hormone signaling. Nevertheless, the relationship between aging and the development of liver diseases remains elusive. In fact, although prolonged fasting in adult rodents and humans delays the onset of the disease and increases longevity, whether prolonged fasting could exert adverse effects in old organisms remains incompletely understood. In this work, we aimed to characterize the oxidative stress and nuclear proteome in the liver of 3-month- and 24-month-old male Wistar rats upon 36 h of fasting and its adaptation in response to 30 min of refeeding. To this end, we analyzed the hepatic lipid peroxidation levels (TBARS) and the expression levels of genes associated with fat metabolism and oxidative stress during aging. In addition, to gain a better insight into the molecular and cellular processes that characterize the liver of old rats, the hepatic nuclear proteome was also evaluated by isobaric tag quantitation (iTRAQ) mass spectrometry-based proteomics. In old rats, aging combined with prolonged fasting had great impact on lipid peroxidation in the liver that was associated with a marked downregulation of antioxidant genes (Sod2, Fmo3, and Cyp2C11) compared to young rats. Besides, our proteomic study revealed that RNA splicing is the hepatic nuclear biological process markedly affected by aging and this modification persists upon refeeding. Our results suggest that aged-induced changes in the nuclear proteome could affect processes associated with the adaptative response to refeeding after prolonged fasting, such as those involved in the defense against oxidative stress.
Collapse
Affiliation(s)
- Brenda Bárcena
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
| | - Aurora Salamanca
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
| | - Cristina Pintado
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; (C.P.); (E.M.)
| | - Lorena Mazuecos
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
| | - Margarita Villar
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- Correspondence: (M.V.); (N.G.)
| | - Eduardo Moltó
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; (C.P.); (E.M.)
| | - Elena Bonzón-Kulichenko
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III and CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.B.-K.); (J.V.)
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III and CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.B.-K.); (J.V.)
| | - Antonio Andrés
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
| | - Nilda Gallardo
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; (B.B.); (A.S.); (L.M.); (A.A.)
- Correspondence: (M.V.); (N.G.)
| |
Collapse
|
38
|
Corbacho-Alonso N, Baldán-Martín M, López JA, Rodríguez-Sánchez E, Martínez PJ, Mourino-Alvarez L, Sastre-Oliva T, Cabrera M, Calvo E, Padial LR, Vázquez J, Vivanco F, Alvarez-Llamas G, Ruiz-Hurtado G, Ruilope LM, Barderas MG. Cardiovascular Risk Stratification Based on Oxidative Stress for Early Detection of Pathology. Antioxid Redox Signal 2021; 35:602-617. [PMID: 34036803 DOI: 10.1089/ars.2020.8254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aims: Current cardiovascular (CV) risk prediction algorithms are able to quantify the individual risk of CV disease. However, CV risk in young adults is underestimated due to the high dependency of age in biomarker-based algorithms. Because oxidative stress is associated with CV disease, we sought to examine CV risk stratification in young adults based on oxidative stress to approach the discovery of new markers for early detection of pathology. Results: Young adults were stratified into (i) healthy controls, (ii) subjects with CV risk factors, and (iii) patients with a reported CV event. Plasma samples were analyzed using FASILOX, a novel approach to interrogate the dynamic thiol redox proteome. We also analyzed irreversible oxidation by targeted searches using the Uniprot database. Irreversible oxidation of cysteine (Cys) residues was greater in patients with reported CV events than in healthy subjects. These results also indicate that oxidation is progressive. Moreover, we found that glutathione reductase and glutaredoxin 1 proteins are differentially expressed between groups and are proteins involved in antioxidant response, which is in line with the impaired redox homeostasis in CV disease. Innovation: This study, for the first time, describes the oxidative stress (reversible and irreversible Cys oxidation) implication in human plasma according to CV risk stratification. Conclusion: The identification of redox targets and the quantification of protein and oxidative changes might help to better understand the role of oxidative stress in CV disease, and aid stratification for CV events beyond traditional prognostic and diagnostic markers. Antioxid. Redox Signal. 35, 602-617.
