1
|
Shin CH, Rossi M, Mazan-Mamczarz K, Martindale JL, Munk R, Pal A, Piao Y, Fan J, De S, Abdelmohsen K, Gorospe M. Loss of HNRNPK During Cell Senescence Linked to Reduced Production of CDC20. Mol Cell Biol 2025; 45:129-141. [PMID: 39804141 DOI: 10.1080/10985549.2024.2443590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 03/09/2025] Open
Abstract
Cellular senescence is a complex biological response to sublethal damage. The RNA-binding protein HNRNPK was previously found to decrease prominently during senescence in human diploid fibroblasts. Here, analysis of the mechanisms leading to reduced HNRNPK abundance revealed that in cells undergoing senescence, HNRNPK mRNA levels declined transcriptionally and full-length HNRNPK protein was progressively lost, while the abundance of a truncated HNRNPK increased. The ensuing loss of full-length HNRNPK enhanced cell cycle arrest along with increased DNA damage. Analysis of the RNAs enriched after HNRNPK ribonucleoprotein immunoprecipitation (RIP) revealed a prominent target of HNRNPK, CDC20 mRNA, encoding a protein critical for progression through the G2/M phase of the cell division cycle. Silencing HNRNPK markedly decreased the levels of CDC20 mRNA via reduced transcription and stability of CDC20 mRNA, leading to lower CDC20 protein levels; conversely, overexpressing HNRNPK increased CDC20 production. Depletion of either HNRNPK or CDC20 impaired cell proliferation, with a concomitant reduction in the levels of CDK1, a key kinase for progression through G2/M. Given that overexpressing CDC20 in HNRNPK-silenced cells partly alleviated growth arrest, we propose that the reduction in HNRNPK levels in senescent cells contributed to inhibiting proliferation at least in part by suppressing CDC20 production.
Collapse
Affiliation(s)
- Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Apala Pal
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Karam JAQ, Fréreux C, Mohanty BK, Dalton AC, Dincman TA, Palanisamy V, Howley BV, Howe PH. The RNA-binding protein PCBP1 modulates transcription by recruiting the G-quadruplex-specific helicase DHX9. J Biol Chem 2024; 300:107830. [PMID: 39342995 PMCID: PMC11538862 DOI: 10.1016/j.jbc.2024.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024] Open
Abstract
PCBP1, polycytosine (poly(C)) binding protein 1, an RNA and single-stranded DNA (ssDNA) binding protein, binds poly(C) DNA tracts but it remains unclear whether its ability to bind ssDNA contributes to transcriptional regulation. Here, we report that PCBP1's DNA binding sites are enriched at transcription start sites and that by binding to promoter regions, PCBP1 regulates transcription in addition to splicing and translation. At PCBP1 target genes, we show that PCBP1 interacts with several RNA/DNA hybrid (R-loop) associated G-quadruplex resolving helicases. Furthermore, we find that PCBP1 interacts with RNA Helicase A (DHX9) to modulate transcription by regulating DHX9 accumulation and activity. PCBP1 depletion leads to defects in R-loop processing and dysregulation of transcription of PCBP1 target genes. PCBP1's high sequence specificity and interaction with helicases suggest that its mechanism in transcription involves guiding helicases to specific loci during transcription, thereby modulating their activity.
Collapse
Affiliation(s)
- Joseph A Q Karam
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Cécile Fréreux
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina, USA
| | - Annamarie C Dalton
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Toros A Dincman
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Division of Molecular Medicine, Department of Internal Medicine, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Breege V Howley
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
3
|
Jia W, Yu L, Xu B, Feng Y, Wang J, Zhu D, Xu C, Liang L, Zhou Y, Kong L, Ding W. HNF4A-AS1 inhibits the progression of hepatocellular carcinoma by promoting the ubiquitin-modulated degradation of PCBP2 and suppressing the stability of ARG2 mRNA. Int J Biol Sci 2024; 20:5087-5108. [PMID: 39430249 PMCID: PMC11488582 DOI: 10.7150/ijbs.95276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor with a poor prognosis. Extensive research has revealed the significant role of long noncoding RNAs (lncRNAs) in the regulation of tumor development. In this study, high-throughput sequencing analysis was used to assess the expression levels of lncRNAs in three pairs of HCC tissues and their corresponding noncancerous tissues. Through quantitative real-time polymerase chain reaction (qRT-PCR) analysis and clinicopathological analysis, it was discovered that HNF4A-AS1 was downregulated in HCC tissues. Furthermore, its expression levels were found to be positively correlated with the prognosis of HCC patients. Subsequent in vitro and in vivo functional studies demonstrated that HNF4A-AS1 inhibits the proliferation, invasion, and stemness of HCC cells. Mechanistically, it was observed that HNF4A-AS1 physically interacts with the KH3 domain of PCBP2 through a specific segment (491-672 nt). This interaction facilitates the recruitment of PCBP2 by AIP4, leading to the ubiquitination and subsequent degradation of PCBP2. Furthermore, HNF4A-AS1 was found to regulate the stability of AGR2 mRNA by modulating PCBP2, thereby influencing the malignant phenotype of HCC. Overall, our study demonstrated a positive association between the decrease in HNF4A-AS1 expression and the prognosis of patients with HCC in a clinical setting. HNF4A-AS1 can suppress the stability of ARG2 mRNA by promoting the ubiquitin-modulated degradation of PCBP2, which suppresses HCC progression. HNF4A-AS1 may serve as a potential therapeutic target for HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Humans
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Hepatocyte Nuclear Factor 4/metabolism
