1
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Račková L, Csekes E. Proteasome Biology: Chemistry and Bioengineering Insights. Polymers (Basel) 2020; 12:E2909. [PMID: 33291646 PMCID: PMC7761984 DOI: 10.3390/polym12122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Proteasomal degradation provides the crucial machinery for maintaining cellular proteostasis. The biological origins of modulation or impairment of the function of proteasomal complexes may include changes in gene expression of their subunits, ubiquitin mutation, or indirect mechanisms arising from the overall impairment of proteostasis. However, changes in the physico-chemical characteristics of the cellular environment might also meaningfully contribute to altered performance. This review summarizes the effects of physicochemical factors in the cell, such as pH, temperature fluctuations, and reactions with the products of oxidative metabolism, on the function of the proteasome. Furthermore, evidence of the direct interaction of proteasomal complexes with protein aggregates is compared against the knowledge obtained from immobilization biotechnologies. In this regard, factors such as the structures of the natural polymeric scaffolds in the cells, their content of reactive groups or the sequestration of metal ions, and processes at the interface, are discussed here with regard to their influences on proteasomal function.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | | |
Collapse
|
3
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
4
|
Tsimokha AS, Artamonova TO, Diakonov EE, Khodorkovskii MA, Tomilin AN. Post-Translational Modifications of Extracellular Proteasome. Molecules 2020; 25:molecules25153504. [PMID: 32752045 PMCID: PMC7435879 DOI: 10.3390/molecules25153504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is one of the major protein degradation pathways in eukaryotic cells. Abnormal functioning of this system has been observed in cancer and neurological diseases. The 20S proteasomes, essential components of the UPS, are present not only within the cells but also in the extracellular space, and their concentration in blood plasma has been found to be elevated and dependent upon the disease state, being of prognostic significance in patients suffering from cancer, liver diseases, and autoimmune diseases. However, functions of extracellular proteasomes and mechanisms of their release by cells remain largely unknown. The main mechanism of proteasome activity regulation is provided by modulation of their composition and post-translational modifications (PTMs). Moreover, diverse PTMs of proteins are known to participate in the loading of specific elements into extracellular vesicles. Since previous studies have revealed that the transport of extracellular proteasomes may occur via extracellular vesicles, we have set out to explore the PTMs of extracellular proteasomes in comparison to cellular counterparts. In this work, cellular and extracellular proteasomes were affinity purified and separated by SDS-PAGE for subsequent trypsinization and matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) analysis. In total, we could identify 64 and 55 PTM sites in extracellular and cellular proteasomes, respectively, including phosphorylation, ubiquitination, acetylation, and succinylation. We observed novel sites of acetylation at K238 and K192 of the proteasome subunits β2 and β3, respectively, that are specific for extracellular proteasomes. Moreover, cellular proteasomes show specific acetylation at K227 of α2 and ubiquitination at K201 of β3. Interestingly, succinylation of β6 at the residue K228 seems not to be present exclusively in extracellular proteasomes, whereas both extracellular and cellular proteasomes may also be acetylated at this site. The same situation takes place at K201 of the β3 subunit where ubiquitination is seemingly specific for cellular proteasomes. Moreover, crosstalk between acetylation, ubiquitination, and succinylation has been observed in the subunit α3 of both proteasome populations. These data will serve as a basis for further studies, aimed at dissection of the roles of extracellular proteasome-specific PTMs in terms of the function of these proteasomes and mechanism of their transport into extracellular space.
Collapse
Affiliation(s)
- Anna S. Tsimokha
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 Saint-Petersburg, Russia; (T.O.A.); (E.E.D.); (M.A.K.); (A.N.T.)
- Correspondence: ; Tel.: +7-812-297-1829; Fax: +7-812-297-0341
| | - Tatiana O. Artamonova
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 Saint-Petersburg, Russia; (T.O.A.); (E.E.D.); (M.A.K.); (A.N.T.)
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., 195251 Saint-Petersburg, Russia
| | - Egor E. Diakonov
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 Saint-Petersburg, Russia; (T.O.A.); (E.E.D.); (M.A.K.); (A.N.T.)
| | - Mikhail A. Khodorkovskii
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 Saint-Petersburg, Russia; (T.O.A.); (E.E.D.); (M.A.K.); (A.N.T.)
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., 195251 Saint-Petersburg, Russia
| | - Alexey N. Tomilin
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 Saint-Petersburg, Russia; (T.O.A.); (E.E.D.); (M.A.K.); (A.N.T.)
| |
Collapse
|
5
|
Wang X, Wang H. Priming the Proteasome to Protect against Proteotoxicity. Trends Mol Med 2020; 26:639-648. [PMID: 32589934 PMCID: PMC7321925 DOI: 10.1016/j.molmed.2020.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Increased proteotoxic stress (IPTS) resulting from the increased production or decreased removal of abnormally folded proteins is recognized as an important pathogenic factor for a large group of highly disabling and life-threatening human diseases, such as neurodegenerative disorders and many heart diseases. The proteasome is pivotal to the timely removal of abnormal proteins but its functional capacity often becomes inadequate in the disease conditions; consequently, proteasome functional insufficiency in return exacerbates IPTS. Recent research in proteasome biology reveals that the proteasome can be activated by endogenous protein kinases, making it possible to pharmacologically prime the proteasome for treating diseases with IPTS.
Collapse
Affiliation(s)
- Xuejun Wang
- University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA.
| | - Hongmin Wang
- University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| |
Collapse
|
6
|
Zapata-Carmona H, Barón L, Zuñiga LM, Díaz ES, Kong M, Drobnis EZ, Sutovsky P, Morales P. The activation of the chymotrypsin-like activity of the proteasome is regulated by soluble adenyl cyclase/cAMP/protein kinase A pathway and required for human sperm capacitation. Mol Hum Reprod 2020; 25:587-600. [PMID: 31329238 DOI: 10.1093/molehr/gaz037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
One of the first events of mammalian sperm capacitation is the activation of the soluble adenyl cyclase/cAMP/protein kinase A (SACY/cAMP/PKA) pathway. Here, we evaluated whether the increase in PKA activity at the onset of human sperm capacitation is responsible for the activation of the sperm proteasome and whether this activation is required for capacitation progress. Viable human sperm were incubated with inhibitors of the SACY/cAMP/PKA pathway. The chymotrypsin-like activity of the sperm proteasome was evaluated using a fluorogenic substrate. Sperm capacitation status was evaluated using the chlortetracycline assay and tyrosine phosphorylation. To determine whether proteasomal subunits were phosphorylated by PKA, the proteasome was immunoprecipitated and tested on a western blot using an antibody against phosphorylated PKA substrates. Immunofluorescence microscopy analysis and co-immunoprecipitation (IPP) were used to investigate an association between the catalytic subunit alpha of PKA (PKA-Cα) and the proteasome. The chymotrypsin-like activity of the sperm proteasome significantly increased after 5 min of capacitation (P < 0.001) and remained high for the remaining incubation time. Treatment with H89, KT5720 or KH7 significantly decreased the chymotrypsin-like activity of the proteasome (P < 0.001). IPP experiments indicated that PKA inhibition significantly modified phosphorylation of proteasome subunits. In addition, PKA-Cα colocalized with the proteasome in the equatorial segment and in the connecting piece, and co-immunoprecipitated with the proteasome. This is the first demonstration of sperm proteasome activity being directly regulated by SACY/PKA-Cα. This novel discovery extends our current knowledge of sperm physiology and may be used to manage sperm capacitation during assisted reproductive technology procedures.