Collapse
Affiliation(s)
- Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Montserrat Baldán-Martín
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | - Elena Rodríguez-Sánchez
- Cardiorenal Translational Laboratory, Instituto de Investigación i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Paula J Martínez
- Departament of Immunology, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | | | - Luis R Padial
- Department of Cardiology, Hospital Virgen de la Salud, SESCAM, Toledo, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory and CIBER-CV, CNIC, Madrid, Spain
| | - Fernando Vivanco
- Departament of Immunology, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Gloria Alvarez-Llamas
- Departament of Immunology, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,RED in REN, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Instituto de Investigación i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Instituto de Investigación i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| | - Maria G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| |
Collapse
|
39
|
Yuste-Montalvo A, Fernandez-Bravo S, Oliva T, Pastor-Vargas C, Betancor D, Goikoetxea MJ, Laguna JJ, López JA, Alvarez-Llamas G, Cuesta-Herranz J, Martin-Lorenzo M, Esteban V. Proteomic and Biological Analysis of an In Vitro Human Endothelial System in Response to Drug Anaphylaxis. Front Immunol 2021; 12:692569. [PMID: 34248989 PMCID: PMC8269062 DOI: 10.3389/fimmu.2021.692569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Anaphylaxis is a life-threatening systemic hypersensitivity reaction. During anaphylaxis, mediator release by effector cells causes endothelial barrier breakdown, increasing vascular permeability and leakage of fluids, which may lead to tissue edema. Although endothelial cells (ECs) are key players in this context, scant attention has been paid to the molecular analysis of the vascular system, and further analyses of this cell type are necessary, especially in humans. The protein expression pattern of human microvascular ECs was analyzed in response to sera from anaphylactic patients (EC-anaphylaxis) and sera from non-allergic subjects (EC-control) after 2 hours of contact. Firstly, a differential quantitative proteomic analysis of the protein extracts was performed by mass spectrometry using an isobaric labeling method. Second, the coordinated behavior of the identified proteins was analyzed using systems biology analysis (SBA). The proteome of the EC-anaphylaxis system showed 7,707 proteins, of which 1,069 were found to be significantly altered between the EC-control and EC-anaphylaxis groups (p-value < 0.05). Among them, a subproteome of 47 proteins presented a high rate of change (|ΔZq| ≥ 3). This panel offers an endothelial snapshot of the anaphylactic reaction. Those proteins with the highest individual changes in abundance were hemoglobin subunits and structural support proteins. The interacting network analysis of this altered subproteome revealed that the coagulation and complement systems are the main biological processes altered in the EC-anaphylactic system. The comprehensive SBA resulted in 5,512 functional subcategories (biological processes), 57 of which were significantly altered between EC-control and EC-anaphylaxis. The complement system, once again, was observed as the main process altered in the EC system created with serum from anaphylactic patients. Findings of the current study further our understanding of the underlying pathophysiological mechanisms operating in anaphylactic reactions. New target proteins and relevant signaling pathways operating in the in vitro endothelial-serum system have been identified. Interestingly, our results offer a protein overview of the micro-EC-anaphylaxis environment. The relevance of the coagulation, fibrinolytic, contact and complement systems in human anaphylaxis is described. Additionally, the untargeted high-throughput analysis used here is a novel approach that reveals new pathways in the study of the endothelial niche in anaphylaxis.
Collapse
Affiliation(s)
- Alma Yuste-Montalvo
- Allergy and Inmunology Department, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sergio Fernandez-Bravo
- Allergy and Inmunology Department, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Tamara Oliva
- Allergy and Inmunology Department, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Carlos Pastor-Vargas
- Allergy and Inmunology Department, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Red de ASMA, REACCIONES ADVERSAS Y ALÉRGICAS (ARADyAL), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Diana Betancor
- Allergy and Inmunology Department, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Allergy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - María José Goikoetxea
- Red de ASMA, REACCIONES ADVERSAS Y ALÉRGICAS (ARADyAL), Instituto de Salud Carlos III, Madrid, Spain.,Department of Allergy and Clinic Immunology, IdiSNA, Clínica Universidad de Navarra, Pamplona, Spain
| | - José Julio Laguna
- Red de ASMA, REACCIONES ADVERSAS Y ALÉRGICAS (ARADyAL), Instituto de Salud Carlos III, Madrid, Spain.,Allergy Unit, Allergo-Anaesthesia Unit, Hospital Central de la Cruz Roja, Madrid, Spain.,Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| | - Juan Antonio López
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Gloria Alvarez-Llamas
- Inmunoallergy and Proteomics Laboratory, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, UAM, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Cuesta-Herranz
- Allergy and Inmunology Department, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Red de ASMA, REACCIONES ADVERSAS Y ALÉRGICAS (ARADyAL), Instituto de Salud Carlos III, Madrid, Spain.,Department of Allergy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Marta Martin-Lorenzo
- Inmunoallergy and Proteomics Laboratory, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, UAM, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Allergy and Inmunology Department, Instituto de Investigaciones Sanitarias (ISS)-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Red de ASMA, REACCIONES ADVERSAS Y ALÉRGICAS (ARADyAL), Instituto de Salud Carlos III, Madrid, Spain.,Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| |
Collapse
|
40
|