- Hepatocyte Nuclear Factor 4/genetics
- RNA, Long Noncoding/metabolism
- RNA, Long Noncoding/genetics
- Male
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Cell Line, Tumor
- Female
- Ubiquitin/metabolism
- Gene Expression Regulation, Neoplastic
- Animals
- Middle Aged
- Mice
- Disease Progression
- Cell Proliferation/genetics
- RNA Stability
- Mice, Nude
Collapse
Affiliation(s)
- Wenbo Jia
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Liang Yu
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, China
| | - Bin Xu
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yanzhi Feng
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Jinyi Wang
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Deming Zhu
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Chao Xu
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Litao Liang
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Yongping Zhou
- Department of Hepatobiliary, Jiangnan University Medical Center, JUMC, China
| | - Lianbao Kong
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Wenzhou Ding
- Hepatobiliary Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| |
Collapse
|
4
|
Lambert GS, Rice BL, Kaddis Maldonado RJ, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.575255. [PMID: 38293010 PMCID: PMC10827203 DOI: 10.1101/2024.01.18.575255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Retroviruses exploit a variety of host proteins to assemble and release virions from infected cells. To date, most studies that examined possible interacting partners of retroviral Gag proteins focused on host proteins that localize primarily to the cytoplasm or plasma membrane. Given the recent findings that several full-length Gag proteins localize to the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings that reveal previously unknown host processes. In this study, we systematically compared nuclear factors identified in published HIV-1 proteomic studies which had used a variety of experimental approaches. In addition, to contribute to this body of knowledge, we report results from a mass spectrometry approach using affinity-tagged (His6) HIV-1 and RSV Gag proteins mixed with nuclear extracts. Taken together, the previous studies-as well as our own-identified potential binding partners of HIV-1 and RSV Gag involved in several nuclear processes, including transcription, splicing, RNA modification, and chromatin remodeling. Although a subset of host proteins interacted with both Gag proteins, there were also unique host proteins belonging to each interactome dataset. To validate one of the novel findings, we demonstrated the interaction of RSV Gag with a member of the Mediator complex, Med26, which is required for RNA polymerase II-mediated transcription. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S. Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Breanna L. Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Fisher E, Feng J. RNA splicing regulators play critical roles in neurogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1728. [PMID: 35388651 DOI: 10.1002/wrna.1728] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Alternative RNA splicing increases transcript diversity in different cell types and under varying conditions. It is executed with the help of RNA splicing regulators (RSRs), which are operationally defined as RNA-binding proteins (RBPs) that regulate alternative splicing, but not directly catalyzing the chemical reactions of splicing. By systematically searching for RBPs and manually identifying those that regulate splicing, we curated 305 RSRs in the human genome. Surprisingly, most of the RSRs are involved in neurogenesis. Among these RSRs, we focus on nine families (PTBP, NOVA, RBFOX, ELAVL, CELF, DBHS, MSI, PCBP, and MBNL) that play essential roles in the neurogenic pathway. A better understanding of their functions will provide novel insights into the role of splicing in brain development, health, and disease. This comprehensive review serves as a stepping-stone to explore the diverse and complex set of RSRs as fundamental regulators of neural development. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Emily Fisher
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York, USA
- Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| | - Jian Feng
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York, USA
- Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| |
Collapse
|
6
|
Zhao H, Wei Z, Shen G, Chen Y, Hao X, Li S, Wang R. Poly(rC)-binding proteins as pleiotropic regulators in hematopoiesis and hematological malignancy. Front Oncol 2022; 12:1045797. [PMID: 36452487 PMCID: PMC9701828 DOI: 10.3389/fonc.2022.1045797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Poly(rC)-binding proteins (PCBPs), a defined subfamily of RNA binding proteins, are characterized by their high affinity and sequence-specific interaction with poly-cytosine (poly-C). The PCBP family comprises five members, including hnRNP K and PCBP1-4. These proteins share a relatively similar structure motif, with triple hnRNP K homology (KH) domains responsible for recognizing and combining C-rich regions of mRNA and single- and double-stranded DNA. Numerous studies have indicated that PCBPs play a prominent role in hematopoietic cell growth, differentiation, and tumorigenesis at multiple levels of regulation. Herein, we summarized the currently available literature regarding the structural and functional divergence of various PCBP family members. Furthermore, we focused on their roles in normal hematopoiesis, particularly in erythropoiesis. More importantly, we also discussed and highlighted their involvement in carcinogenesis, including leukemia and lymphoma, aiming to clarify the pleiotropic roles and molecular mechanisms in the hematopoietic compartment.