Collapse
Affiliation(s)
- Héctor Zapata-Carmona
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Lina Barón
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Lidia M Zuñiga
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Emilce Silvina Díaz
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Milene Kong
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Erma Z Drobnis
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA.,Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Patricio Morales
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile.,Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
7
|
Marshall RS, Vierstra RD. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Front Mol Biosci 2019; 6:40. [PMID: 31231659 PMCID: PMC6568242 DOI: 10.3389/fmolb.2019.00040] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Abstract
All eukaryotes rely on selective proteolysis to control the abundance of key regulatory proteins and maintain a healthy and properly functioning proteome. Most of this turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic machine. Proteasomes recognize and degrade proteins first marked with one or more chains of poly-ubiquitin, the addition of which is actuated by hundreds of ligases that individually identify appropriate substrates for ubiquitylation. Subsequent proteasomal digestion is essential and influences a myriad of cellular processes in species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S proteasomes is associated with numerous human pathologies and profoundly impacts crop performance, thus making an understanding of proteasome dynamics critically relevant to almost all facets of human health and nutrition. Given this widespread significance, it is not surprising that sophisticated mechanisms have evolved to tightly regulate 26S proteasome assembly, abundance and activity in response to demand, organismal development and stress. These include controls on transcription and chaperone-mediated assembly, influences on proteasome localization and activity by an assortment of binding proteins and post-translational modifications, and ultimately the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic clearance of damaged 26S proteasomes first involves their modification with ubiquitin, thus connecting ubiquitylation and autophagy as key regulatory events in proteasome quality control. This turnover is also influenced by two distinct biomolecular condensates that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy, and the other reversibly storing proteasomes during carbon starvation to protect them from autophagic clearance. In this review, we describe the current state of knowledge regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle, illustrating how protein degradation through this proteolytic machine is tightly controlled to ensure optimal growth, development and longevity.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
8
|
Wang H, Schippers JHM. The Role and Regulation of Autophagy and the Proteasome During Aging and Senescence in Plants. Genes (Basel) 2019; 10:genes10040267. [PMID: 30987024 PMCID: PMC6523301 DOI: 10.3390/genes10040267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Aging and senescence in plants has a major impact on agriculture, such as in crop yield, the value of ornamental crops, and the shelf life of vegetables and fruits. Senescence represents the final developmental phase of the leaf and inevitably results in the death of the organ. Still, the process is completely under the control of the plant. Plants use their protein degradation systems to maintain proteostasis and transport or salvage nutrients from senescing organs to develop reproductive parts. Herein, we present an overview of current knowledge about the main protein degradation pathways in plants during senescence: The proteasome and autophagy. Although both pathways degrade proteins, autophagy appears to prevent aging, while the proteasome functions as a positive regulator of senescence.
Collapse
Affiliation(s)
- Haojie Wang
- Institute of Biology I, RWTH Aachen University, 52074 Aachen, Germany.
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
9
|
Lakshmanan R, Loo JA. Top-Down Protein Identification using a Time-of-Flight Mass Spectrometer and Data Independent Acquisition. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 435:136-144. [PMID: 31105465 PMCID: PMC6519736 DOI: 10.1016/j.ijms.2018.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Top-down mass spectrometry and direct dissociation of gas phase intact proteins have been demonstrated to be a powerful platform for identifying proteins from complex mixtures and for elucidating post-translational modifications (PTMs). Fragmentation of proteins in the atmospheric pressure/vacuum interface of the electrospray ionization mass spectrometer is an effective dissociation technique that can be utilized for on-line HPLC top-down analysis. We demonstrate the capability to perform intact protein identifications in a single-stage time-of- flight (TOF) mass spectrometer in a data independent (DIA) acquisition fashion by rapidly switching the in-source dissociation (ISD) energy during protein elution from a liquid chromatography (LC) column. The intact protein and product ion masses obtained at low and high ISD energies, respectively, were measured using a TOF mass analyzer. By coupling on-line protein separations to dissociation in the atmospheric pressure/vacuum interface region of the mass spectrometer, we identified proteins in simple complexity mixtures, including subunits from the human 20S proteasome complex, and PTMs such as phosphorylation and N-terminal acetylation events. This proof-of-principle study demonstrates that a data-independent pseudo- MS/MS method could be a relatively in-expensive platform for top-down MS.
Collapse
Affiliation(s)
- Rajeswari Lakshmanan
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
10
|
Myeku N, Duff KE. Targeting the 26S Proteasome To Protect Against Proteotoxic Diseases. Trends Mol Med 2017; 24:18-29. [PMID: 29233753 DOI: 10.1016/j.molmed.2017.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
Abstract
Aggregates of misfolded proteins can compromise the function of the 26S proteasome complex, leaving neurons susceptible to accelerated and impaired protein homeostasis, thereby contributing to the pathogenesis of neurodegeneration. Strategies aimed at enhancing the function of the 26S proteasome via phosphorylation of key subunit epitopes have been effective in reducing protein aggregates in mouse models of disease. We discuss how phosphodiesterase (PDE) inhibitors and G protein-coupled receptor (GPCR)-targeted drugs might be considered as candidate therapeutics, acting on second messenger signal transduction. The range of candidates might address the need for region-, cell-, or even cellular compartment-specific modulation. Given the array of clinical and experimental drugs targeting cAMP/cGMP signaling, we propose that proteasome activators targeting secondary messengers might be exploited as novel agents for the treatment or prevention of some neurodegenerative diseases.
Collapse
Affiliation(s)
- Natura Myeku
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA.
| | - Karen E Duff
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
11
|
Guo X, Huang X, Chen MJ. Reversible phosphorylation of the 26S proteasome. Protein Cell 2017; 8:255-272. [PMID: 28258412 PMCID: PMC5359188 DOI: 10.1007/s13238-017-0382-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/26/2017] [Indexed: 01/09/2023] Open
Abstract
The 26S proteasome at the center of the ubiquitin-proteasome system (UPS) is essential for virtually all cellular processes of eukaryotes. A common misconception about the proteasome is that, once made, it remains as a static and uniform complex with spontaneous and constitutive activity for protein degradation. Recent discoveries have provided compelling evidence to support the exact opposite insomuch as the 26S proteasome undergoes dynamic and reversible phosphorylation under a variety of physiopathological conditions. In this review, we summarize the history and current understanding of proteasome phosphorylation, and advocate the idea of targeting proteasome kinases/phosphatases as a new strategy for clinical interventions of several human diseases.
Collapse
Affiliation(s)
- Xing Guo
- The Life Sciences Institute of Zhejiang University, Hangzhou, 310058, China.
| | - Xiuliang Huang
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mark J Chen
- Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| |
Collapse
|
12
|
Vriend J, Liu W, Reiter RJ. The pineal gland: A model for adrenergic modulation of ubiquitin ligases. PLoS One 2017; 12:e0172441. [PMID: 28212404 PMCID: PMC5315301 DOI: 10.1371/journal.pone.0172441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/04/2017] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION A recent study of the pineal gland of the rat found that the expression of more than 3000 genes showed significant day/night variations (The Hartley dataset). The investigators of this report made available a supplemental table in which they tabulated the expression of many genes that they did not discuss, including those coding for components of the ubiquitin proteasome system. Herein we identify the genes of the ubiquitin proteasome system whose expression were significantly influenced by environmental lighting in the Hartley dataset, those that were stimulated by DBcAMP in pineal glands in culture, and those that were stimulated by norepinephrine. PURPOSE Using the Ubiquitin and Ubiquitin-like Conjugation Database (UUCA) we identified ubiquitin ligases and conjugases, and deubiquitinases in the Hartley dataset for the purpose of determining whether expression of genes of the ubiquitin proteasome pathway were significantly influenced by day/night variations and if these variations were regulated by autonomic innervation of the pineal gland from the superior cervical ganglia. METHODS In the Hartley experiments pineal glands groups of rats sacrificed during the day and groups sacrificed during the night were examined for gene expression. Additional groups of rats had their superior cervical ganglia removed surgically or surgically decentralized and the pineal glands likewise examined for gene expression. RESULTS The genes with at least a 2-fold day/night significant difference in expression included genes for 5 ubiquitin conjugating enzymes, genes for 58 ubiquitin E3 ligases and genes for 6 deubiquitinases. A 35-fold day/night difference was noted in the expression of the gene Sik1, which codes for a protein containing both an ubiquitin binding domain (UBD) and an ubiquitin-associated (UBA) domain. Most of the significant differences in these genes were prevented by surgical removal, or disconnection, of the superior cervical ganglia, and most were responsive, in vitro, to treatment with a cyclic AMP analog, and norepinephrine. All previously described 24-hour rhythms in the pineal require an intact sympathetic input from the superior cervical ganglia. CONCLUSIONS The Hartley dataset thus provides evidence that the pineal gland is a highly useful model for studying adrenergically dependent mechanisms regulating variations in ubiquitin ligases, ubiquitin conjugases, and deubiquitinases, mechanisms that may be physiologically relevant not only in the pineal gland, but in all adrenergically innervated tissue.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Wenjun Liu
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, United States of America
| |
Collapse
|
13
|
The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 2016; 26:869-85. [PMID: 27444871 PMCID: PMC4973335 DOI: 10.1038/cr.2016.86] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 26S proteasome is a large, ∼2.5 MDa, multi-catalytic ATP-dependent protease complex that serves as the degrading arm of the ubiquitin system, which is the major pathway for regulated degradation of cytosolic, nuclear and membrane proteins in all eukaryotic organisms.
