1
|
Zhu Y, Lian X, Li K, Zhang J, Wu W, Zhang X, Zhang J. Low Temperature Plasma Jet Treatment Promotes Skin Wound Healing by Enhancing Cell Proliferation via the PI3K-AKT and AMPK Pathways. Int Wound J 2025; 22:e70213. [PMID: 39934939 PMCID: PMC11813701 DOI: 10.1111/iwj.70213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Low temperature plasma jet (LTPJ) treatment can promote skin wound healing, but the underlying molecular mechanisms remain poorly understood. In the present study, we verified the effect of LTPJ in accelerating wound healing and investigated its underlying mechanism. With mouse model, two full-thickness dermal wounds were created in each mouse (n = 8). One wound underwent LTPJ treatment for 10 min, while the other wound without LTPJ treatment served as a control. The percentage of wound closure and collagen content in epidermis increased significantly, which indicated that LTPJ treatment significantly enhanced wound healing through contraction. RNA-seq analysis was conducted to understand the underlying mechanisms. A total of 77 differentially expressed genes (DGEs) were identified. GO and KEGG pathway enrichment analyses revealed that the DGEs were mainly related to the collagen-containing extracellular matrix, cell cycle, PI3K-AKT signalling pathway and AMPK signalling pathway, which are known to be related to wound healing. HaCaT keratinocytes were used to study LTPJ effects on cell proliferation in vitro. In agreement with the in vivo results, the in vitro datas also demonstrated that LTPJ treatment affected the activity of the PI3K-AKT and AMPK pathways. Our findings suggest that LTPJ treatment promotes skin wound healing by inducing genes associated with wound healing, promoting PI3K-AKT signalling, and suppressing the AMPK signalling pathway.
Collapse
Affiliation(s)
- Yuehan Zhu
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxingChina
| | - Xinrong Lian
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxingChina
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityZhejiangChina
| | - Kaici Li
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxingChina
| | - Jingya Zhang
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxingChina
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityZhejiangChina
| | - Wenjing Wu
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxingChina
| | - Xinhua Zhang
- School of Photoelectric EngineeringChangzhou Institute of TechnologyChangzhouChina
| | - Jin Zhang
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxingChina
- Jiaxing i‐Bio Biotechnology Co. LtdJiaxingChina
| |
Collapse
|
2
|
Zhou F, Chen L, Liu Z, Cao Y, Deng C, Liu G, Liu C. Unveiling CKS2: A Key Player in Aggressive B-Cell Lymphoma Progression and a Target for Synergistic Therapy. Cancer Med 2024; 13:e70435. [PMID: 39560180 PMCID: PMC11574738 DOI: 10.1002/cam4.70435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The objective of this study was to investigate the expression levels and biological significance of CKS2 in Burkitt cell lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL). Additionally, the potential synergistic anti-tumor effects of CKS2 knockdown in combination with etoposide in BL and DLBCL were explored for the first time. METHODS Bioinformatics analysis was utilized to explore the transcriptional levels, prognostic value, and gene function enrichment of CKS2 in BL and DLBCL. Specific shRNA sequences were designed to target CKS2 for the purpose of constructing a lentiviral expression vector, and therapeutic effects were assessed through analyses of cell proliferation, cell cycle distribution, and cell apoptosis. RESULTS First, the study examined the increased transcriptional and protein levels of CKS2 in BL and DLBCL through analysis of various databases and immunohistochemistry tests. Elevated CKS2 expression was found to be correlated with a worse prognosis in BL and DLBCL patients, as evidenced by data from the TCGA and GEO databases. Enrichment analysis indicated that CKS2 functions were primarily linked to protein kinase regulatory activity, G1/S phase transition of the cell cycle, and the p53 signaling pathway, among others. Second, stable suppression of CKS2 gene expression in Raji and SUDHL6 cells using shRNA resulted in a significant inhibition of cell proliferation. Moreover, CKS2-shRNA induced G0/G1 cell cycle arrest and apoptosis by activating the p53 signaling pathway in Raji and SUDHL6 cells. Third, the combined treatment of CKS2-shRNA and etoposide exhibited a synergistic effect on the proliferation and apoptosis of Raji and SUDHL6 cells. CONCLUSIONS Our findings suggest that CKS2 may play a critical role in the progression of BL and DLBCL and provide evidence for the potential therapeutic application of combining CKS2-shRNA and etoposide agents in the treatment of BL and DLBCL.