Collapse
Affiliation(s)
- Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yixiang Chen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Sanqiang Li
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Rong Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Yuan C, Chen M, Cai X. Advances in poly(rC)-binding protein 2: Structure, molecular function, and roles in cancer. Biomed Pharmacother 2021; 139:111719. [PMID: 34233389 DOI: 10.1016/j.biopha.2021.111719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
Poly(rC)-binding protein 2 (PCBP2) is an RNA-binding protein that is characterized by its ability to interact with poly(C) with high affinity in a sequence-specific manner. PCBP2 contains three K homology domains, which are consensus RNA-binding domains that play a role in recognizing and combining with RNA and DNA. The specific structure and localization of PCBP2 lay the foundation for its multiple roles in transcriptional, posttranscriptional, and translational processes, even in iron metabolism. Numerous studies have indicated that PCBP2 expression is increased in many cancer types. PCBP2 is considered as an oncogene that promotes tumorigenesis, development of cancer cells, and metastasis. Here, we summarized the current evidence regarding PCBP2 in the proliferation, migration, invasion of cancer cells, and drug resistance, aiming to clarify the molecular mechanisms of PCBP2 in cancer. Results from this review suggest that an in-depth study of PCBP2 in cancer may provide novel biomarkers for prognostic or therapeutic purposes.
Collapse
Affiliation(s)
- Chendong Yuan
- Department of Vascular Surgery, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, China.
| | - Mingxiang Chen
- Department of Cardiovascular surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, Yubei 401120, China.
| | - Xiaolu Cai
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
8
|
Nazarov IB, Bakhmet EI, Tomilin AN. KH-Domain Poly(C)-Binding Proteins as Versatile Regulators of Multiple Biological Processes. BIOCHEMISTRY (MOSCOW) 2019; 84:205-219. [PMID: 31221059 DOI: 10.1134/s0006297919030039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Five known members of the family of KH-domain poly(C)-binding proteins (Pcbp1-4, hnRNP-K) have an unusually broad spectrum of cellular functions that include regulation of gene transcription, regulation of pre-mRNA processing, splicing, mRNA stability, translational silencing and enhancement, the control of iron turnover, and many others. Mechanistically, these proteins act via nucleic acid binding and protein-protein interactions. Through performing these multiple tasks, the KH-domain poly(C)-binding family members are involved in a wide variety of biological processes such as embryonic development, cell differentiation, and cancer. Deregulation of KH-domain protein expression is frequently associated with severe developmental defects and neoplasia. This review summarizes progress in studies of the KH-domain proteins made over past two decades. The review also reports our recent finding implying an involvement of the KH-factor Pcbp1 into control of transition from naïve to primed pluripotency cell state.
Collapse
Affiliation(s)
- I B Nazarov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | - E I Bakhmet
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - A N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
9
|
Xu L, Zhang T, Huang W, Liu X, Lu J, Gao X, Zhang YF, Liu L. YAP mediates the positive regulation of hnRNPK on the lung adenocarcinoma H1299 cell growth. Acta Biochim Biophys Sin (Shanghai) 2019; 51:677-687. [PMID: 31187136 DOI: 10.1093/abbs/gmz053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide, and non-small cell lung cancer (NSCLC) accounts for 80%-85% of diagnostic cases. The molecular mechanisms of NSCLC pathogenesis are not well understood. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a multifunctional protein that regulates gene expression and signal transduction and closely associated with tumorigenesis, but its mechanism of action in the pathogenesis of NSCLC is unclear. In this study, we observed that the expression pattern of hnRNPK in H1299 lung adenocarcinoma cells varied depending on the cell density in culture. Moreover, hnRNPK stimulated the ability of proliferation and colony formation of H1299 cells, which is important for the multilayered cell growth in culture. We further investigated whether there is an association between hnRNPK and the elements involved in the cell contact inhibition pathway. By using quantitative reverse transcriptase-polymerase chain reaction assay and a YAP activity reporter system, we found that hnRNPK upregulated the mRNA and protein levels and transcriptional activity of Yes-associated protein 1 (YAP), a master negative regulator of Hippo contact inhibition pathway. Furthermore, YAP knockdown with siRNA abolished the stimulatory effect of hnRNPK on H1299 cell proliferation. These results suggested that YAP could be one of the effectors of hnRNPK. Our data may provide new clues for further understanding the biological functions of hnRNPK, particularly in the context of lung adenocarcinoma oncogenesis.