Collapse
|
14
|
Mammalian proteasome subtypes: Their diversity in structure and function. Arch Biochem Biophys 2015; 591:132-40. [PMID: 26724758 DOI: 10.1016/j.abb.2015.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
Abstract
The 20S proteasome is a multicatalytic proteinase catalysing the degradation of the majority of intracellular proteins. Thereby it is involved in almost all basic cellular processes, which is facilitated by its association with various regulator complexes so that it appears in different disguises like 26S proteasome, hybrid-proteasome and others. The 20S proteasome has a cylindrical structure built up by four stacked rings composed of α- and β-subunits. Since the three active site-containing β-subunits can all or in part be replaced by immuno-subunits, three main subpopulations exist, namely standard-, immuno- and intermediate-proteasomes. Due to posttranslational modifications or/and genetic variations all α- and β-subunits occur in multiple iso- or proteoforms. This leads to the fact that each of the three subpopulations is composed of a variety of 20S proteasome subtypes. This review summarizes the knowledge of proteasome subtypes in mammalian cells and tissues and their possible biological and medical relevancy.
Collapse
|
15
|
Hirano H, Kimura Y, Kimura A. Biological significance of co- and post-translational modifications of the yeast 26S proteasome. J Proteomics 2015; 134:37-46. [PMID: 26642761 DOI: 10.1016/j.jprot.2015.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/04/2015] [Accepted: 11/16/2015] [Indexed: 02/05/2023]
Abstract
UNLABELLED In yeast (Saccharomyces cerevisiae), co- and post-translational modifications of the 26S proteasome, a large protein complex, were comprehensively detected by proteomic techniques, and their functions were investigated. The presence, number, site, and state of co- and post-translational modifications of the 26S proteasome differ considerably among yeast, human, and mouse. The roles of phosphorylation, N(α)-acetylation, N(α)-myristoylation, N(α)-methylation, and N-terminal truncation in the yeast 26S proteasome were investigated. Although there is only one modification site for either N(α)-acetylation, N(α)-myristoylation, or N(α)-methylation, these modifications play an important role in the functions of the yeast proteasome. In contrast, there are many phosphorylation sites in the yeast 26S proteasome. However, the phosphorylation patterns might be a few, suggesting that tiny modifications exert considerable effects on the function of the proteasome. BIOLOGICAL SIGNIFICANCE Protein co- and post-translational modifications produce different protein species which often have different functions. The yeast 26S proteasome, a large protein complex, consisting of many subunits has a number of co- and post-translational modification sites. This review describes the effects of the modifications on the function of the protein complex. This article is part of a Special Issue entitled: Protein species. Guest Editors: Peter Jungblut, Hartmut Schlüter and Bernd Thiede.
Collapse
Affiliation(s)
- Hisashi Hirano
- Yokohama City University, Advanced Medical Research Center, Japan.
| | - Yayoi Kimura
- Yokohama City University, Advanced Medical Research Center, Japan
| | - Ayuko Kimura
- Yokohama City University, Advanced Medical Research Center, Japan
| |
Collapse
|
16
|
Gersch M, Hackl M, Dubiella C, Dobrinevski A, Groll M, Sieber S. A Mass Spectrometry Platform for a Streamlined Investigation of Proteasome Integrity, Posttranslational Modifications, and Inhibitor Binding. ACTA ACUST UNITED AC 2015; 22:404-11. [DOI: 10.1016/j.chembiol.2015.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 10/23/2022]
|
17
|
Li D, Dong Q, Tao Q, Gu J, Cui Y, Jiang X, Yuan J, Li W, Xu R, Jin Y, Li P, Weaver D, Ma Q, Liu X, Cao C. c-Abl Regulates Proteasome Abundance by Controlling the Ubiquitin-Proteasomal Degradation of PSMA7 Subunit. Cell Rep 2015; 10:484-96. [DOI: 10.1016/j.celrep.2014.12.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/03/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022] Open
|
18
|
Drews O, Taegtmeyer H. Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies. Antioxid Redox Signal 2014; 21:2322-43. [PMID: 25133688 PMCID: PMC4241867 DOI: 10.1089/ars.2013.5823] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE Novel therapeutic strategies to treat heart failure are greatly needed. The ubiquitin-proteasome system (UPS) affects the structure and function of cardiac cells through targeted degradation of signaling and structural proteins. This review discusses both beneficial and detrimental consequences of modulating the UPS in the heart. RECENT ADVANCES Proteasome inhibitors were first used to test the role of the UPS in cardiac disease phenotypes, indicating therapeutic potential. In early cardiac remodeling and pathological hypertrophy with increased proteasome activities, proteasome inhibition prevented or restricted disease progression and contractile dysfunction. Conversely, enhancing proteasome activities by genetic manipulation, pharmacological intervention, or ischemic preconditioning also improved the outcome of cardiomyopathies and infarcted hearts with impaired cardiac and UPS function, which is, at least in part, caused by oxidative damage. CRITICAL ISSUES An understanding of the UPS status and the underlying mechanisms for its potential deregulation in cardiac disease is critical for targeted interventions. Several studies indicate that type and stage of cardiac disease influence the dynamics of UPS regulation in a nonlinear and multifactorial manner. Proteasome inhibitors targeting all proteasome complexes are associated with cardiotoxicity in humans. Furthermore, the type and dosage of proteasome inhibitor impact the pathogenesis in nonuniform ways. FUTURE DIRECTIONS Systematic analysis and targeting of individual UPS components with established and innovative tools will unravel and discriminate regulatory mechanisms that contribute to and protect against the progression of cardiac disease. Integrating this knowledge in drug design may reduce adverse effects on the heart as observed in patients treated with proteasome inhibitors against noncardiac diseases, especially cancer.
Collapse
Affiliation(s)
- Oliver Drews
- 1 Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology , Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
19
|
Kaake RM, Kao A, Yu C, Huang L. Characterizing the dynamics of proteasome complexes by proteomics approaches. Antioxid Redox Signal 2014; 21:2444-56. [PMID: 24423446 PMCID: PMC4241863 DOI: 10.1089/ars.2013.5815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE The proteasome is the degradation machine of the ubiquitin-proteasome system, which is critical in controlling many essential biological processes. Aberrant regulation of proteasome-dependent protein degradation can lead to various human diseases, and general proteasome inhibitors have shown efficacy for cancer treatments. Though clinically effective, current proteasome inhibitors have detrimental side effects and, thus, better therapeutic strategies targeting proteasomes are needed. Therefore, a comprehensive characterization of proteasome complexes will provide the molecular details that are essential for developing new and improved drugs. RECENT ADVANCES New mass spectrometry (MS)-based proteomics approaches have been developed to study protein interaction networks and structural topologies of proteasome complexes. The results have helped define the dynamic proteomes of proteasome complexes, thus providing new insights into the mechanisms underlying proteasome function and regulation. CRITICAL ISSUES The proteasome exists as heterogeneous populations in tissues/cells, and its proteome is highly dynamic and complex. In addition, proteasome complexes are regulated by various mechanisms under different physiological conditions. Consequently, complete proteomic profiling of proteasome complexes remains a major challenge for the field. FUTURE DIRECTIONS We expect that proteomic methodologies enabling full characterization of proteasome complexes will continue to evolve. Further advances in MS instrumentation and protein separation techniques will be needed to facilitate the detailed proteomic analysis of low-abundance components and subpopulations of proteasome complexes. The results will help us understand proteasome biology as well as provide new therapeutic targets for disease diagnostics and treatment.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Physiology and Biophysics, University of California , Irvine, Irvine, California
| | | | | | | |
Collapse
|
20
|
Ali L, Flowers SA, Jin C, Bennet EP, Ekwall AKH, Karlsson NG. The O-glycomap of lubricin, a novel mucin responsible for joint lubrication, identified by site-specific glycopeptide analysis. Mol Cell Proteomics 2014; 13:3396-409. [PMID: 25187573 PMCID: PMC4256492 DOI: 10.1074/mcp.m114.040865] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/15/2014] [Indexed: 11/06/2022] Open
Abstract
The lubricative, heavily glycosylated mucin-like synovial glycoprotein lubricin has previously been observed to contain glycosylation changes related to rheumatoid and osteoarthritis. Thus, a site-specific investigation of the glycosylation of lubricin was undertaken, in order to further understand the pathological mechanisms involved in these diseases. Lubricin contains an serine/threonine/proline (STP)-rich domain composed of imperfect tandem repeats (EPAPTTPK), the target for O-glycosylation. In this study, using a liquid chromatography-tandem mass spectrometry approach, employing both collision-induced and electron-transfer dissociation fragmentation methods, we identified 185 O-glycopeptides within the STP-rich domain of human synovial lubricin. This showed that adjacent threonine residues within the central STP-rich region could be simultaneously and/or individually glycosylated. In addition to core 1 structures responsible for biolubrication, core 2 O-glycopeptides were also identified, indicating that lubricin glycosylation may have other roles. Investigation of the expression of polypeptide N-acetylgalactosaminyltransferase genes was carried out using cultured primary fibroblast-like synoviocytes, a cell type that expresses lubricin in vivo. This analysis showed high mRNA expression levels of the less understood polypeptide N-acetylgalactosaminyltransferase 15 and 5 in addition to the ubiquitously expressed polypeptide N-acetylgalactosaminyltransferase 1 and 2 genes. This suggests that there is a unique combination of transferase genes important for the O-glycosylation of lubricin. The site-specific glycopeptide analysis covered 82% of the protein sequence and showed that lubricin glycosylation displays both micro- and macroheterogeneity. The density of glycosylation was shown to be high: 168 sites of O-glycosylation, predominately sialylated, were identified. These glycosylation sites were focused in the central STP-rich region, giving the domain a negative charge. The more positively charged lysine and arginine residues in the N and C termini suggest that synovial lubricin exists as an amphoteric molecule. The identification of these unique properties of lubricin may provide insight into the important low-friction lubricating functions of lubricin during natural joint movement.