Collapse
MESH Headings
- Humans
- CDC2-CDC28 Kinases/metabolism
- CDC2-CDC28 Kinases/genetics
- Cell Proliferation
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Etoposide/pharmacology
- Etoposide/therapeutic use
- Cell Line, Tumor
- Apoptosis
- Gene Expression Regulation, Neoplastic
- Prognosis
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/pathology
- Burkitt Lymphoma/drug therapy
- Burkitt Lymphoma/metabolism
- Disease Progression
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle
- Computational Biology/methods
Collapse
Affiliation(s)
- Fenling Zhou
- Department of Hematology, Sun Yat-Sen Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Lu Chen
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Zhen Liu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Yuli Cao
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Cuilan Deng
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Gexiu Liu
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Chengcheng Liu
- Department of Hematology, Sun Yat-Sen Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Chen K, Xu B, Xiao X, Long L, Zhao Q, Fang Z, Tu X, Wang J, Xu J, Wang H. Involvement of CKS1B in the anti-inflammatory effects of cannabidiol in experimental stroke models. Exp Neurol 2024; 373:114654. [PMID: 38104887 DOI: 10.1016/j.expneurol.2023.114654] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
We have previously demonstrated that treatment with cannabidiol (CBD) ameliorates mitochondrial dysfunction and attenuates neuronal injury in rats following cerebral ischemia. However, the role of CBD in the progression of ischemic stroke-induced inflammation and the molecules involved remain unclear. Here, we found that CBD suppressed the production of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), reduced the activation of microglia, ameliorated mitochondrial deficits, and decreased the phosphorylation of nuclear factor κ-B (NF-κB) in BV-2 cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Cyclin-dependent kinase regulatory subunit 1B (CKS1B) expression was decreased in BV-2 cells following OGD/R and this reduction was blocked by treatment with CBD. Knockdown of CKS1B increased the activation of microglia and enhanced the production of IL-1β and TNF-α in BV-2 cells treated with CBD. Moreover, CKS1B knockdown exacerbated mitochondrial deficits and increased NF-κB phosphorylation. CBD treatment also ameliorated brain injury, reduced neuroinflammation, and enhanced the protein levels of mitochondrial transcription factor A and CKS1B in rats following middle cerebral artery occlusion/reperfusion. These data identify CKS1B as a novel regulator of neuroinflammation; and reveals its involvement in the anti-inflammatory effects of CBD. Interventions targeting CKS1B expression are potentially promising for treating in ischemic stroke.
Collapse
Affiliation(s)
- Kechun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingtian Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuan Xiao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lu Long
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qian Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zicen Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingxing Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiakang Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China.
| | - Haitao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China.
| |
Collapse
|
4
|
Li Z, Chen Y, Zhang B, Xie L, Shi B. Global trends and hotspots in Cyclin-dependent Kinase Subunit 2 research from 1999 to 2022: A bibliometric and visualized analysis. Medicine (Baltimore) 2023; 102:e36319. [PMID: 38050288 PMCID: PMC10695487 DOI: 10.1097/md.0000000000036319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/18/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Cyclin-dependent Kinase Subunit 2 is a protein closely related to the regulation of the cell cycle. In recent years, there has been an increasing number of research articles on this topic. However, there is a lack of comprehensive synthesis and evaluation in the field of CKS2 research. This study aims to summarize and visualize the literature distribution, research hotspots, and development trends of CKS2 based on bibliometric methods. METHODS Publications from 1999 to 2022 were extracted from the Web of Science. Citespace was used to analyze the relevant information of each article. RESULTS A total of 138 publications focused on CKS2 showed a positive growth trend from 1999 to 2022 and were published by 27 countries. The most prolific countries are China and the USA. The most prolific institution is Scripps Research Institute. The most prolific author is Steven I. Reed from Scripps Research Institute. The most cited article is published by Todd R Golub. The most cited author is Hanna-Stina Martinsson-Ahlzen. The journal with the most published articles is International Journal of Oncology. The high frequency keywords suggest that expression and function of CKS2 in cancer are dominated topics. The clusters and burst words suggest that expression and function of CKS2 still active in the future. CONCLUSION SUBSECTIONS The results of this bibliometric analysis provide information on the state and trends in CKS2 from 1999 to 2022. It is helpful for scholars to pinpoint hot issues and discover new areas of study.