Collapse
Affiliation(s)
- Lipei Xu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Tingting Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Wensi Huang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaohui Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Junlei Lu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Yun-Fang Zhang
- Center of Kidney Disease, Huadu District People’s Hospital, Southern Medical University, Guangzhou 510800, China
| | - Langxia Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Shin CH, Kim HH. Functional roles of heterogeneous nuclear ribonucleoprotein K in post-transcriptional gene regulation. PRECISION AND FUTURE MEDICINE 2018. [DOI: 10.23838/pfm.2018.00107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
11
|
Kim HJ, Lee JJ, Cho JH, Jeong J, Park AY, Kang W, Lee KJ. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1. J Biol Chem 2017; 292:12801-12812. [PMID: 28592492 DOI: 10.1074/jbc.m117.774992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
When cells are exposed to heat shock and various other stresses, heat shock factor 1 (HSF1) is activated, and the heat shock response (HSR) is elicited. To better understand the molecular regulation of the HSR, we used 2D-PAGE-based proteome analysis to screen for heat shock-induced post-translationally modified cellular proteins. Our analysis revealed that two protein spots typically present on 2D-PAGE gels and containing heterogeneous nuclear ribonucleoprotein K (hnRNP K) with trioxidized Cys132 disappeared after the heat shock treatment and reappeared during recovery, but the total amount of hnRNP K protein remained unchanged. We next tested whether hnRNP K plays a role in HSR by regulating HSF1 and found that hnRNP K inhibits HSF1 activity, resulting in reduced expression of hsp70 and hsp27 mRNAs. hnRNP K also reduced binding affinity of HSF1 to the heat shock element by directly interacting with HSF1 but did not affect HSF1 phosphorylation-dependent activation or nuclear localization. hnRNP K lost its ability to induce these effects when its Cys132 was substituted with Ser, Asp, or Glu. These findings suggest that hnRNP K inhibits transcriptional activity of HSF1 by inhibiting its binding to heat shock element and that the oxidation status of Cys132 in hnRNP K is critical for this inhibition.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jae-Jin Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jin-Hwan Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jaeho Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - A Young Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Wonmo Kang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
12
|
Lee DS, Law PY, Ln W, Loh HH, Song KY, Choi HS. Differential regulation of mouse and human Mu opioid receptor gene depends on the single stranded DNA structure of its promoter and α-complex protein 1. Biomed Rep 2017; 6:532-538. [PMID: 28529734 DOI: 10.3892/br.2017.877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 11/05/2022] Open
Abstract
The Mu opioid receptor (MOR) mediates various functions of opioid-induced analgesia, euphoria and respiratory depression, and is a major target of opioid analgesics. Understanding of MOR gene expression among species is important for understanding its analgesic function in humans. In the current study, the polypyrimidine/polypurine (PPy/u) region, a key element of MOR gene expression, was compared in humans and mice. The mouse PPy/u element is highly homologous to its human element (84%), and the mouse MOR (mMOR) reporter drives luciferase activity 35-fold more effectively than the human MOR (hMOR) reporter. The structural study of reporter plasmids using S1 nuclease indicates that the mouse PPy/u element has a particular conformational structure, namely a single-stranded DNA (ssDNA) region that promotes strong promoter activity. DNA electrophoretic mobility shift assays demonstrated that the recombinant α-complex protein 1 (α-CP1) is capable of binding to a single-stranded mouse PPy/u sequence. Furthermore, plasmid-expressing α-CP1 activated the expression of a luciferase reporter when cotransfected with a single-stranded (p336/306) construct. In addition, the α-CP1 gene induced the mMOR gene in mouse neuronal cells and did not induce the human neuronal MOR gene. The current study demonstrates that α-CP1 functions as a transcriptional activator in the mMOR gene, but does not function in the hMOR gene due to species-specific structural differences. The differences in human and mouse MOR gene expression are based on α-CP1 and the ssDNA structure of the MOR promoter. The MOR gene is species-specifically regulated, as the PPy/u element adopts a unique species-specific conformation and α-CP1 recruitment.
Collapse
Affiliation(s)
- Dong-Sun Lee
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea.,Subtropical/Tropical Organism Gene Bank Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Wei Ln
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hack Sun Choi
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea.,Subtropical/Tropical Organism Gene Bank Institute, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
13
|
Hwang CK, Wagley Y, Law PY, Wei LN, Loh HH. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP). Gene 2016; 598:113-130. [PMID: 27836661 DOI: 10.1016/j.gene.2016.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022]
Abstract
Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3'-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3'-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yadav Wagley
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Bryant CD, Yazdani N. RNA-binding proteins, neural development and the addictions. GENES BRAIN AND BEHAVIOR 2016; 15:169-86. [PMID: 26643147 DOI: 10.1111/gbb.12273] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022]
Abstract
Transcriptional and post-transcriptional regulation of gene expression defines the neurobiological mechanisms that bridge genetic and environmental risk factors with neurobehavioral dysfunction underlying the addictions. More than 1000 genes in the eukaryotic genome code for multifunctional RNA-binding proteins (RBPs) that can regulate all levels of RNA biogenesis. More than 50% of these RBPs are expressed in the brain where they regulate alternative splicing, transport, localization, stability and translation of RNAs during development and adulthood. Dysfunction of RBPs can exert global effects on their targetomes that underlie neurodegenerative disorders such as Alzheimer's and Parkinson's diseases as well as neurodevelopmental disorders, including autism and schizophrenia. Here, we consider the evidence that RBPs influence key molecular targets, neurodevelopment, synaptic plasticity and neurobehavioral dysfunction underlying the addictions. Increasingly well-powered genome-wide association studies in humans and mammalian model organisms combined with ever more precise transcriptomic and proteomic approaches will continue to uncover novel and possibly selective roles for RBPs in the addictions. Key challenges include identifying the biological functions of the dynamic RBP targetomes from specific cell types throughout subcellular space (e.g. the nuclear spliceome vs. the synaptic translatome) and time and manipulating RBP programs through post-transcriptional modifications to prevent or reverse aberrant neurodevelopment and plasticity underlying the addictions.