Collapse
Affiliation(s)
- Liaqat Ali
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Sarah A Flowers
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Chunsheng Jin
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Eric Paul Bennet
- §Department of Odontology, Copenhagen Center for Glycomics, University of Copenhagen, Norre Alle 20, DK-2200 Copenhagen N, Denmark
| | - Anna-Karin H Ekwall
- ¶Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Guldhedsgatan 10A, SE-41346, Gothenburg, Sweden
| | - Niclas G Karlsson
- From the ‡Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30, Gothenburg, Sweden;
| |
Collapse
|
21
|
Bozaykut P, Ozer NK, Karademir B. Regulation of protein turnover by heat shock proteins. Free Radic Biol Med 2014; 77:195-209. [PMID: 25236750 DOI: 10.1016/j.freeradbiomed.2014.08.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 12/19/2022]
Abstract
Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system.
Collapse
Affiliation(s)
- Perinur Bozaykut
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
22
|
Cui Z, Scruggs SB, Gilda JE, Ping P, Gomes AV. Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond. J Mol Cell Cardiol 2014; 71:32-42. [PMID: 24140722 PMCID: PMC3990655 DOI: 10.1016/j.yjmcc.2013.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/21/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the major intracellular degradation system, and its proper function is critical to the health and function of cardiac cells. Alterations in cardiac proteasomes have been linked to several pathological phenotypes, including cardiomyopathies, ischemia-reperfusion injury, heart failure, and hypertrophy. Defects in proteasome-dependent cellular protein homeostasis can be causal for the initiation and progression of certain cardiovascular diseases. Emerging evidence suggests that the UPS can specifically target proteins that govern pathological signaling pathways for degradation, thus altering downstream effectors and disease outcomes. Alterations in UPS-substrate interactions in disease occur, in part, due to direct modifications of 19S, 11S or 20S proteasome subunits. Post-translational modifications (PTMs) are one facet of this proteasomal regulation, with over 400 known phosphorylation sites, over 500 ubiquitination sites and 83 internal lysine acetylation sites, as well as multiple sites for caspase cleavage, glycosylation (such as O-GlcNAc modification), methylation, nitrosylation, oxidation, and SUMOylation. Changes in cardiac proteasome PTMs, which occur in ischemia and cardiomyopathies, are associated with changes in proteasome activity and proteasome assembly; however several features of this regulation remain to be explored. In this review, we focus on how some of the less common PTMs affect proteasome function and alter cellular protein homeostasis. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Ziyou Cui
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA
| | - Sarah B Scruggs
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Jennifer E Gilda
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA
| | - Peipei Ping
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis CA 95616, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
23
|
Ranek MJ, Kost CK, Hu C, Martin DS, Wang X. Muscarinic 2 receptors modulate cardiac proteasome function in a protein kinase G-dependent manner. J Mol Cell Cardiol 2014; 69:43-51. [PMID: 24508699 PMCID: PMC3977985 DOI: 10.1016/j.yjmcc.2014.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/31/2013] [Accepted: 01/28/2014] [Indexed: 12/26/2022]
Abstract
Proteasome function insufficiency and inadequate protein quality control are strongly implicated in a large subset of cardiovascular disease and may play an important role in their pathogenesis. Protein degradation by the ubiquitin proteasome system can be physiologically regulated. Cardiac muscarinic 2 (M2) receptors were pharmacologically interrogated in intact mice and cultured neonatal rat ventricular myocytes (NRVMs). Proteasome-mediated proteolysis was measured with a surrogate misfolded protein, proteasome peptidase assay, and by characterizing key proteasome subunits. Successful M2 receptor manipulation in cardiomyocytes was determined by measuring an endogenous protein substrate, and in mice, the cardiovascular physiological response. M2 receptor stimulation was associated with increased proteasome-mediated proteolysis and enhanced peptidase activities, while M2 receptor inhibition yielded opposing results. Additionally, M2 receptor manipulation did not alter abundance of the key proteasome subunits, Rpt6 and β5, but significantly shifted their isoelectric points. Inhibition of protein kinase G abrogated the stimulatory effects on proteasome-mediated proteolysis from M2 receptor activation. We conclude that M2 receptor stimulation enhances, whereas M2 receptor inhibition reduces, proteasome-mediated proteolysis likely through posttranslational modifications. Protein kinase G appears to be the mediator of the M2 receptors actions.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Cyclic GMP-Dependent Protein Kinases/genetics
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Mice
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Fluorescence
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Proteasome Endopeptidase Complex/metabolism
- Protein Processing, Post-Translational
- Proteolysis
- RNA, Messenger/genetics
- Rats
- Real-Time Polymerase Chain Reaction
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Ubiquitin/metabolism
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Curtis K Kost
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Chengjun Hu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Douglas S Martin
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA.
| |
Collapse
|
24
|
Lakshmanan R, Wolff JJ, Alvarado R, Loo JA. Top-down protein identification of proteasome proteins with nanoLC-FT-ICR-MS employing data-independent fragmentation methods. Proteomics 2014; 14:1271-82. [PMID: 24478249 DOI: 10.1002/pmic.201300339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/24/2013] [Accepted: 11/27/2013] [Indexed: 11/10/2022]
Abstract
A comparison of different data-independent fragmentation methods combined with LC coupled to high-resolution FT-ICR-MS/MS is presented for top-down MS of protein mixtures. Proteins composing the 20S and 19S proteasome complexes and their PTMs were identified using a 15 T FT-ICR mass spectrometer. The data-independent fragmentation modes with LC timescales allowed for higher duty-cycle measurements that better suit online LC-FT-ICR-MS. Protein top-down dissociation was effected by funnel-skimmer collisionally activated dissociation (FS-CAD) and CASI (continuous accumulation of selected ions)-CAD. The N-termini for 9 of the 14 20S proteasome proteins were found to be modified, and the α3 protein was found to be phosphorylated; these results are consistent with previous reports. Mass-measurement accuracy with the LC-FT-ICR system for the 20- to 30-kDa 20S proteasome proteins was 1 ppm. The intact mass of the 100-kDa Rpn1 subunit from the 19S proteasome complex regulatory particle was measured with a deviation of 17 ppm. The CASI-CAD technique is a complementary tool for intact-protein fragmentation and is an effective addition to the growing inventory of dissociation methods that are compatible with online protein separation coupled to FT-ICR-MS.
Collapse
Affiliation(s)
- Rajeswari Lakshmanan
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
25
|
Huang H, Wang H, Figueiredo-Pereira ME. Regulating the ubiquitin/proteasome pathway via cAMP-signaling: neuroprotective potential. Cell Biochem Biophys 2014; 67:55-66. [PMID: 23686612 DOI: 10.1007/s12013-013-9628-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The cAMP-signaling pathway has been under intensive investigation for decades. It is a wonder that such a small simple molecule like cAMP can modulate a vast number of diverse processes in different types of cells. The ubiquitous involvement of cAMP-signaling in a variety of cellular events requires tight spatial and temporal control of its generation, propagation, compartmentalization, and elimination. Among the various steps of the cAMP-signaling pathway, G-protein-coupled receptors, adenylate cyclases, phosphodiesterases, the two major cAMP targets, i.e., protein kinase A and exchange protein activated by cAMP, as well as the A-kinase anchoring proteins, are potential targets for drug development. Herein we review the recent progress on the regulation and manipulation of different steps of the cAMP-signaling pathway. We end by focusing on the emerging role of cAMP-signaling in modulating protein degradation via the ubiquitin/proteasome pathway. New discoveries on the regulation of the ubiquitin/proteasome pathway by cAMP-signaling support the development of new therapeutic approaches to prevent proteotoxicity in chronic neurodegenerative disorders and other human disease conditions associated with impaired protein turnover by the ubiquitin/proteasome pathway and the accumulation of ubiquitin-protein aggregates.