Collapse
Affiliation(s)
- Ziteng Li
- School of Acupuncture-Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanzhen Chen
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Bo Zhang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Liangyu Xie
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Bin Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
López-Hernández MN, Vázquez-Ramos JM. Maize CDKA2;1a and CDKB1;1 kinases have different requirements for their activation and participate in substrate recognition. FEBS J 2023; 290:2463-2488. [PMID: 36259272 DOI: 10.1111/febs.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 05/04/2023]
Abstract
Cyclin-dependent kinases (CDKs), in association with cyclins, control cell cycle progression by phosphorylating a large number of substrates. In animals, activation of CDKs regularly requires both the association with a cyclin and then phosphorylation of a highly conserved threonine residue in the CDK activation loop (the classical mechanism), mediated by a CDK-activating kinase (CAK). In addition to this typical mechanism of activation, some CDKs can also be activated by the association of a cyclin to a monomeric CDK previously phosphorylated by CAK although not all CDKs can be activated by this mechanism. In animals and yeast, cyclin, in addition to being required for CDK activation, provides substrate specificity to the cyclin/CDK complex; however, in plants both the mechanisms of CDKs activation and the relevance of the CDK-associated cyclin for substrate targeting have been poorly studied. In this work, by co-expressing proteins in E. coli, we studied maize CDKA2;1a and CDKB1;1, two of the main types of CDKs that control the cell cycle in plants. These kinases could be activated by the classical mechanism and by the association of CycD2;2a to a phosphorylated intermediate in its activation loop, a previously unproven mechanism for the activation of plant CDKs. Unlike CDKA2;1a, CDKB1;1 did not require CAK for its activation, since it autophosphorylated in its activation loop. Phosphorylation of CDKB1;1 and association of CycD2;2 was not enough for its full activation as association of maize CKS, a scaffolding protein, differentially stimulated substrate phosphorylation. Our results suggest that both CDKs participate in substrate recognition.
Collapse
Affiliation(s)
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
6
|
Leal-Esteban LC, Fajas L. Cell cycle regulators in cancer cell metabolism. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165715. [PMID: 32035102 DOI: 10.1016/j.bbadis.2020.165715] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
Abstract
Cancer proliferation and progression involves altered metabolic pathways as a result of continuous demand for energy and nutrients. In the last years, cell cycle regulators have been involved in the control of metabolic processes, such as glucose and insulin pathways and lipid synthesis, in addition to their canonical function controlling cell cycle progression. Here we describe recent data demonstrating the role of cell cycle regulators in the metabolic control especially in studies performed in cancer models. Moreover, we discuss the importance of these findings in the context of current cancer therapies to provide an overview of the relevance of targeting metabolism using inhibitors of the cell cycle regulation.
Collapse
Affiliation(s)
- Lucia C Leal-Esteban
- Metabolism and Cancer Laboratory, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Lluis Fajas
- Metabolism and Cancer Laboratory, Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Jonsson M, Fjeldbo CS, Holm R, Stokke T, Kristensen GB, Lyng H. Mitochondrial Function of CKS2 Oncoprotein Links Oxidative Phosphorylation with Cell Division in Chemoradioresistant Cervical Cancer. Neoplasia 2019; 21:353-362. [PMID: 30856376 PMCID: PMC6411633 DOI: 10.1016/j.neo.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/03/2022]
Abstract
CDK regulatory subunit 2 (CKS2) has a nuclear function that promotes cell division and is a candidate biomarker of chemoradioresistance in cervical cancer. The underlying mechanisms are, however, not completely understood. We investigated whether CKS2 also has a mitochondrial function that augments tumor aggressiveness. Based on global gene expression data of two cervical cancer cohorts of 150 and 135 patients, we identified a set of genes correlated with CKS2 expression. Gene set enrichment analysis showed enrichment of mitochondrial cellular compartments, and the hallmarks oxidative phosphorylation (OXPHOS) and targets of the MYC oncogene in the gene set. By in situ proximity ligation assay, we showed that CKS2 formed complex with the positively correlated MYC target, mitochondrial single-stranded DNA binding protein SSBP1, in the mitochondrion of cervix tumor samples and HeLa and SiHa cervical cancer cell lines, indicating a role in mitochondrial DNA (mtDNA) replication and thereby OXPHOS. CDK1 was found to be part of the complex. Flow cytometry analyses of HeLa cells showed cell cycle regulation of the CKS2-SSBP1 complex consistent with mtDNA replication activity. Moreover, repression of mtDNA replication and OXPHOS by acute hypoxia decreased CKS2-SSBP1 complex abundance and expression of MYC targets. By immunohistochemistry, cytoplasmic CKS2 expression was found to add to the prognostic impact of nuclear CKS2 expression in patients, suggesting that the mitochondrial function promotes tumor aggressiveness. Our study uncovers a novel link between regulation of cell division by nuclear pathways and OXPHOS in the mitochondrion that involves CKS2 and promotes chemoradioresistance of cervical cancer.