Aortic disease in Marfan syndrome is caused by overactivation of sGC-PRKG signaling by NO. Nat Commun 2021; 12:2628. [PMID: 33976159 PMCID: PMC8113458 DOI: 10.1038/s41467-021-22933-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Thoracic aortic aneurysm, as occurs in Marfan syndrome, is generally asymptomatic until dissection or rupture, requiring surgical intervention as the only available treatment. Here, we show that nitric oxide (NO) signaling dysregulates actin cytoskeleton dynamics in Marfan Syndrome smooth muscle cells and that NO-donors induce Marfan-like aortopathy in wild-type mice, indicating that a marked increase in NO suffices to induce aortopathy. Levels of nitrated proteins are higher in plasma from Marfan patients and mice and in aortic tissue from Marfan mice than in control samples, indicating elevated circulating and tissue NO. Soluble guanylate cyclase and cGMP-dependent protein kinase are both activated in Marfan patients and mice and in wild-type mice treated with NO-donors, as shown by increased plasma cGMP and pVASP-S239 staining in aortic tissue. Marfan aortopathy in mice is reverted by pharmacological inhibition of soluble guanylate cyclase and cGMP-dependent protein kinase and lentiviral-mediated Prkg1 silencing. These findings identify potential biomarkers for monitoring Marfan Syndrome in patients and urge evaluation of cGMP-dependent protein kinase and soluble guanylate cyclase as therapeutic targets. Aortic aneurysm and dissection, the major problem linked to Marfan syndrome (MFS), lacks effective pharmacological treatment. Here, the authors show that the NO pathway is overactivated in MFS and that inhibition of guanylate cyclase and cGMP-dependent protein kinase reverts MFS aortopathy in mice.
Collapse
|
41
|
Albacete-Albacete L, Navarro-Lérida I, López JA, Martín-Padura I, Astudillo AM, Ferrarini A, Van-Der-Heyden M, Balsinde J, Orend G, Vázquez J, Del Pozo MÁ. ECM deposition is driven by caveolin-1-dependent regulation of exosomal biogenesis and cargo sorting. J Cell Biol 2021; 219:211453. [PMID: 33053168 PMCID: PMC7551399 DOI: 10.1083/jcb.202006178] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
The composition and physical properties of the extracellular matrix (ECM) critically influence tumor progression, but the molecular mechanisms underlying ECM layering are poorly understood. Tumor–stroma interaction critically depends on cell communication mediated by exosomes, small vesicles generated within multivesicular bodies (MVBs). We show that caveolin-1 (Cav1) centrally regulates exosome biogenesis and exosomal protein cargo sorting through the control of cholesterol content at the endosomal compartment/MVBs. Quantitative proteomics profiling revealed that Cav1 is required for exosomal sorting of ECM protein cargo subsets, including Tenascin-C (TnC), and for fibroblast-derived exosomes to efficiently deposit ECM and promote tumor invasion. Cav1-driven exosomal ECM deposition not only promotes local stromal remodeling but also the generation of distant ECM-enriched stromal niches in vivo. Cav1 acts as a cholesterol rheostat in MVBs, determining sorting of ECM components into specific exosome pools and thus ECM deposition. This supports a model by which Cav1 is a central regulatory hub for tumor–stroma interactions through a novel exosome-dependent ECM deposition mechanism.
Collapse
Affiliation(s)
- Lucas Albacete-Albacete
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Inmaculada Navarro-Lérida
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Juan Antonio López
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Inés Martín-Padura
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alessia Ferrarini
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Michael Van-Der-Heyden
- Institut National de la Santé et de la Recherche Médicale U1109-MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Gertraud Orend
- Institut National de la Santé et de la Recherche Médicale U1109-MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Jesús Vázquez
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Miguel Ángel Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
42
|
Piñeyro-Ruiz C, Serrano H, Jorge I, Miranda-Valentin E, Pérez-Brayfield MR, Camafeita E, Mesa R, Vázquez J, Jorge JC. A Proteomics Signature of Mild Hypospadias: A Pilot Study. Front Pediatr 2020; 8:586287. [PMID: 33425810 PMCID: PMC7786202 DOI: 10.3389/fped.2020.586287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/24/2020] [Indexed: 12/02/2022] Open
Abstract
Background and Objective: Mild hypospadias is a birth congenital condition characterized by the relocation of the male urethral meatus from its typical anatomical position near the tip of the glans penis, to a lower ventral position up to the brim of the glans corona, which can also be accompanied by foreskin ventral deficiency. For the most part, a limited number of cases have known etiology. We have followed a high-throughput proteomics approach to study the proteome in mild hypospadias patients. Methods: Foreskin samples from patients with mild hypospadias were collected during urethroplasty, while control samples were collected during elective circumcision (n = 5/group). A high-throughput, quantitative proteomics approach based on multiplexed peptide stable isotope labeling (SIL) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used to ascertain protein abundance changes in hypospadias patients when compared to control samples. Results: A total of 4,815 proteins were quantitated (2,522 with at least two unique peptides). One hundred and thirty-three proteins from patients with mild hypospadias showed significant abundance changes with respect to control samples, where 38 proteins were increased, and 95 proteins were decreased. Unbiased functional biological analysis revealed that both mitochondrial energy production and apoptotic signaling pathways were enriched in mild hypospadias. Conclusions: This first comprehensive proteomics characterization of mild hypospadias shows molecular changes associated with essential cellular processes related to energy production and apoptosis. Further evaluation of the proteome may expand the search of novel candidates in the etiology of mild hypospadias and could also lead to the identification of biomarkers for this congenital urogenital condition.