Collapse
Affiliation(s)
- He Huang
- Department of Biological Sciences, Hunter College and Graduate Center, City University of New York, 695 Park Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
26
|
Schlossarek S, Frey N, Carrier L. Ubiquitin-proteasome system and hereditary cardiomyopathies. J Mol Cell Cardiol 2013; 71:25-31. [PMID: 24380728 DOI: 10.1016/j.yjmcc.2013.12.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/13/2013] [Accepted: 12/17/2013] [Indexed: 12/14/2022]
Abstract
Adequate protein turnover is essential for cardiac homeostasis. Different protein quality controls are involved in the maintenance of protein homeostasis, including molecular chaperones and co-chaperones, the autophagy-lysosomal pathway, and the ubiquitin-proteasome system (UPS). In the last decade, a series of evidence has underlined a major function of the UPS in cardiac physiology and disease. Particularly, recent studies have shown that dysfunctional proteasomal function leads to cardiac disorders. Hypertrophic and dilated cardiomyopathies are the two most prevalent inherited cardiomyopathies. Both are primarily transmitted as an autosomal-dominant trait and mainly caused by mutations in genes encoding components of the cardiac sarcomere, including a relevant striated muscle-specific E3 ubiquitin ligase. A growing body of evidence indicates impairment of the UPS in inherited cardiomyopathies as determined by measurement of the level of ubiquitinated proteins, the activities of the proteasome and/or the use of fluorescent UPS reporter substrates. The present review will propose mechanisms of UPS impairment in inherited cardiomyopathies, summarize the potential consequences of UPS impairment, including activation of the unfolded protein response, and underline some therapeutic options available to restore proteasome function and therefore cardiac homeostasis and function. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Saskia Schlossarek
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Norbert Frey
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany; Department of Cardiology and Angiology, University of Kiel, Kiel, Germany
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany; Inserm, U974, Paris F-75013, France; Université Pierre et Marie Curie- Paris 6, UM 76, CNRS, UMR 7215, Institut de Myologie, IFR14, Paris F-75013, France.
| |
Collapse
|
27
|
Wang D, Fang C, Zong NC, Liem DA, Cadeiras M, Scruggs SB, Yu H, Kim AK, Yang P, Deng M, Lu H, Ping P. Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human. Mol Cell Proteomics 2013; 12:3793-802. [PMID: 24037710 DOI: 10.1074/mcp.m113.028332] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasome complexes play essential roles in maintaining cellular protein homeostasis and serve fundamental roles in cardiac function under normal and pathological conditions. A functional detriment in proteasomal activities has been recognized as a major contributor to the progression of cardiovascular diseases. Therefore, approaches to restore proteolytic function within the setting of the diseased myocardium would be of great clinical significance. In this study, we discovered that the cardiac proteasomal activity could be regulated by acetylation. Histone deacetylase (HDAC) inhibitors (suberoylanilide hydroxamic acid and sodium valproate) enhanced the acetylation of 20S proteasome subunits in the myocardium and led to an elevation of proteolytic capacity. This regulatory paradigm was present in both healthy and acutely ischemia/reperfusion (I/R) injured murine hearts, and HDAC inhibition in vitro restored proteolytic capacities to baseline sham levels in injured hearts. This mechanism of regulation was also viable in failing human myocardium. With 20S proteasomal complexes purified from murine myocardium treated with HDAC inhibitors in vivo, we confirmed that acetylation of 20S subunits directly, at least in part, presents a molecular explanation for the improvement in function. Furthermore, using high-resolution LC-MS/MS, we unraveled the first cardiac 20S acetylome, which identified the acetylation of nine N-termini and seven internal lysine residues. Acetylation on four lysine residues and four N-termini on cardiac proteasomes were novel discoveries of this study. In addition, the acetylation of five lysine residues was inducible via HDAC inhibition, which correlated with the enhancement of 20S proteasomal activity. Taken as a whole, our investigation unveiled a novel mechanism of proteasomal function regulation in vivo and established a new strategy for the potential rescue of compromised proteolytic function in the failing heart using HDAC inhibitors.
Collapse
Affiliation(s)
- Ding Wang
- Department of Physiology, UCLA School of Medicine, Los Angeles, California 90095
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
p27Kip1 is a key cell-cycle regulator whose level is primarily regulated by the ubiquitin–proteasome degradation pathway. Its β1 subunit is one of seven β subunits that form the β-ring of the 20S proteasome, which is responsible for degradation of ubiquitinated proteins. We report here that the β1 subunit is up-regulated in oesophageal cancer tissues and some ovarian cancer cell lines. It promotes cell growth and migration, as well as colony formation. β1 binds and degrades p27Kip1directly. Interestingly, the lack of phosphorylation at Ser158 of the β1 subunit promotes degradation of p27Kip1. We therefore propose that the β1 subunit plays a novel role in tumorigenesis by degrading p27Kip1.
Collapse
|
29
|
Ranek MJ, Terpstra EJM, Li J, Kass DA, Wang X. Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins. Circulation 2013; 128:365-76. [PMID: 23770744 DOI: 10.1161/circulationaha.113.001971] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Proteasome functional insufficiency is implicated in a large subset of cardiovascular diseases and may play an important role in their pathogenesis. The regulation of proteasome function is poorly understood, hindering the development of effective strategies to improve proteasome function. METHODS AND RESULTS Protein kinase G (PKG) was manipulated genetically and pharmacologically in cultured cardiomyocytes. Activation of PKG increased proteasome peptidase activities, facilitated proteasome-mediated degradation of surrogate (enhanced green fluorescence protein modified by carboxyl fusion of degron CL1) and bona fide (CryAB(R120G)) misfolded proteins, and attenuated CryAB(R120G) overexpression-induced accumulation of ubiquitinated proteins and cellular injury. PKG inhibition elicited the opposite responses. Differences in the abundance of the key 26S proteasome subunits Rpt6 and β5 between the PKG-manipulated and control groups were not statistically significant, but the isoelectric points were shifted by PKG activation. In transgenic mice expressing a surrogate substrate (GFPdgn), PKG activation by sildenafil increased myocardial proteasome activities and significantly decreased myocardial GFPdgn protein levels. Sildenafil treatment significantly increased myocardial PKG activity and significantly reduced myocardial accumulation of CryAB(R120G), ubiquitin conjugates, and aberrant protein aggregates in mice with CryAB(R120G)-based desmin-related cardiomyopathy. No discernible effect on bona fide native substrates of the ubiquitin-proteasome system was observed from PKG manipulation in vitro or in vivo. CONCLUSIONS PKG positively regulates proteasome activities and proteasome-mediated degradation of misfolded proteins, likely through posttranslational modifications to proteasome subunits. This may be a new mechanism underlying the benefit of PKG stimulation in treating cardiac diseases. Stimulation of PKG by measures such as sildenafil administration is potentially a new therapeutic strategy to treat cardiac proteinopathies.
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Basic Biomedical Sciences, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, USA
| | | | | | | | | |
Collapse
|
30
|
Held SAE, Duchardt KM, Tenzer S, Rückrich T, von Schwarzenberg K, Bringmann A, Kurts C, Schild H, Driessen C, Brossart P, Heine A. Imatinib mesylate and nilotinib affect MHC-class I presentation by modulating the proteasomal processing of antigenic peptides. Cancer Immunol Immunother 2013; 62:715-26. [PMID: 23184338 PMCID: PMC11029753 DOI: 10.1007/s00262-012-1373-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
Abstract
Imatinib (IM) has been described to modulate the function of dendritic cells and T lymphocytes and to affect the expression of antigen in CML cells. In our study, we investigated the effect of the tyrosine kinase inhibitors IM and nilotinib (NI) on antigen presentation and processing by analyzing the proteasomal activity in CML cell lines and patient samples. We used a biotinylated active site-directed probe, which covalently binds to the proteasomally active beta-subunits in an activity-dependent fashion. Additionally, we analyzed the cleavage and processing of HLA-A3/11- and HLA-B8-binding peptides derived from BCR-ABL by IM- or NI-treated isolated 20S immunoproteasomes using mass spectrometry. We found that IM treatment leads to a reduction in MHC-class I expression which is in line with the inhibition of proteasomal activity. This process is independent of BCR-ABL or apoptosis induction. In vitro digestion experiments using purified proteasomes showed that generation of epitope-precursor peptides was significantly altered in the presence of NI and IM. Treatment of the immunoproteasome with these compounds resulted in an almost complete reduction in the generation of long precursor peptides for the HLA-A3/A11 and -B8 epitopes while processing of the short peptide sequences increased. Treatment of isolated 20S proteasomes with serine-/threonine- and tyrosine-specific phosphatases induced a significant downregulation of the proteasomal activity further indicating that phosphorylation of the proteasome regulates its function and antigen processing. Our results demonstrate that IM and NI can affect the immunogenicity of malignant cells by modulating proteasomal degradation and the repertoire of processed T cell epitopes.