Collapse
Affiliation(s)
- Marte Jonsson
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | | | - Ruth Holm
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Trond Stokke
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Balle Kristensen
- Department of Gynaecologic Oncology, Oslo University Hospital, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
8
|
Grey W, Ivey A, Milne TA, Haferlach T, Grimwade D, Uhlmann F, Voisset E, Yu V. The Cks1/Cks2 axis fine-tunes Mll1 expression and is crucial for MLL-rearranged leukaemia cell viability. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:105-116. [PMID: 28939057 PMCID: PMC5701546 DOI: 10.1016/j.bbamcr.2017.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/09/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022]
Abstract
The Cdc28 protein kinase subunits, Cks1 and Cks2, play dual roles in Cdk-substrate specificity and Cdk-independent protein degradation, in concert with the E3 ubiquitin ligase complexes SCFSkp2 and APCCdc20. Notable targets controlled by Cks include p27 and Cyclin A. Here, we demonstrate that Cks1 and Cks2 proteins interact with both the MllN and MllC subunits of Mll1 (Mixed-lineage leukaemia 1), and together, the Cks proteins define Mll1 levels throughout the cell cycle. Overexpression of CKS1B and CKS2 is observed in multiple human cancers, including various MLL-rearranged (MLLr) AML subtypes. To explore the importance of MLL-Fusion Protein regulation by CKS1/2, we used small molecule inhibitors (MLN4924 and C1) to modulate their protein degradation functions. These inhibitors specifically reduced the proliferation of MLLr cell lines compared to primary controls. Altogether, this study uncovers a novel regulatory pathway for MLL1, which may open a new therapeutic approach to MLLr leukaemia.
Collapse
Affiliation(s)
- William Grey
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK.
| | - Adam Ivey
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, UK
| | | | - David Grimwade
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Edwige Voisset
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK.
| | - Veronica Yu
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, UK
| |
Collapse
|
9
|
Live imaging reveals the dynamics and regulation of mitochondrial nucleoids during the cell cycle in Fucci2-HeLa cells. Sci Rep 2017; 7:11257. [PMID: 28900194 PMCID: PMC5595809 DOI: 10.1038/s41598-017-10843-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/15/2017] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is organized in nucleoprotein complexes called mitochondrial nucleoids (mt-nucleoids), which are critical units of mtDNA replication and transmission. In humans, several hundreds of mt-nucleoids exist in a cell. However, how numerous mt-nucleoids are maintained during the cell cycle remains elusive, because cell cycle synchronization procedures affect mtDNA replication. Here, we analyzed regulation of the maintenance of mt-nucleoids in the cell cycle, using a fluorescent cell cycle indicator, Fucci2. Live imaging of mt-nucleoids with higher temporal resolution showed frequent attachment and detachment of mt-nucleoids throughout the cell cycle. TFAM, an mtDNA packaging protein, was involved in the regulation of this dynamic process, which was important for maintaining proper mt-nucleoid number. Both an increase in mt-nucleoid number and activation of mtDNA replication occurred during S phase. To increase mt-nucleoid number, mtDNA replication, but not nuclear DNA replication, was necessary. We propose that these dynamic and regulatory processes in the cell cycle maintain several hundred mt-nucleoids in proliferating cells.