Collapse
Affiliation(s)
- Coriness Piñeyro-Ruiz
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Horacio Serrano
- Department of Internal Medicine, School of Medicine, University of Puerto Rico, San Juan, PR, United States
- Clinical Proteomics Laboratory, Internal Medicine Department, Comprehensive Cancer Center (CCC)-Medical Sciences Campus (MSC)-University of Puerto Rico (UPR), San Juan, PR, United States
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Inmaculada Jorge
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Eric Miranda-Valentin
- Department of Internal Medicine, School of Medicine, University of Puerto Rico, San Juan, PR, United States
- Clinical Proteomics Laboratory, Internal Medicine Department, Comprehensive Cancer Center (CCC)-Medical Sciences Campus (MSC)-University of Puerto Rico (UPR), San Juan, PR, United States
| | - Marcos R. Pérez-Brayfield
- Department of Surgery, Urology Section, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Emilio Camafeita
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Raquel Mesa
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan Carlos Jorge
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| |
Collapse
|
43
|
Lorenzo C, Delgado P, Busse CE, Sanz-Bravo A, Martos-Folgado I, Bonzon-Kulichenko E, Ferrarini A, Gonzalez-Valdes IB, Mur SM, Roldán-Montero R, Martinez-Lopez D, Martin-Ventura JL, Vázquez J, Wardemann H, Ramiro AR. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies. Nature 2020; 589:287-292. [PMID: 33268892 DOI: 10.1038/s41586-020-2993-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality in the world, with most CVD-related deaths resulting from myocardial infarction or stroke. The main underlying cause of thrombosis and cardiovascular events is atherosclerosis, an inflammatory disease that can remain asymptomatic for long periods. There is an urgent need for therapeutic and diagnostic options in this area. Atherosclerotic plaques contain autoantibodies1,2, and there is a connection between atherosclerosis and autoimmunity3. However, the immunogenic trigger and the effects of the autoantibody response during atherosclerosis are not well understood3-5. Here we performed high-throughput single-cell analysis of the atherosclerosis-associated antibody repertoire. Antibody gene sequencing of more than 1,700 B cells from atherogenic Ldlr-/- and control mice identified 56 antibodies expressed by in-vivo-expanded clones of B lymphocytes in the context of atherosclerosis. One-third of the expanded antibodies were reactive against atherosclerotic plaques, indicating that various antigens in the lesion can trigger antibody responses. Deep proteomics analysis identified ALDH4A1, a mitochondrial dehydrogenase involved in proline metabolism, as a target antigen of one of these autoantibodies, A12. ALDH4A1 distribution is altered during atherosclerosis, and circulating ALDH4A1 is increased in mice and humans with atherosclerosis, supporting the potential use of ALDH4A1 as a disease biomarker. Infusion of A12 antibodies into Ldlr-/- mice delayed plaque formation and reduced circulating free cholesterol and LDL, suggesting that anti-ALDH4A1 antibodies can protect against atherosclerosis progression and might have therapeutic potential in CVD.