Collapse
Affiliation(s)
- C D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - N Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
15
|
Song KY, Choi HS, Law PY, Wei LN, Loh HH. Post-Transcriptional Regulation of the Human Mu-Opioid Receptor (MOR) by Morphine-Induced RNA Binding Proteins hnRNP K and PCBP1. J Cell Physiol 2016; 232:576-584. [PMID: 27292014 DOI: 10.1002/jcp.25455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/10/2016] [Indexed: 01/18/2023]
Abstract
Expression of the mu-opioid receptor (MOR) protein is controlled by extensive transcriptional and post-transcriptional processing. MOR gene expression has previously been shown to be altered by a post-transcriptional mechanism involving the MOR mRNA untranslated region (UTR). Here, we demonstrate for the first time the role of heterogeneous nuclear ribonucleic acids (hnRNA)-binding protein (hnRNP) K and poly(C)-binding protein 1 (PCBP1) as post-transcriptional inducers in MOR gene regulation. In the absence of morphine, a significant level of MOR mRNA is sustained in its resting state and partitions in the translationally inactive polysomal fraction. Morphine stimulation activates the downstream targets hnRNP K and PCPB1 and induces partitioning of the MOR mRNA to the translationally active fraction. Using reporter and ligand binding assays, as well as RNA EMSA, we reveal potential RNP binding sites located in the 5'-untranslated region of human MOR mRNA. In addition, we also found that morphine-induced RNPs could regulate MOR expression. Our results establish the role of hnRNP K and PCPB1 in the translational control of morphine-induced MOR expression in human neuroblastoma (NMB) cells as well as cells stably expressing MOR (NMB1). J. Cell. Physiol. 232: 576-584, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Hack Sun Choi
- Subtropical Horticulture Research Institute, College of Applied Life Science, Jeju National University, Jeju, Jeju, Republic of Korea
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
16
|
Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet 2016; 135:851-67. [PMID: 27215579 PMCID: PMC4947485 DOI: 10.1007/s00439-016-1683-5] [Citation(s) in RCA: 737] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that contribute to multiple aspects of nucleic acid metabolism including alternative splicing, mRNA stabilization, and transcriptional and translational regulation. Many hnRNPs share general features, but differ in domain composition and functional properties. This review will discuss the current knowledge about the different hnRNP family members, focusing on their structural and functional divergence. Additionally, we will highlight their involvement in neurodegenerative diseases and cancer, and the potential to develop RNA-based therapies.
Collapse
Affiliation(s)
- Thomas Geuens
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Delphine Bouhy
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
17
|
Zhang P, Wang N, Lin X, Jin L, Xu H, Li R, Huang H. Expression and localization of heterogeneous nuclear ribonucleoprotein K in mouse ovaries and preimplantation embryos. Biochem Biophys Res Commun 2016; 471:260-5. [PMID: 26850853 DOI: 10.1016/j.bbrc.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 01/08/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K), an evolutionarily conserved protein, is involved in several important cellular processes that are relevant to cell proliferation, differentiation, apoptosis, and cancer development. However, details of hnRNP K expression during mammalian oogenesis and preimplantation embryo development are lacking. The present study investigates the expression and cellular localization of K protein in the mouse ovaries and preimplantation embryos using immunostaining. We demonstrate, for the first time, that hnRNP K is abundantly expressed in the nuclei of mouse oocytes in primordial, primary and secondary follicles. In germ vesicle (GV)-stage oocytes, hnRNP K accumulates in the germinal vesicle in a spot distribution manner. After germinal vesicle breakdown, speckled hnRNP K is diffusely distributed in the cytoplasm. However, after fertilization, the K protein relocates into the female and male pronucleus and persists in the blastomere nuclei. Localization of K protein in the human ovary and ovarian granulosa cell tumor (GCT) was also investigated. Overall, this study provides important morphological evidence to better understand the possible roles of hnRNP K in mammalian oogenesis and early embryo development.
Collapse
Affiliation(s)
- Ping Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ningling Wang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xianhua Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Rong Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hefeng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
18
|
He L, Xue X, Wang Z, Hou E, Liu Y, Liang M, Zhang Y, Tian Z. Transcriptional regulation of heterogeneous nuclear ribonucleoprotein K gene expression. Biochimie 2014; 109:27-35. [PMID: 25497182 DOI: 10.1016/j.biochi.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/03/2014] [Indexed: 01/05/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is importantly involved in the regulation of development, DNA damage response, and several human diseases. The molecular mechanisms that control the expression of hnRNP K are largely unknown. In the present study, we investigated the detailed mechanism of the transcriptional regulation of human hnRNP K gene. Two activating and one repressive elements located in the proximal segment of the transcriptional initiation site were identified in hnRNP K gene. A 19 bp-region was responsible for the inhibitory activities of the repressor element. Twenty proteins were identified by DNA-affinity purification and mass spectrometry analyses as binding partners of the primary activating element in the hnRNP K promoter. Chromatin immunoprecipitation and EMSA analysis confirmed the binding of Sp1 with hnRNP K promoter. Sp1 enhanced the promoter activity, increased the expression of hnRNP K, and reduced the mRNA level of angiotensinogen, a gene known to be negatively regulated by hnRNP K. In summary, the current study characterized the promoter elements that regulate the transcription of human hnRNP K gene, identified 20 proteins that bind to the primary activating element of hnRNP K promoter, and demonstrated a functional effect of Sp1 on hnRNP K transcription.