Collapse
|
10
|
Furqan MS, Siyal MY. Elastic-Net Copula Granger Causality for Inference of Biological Networks. PLoS One 2016; 11:e0165612. [PMID: 27792750 PMCID: PMC5085021 DOI: 10.1371/journal.pone.0165612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/15/2016] [Indexed: 12/13/2022] Open
Abstract
AIM In bioinformatics, the inference of biological networks is one of the most active research areas. It involves decoding various complex biological networks that are responsible for performing diverse functions in human body. Among these networks analysis, most of the research focus is towards understanding effective brain connectivity and gene networks in order to cure and prevent related diseases like Alzheimer and cancer respectively. However, with recent advances in data procurement technology, such as DNA microarray analysis and fMRI that can simultaneously process a large amount of data, it yields high-dimensional data sets. These high dimensional dataset analyses possess challenges for the analyst. BACKGROUND Traditional methods of Granger causality inference use ordinary least-squares methods for structure estimation, which confront dimensionality issues when applied to high-dimensional data. Apart from dimensionality issues, most existing methods were designed to capture only the linear inferences from time series data. METHOD AND CONCLUSION In this paper, we address the issues involved in assessing Granger causality for both linear and nonlinear high-dimensional data by proposing an elegant form of the existing LASSO-based method that we call "Elastic-Net Copula Granger causality". This method provides a more stable way to infer biological networks which has been verified using rigorous experimentation. We have compared the proposed method with the existing method and demonstrated that this new strategy outperforms the existing method on all measures: precision, false detection rate, recall, and F1 score. We have also applied both methods to real HeLa cell data and StarPlus fMRI datasets and presented a comparison of the effectiveness of both methods.
Collapse
Affiliation(s)
- Mohammad Shaheryar Furqan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
- INFINITUS, Infocomm Centre of Excellence, Nanyang Technological University, Singapore, Singapore
| | - Mohammad Yakoob Siyal
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Hamdi A, Lesnard A, Suzanne P, Robert T, Miteva MA, Pellerano M, Didier B, Ficko-Blean E, Lobstein A, Hibert M, Rault S, Morris MC, Colas P. Tampering with Cell Division by Using Small-Molecule Inhibitors of CDK-CKS Protein Interactions. Chembiochem 2015; 16:432-9. [DOI: 10.1002/cbic.201402579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 11/07/2022]
|
12
|
Cks1 proteasomal degradation is induced by inhibiting Hsp90-mediated chaperoning in cancer cells. Cancer Chemother Pharmacol 2014; 75:411-20. [PMID: 25544127 DOI: 10.1007/s00280-014-2666-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/22/2014] [Indexed: 12/20/2022]
Abstract
PURPOSE Cks1, a conformationally heterogenous 9 kDa protein, is markedly overexpressed in cancer cells and contributes to tumor development. Cks1 is an essential component of the SCF-Skp2 ubiquitin ligase complex that targets the Cdk inhibitors p27(Kip1) and p21(Cip1). Cks1 is known to interact with the Hsp90-Cdc37 chaperone machinery, although whether this facilitates its conformational maturation and stability is not known. To test whether abrogating the chaperone function of Hsp90 could destabilize Cks1, we examined the effects of treating different cancer cell lines with the benzoquinone ansamycin 17-allylamino geldanamycin (17-AAG), a compound that selectively binds Hsp90 and potently inhibits its ATP-dependent chaperone activity. METHODS The effect of Hsp90 inhibition using 17-AAG on Cks1 protein and associated cell cycle proteins including Skp2, p27(Kip1), p21(Cip1), and Cdk1 in cancer cells was determined by Western blotting. Ubiquitination analysis was carried out by transfecting cells with an HA-ubiquitin plasmid and specifically immunoprecipitating Cks1 to examine polyubiquitinated species. Flow cytometry was utilized to examine the effects of Hsp90 inhibition on cell cycle profiles. RESULTS Here, we demonstrate for the first time that inhibition of Hsp90 utilizing 17-AAG destabilizes Cks1 in cancer cells by promoting its ubiquitination and proteasomal degradation. 17-AAG-induced Cks1 depletion was accompanied by concomitant decreases in Skp2 and Cdk1. 17-AAG treatment also induced G2/M accumulation in MCF-7 breast carcinoma cells, and G1 accumulation in the colon carcinoma lines HCT116 and SW620. CONCLUSIONS We conclude that perturbing the Hsp90 pathway could provide a useful therapeutic strategy in tumors driven by Cks1 overexpression.