Collapse
|
31
|
Abstract
Maintenance of protein quality control is a critical function of the ubiquitin proteasome system (UPS). Evidence is rapidly mounting to link proteasome dysfunction with a multitude of cardiac diseases, including ischemia, reperfusion, atherosclerosis, hypertrophy, heart failure, and cardiomyopathies. Recent studies have demonstrated a remarkable level of complexity in the regulation of the UPS in the heart and suggest that our understanding of how UPS dysfunction might contribute to the pathophysiology of such a wide range of cardiac afflictions is still very limited. Whereas experimental systems, including animal models, are invaluable for exploring mechanisms and establishing pathogenicity of UPS dysfunction in cardiac disease, studies using human heart tissue provide a vital adjunct for establishing clinical relevance of experimental findings and promoting new hypotheses. Accordingly, this review will focus on UPS dysfunction in human dilated and hypertrophic cardiomyopathies and highlight areas rich for further study in this expanding field.
Collapse
Affiliation(s)
- Sharlene M Day
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Abstract
Protein quality control functions to minimize the level and toxicity of misfolded proteins in the cell. Protein quality control is performed by intricate collaboration among chaperones and target protein degradation. The latter is performed primarily by the ubiquitin-proteasome system and perhaps autophagy. Terminally misfolded proteins that are not timely removed tend to form aggregates. Their clearance requires macroautophagy. Macroautophagy serves in intracellular quality control also by selectively segregating defective organelles (eg, mitochondria) and targeting them for degradation by the lysosome. Inadequate protein quality control is observed in a large subset of failing human hearts with a variety of causes, and its pathogenic role has been experimentally demonstrated. Multiple posttranslational modifications can occur to substrate proteins and protein quality control machineries, promoting or hindering the removal of the misfolded proteins. This article highlights recent advances in posttranslational modification-mediated regulation of intracellular quality control mechanisms and its known involvement in cardiac pathology.
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark St, Vermillion, SD 57069, USA.
| | | | | |
Collapse
|
33
|
Abstract
The ubiquitin proteasome system (UPS) has been the subject of intensive research over the past 20 years to define its role in normal physiology and in pathophysiology. Many of these studies have focused in on the cardiovascular system and have determined that the UPS becomes dysfunctional in several pathologies such as familial and idiopathic cardiomyopathies, atherosclerosis, and myocardial ischemia. This review presents a synopsis of the literature as it relates to the role of the UPS in myocardial ischemia. Studies have shown that the UPS is dysfunctional during myocardial ischemia, and recent studies have shed some light on possible mechanisms. Other studies have defined a role for the UPS in ischemic preconditioning which is best associated with myocardial ischemia and is thus presented here. Very recent studies have started to define roles for specific proteasome subunits and components of the ubiquitination machinery in various aspects of myocardial ischemia. Lastly, despite the evidence linking myocardial ischemia and proteasome dysfunction, there are continuing suggestions that proteasome inhibitors may be useful to mitigate ischemic injury. This review presents the rationale behind this and discusses both supportive and nonsupportive studies and presents possible future directions that may help in clarifying this controversy.
Collapse
Affiliation(s)
- Justine Calise
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | | |
Collapse
|
34
|
Myeku N, Wang H, Figueiredo-Pereira ME. cAMP stimulates the ubiquitin/proteasome pathway in rat spinal cord neurons. Neurosci Lett 2012; 527:126-31. [PMID: 22982149 DOI: 10.1016/j.neulet.2012.08.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/24/2012] [Accepted: 08/26/2012] [Indexed: 01/03/2023]
Abstract
Proteasome impairment and accumulation of ubiquitinated proteins are implicated in neurodegeneration associated with different forms of spinal cord injury. We show herein that elevating cAMP in rat spinal cord neurons increases 26S proteasome activity in a protein kinase A-dependent manner. Treating spinal cord neurons with dibutyryl-cAMP (db-cAMP) also raised the levels of various components of the UPP including proteasome subunits Rpt6 and β5, polyubiquitin shuttling factor p62/sequestosome1, E3 ligase CHIP, AAA-ATPase p97 and the ubiquitin gene ubB. Finally, db-cAMP reduced the accumulation of ubiquitinated proteins, proteasome inhibition, and neurotoxicity triggered by the endogenous product of inflammation prostaglandin J2. We propose that optimizing the effects of cAMP/PKA-signaling on the UPP could offer an effective therapeutic approach to prevent UPP-related proteotoxicity in spinal cord neurons.
Collapse
Affiliation(s)
- Natura Myeku
- Department of Biological Sciences, Hunter College and Graduate Center, CUNY, New York, NY 10065, USA
| | | | | |
Collapse
|
35
|
Sun Z, Hamilton KL, Reardon KF. Phosphoproteomics and molecular cardiology: Techniques, applications and challenges. J Mol Cell Cardiol 2012; 53:354-68. [DOI: 10.1016/j.yjmcc.2012.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/26/2012] [Accepted: 06/03/2012] [Indexed: 12/16/2022]
|
36
|
Bousquet-Dubouch MP, Fabre B, Monsarrat B, Burlet-Schiltz O. Proteomics to study the diversity and dynamics of proteasome complexes: from fundamentals to the clinic. Expert Rev Proteomics 2012; 8:459-81. [PMID: 21819302 DOI: 10.1586/epr.11.41] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This article covers the latest contributions of proteomics to the structural and functional characterization of proteasomes and their associated proteins, but also to the detection of proteasomes as clinical biomarkers in diseases. Proteasomes are highly heterogenous supramolecular complexes and constitute important cellular proteases controlling the pool of proteins involved in key cellular functions. The comprehension of the structure/function relationship of proteasomes is therefore of major interest in biology. Numerous biochemical methods have been employed to purify proteasomes, and have led to the identification of complexes of various compositions - depending on the experimental conditions and the type of strategy used. In association with protein separation and enrichment techniques, modern mass spectrometry instruments and mass spectrometry-based quantitative methods, they have led to unprecedented breakthroughs in the in-depth analysis of the diversity and dynamics of proteasome composition and localization under various stimuli or pathological contexts. Proteasome inhibitors are now used in clinics for the treatment of cancer, and recent studies propose that the proteasome should be considered as a predictive biomarker for various pathologies.
Collapse
|
37
|
Scruggs SB, Zong NC, Wang D, Stefani E, Ping P. Post-translational modification of cardiac proteasomes: functional delineation enabled by proteomics. Am J Physiol Heart Circ Physiol 2012; 303:H9-18. [PMID: 22523251 PMCID: PMC3404648 DOI: 10.1152/ajpheart.00189.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/13/2012] [Indexed: 01/07/2023]
Abstract
Proteasomes are ubiquitously expressed multicatalytic complexes that serve as key regulators of protein homeostasis. There are several lines of evidence indicating that proteasomes exist in heterogeneous subpopulations in cardiac muscle, differentiated, in part, by post-translational modifications (PTMs). PTMs regulate numerous facets of proteasome function, including catalytic activities, complex assembly, interactions with associating partners, subcellular localization, substrate preference, and complex turnover. Classical technologies used to identify PTMs on proteasomes have lacked the ability to determine site specificity, quantify stoichiometry, and perform large-scale, multi-PTM analysis. Recent advancements in proteomic technologies have largely overcome these limitations. We present here a discussion on the importance of PTMs in modulating proteasome function in cardiac physiology and pathophysiology, followed by the presentation of a state-of-the-art proteomic workflow for identifying and quantifying PTMs of cardiac proteasomes.
Collapse
Affiliation(s)
- Sarah B Scruggs
- Division of Cardiology, Department of Physiology, University of California, Los Angeles, USA
| | | | | | | | | |
Collapse
|
38
|
Overath T, Kuckelkorn U, Henklein P, Strehl B, Bonar D, Kloss A, Siele D, Kloetzel PM, Janek K. Mapping of O-GlcNAc sites of 20 S proteasome subunits and Hsp90 by a novel biotin-cystamine tag. Mol Cell Proteomics 2012; 11:467-77. [PMID: 22556278 PMCID: PMC3412975 DOI: 10.1074/mcp.m111.015966] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The post-translational modification of proteins with O-GlcNAc is involved in various cellular processes including signal transduction, transcription, translation, and nuclear transport. This transient protein modification enables cells or tissues to adapt to nutrient conditions or stress. O-Glycosylation of the 26 S proteasome ATPase subunit Rpt2 is known to influence the stability of proteins by reducing their proteasome-dependent degradation. In contrast, knowledge of the sites of O-GlcNAcylation on the subunits of the catalytic core of the 26 S proteasome, the 20 S proteasome, and the impact on proteasome activity is very limited. This is predominantly because O-GlcNAc modifications are often substoichiometric and because 20 S proteasomes represent a complex protein mixture of different subtypes. Therefore, identification of O-GlcNAcylation sites on proteasome subunits essentially requires effective enrichment strategies. Here we describe an adapted β-elimination-based derivatization method of O-GlcNAc peptides using a novel biotin-cystamine tag. The specificity of the reaction was increased by differential isotopic labeling with either "light" biotin-cystamine or deuterated "heavy" biotin-cystamine. The enriched peptides were analyzed by LC-MALDI-TOF/TOF-MS and relatively quantified. The method was optimized using bovine α-crystallin and then applied to murine 20 S proteasomes isolated from spleen and brain and murine Hsp90 isolated from liver. Using this approach, we identified five novel and one known O-GlcNAc sites within the murine 20 S proteasome core complex that are located on five different subunits and in addition two novel O-GlcNAc sites on murine Hsp90β, of which one corresponds to a previously described phosphorylation site.