Collapse
Affiliation(s)
- Cristina Lorenzo
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pilar Delgado
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Christian E Busse
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Alejandro Sanz-Bravo
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Elena Bonzon-Kulichenko
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alessia Ferrarini
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ileana B Gonzalez-Valdes
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sonia M Mur
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Raquel Roldán-Montero
- Vascular Pathology Lab, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Diego Martinez-Lopez
- Vascular Pathology Lab, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Jose L Martin-Ventura
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Vascular Pathology Lab, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Hedda Wardemann
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Almudena R Ramiro
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
44
|
Lavado-García J, González-Domínguez I, Cervera L, Jorge I, Vázquez J, Gòdia F. Molecular Characterization of the Coproduced Extracellular Vesicles in HEK293 during Virus-Like Particle Production. J Proteome Res 2020; 19:4516-4532. [PMID: 32975947 PMCID: PMC7640977 DOI: 10.1021/acs.jproteome.0c00581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/22/2022]
Abstract
Vaccine therapies based on virus-like particles (VLPs) are currently in the spotlight due to their potential for generating high immunogenic responses while presenting fewer side effects than conventional vaccines. These self-assembled nanostructures resemble the native conformation of the virus but lack genetic material. They are becoming a promising platform for vaccine candidates against several diseases due to the ability of modifying their membrane with antigens from different viruses. The coproduction of extracellular vesicles (EVs) when producing VLPs is a key phenomenon currently still under study. In order to characterize this extracellular environment, a quantitative proteomics approach has been carried out. Three conditions were studied: non-transfected, transfected with an empty plasmid as control, and transfected with a plasmid coding for HIV-1 Gag polyprotein. A shift in EV biogenesis has been detected upon transfection, changing the production from large to small EVs. Another remarkable trait found was the presence of DNA being secreted within vesicles smaller than 200 nm. Studying the protein profile of these biological nanocarriers, it was observed that EVs were reflecting an overall energy homeostasis disruption via mitochondrial protein deregulation. Also, immunomodulatory proteins like ITGB1, ENO3, and PRDX5 were identified and quantified in VLP and EV fractions. These findings provide insight on the nature of the VLP extracellular environment defining the characteristics and protein profile of EVs, with potential to develop new downstream separation strategies or using them as adjuvants in viral therapies.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Irene González-Domínguez
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| | - Inmaculada Jorge
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro
de Investigación Biomédica en Red Enfermedades Cardiovasculares
(CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro
de Investigación Biomédica en Red Enfermedades Cardiovasculares
(CIBERCV), Madrid, Spain
| | - Francesc Gòdia
- Grup
d’Enginyeria Cellular i Bioprocés, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
45
|
Forte D, García-Fernández M, Sánchez-Aguilera A, Stavropoulou V, Fielding C, Martín-Pérez D, López JA, Costa ASH, Tronci L, Nikitopoulou E, Barber M, Gallipoli P, Marando L, Fernández de Castillejo CL, Tzankov A, Dietmann S, Cavo M, Catani L, Curti A, Vázquez J, Frezza C, Huntly BJ, Schwaller J, Méndez-Ferrer S. Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance Antioxidant Defense and Escape from Chemotherapy. Cell Metab 2020; 32:829-843.e9. [PMID: 32966766 PMCID: PMC7658808 DOI: 10.1016/j.cmet.2020.09.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022]
Abstract
Like normal hematopoietic stem cells, leukemic stem cells depend on their bone marrow (BM) microenvironment for survival, but the underlying mechanisms remain largely unknown. We have studied the contribution of nestin+ BM mesenchymal stem cells (BMSCs) to MLL-AF9-driven acute myeloid leukemia (AML) development and chemoresistance in vivo. Unlike bulk stroma, nestin+ BMSC numbers are not reduced in AML, but their function changes to support AML cells, at the expense of non-mutated hematopoietic stem cells (HSCs). Nestin+ cell depletion delays leukemogenesis in primary AML mice and selectively decreases AML, but not normal, cells in chimeric mice. Nestin+ BMSCs support survival and chemotherapy relapse of AML through increased oxidative phosphorylation, tricarboxylic acid (TCA) cycle activity, and glutathione (GSH)-mediated antioxidant defense. Therefore, AML cells co-opt energy sources and antioxidant defense mechanisms from BMSCs to survive chemotherapy.
Collapse
Affiliation(s)
- Dorian Forte
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; National Health Service Blood and Transplant, CB2 0PT Cambridge, UK; Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, 40138 Bologna, Italy
| | - María García-Fernández
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; National Health Service Blood and Transplant, CB2 0PT Cambridge, UK
| | | | - Vaia Stavropoulou
- University Children's Hospital and Department of Biomedicine (DBM), University of Basel, 4031 Basel, Switzerland
| | - Claire Fielding
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; National Health Service Blood and Transplant, CB2 0PT Cambridge, UK
| | - Daniel Martín-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, CB2 0XZ Cambridge, UK
| | - Laura Tronci
- MRC Cancer Unit, University of Cambridge, CB2 0XZ Cambridge, UK
| | | | - Michael Barber
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK
| | - Paolo Gallipoli
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK
| | - Ludovica Marando
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK
| | | | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Sabine Dietmann
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK
| | - Michele Cavo
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, 40138 Bologna, Italy; Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, 40138 Bologna, Italy
| | - Lucia Catani
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, 40138 Bologna, Italy; Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, 40138 Bologna, Italy
| | - Antonio Curti
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, 40138 Bologna, Italy
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Brian J Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK
| | - Juerg Schwaller
- University Children's Hospital and Department of Biomedicine (DBM), University of Basel, 4031 Basel, Switzerland.
| | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
46
|
Bosch M, Sánchez-Álvarez M, Fajardo A, Kapetanovic R, Steiner B, Dutra F, Moreira L, López JA, Campo R, Marí M, Morales-Paytuví F, Tort O, Gubern A, Templin RM, Curson JEB, Martel N, Català C, Lozano F, Tebar F, Enrich C, Vázquez J, Del Pozo MA, Sweet MJ, Bozza PT, Gross SP, Parton RG, Pol A. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science 2020; 370:370/6514/eaay8085. [PMID: 33060333 DOI: 10.1126/science.aay8085] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 04/29/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
Lipid droplets (LDs) are the major lipid storage organelles of eukaryotic cells and a source of nutrients for intracellular pathogens. We demonstrate that mammalian LDs are endowed with a protein-mediated antimicrobial capacity, which is up-regulated by danger signals. In response to lipopolysaccharide (LPS), multiple host defense proteins, including interferon-inducible guanosine triphosphatases and the antimicrobial cathelicidin, assemble into complex clusters on LDs. LPS additionally promotes the physical and functional uncoupling of LDs from mitochondria, reducing fatty acid metabolism while increasing LD-bacterial contacts. Thus, LDs actively participate in mammalian innate immunity at two levels: They are both cell-autonomous organelles that organize and use immune proteins to kill intracellular pathogens as well as central players in the local and systemic metabolic adaptation to infection.
Collapse
Affiliation(s)
- Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain. .,Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC). 28029, Madrid, Spain
| | - Alba Fajardo
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia.,IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bernhard Steiner
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Filipe Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, CEP 21.040-900, Brazil
| | - Luciana Moreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, CEP 21.040-900, Brazil
| | - Juan Antonio López
- Cardiovascular Proteomics Laboratory, Vascular Pathophysiology Area, CNIC, Instituto de Salud Carlos III 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III 28029, Madrid, Spain
| | - Rocío Campo
- Cardiovascular Proteomics Laboratory, Vascular Pathophysiology Area, CNIC, Instituto de Salud Carlos III 28029, Madrid, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-CSIC, Barcelona, Spain.,Hepatocellular Signaling and Cancer Team, IDIBAPS, 08036, Barcelona, Spain
| | - Frederic Morales-Paytuví
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Olivia Tort
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Albert Gubern
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Rachel M Templin
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
| | - James E B Curson
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia.,IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nick Martel
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cristina Català
- Immunoreceptors of the Innate and Adaptive System Team, IDIBAPS, 08036, Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors of the Innate and Adaptive System Team, IDIBAPS, 08036, Barcelona, Spain
| | - Francesc Tebar
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Carlos Enrich
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Vascular Pathophysiology Area, CNIC, Instituto de Salud Carlos III 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III 28029, Madrid, Spain
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC). 28029, Madrid, Spain
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia.,IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, CEP 21.040-900, Brazil
| | - Steven P Gross
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia. .,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain. .,Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona
| |
Collapse
|
47
|
Couté Y, Bruley C, Burger T. Beyond Target-Decoy Competition: Stable Validation of Peptide and Protein Identifications in Mass Spectrometry-Based Discovery Proteomics. Anal Chem 2020; 92:14898-14906. [PMID: 32970414 DOI: 10.1021/acs.analchem.0c00328] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In bottom-up discovery proteomics, target-decoy competition (TDC) is the most popular method for false discovery rate (FDR) control. Despite unquestionable statistical foundations, this method has drawbacks, including its hitherto unknown intrinsic lack of stability vis-à-vis practical conditions of application. Although some consequences of this instability have already been empirically described, they may have been misinterpreted. This article provides evidence that TDC has become less reliable as the accuracy of modern mass spectrometers improved. We therefore propose to replace TDC by a totally different method to control the FDR at the spectrum, peptide, and protein levels, while benefiting from the theoretical guarantees of the Benjamini-Hochberg framework. As this method is simpler to use, faster to compute, and more stable than TDC, we argue that it is better adapted to the standardization and throughput constraints of current proteomic platforms.