Collapse
|
13
|
Harbauer AB, Opalińska M, Gerbeth C, Herman JS, Rao S, Schönfisch B, Guiard B, Schmidt O, Pfanner N, Meisinger C. Mitochondria. Cell cycle-dependent regulation of mitochondrial preprotein translocase. Science 2014; 346:1109-13. [PMID: 25378463 DOI: 10.1126/science.1261253] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria play central roles in cellular energy conversion, metabolism, and apoptosis. Mitochondria import more than 1000 different proteins from the cytosol. It is unknown if the mitochondrial protein import machinery is connected to the cell division cycle. We found that the cyclin-dependent kinase Cdk1 stimulated assembly of the main mitochondrial entry gate, the translocase of the outer membrane (TOM), in mitosis. The molecular mechanism involved phosphorylation of the cytosolic precursor of Tom6 by cyclin Clb3-activated Cdk1, leading to enhanced import of Tom6 into mitochondria. Tom6 phosphorylation promoted assembly of the protein import channel Tom40 and import of fusion proteins, thus stimulating the respiratory activity of mitochondria in mitosis. Tom6 phosphorylation provides a direct means for regulating mitochondrial biogenesis and activity in a cell cycle-specific manner.
Collapse
Affiliation(s)
- Angelika B Harbauer
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany. Trinationales Graduiertenkolleg 1478, Universität Freiburg, 79104 Freiburg, Germany. Faculty of Biology, Universität Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - Magdalena Opalińska
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Carolin Gerbeth
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany. Trinationales Graduiertenkolleg 1478, Universität Freiburg, 79104 Freiburg, Germany. Faculty of Biology, Universität Freiburg, 79104 Freiburg, Germany
| | - Josip S Herman
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Sanjana Rao
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany. Faculty of Biology, Universität Freiburg, 79104 Freiburg, Germany. Spemann Graduate School of Biology and Medicine, Universität Freiburg, 79104 Freiburg, Germany
| | - Birgit Schönfisch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Oliver Schmidt
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
14
|
Lee SW, Lin CY, Tian YF, Sun DP, Lin LC, Chen LT, Hsing CH, Huang CT, Hsu HP, Huang HY, Wu LC, Li CF, Shiue YL. Overexpression of CDC28 protein kinase regulatory subunit 1B confers an independent prognostic factor in nasopharyngeal carcinoma. APMIS 2014; 122:206-214. [PMID: 23879533 DOI: 10.1111/apm.12136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/15/2013] [Indexed: 12/28/2022]
Abstract
Data mining on public domain identified that CDC28 protein kinase regulatory subunit 1B (CKS1B) transcript was highly expressed in nasopharyngeal carcinoma (NPC). The expression of CKS1B protein and its clinicopathological associations in patients with NPC were further evaluated. Immunoexpression of CKS1B was retrospectively assessed in biopsies of 124 consecutive NPC patients without initial distant metastasis and treated with consistent guidelines. The correlations between CKS1B immunoexpression levels and clinicopathological features, as well as patient survivals, were analyzed. High CKS1B expression (49.2%) was correlated with the 7th American Joint Committee on Cancer (AJCC) stage (p = 0.014). In multivariate analyses, high CKS1B expression emerged as an independent prognostic factor for worse disease-specific survival (p < 0.001), metastasis-free survival (p < 0.001), and local recurrence-free survival (p = 0.001). High expression of CKS1B is common and associated with adverse prognostic factors and might confer tumor aggressiveness through dysregulation of the cyclin-dependent protein kinase (intrinsic regulatory activity) during cell cycle progression.
Collapse
Affiliation(s)
- Sung-Wei Lee
- Department of Radiation Oncology, Chi-Mei Medical Center, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
van Loon B, Samson LD. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB). DNA Repair (Amst) 2013; 12:177-87. [PMID: 23290262 DOI: 10.1016/j.dnarep.2012.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 12/12/2022]
Abstract
Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases, but to date AAG has only been detected in the nucleus, even though mammalian mitochondria are known to repair DNA lesions that are specific substrates of AAG. Here we use immunofluorescence to show that AAG localizes to mitochondria, and we find that native AAG is present in purified human mitochondrial extracts, as well as that exposure to alkylating agent promotes AAG accumulation in the mitochondria. We identify mitochondrial single-stranded binding protein (mtSSB) as a novel interacting partner of AAG; interaction between mtSSB and AAG is direct and increases upon methyl methanesulfonate (MMS) treatment. The consequence of this interaction is specific inhibition of AAG glycosylase activity in the context of a single-stranded DNA (ssDNA), but not a double-stranded DNA (dsDNA) substrate. By inhibiting AAG-initiated processing of damaged bases, mtSSB potentially prevents formation of DNA breaks in ssDNA, ensuring that base removal primarily occurs in dsDNA. In summary, our findings suggest the existence of AAG-initiated BER in mitochondria and further support a role for mtSSB in DNA repair.