Collapse
Affiliation(s)
- Liqing He
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaochang Xue
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhengjun Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Entai Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Zhongmin Tian
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
19
|
Lee PT, Chao PK, Ou LC, Chuang JY, Lin YC, Chen SC, Chang HF, Law PY, Loh HH, Chao YS, Su TP, Yeh SH. Morphine drives internal ribosome entry site-mediated hnRNP K translation in neurons through opioid receptor-dependent signaling. Nucleic Acids Res 2014; 42:13012-25. [PMID: 25361975 PMCID: PMC4245930 DOI: 10.1093/nar/gku1016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) binds to the promoter region of mu-opioid receptor (MOR) to regulate its transcriptional activity. How hnRNP K contributes to the analgesic effects of morphine, however, is largely unknown. We provide evidence that morphine increases hnRNP K protein expression via MOR activation in rat primary cortical neurons and HEK-293 cells expressing MORs, without increasing mRNA levels. Using the bicistronic reporter assay, we examined whether morphine-mediated accumulation of hnRNP K resulted from translational control. We identified potential internal ribosome entry site elements located in the 5′ untranslated regions of hnRNP K transcripts that were regulated by morphine. This finding suggests that internal translation contributes to the morphine-induced accumulation of hnRNP K protein in regions of the central nervous system correlated with nociceptive and antinociceptive modulatory systems in mice. Finally, we found that down-regulation of hnRNP K mediated by siRNA attenuated morphine-induced hyperpolarization of membrane potential in AtT20 cells. Silencing hnRNP K expression in the spinal cord increased nociceptive sensitivity in wild-type mice, but not in MOR-knockout mice. Thus, our findings identify the role of translational control of hnRNP K in morphine-induced analgesia through activation of MOR.
Collapse
Affiliation(s)
- Pin-Tse Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Po-Kuan Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Li-Chin Ou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Jian-Ying Chuang
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan, ROC
| | - Shu-Chun Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Hsiao-Fu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota, Medical School, Minneapolis, MN 55455, USA
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota, Medical School, Minneapolis, MN 55455, USA
| | - Yu-Sheng Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| |
Collapse
|
20
|
Barboro P, Ferrari N, Balbi C. Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression. Cancer Lett 2014; 352:152-9. [DOI: 10.1016/j.canlet.2014.06.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 12/18/2022]
|
21
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
22
|
Song KY, Choi HS, Law PY, Wei LN, Loh HH. Vimentin interacts with the 5'-untranslated region of mouse mu opioid receptor (MOR) and is required for post-transcriptional regulation. RNA Biol 2013; 10:256-66. [PMID: 23353576 PMCID: PMC3594284 DOI: 10.4161/rna.23022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The opioid receptors are among the most highly studied members of the superfamily of G-protein coupled receptors. Morphine and endogenous mu opioid peptides exert their pharmacological actions mainly through the mu opioid receptor (MOR). Expression of opioid receptor proteins is controlled by extensive transcriptional and post-transcriptional processing. Previously, the 5′-untranslated region (UTR) of the mouse MOR was found to be important for post-transcriptional regulation of the MOR gene in neuronal cells. Here, we demonstrate for the first time the role of vimentin as a post-transcriptional repressor in MOR gene regulation. To identify potential regulators of the mouse MOR gene, we performed affinity column chromatography using 5′-UTR-specific RNA oligonucleotides using neuroblastoma NS20Y cells. Chromatography was followed by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. We identified an intermediate filament protein, vimentin, which bound specifically to the region between -175 and -150 (175–150) of the MOR 5′-UTR. Binding was confirmed by western blot analysis and RNA supershift assay. Furthermore, a cotransfection study demonstrated that the presence of vimentin resulted in reduced expression of the mouse MOR. Our data suggest that vimentin functions as a repressor of MOR translation, dependent on 175–150 of the MOR 5′-UTR.
Collapse
Affiliation(s)
- Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
| | | | | | | | | |
Collapse
|
23
|
Regan PM, Dave RS, Datta PK, Khalili K. Epigenetics of µ-opioid receptors: intersection with HIV-1 infection of the central nervous system. J Cell Physiol 2012; 227:2832-41. [PMID: 22034138 DOI: 10.1002/jcp.24004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The abuse of intravenous drugs, such as heroin, has become a major public health concern due to the increased risk of HIV-1 infection. Opioids such as heroin were originally identified and subsequently abused for their analgesic effects. However, many investigations have found additional effects of opioids, including regulation of the immune system. As such, chronic opioid abuse has been shown to promote HIV-1 pathogenesis and facilitate HIV-1-associated neurocognitive dysfunction. Clinical opioids, such as morphine and methadone, as well as illicit opioids, such as heroin, exert their effects primarily through interactions with the µ-opioid receptor (MOR). However, the mechanisms by which opioids enhance neurocognitive dysfunction through MOR-mediated signaling pathways are not completely understood. New findings in the regulation of MOR expression, particularly epigenetic and transcriptional regulation as well as alternative splicing, sheds new insights into possible mechanisms of HIV-1 and opiate synergy. In this review, we identify mechanisms regulating MOR expression and propose novel mechanisms by which opioids and HIV-1 may modulate this regulation. Additionally, we suggest that differential regulation of newly identified MOR isoforms by opioids and HIV-1 has functional consequence in enhancing HIV-1 neurocognitive dysfunction.