Collapse
Affiliation(s)
- Yohann Couté
- Université Grenoble Alpes, CNRS, CEA, INSERM, IRIG, BGE, F-38000 Grenoble, France
| | - Christophe Bruley
- Université Grenoble Alpes, CNRS, CEA, INSERM, IRIG, BGE, F-38000 Grenoble, France
| | - Thomas Burger
- Université Grenoble Alpes, CNRS, CEA, INSERM, IRIG, BGE, F-38000 Grenoble, France
| |
Collapse
|
48
|
Martin-Rojas T, Sastre-Oliva T, Esclarín-Ruz A, Gil-Dones F, Mourino-Alvarez L, Corbacho-Alonso N, Moreno-Luna R, Hernandez-Fernandez G, Lopez JA, Oliviero A, Barderas MG. Effects of Growth Hormone Treatment and Rehabilitation in Incomplete Chronic Traumatic Spinal Cord Injury: Insight from Proteome Analysis. J Pers Med 2020; 10:jpm10040183. [PMID: 33096745 PMCID: PMC7720149 DOI: 10.3390/jpm10040183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Despite promising advances in the medical management of spinal cord injury (SCI), there is still no available effective therapy to repair the neurological damage in patients who experience this life-transforming condition. Recently, we performed a phase II/III placebo-controlled randomized trial of safety and efficacy of growth hormone (GH) treatment in incomplete chronic traumatic spinal cord injury. The main findings were that the combined treatment of GH plus rehabilitation treatment is feasible and safe, and that GH but not placebo slightly improves the SCI individual motor score. Moreover, we found that an intensive and long-lasting rehabilitation program per se increases the functional outcome of SCI individuals. To understand the possible mechanisms of the improvement due to GH treatment (motor score) and due to rehabilitation (functional outcome), we used a proteomic approach. Here, we used a multiple proteomic strategy to search for recovery biomarkers in blood plasma with the potential to predict response to somatropin treatment and to delayed intensive rehabilitation. Forty-six patients were recruited and followed for a minimum period of 1 year. Patients were classified into two groups based on their treatment: recombinant somatropin (0.4 mg) or placebo. Both groups received rehabilitation treatment. Our strategy allowed us to perform one of the deepest plasma proteomic analyses thus far, which revealed two proteomic signatures with predictive value: (i) response to recombinant somatropin treatment and (ii) response to rehabilitation. The proteins implicated in these signatures are related to homeostasis, inflammation, and coagulation functions. These findings open novel possibilities to assess and therapeutically manage patients with SCI, which could have a positive impact on their clinical response.
Collapse
Affiliation(s)
- Tatiana Martin-Rojas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (T.M.-R.); (T.S.-O.); (F.G.-D.); (L.M.-A.); (N.C.-A.); (R.M.-L.); (G.H.-F.)
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (T.M.-R.); (T.S.-O.); (F.G.-D.); (L.M.-A.); (N.C.-A.); (R.M.-L.); (G.H.-F.)
| | - Ana Esclarín-Ruz
- Department of Physical Medicine and Rehabilitation, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain;
| | - Felix Gil-Dones
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (T.M.-R.); (T.S.-O.); (F.G.-D.); (L.M.-A.); (N.C.-A.); (R.M.-L.); (G.H.-F.)
- Department of Genetic, Facultad de Ciencias Biológicas, UCM, 28040 Madrid, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (T.M.-R.); (T.S.-O.); (F.G.-D.); (L.M.-A.); (N.C.-A.); (R.M.-L.); (G.H.-F.)
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (T.M.-R.); (T.S.-O.); (F.G.-D.); (L.M.-A.); (N.C.-A.); (R.M.-L.); (G.H.-F.)
| | - Rafael Moreno-Luna
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (T.M.-R.); (T.S.-O.); (F.G.-D.); (L.M.-A.); (N.C.-A.); (R.M.-L.); (G.H.-F.)
- Department of Neuroinflammation, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45004 Toledo, Spain
| | - German Hernandez-Fernandez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (T.M.-R.); (T.S.-O.); (F.G.-D.); (L.M.-A.); (N.C.-A.); (R.M.-L.); (G.H.-F.)
| | | | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
- Correspondence: (A.O.); (M.G.B.); Fax: +34-925-247-745 (M.G.B.)
| | - María G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (T.M.-R.); (T.S.-O.); (F.G.-D.); (L.M.-A.); (N.C.-A.); (R.M.-L.); (G.H.-F.)
- Correspondence: (A.O.); (M.G.B.); Fax: +34-925-247-745 (M.G.B.)
| |
Collapse
|
49
|
Calvo E, Corbacho-Alonso N, Sastre-Oliva T, Nuñez E, Baena-Galan P, Hernandez-Fernandez G, Rodriguez-Cola M, Jimenez-Velasco I, Corrales FJ, Gambarrutta-Malfati C, Gutierrez-Henares F, Lopez-Dolado E, Gil-Agudo A, Vazquez J, Mourino-Alvarez L, Barderas MG. Why Does COVID-19 Affect Patients with Spinal Cord Injury Milder? A Case-Control Study: Results from Two Observational Cohorts. J Pers Med 2020; 10:182. [PMID: 33096722 PMCID: PMC7712183 DOI: 10.3390/jpm10040182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic represents an unprecedented global challenge in this century. COVID-19 is a viral respiratory infection, yet the clinical characteristics of this infection differ in spinal cord injury patients from those observed in the general population. Cough and asthenia are the most frequent symptoms in this population. Moreover, infected spinal cord injury patients rarely present complications that require admission to an Intensive Care Unit, in contrast to the general population. Thus, there is a clear need to understand how COVID-19 affects spinal cord injury patients from a molecular perspective. Here, we employed an -omics strategy in order to identify variations in protein abundance in spinal cord injury patients with and without COVID-19. After a quantitative differential analysis using isobaric tags and mass spectrometry and a verification phase, we have found differences mainly related to coagulation and platelet activation. Our results suggest a key role of heparin in the response of spinal cord injury patients to COVID-19 infection, showing a significant correlation between these proteins and heparin dose. Although the number of patients is limited, these data may shed light on new therapeutic options to improve the management these patients and, possibly, those of the general population as well.