Collapse
Affiliation(s)
- Barbara van Loon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
16
|
Khattar V, Thottassery JV. Cks1: Structure, Emerging Roles and Implications in Multiple Cancers. ACTA ACUST UNITED AC 2013; 4:1341-1354. [PMID: 24563807 PMCID: PMC3930463 DOI: 10.4236/jct.2013.48159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Deregulation of the cell cycle results in loss of normal control mechanisms that prevent aberrant cell proliferation and cancer progression. Regulation of the cell cycle is a highly complex process with many layers of control. One of these mechanisms involves timely degradation of CDK inhibitors (CKIs) like p27Kip1 by the ubiquitin proteasomal system (UPS). Cks1 is a 9 kDa protein which is frequently overexpressed in different tumor subtypes, and has pleiotropic roles in cell cycle progression, many of which remain to be fully characterized. One well characterized molecular role of Cks1 is that of an essential adaptor that regulates p27Kip1 abundance by facilitating its interaction with the SCF-Skp2 E3 ligase which appends ubiquitin to p27Kip1 and targets it for degradation through the UPS. In addition, emerging research has uncovered p27Kip1-independent roles of Cks1 which have provided crucial insights into how it may be involved in cancer progression. We review here the structural features of Cks1 and their functional implications, and also some recently identified Cks1 roles and their involvement in breast and other cancers.
Collapse
Affiliation(s)
| | - Jaideep V Thottassery
- Southern Research Institute, Birmingham, USA ; University of Alabama Comprehensive Cancer Center, Birmingham, USA
| |
Collapse
|
17
|
Qattan AT, Radulovic M, Crawford M, Godovac-Zimmermann J. Spatial distribution of cellular function: the partitioning of proteins between mitochondria and the nucleus in MCF7 breast cancer cells. J Proteome Res 2012; 11:6080-101. [PMID: 23051583 PMCID: PMC4261608 DOI: 10.1021/pr300736v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Concurrent proteomics analysis of the nuclei and mitochondria of MCF7 breast cancer cells identified 985 proteins (40% of all detected proteins) present in both organelles. Numerous proteins from all five complexes involved in oxidative phosphorylation (e.g., NDUFA5, NDUFB10, NDUFS1, NDUF2, SDHA, UQRB, UQRC2, UQCRH, COX5A, COX5B, MT-CO2, ATP5A1, ATP5B, ATP5H, etc.), from the TCA-cycle (DLST, IDH2, IDH3A, OGDH, SUCLAG2, etc.), and from glycolysis (ALDOA, ENO1, FBP1, GPI, PGK1, TALDO1, etc.) were distributed to both the nucleus and mitochondria. In contrast, proteins involved in nuclear/mitochondrial RNA processing/translation and Ras/Rab signaling showed different partitioning patterns. The identity of the OxPhos, TCA-cycle, and glycolysis proteins distributed to both the nucleus and mitochondria provides evidence for spatio-functional integration of these processes over the two different subcellular organelles. We suggest that there are unrecognized aspects of functional coordination between the nucleus and mitochondria, that integration of core functional processes via wide subcellular distribution of constituent proteins is a common characteristic of cells, and that subcellular spatial integration of function may be a vital aspect of cancer.
Collapse
Affiliation(s)
- Amal T. Qattan
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, Royal Free Campus, Rowland Hill Street NW3 2PF, United Kingdom
| | - Marko Radulovic
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, Royal Free Campus, Rowland Hill Street NW3 2PF, United Kingdom
| | - Mark Crawford
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, Royal Free Campus, Rowland Hill Street NW3 2PF, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, Royal Free Campus, Rowland Hill Street NW3 2PF, United Kingdom
| |
Collapse
|
18
|
Radulovic M, Godovac-Zimmermann J. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms. Expert Rev Proteomics 2011; 8:117-26. [PMID: 21329431 DOI: 10.1586/epr.10.91] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms.
Collapse
Affiliation(s)
- Marko Radulovic
- Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK.
| | | |
Collapse
|