Collapse
Affiliation(s)
- Thorsten Overath
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, 13347 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ferreira JCB, Boer BN, Grinberg M, Brum PC, Mochly-Rosen D. Protein quality control disruption by PKCβII in heart failure; rescue by the selective PKCβII inhibitor, βIIV5-3. PLoS One 2012; 7:e33175. [PMID: 22479367 PMCID: PMC3316563 DOI: 10.1371/journal.pone.0033175] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/05/2012] [Indexed: 11/18/2022] Open
Abstract
Myocardial remodeling and heart failure (HF) are common sequelae of many forms of cardiovascular disease and a leading cause of mortality worldwide. Accumulation of damaged cardiac proteins in heart failure has been described. However, how protein quality control (PQC) is regulated and its contribution to HF development are not known. Here, we describe a novel role for activated protein kinase C isoform βII (PKCβII) in disrupting PQC. We show that active PKCβII directly phosphorylated the proteasome and inhibited proteasomal activity in vitro and in cultured neonatal cardiomyocytes. Importantly, inhibition of PKCβII, using a selective PKCβII peptide inhibitor (βIIV5-3), improved proteasomal activity and conferred protection in cultured neonatal cardiomyocytes. We also show that sustained inhibition of PKCβII increased proteasomal activity, decreased accumulation of damaged and misfolded proteins and increased animal survival in two rat models of HF. Interestingly, βIIV5-3-mediated protection was blunted by sustained proteasomal inhibition in HF. Finally, increased cardiac PKCβII activity and accumulation of misfolded proteins associated with decreased proteasomal function were found also in remodeled and failing human hearts, indicating a potential clinical relevance of our findings. Together, our data highlights PKCβII as a novel inhibitor of proteasomal function. PQC disruption by increased PKCβII activity in vivo appears to contribute to the pathophysiology of heart failure, suggesting that PKCβII inhibition may benefit patients with heart failure. (218 words).
Collapse
Affiliation(s)
- Julio C B Ferreira
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | | | | | | | | |
Collapse
|
40
|
Lind SB, Artemenko KA, Pettersson U. A strategy for identification of protein tyrosine phosphorylation. Methods 2012; 56:275-83. [DOI: 10.1016/j.ymeth.2011.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 01/14/2023] Open
|
41
|
Powell SR, Herrmann J, Lerman A, Patterson C, Wang X. The ubiquitin-proteasome system and cardiovascular disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:295-346. [PMID: 22727426 DOI: 10.1016/b978-0-12-397863-9.00009-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past decade, the role of the ubiquitin-proteasome system (UPS) has been the subject of numerous studies to elucidate its role in cardiovascular physiology and pathophysiology. There have been many advances in this field including the use of proteomics to achieve a better understanding of how the cardiac proteasome is regulated. Moreover, improved methods for the assessment of UPS function and the development of genetic models to study the role of the UPS have led to the realization that often the function of this system deviates from the norm in many cardiovascular pathologies. Hence, dysfunction has been described in atherosclerosis, familial cardiac proteinopathies, idiopathic dilated cardiomyopathies, and myocardial ischemia. This has led to numerous studies of the ubiquitin protein (E3) ligases and their roles in cardiac physiology and pathophysiology. This has also led to the controversial proposition of treating atherosclerosis, cardiac hypertrophy, and myocardial ischemia with proteasome inhibitors. Furthering our knowledge of this system may help in the development of new UPS-based therapeutic modalities for mitigation of cardiovascular disease.
Collapse
Affiliation(s)
- Saul R Powell
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | |
Collapse
|
42
|
Cui Z, Dewey S, Gomes AV. Cardioproteomics: advancing the discovery of signaling mechanisms involved in cardiovascular diseases. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2011; 1:274-292. [PMID: 22254205 PMCID: PMC3253522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/29/2011] [Indexed: 05/31/2023]
Abstract
Cardioproteomics (Cardiovascular proteomics) is fast becoming an indispensible technique in deciphering changes in signaling pathways that occur in cardiovascular diseases (CVDs). The quality and availability of the instruments and bioinformatics software used for cardioproteomics continues to improve, and these techniques are now available to most cardiovascular researchers either directly or indirectly via university core centers. The heart and aorta are specialized tissues which present unique challenges to investigate. Currently, the diverse range of proteomic techniques available for cardiovascular research makes the choice of the best method or best combination of methods for the disease parameter(s) being investigated as important as the equipment used. This review focuses on proteomic techniques and their applications which have advanced our understanding of the signaling mechanisms involved in CVDs at the levels of protein complex/protein-protein interaction, post-translational modifications and signaling induced protein changes.
Collapse
|
43
|
Aiken CT, Kaake RM, Wang X, Huang L. Oxidative stress-mediated regulation of proteasome complexes. Mol Cell Proteomics 2011; 10:R110.006924. [PMID: 21543789 DOI: 10.1074/mcp.m110.006924] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress has been implicated in aging and many human diseases, notably neurodegenerative disorders and various cancers. The reactive oxygen species that are generated by aerobic metabolism and environmental stressors can chemically modify proteins and alter their biological functions. Cells possess protein repair pathways to rescue oxidized proteins and restore their functions. If these repair processes fail, oxidized proteins may become cytotoxic. Cell homeostasis and viability are therefore dependent on the removal of oxidatively damaged proteins. Numerous studies have demonstrated that the proteasome plays a pivotal role in the selective recognition and degradation of oxidized proteins. Despite extensive research, oxidative stress-triggered regulation of proteasome complexes remains poorly defined. Better understanding of molecular mechanisms underlying proteasome function in response to oxidative stress will provide a basis for developing new strategies aimed at improving cell viability and recovery as well as attenuating oxidation-induced cytotoxicity associated with aging and disease. Here we highlight recent advances in the understanding of proteasome structure and function during oxidative stress and describe how cells cope with oxidative stress through proteasome-dependent degradation pathways.
Collapse
Affiliation(s)
- Charity T Aiken
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4560, USA
| | | | | | | |
Collapse
|
44
|
Shen Y, Tolić N, Xie F, Zhao R, Purvine SO, Schepmoes AA, Ronald JM, Anderson GA, Smith RD. Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods. J Proteome Res 2011; 10:3929-43. [PMID: 21678914 PMCID: PMC3166380 DOI: 10.1021/pr200052c] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on the effectiveness of CID, HCD, and ETD for LC-FT MS/MS analysis of peptides using a tandem linear ion trap-Orbitrap mass spectrometer. A range of software tools and analysis parameters were employed to explore the use of CID, HCD, and ETD to identify peptides (isolated from human blood plasma) without the use of specific "enzyme rules". In the evaluation of an FDR-controlled SEQUEST scoring method, the use of accurate masses for fragments increased the number of identified peptides (by ~50%) compared to the use of conventional low accuracy fragment mass information, and CID provided the largest contribution to the identified peptide data sets compared to HCD and ETD. The FDR-controlled Mascot scoring method provided significantly fewer peptide identifications than SEQUEST (by 1.3-2.3 fold) and CID, HCD, and ETD provided similar contributions to identified peptides. Evaluation of de novo sequencing and the UStags method for more intense fragment ions revealed that HCD afforded more contiguous residues (e.g., ≥ 7 amino acids) than either CID or ETD. Both the FDR-controlled SEQUEST and Mascot scoring methods provided peptide data sets that were affected by the decoy database used and mass tolerances applied (e.g., identical peptides between data sets could be limited to ~70%), while the UStags method provided the most consistent peptide data sets (>90% overlap). The m/z ranges in which CID, HCD, and ETD contributed the largest number of peptide identifications were substantially overlapping. This work suggests that the three peptide ion fragmentation methods are complementary and that maximizing the number of peptide identifications benefits significantly from a careful match with the informatics tools and methods applied. These results also suggest that the decoy strategy may inaccurately estimate identification FDRs.