Collapse
Affiliation(s)
- Patrick M Regan
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
24
|
Song KY, Choi HS, Law PY, Wei LN, Loh HH. Post-transcriptional regulation of mu-opioid receptor: role of the RNA-binding proteins heterogeneous nuclear ribonucleoprotein H1 and F. Cell Mol Life Sci 2011; 69:599-610. [PMID: 21739230 DOI: 10.1007/s00018-011-0761-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/13/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
Classical opioids have been historically used for the treatment of pain and are among the most widely used drugs for both acute severe pain and long-term pain. Morphine and endogenous mu-opioid peptides exert their pharmacological actions mainly through the mu-opioid receptor (MOR). However, the expression of opioid receptor (OR) proteins is controlled by extensive transcriptional and post-transcriptional processing. Previously, the 5'-untranslated region (UTR) of the mouse MOR was found to be important for post-transcriptional regulation of the MOR gene in neuronal cells. To identify proteins binding to the 5'-UTR as potential regulators of the mouse MOR gene, affinity column chromatography using 5'-UTR-specific RNA oligonucleotides was performed using neuroblastoma NS20Y cells. Chromatography was followed by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. We identified two heterogeneous ribonucleoproteins (hnRNPs) that bound to RNA sequences of interest: hnRNP H1 and hnRNP F. Binding of these proteins to the RNA region was M4-region sequence-specific as confirmed by Western-blot analysis and RNA supershift assay. Furthermore, a cotransfection study showed that the presence of hnRNP H1 and F resulted in repressed expression of the mouse MOR. Our data suggest that hnRNP H1 and F can function as repressors of MOR translation dependent on the M4 (-75 to -71 bp upstream of ATG) sequences. We demonstrate for the first time a role of hnRNPs as post-transcriptional repressors in MOR gene regulation.
Collapse
Affiliation(s)
- Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
25
|
Kim DK, Hwang CK, Wagley Y, Law PY, Wei LN, Loh HH. p38 mitogen-activated protein kinase and PI3-kinase are involved in up-regulation of mu opioid receptor transcription induced by cycloheximide. J Neurochem 2011; 116:1077-87. [PMID: 21198637 DOI: 10.1111/j.1471-4159.2010.07163.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite several decades of efforts to develop safer, efficacious, and non-addictive opioids for pain treatment, morphine remains the most valuable painkiller in contemporary medicine. Morphine and endogenous mu opioid peptides exert their pharmacological actions mainly through the mu opioid receptor (MOR). Analgesic effects of opioids in animals are dependent on the MOR expression levels, as demonstrated by studies of MOR-knockout mice (homo/heterozygotes) and MOR-less expressing mice. Surprisingly, in the course of our investigation to understand the mechanisms involved in the regulation of MOR gene expression, cycloheximide (CHX), a known protein synthesis inhibitor, markedly induced accumulation of MOR mRNAs in both MOR-negative and -positive cells. This induction was blocked by inhibitors of phosphoinositide 3-kinase (PI3-K) and p38 MAPK, but not by a p42/44 MAPK inhibitor. In vitro, CHX was found to activate the MOR promoter and this activation was suppressed by inhibition of PI3-K. The transcriptional activator Sox18 was recruited to the MOR promoter in CHX-treated cells and this recruitment was also inhibited by the PI3-K and p38 MAPK inhibitors, Ly294002 and SB203580, respectively. Consistently, acetylation of histone H3 and induction of H3-K4 methylation were detected while reductions of histone deacetylase 2 binding and H3-K9 methylation were observed on the promoter. Furthermore, the MOR mRNA accumulation was almost completely inhibited in the presence of actinomycin-D, indicating that this effect occurs mainly through activation of the transcriptional machinery. These observations suggest that CHX directly induces MOR gene transcription by recruiting the active transcription factor Sox18 to the MOR promoter through PI3- and/or p38 MAPK pathways.
Collapse
Affiliation(s)
- Do Kyung Kim
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
26
|
Scoumanne A, Cho SJ, Zhang J, Chen X. The cyclin-dependent kinase inhibitor p21 is regulated by RNA-binding protein PCBP4 via mRNA stability. Nucleic Acids Res 2010; 39:213-24. [PMID: 20817677 PMCID: PMC3017617 DOI: 10.1093/nar/gkq778] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA-binding proteins (RBPs) play a major role in many post-transcriptional processes, including mRNA stability, alternative splicing and translation. PCBP4, also called MCG10, is an RBP belonging to the poly(C)-binding protein family and a target of p53 tumor suppressor. Ectopic expression of PCBP4 induces cell-cycle arrest in G2 and apoptosis. To identify RNA targets regulated by PCBP4 and further decipher its function, we generated multiple cell lines in which PCBP4 is either inducibly over-expressed or knocked down. We found that PCBP4 expression decreases cyclin-dependent kinase inhibitor p21 induction in response to DNA damage. We also provided evidence that PCBP4 regulates p21 expression independently of p53. In addition, we showed that a deficiency in PCBP4 enhances p21 induction upon DNA damage. To validate PCBP4 regulation of p21, we made PCBP4-deficient mice and showed that p21 expression is markedly increased in PCBP4-deficient primary mouse embryo fibroblasts compared to that in wild-type counterparts. Finally, we uncovered that PCBP4 binds to the 3′-UTR of p21 transcript in vitro and in vivo to regulate p21 mRNA stability. Taken together, we revealed that PCBP4 regulates both basal and stress-induced p21 expression through binding p21 3′-UTR and modulating p21 mRNA stability.