Collapse
Affiliation(s)
- Enrique Calvo
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (E.C.); (E.N.); (P.B.-G.)
- Cardiovascular Proteomics Laboratory and CIBER-CV, CNIC, 28029 Madrid, Spain
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (N.C.-A.); (T.S.-O.); (G.H.-F.); (L.M.-A.)
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (N.C.-A.); (T.S.-O.); (G.H.-F.); (L.M.-A.)
| | - Estefania Nuñez
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (E.C.); (E.N.); (P.B.-G.)
| | - Patricia Baena-Galan
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (E.C.); (E.N.); (P.B.-G.)
| | - German Hernandez-Fernandez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (N.C.-A.); (T.S.-O.); (G.H.-F.); (L.M.-A.)
| | - Miguel Rodriguez-Cola
- Department of Internal Medicine, Hospital Nacional de Parapléjicos SESCAM, 45071 Toledo, Spain; (M.R.-C.); (I.J.-V.); (C.G.-M.)
| | - Irena Jimenez-Velasco
- Department of Internal Medicine, Hospital Nacional de Parapléjicos SESCAM, 45071 Toledo, Spain; (M.R.-C.); (I.J.-V.); (C.G.-M.)
| | - Fernando J. Corrales
- Proteomics Facility, Centro Nacional de Biotecnología (CNB), 28049 Madrid, Spain;
| | - Claudia Gambarrutta-Malfati
- Department of Internal Medicine, Hospital Nacional de Parapléjicos SESCAM, 45071 Toledo, Spain; (M.R.-C.); (I.J.-V.); (C.G.-M.)
| | - Francisco Gutierrez-Henares
- Department of Rehabilitation, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (F.G.-H.); (E.L.-D.); (A.G.-A.)
| | - Elisa Lopez-Dolado
- Department of Rehabilitation, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (F.G.-H.); (E.L.-D.); (A.G.-A.)
| | - Angel Gil-Agudo
- Department of Rehabilitation, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (F.G.-H.); (E.L.-D.); (A.G.-A.)
| | - Jesus Vazquez
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (E.C.); (E.N.); (P.B.-G.)
- Cardiovascular Proteomics Laboratory and CIBER-CV, CNIC, 28029 Madrid, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (N.C.-A.); (T.S.-O.); (G.H.-F.); (L.M.-A.)
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (N.C.-A.); (T.S.-O.); (G.H.-F.); (L.M.-A.)
| |
Collapse
|
50
|
Proteomic analysis of plasma proteins of high-flux haemodialysis and on-line haemodiafiltration patients reveals differences in transthyretin levels related with anaemia. Sci Rep 2020; 10:16029. [PMID: 32994444 PMCID: PMC7524835 DOI: 10.1038/s41598-020-72104-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/26/2020] [Indexed: 11/08/2022] Open
Abstract
A large proportion of end-stage renal disease (ESRD) patients under long-term haemodialysis, have persistent anaemia and require high doses of recombinant human erythropoietin (rhEPO). However, the underlying mechanisms of renal anaemia have not been fully elucidated in these patients. In this study, we will be focusing on anaemia and plasma proteins in ESRD patients on high-flux haemodialysis (HF) and on-line haemodiafiltration (HDF), to investigate using two proteomic approaches if patients undergoing these treatments develop differences in their plasma protein composition and how this could be related to their anaemia. The demographic and biochemical data revealed that HDF patients had lower anaemia and much lower rhEPO requirements than HF patients. Regarding their plasma proteomes, HDF patients had increased levels of a protein highly similar to serotransferrin, trypsin-1 and immunoglobulin heavy constant chain alpha-1, and lower levels of alpha-1 antitrypsin, transthyretin, apolipoproteins E and C-III, and haptoglobin-related protein. Lower transthyretin levels in HDF patients were further confirmed by transthyretin-peptide quantification and western blot detection. Since ESRD patients have increased transthyretin, a protein that can aggregate and inhibit transferrin endocytosis and erythropoiesis, our finding that HDF patients have lower transthyretin and lower anaemia suggests that the decrease in transthyretin plasma levels would allow an increase in transferrin endocytosis, contributing to erythropoiesis. Thus, transthyretin could be a critical actor for anaemia in ESRD patients and a novel player for haemodialysis adequacy.
Collapse
|