Collapse
Affiliation(s)
- Yufeng Shen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Nikola Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Fang Xie
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Samuel O. Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| | - J. Moore Ronald
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Gordon A. Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| |
Collapse
|
45
|
Tapia S, Rojas M, Morales P, Ramirez MA, Diaz ES. The Laminin-Induced Acrosome Reaction in Human Sperm Is Mediated by Src Kinases and the Proteasome1. Biol Reprod 2011; 85:357-66. [DOI: 10.1095/biolreprod.111.092254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
46
|
Abstract
Proteomic technologies are used to study the complexity of proteins, their roles, and biological functions. It is based on the premise that the diversity of proteins, comprising their isoforms, and posttranslational modifications (PTMs) underlies biology. Based on an annotated human cardiac protein database, 62% have at least one PTM (phosphorylation currently dominating), whereas ≈25% have more than one type of modification. The field of proteomics strives to observe and quantify this protein diversity. It represents a broad group of technologies and methods arising from analytic protein biochemistry, analytic separation, mass spectrometry, and bioinformatics. Since the 1990s, the application of proteomic analysis has been increasingly used in cardiovascular research. Technology development and adaptation have been at the heart of this progress. Technology undergoes a maturation, becoming routine and ultimately obsolete, being replaced by newer methods. Because of extensive methodological improvements, many proteomic studies today observe 1000 to 5000 proteins. Only 5 years ago, this was not feasible. Even so, there are still road blocks. Nowadays, there is a focus on obtaining better characterization of protein isoforms and specific PTMs. Consequently, new techniques for identification and quantification of modified amino acid residues are required, as is the assessment of single-nucleotide polymorphisms in addition to determination of the structural and functional consequences. In this series, 4 articles provide concrete examples of how proteomics can be incorporated into cardiovascular research and address specific biological questions. They also illustrate how novel discoveries can be made and how proteomic technology has continued to evolve.
Collapse
Affiliation(s)
- Jennifer E Van Eyk
- Johns Hopkins University Bayview Proteomic Center, Rm 602, Mason F. Bldg Center Tower, Johns Hopkins University, Baltimore, MD 21239, USA.
| |
Collapse
|
47
|
Abstract
The comprehensive analysis of intact proteins down to the level of their individual amino acid sequence and the entirety of post-translational modifications is an area that can hardly be covered by the typical workflow in MS based protein analysis, which comprises enzymatic digestion, mass spectrometric analysis and subsequent database search. This approach typically provides 20-80% sequence coverage, which is not sufficient for the characterization of biopharmaceuticals, for example. This generates the requirement for a comprehensive analysis of the protein, without the risk of losing sequence information due to undetected peptides. Top-down sequencing of proteins starts from the intact protein, typically by determining the intact protein mass in the first step, a fragmentation of the intact protein is then performed within the mass spectrometer, resulting in fragment ions that allow us to pinpoint the protein sequence, as well as potential modifications or mutations in their localization and structure. A number of technologies have been developed for this task in the last few years, based on various different mass spectrometric instrument configurations, but typically based on the same technology platforms as used for bottom-up strategies. Thus, the use of one specific instrument often allows the application of top-down and bottom-up technologies in a complementary way, providing much more detailed information about the proteins of interest than either of the approaches alone.
Collapse
|
48
|
Wang D, Zong C, Koag MC, Wang Y, Drews O, Fang C, Scruggs SB, Ping P. Proteome dynamics and proteome function of cardiac 19S proteasomes. Mol Cell Proteomics 2011; 10:M110.006122. [PMID: 21357515 DOI: 10.1074/mcp.m110.006122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myocardial proteasomes are comprised of 20S core particles and 19S regulatory particles, which together carry out targeted degradation of cardiac proteins. The 19S complex is unique among the regulators of proteasomes in that it affects both the capacity and specificity of protein degradation. However, a comprehensive molecular characterization of cardiac 19S complexes is lacking. In this investigation, we tailored a multidimensional chromatography-based purification strategy to isolate structurally intact and functionally viable 19S complexes from murine hearts. Two distinct subpopulations of 19S complexes were isolated based upon (1) potency of activating 20S proteolytic activity, and (2) molecular composition using a combination of immuno-detection, two-dimensional-differential gel electrophoresis, and MS-based approaches. Heat shock protein 90 (Hsp90) was identified to be characteristic to 19S subpopulation I. The physical interaction of Hsp90 with 19S complexes was demonstrated via multiple approaches. Inhibition of Hsp90 activity using geldanamycin or BIIB021 potentiated the ability of subpopulation I to activate 20S proteasomes in the murine heart, thus demonstrating functional specificity of Hsp90 in subpopulation I. This investigation has advanced our understanding of the molecular heterogeneity of cardiac proteasomes by identifying molecularly and functionally distinct cardiac 19S complexes. The preferential association of Hsp90 with 19S subpopulation I unveils novel targets for designing proteasome-based therapeutic interventions for combating cardiac disease.
Collapse
Affiliation(s)
- Ding Wang
- Department of Physiology and Medicine, Division of Cardiology, University of California at Los Angeles, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Su H, Li J, Menon S, Liu J, Kumarapeli AR, Wei N, Wang X. Perturbation of cullin deneddylation via conditional Csn8 ablation impairs the ubiquitin-proteasome system and causes cardiomyocyte necrosis and dilated cardiomyopathy in mice. Circ Res 2011; 108:40-50. [PMID: 21051661 PMCID: PMC3017673 DOI: 10.1161/circresaha.110.230607] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/27/2010] [Indexed: 12/20/2022]
Abstract
RATIONALE Ubiquitin-proteasome system (UPS) dysfunction has been implicated in cardiac pathogenesis. Understanding how cardiac UPS function is regulated will facilitate delineating the pathophysiological significance of UPS dysfunction and developing new therapeutic strategies. The COP9 (constitutive photomorphogenesis mutant 9) signalosome (CSN) may regulate the UPS, but this has not been tested in a critical vertebrate organ. Moreover, the role of CSN in a postmitotic organ and the impact of cardiomyocyte-restricted UPS dysfunction on the heart have not been reported. OBJECTIVE We sought to determine the role of CSN-mediated deneddylation in UPS function and postnatal cardiac development and function. METHODS AND RESULTS Cardiomyocyte-restricted Csn8 gene knockout (CR-Csn8KO) in mice was achieved using a Cre-LoxP system. CR-Csn8KO impaired CSN holocomplex formation and cullin deneddylation and resulted in decreases in F-box proteins. Probing with a surrogate misfolded protein revealed severe impairment of UPS function in CR-Csn8KO hearts. Consequently, CR-Csn8KO mice developed cardiac hypertrophy, which rapidly progressed to heart failure and premature death. Massive cardiomyocyte necrosis rather than apoptosis appears to be the primary cause of the heart failure. This is because (1) massive necrotic cell death and increased infiltration of leukocytes were observed before increased apoptosis; (2) increased apoptosis was not detectable until overt heart failure was observed; and (3) cardiac overexpression of Bcl2 failed to ameliorate CR-Csn8KO mouse premature death. CONCLUSIONS Csn8/CSN plays an essential role in cullin deneddylation, UPS-mediated degradation of a subset of proteins, and the survival of cardiomyocytes and, therefore, is indispensable in postnatal development and function of the heart. Cardiomyocyte-restricted UPS malfunction can cause heart failure.
Collapse
Affiliation(s)
- Huabo Su
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
- Cardiovascular Research Institute, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Jie Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
- Cardiovascular Research Institute, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Suchithra Menon
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Jinbao Liu
- Cardiovascular Research Institute, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
- Department of Pathophysiology, Guangzhou Medical College, Guangzhou, Guangdong, China
| | - Asangi R. Kumarapeli
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
- Cardiovascular Research Institute, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Ning Wei
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
- Cardiovascular Research Institute, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
| |
Collapse
|
50
|
Rosenqvist H, Ye J, Jensen ON. Analytical strategies in mass spectrometry-based phosphoproteomics. Methods Mol Biol 2011; 753:183-213. [PMID: 21604124 DOI: 10.1007/978-1-61779-148-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phosphoproteomics, the systematic study of protein phosphorylation events and cell signaling networks in cells and tissues, is a rapidly evolving branch of functional proteomics. Current phosphoproteomics research provides a large toolbox of strategies and protocols that may assist researchers to reveal key regulatory events and phosphorylation-mediated processes in the cell and in whole organisms. We present an overview of sensitive and robust analytical methods for phosphopeptide analysis, including calcium phosphate precipitation and affinity enrichment methods such as IMAC and TiO(2). We then discuss various tandem mass spectrometry approaches for phosphopeptide sequencing and quantification, and we consider aspects of phosphoproteome data analysis and interpretation. Efficient integration of these stages of phosphoproteome analysis is highly important to ensure a successful outcome of large-scale experiments for studies of phosphorylation-mediated protein regulation.
Collapse
Affiliation(s)
- Heidi Rosenqvist
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
| | | | | |
Collapse
|