Collapse
Affiliation(s)
- Ariane Scoumanne
- The Center for Comparative Oncology, University of California at Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
27
|
Hwang CK, Kim CS, Kim DK, Law PY, Wei LN, Loh HH. Up-regulation of the mu-opioid receptor gene is mediated through chromatin remodeling and transcriptional factors in differentiated neuronal cells. Mol Pharmacol 2010; 78:58-68. [PMID: 20385708 PMCID: PMC2912061 DOI: 10.1124/mol.110.064311] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 04/12/2010] [Indexed: 12/21/2022] Open
Abstract
The effects of morphine are mediated mainly through the mu opioid receptor (MOR). Expression of the MOR is up-regulated during neuronal differentiation in P19 embryonal carcinoma cells and epigenetic changes play an important role in MOR up-regulation. This study investigates the basis for differentiation-dependent alterations of MOR chromatin by studying the recruitment or dissociation of several factors to the remodeled chromatin locus. Chromatin immunoprecipitation assays were used to demonstrate the recruitment of the transcriptional activator Sp1 and the chromatin remodeling factors Brg1 and BAF155 to this promoter, as well as the dissociation of repressors [histone deacetylases, mSin3A, Brm, and methyl-CpG-binding protein 2 (MeCP2)]. Histone modifications (acetylation, induction of histone H3-lys4 methylation, and reduction of H3-lys9 methylation) were consistently detected on this promoter. Overexpression of Sp1 strongly enhanced MOR promoter activity, and the histone deacetylase inhibitor trichostatin A also increased promoter activity. In vitro DNA CpG-methylation of the promoter partially blocked binding of the Sp1 factor but induced MeCP2 binding. Coimmunoprecipitation studies also found novel evidence of an endogenous MeCP2 interaction with Sp3 but a weaker interaction with Sp1. Overall, the results suggest that during neuronal differentiation, MeCP2 and DNA methylation mediate remodeling of the MOR promoter by chromatin remodeling factors (Brg1 and BAF155) from a compacted state to a conformation allowing access for transcriptional factors. Subsequent recruitment of the activating transcription factor Sp1 to the remodeled promoter results in MOR up-regulation.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Suder P, Bodzon-Kulakowska A, Mak P, Bierczynska-Krzysik A, Daszykowski M, Walczak B, Lubec G, Kotlinska JH, Silberring J. The proteomic analysis of primary cortical astrocyte cell culture after morphine administration. J Proteome Res 2010; 8:4633-40. [PMID: 19642706 DOI: 10.1021/pr900443r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Astrocytes are supportive cells, necessary for ensure optimal environment for neural cells functioning. They are involved in extracellular K+ level regulation and neurotransmitters removal. They are also dependent for myelination and synapses formation. They may make a contribution in signal propagation in the central nervous system, for example, through Ca2+ signaling. With the use of neonatal pure astrocyte cell culture, we investigated changes in astrocyte's proteomes under the influence of morphine. We found 10 major proteins, which show different expression between physiological cell culture and morphine treatment. With 2D gel electrophoresis and nanoLC-ESI-MS/MS, we identified proteins and characterized their potential role in morphine dependence. Observed differences were also confirmed by Western blotting. Our data suggests a role for astrocytes in the formation of the morphine dependence at the molecular level. This finding may support interpretation of causes of morphine dependence formation based only on behavioral data.
Collapse
Affiliation(s)
- Piotr Suder
- Neurobiochemistry Department, Faculty of Chemistry, Jagiellonian University, Ingardena 3 Street, 30-060 Krakow, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|
30
|
Song KY, Choi HS, Hwang CK, Kim CS, Law PY, Wei LN, Loh HH. Differential use of an in-frame translation initiation codon regulates human mu opioid receptor (OPRM1). Cell Mol Life Sci 2009; 66:2933-42. [PMID: 19609488 PMCID: PMC11115551 DOI: 10.1007/s00018-009-0082-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/05/2009] [Accepted: 06/19/2009] [Indexed: 11/26/2022]
Abstract
The pharmacological effects of morphine and morphine-like drugs are mediated primarily through the micro opioid receptor. Here we show that differential use of an in-frame translational start codon in the 5'-untranslated region of the OPRM1 generates different translational products in vivo and in vitro. The 5'-end of the OPRM1 gene is necessary for initiating the alternate form and for subsequent degradation of the protein. Initiation of OPRM1 at the upstream site decreases the initiation at the main AUG site. However, alternative initiation of the long form of OPRM1 produces a protein with a short half-life, resulting from degradation mediated by the ubiquitin-proteasome pathway. Reporter and degradation assays showed that mutations of this long form at the second and third lysines reduce ubiquitin-dependent proteasome degradation, stabilizing the protein. The data suggest that MOP expression is controlled in part by initiation of the long form of MOP at the alternate site.
Collapse
Affiliation(s)
- Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Choi HS, Hwang CK, Song KY, Law PY, Wei LN, Loh HH. Poly(C)-binding proteins as transcriptional regulators of gene expression. Biochem Biophys Res Commun 2009; 380:431-6. [PMID: 19284986 DOI: 10.1016/j.bbrc.2009.01.136] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Poly(C)-binding proteins (PCBPs) are generally known as RNA-binding proteins that interact in a sequence-specific fashion with single-stranded poly(C). They can be divided into two groups: hnRNP K and PCBP1-4. These proteins are involved mainly in various posttranscriptional regulations (e.g., mRNA stabilization or translational activation/silencing). In this review, we summarize and discuss how PCBPs act as transcriptional regulators by binding to specific elements in gene promoters that interact with the RNA polymerase II transcription machinery. Transcriptional regulation of PCBPs might itself be regulated by their localization within the cell. For example, activation by p21-activated kinase 1 induces increased nuclear retention of PCBP1, as well as increased promoter activity. PCBPs can function as a signal-dependent and coordinated regulator of transcription in eukaryotic cells. We address the molecular mechanisms by which PCBPs binding to single- and double-stranded DNA mediates gene expression.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|