1
|
Zhou H, Zhou Y, Zhai F, Wu T, Xie Y, Xu G, Foyer CH. Rice seedlings grown under high ammonia do not show enhanced defence responses. Food Energy Secur 2021. [DOI: 10.1002/fes3.331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Heng Zhou
- College of Life Sciences Laboratory Center of Life Sciences Nanjing Agricultural University Nanjing210095China
| | - Ying Zhou
- College of Life Sciences Laboratory Center of Life Sciences Nanjing Agricultural University Nanjing210095China
| | - Fengchao Zhai
- College of Life Sciences Laboratory Center of Life Sciences Nanjing Agricultural University Nanjing210095China
| | - Ting Wu
- College of Life Sciences Laboratory Center of Life Sciences Nanjing Agricultural University Nanjing210095China
| | - Yanjie Xie
- College of Life Sciences Laboratory Center of Life Sciences Nanjing Agricultural University Nanjing210095China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of Agriculture Nanjing Agricultural University Nanjing210095China
| | - Christine H. Foyer
- School of Biosciences College of Life and Environmental Sciences University of Birmingham Edgbaston UK
| |
Collapse
|
2
|
Xiao Q, Zhang F, Xu L, Yue L, Kon OL, Zhu Y, Guo T. High-throughput proteomics and AI for cancer biomarker discovery. Adv Drug Deliv Rev 2021; 176:113844. [PMID: 34182017 DOI: 10.1016/j.addr.2021.113844] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Biomarkers are assayed to assess biological and pathological status. Recent advances in high-throughput proteomic technology provide opportunities for developing next generation biomarkers for clinical practice aided by artificial intelligence (AI) based techniques. We summarize the advances and limitations of cancer biomarkers based on genomic and transcriptomic analysis, as well as classical antibody-based methodologies. Then we review recent progresses in mass spectrometry (MS)-based proteomics in terms of sample preparation, peptide fractionation by liquid chromatography (LC) and mass spectrometric data acquisition. We highlight applications of AI techniques in high-throughput clinical studies as compared with clinical decisions based on singular features. This review sets out our approach for discovering clinical biomarkers in studies using proteomic big data technology conjoined with computational and statistical methods.
Collapse
|
3
|
Panunzio A, Tafuri A, Princiotta A, Gentile I, Mazzucato G, Trabacchin N, Antonelli A, Cerruto MA. Omics in urology: An overview on concepts, current status and future perspectives. Urologia 2021; 88:270-279. [PMID: 34169788 DOI: 10.1177/03915603211022960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent technological advances in molecular biology have led to great progress in the knowledge of structure and function of cells and their main constituents. In this setting, 'omics' is standing out in order to significantly improve the understanding of etiopathogenetic mechanisms of disease and contribute to the development of new biochemical diagnostics and therapeutic tools. 'Omics' indicates the scientific branches investigating every aspect of cell's biology, including structures, functions and dynamics pathways. The main 'omics' are genomics, epigenomics, proteomics, transcriptomics, metabolomics and radiomics. Their diffusion, success and proliferation, addressed to many research fields, has led to many important acquisitions, even in Urology. Aim of this narrative review is to define the state of art of 'omics' application in Urology, describing the most recent and relevant findings, in both oncological and non-oncological diseases, focusing the attention on urinary tract infectious, interstitial cystitis, urolithiasis, prostate cancer, bladder cancer and renal cell carcinoma. In Urology the majority of 'omics' applications regard the pathogenesis and diagnosis of the investigated diseases. In future, its role should be implemented in order to develop specific predictors and tailored treatments.
Collapse
Affiliation(s)
- Andrea Panunzio
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Alessandro Tafuri
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.,Department of Neuroscience, Imaging and Clinical Science, Physiology and Physiopathology division, "G. D'Annunzio" University, Chieti, Italy
| | - Alessandro Princiotta
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Ilaria Gentile
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Giovanni Mazzucato
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Nicolò Trabacchin
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Alessandro Antonelli
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Maria Angela Cerruto
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| |
Collapse
|
4
|
Petito G, de Curcio JS, Pereira M, Bailão AM, Paccez JD, Tristão GB, de Morais COB, de Souza MV, de Castro Moreira Santos A, Fontes W, Ricart CAO, de Almeida Soares CM. Metabolic Adaptation of Paracoccidioides brasiliensis in Response to in vitro Copper Deprivation. Front Microbiol 2020; 11:1834. [PMID: 32849434 PMCID: PMC7430155 DOI: 10.3389/fmicb.2020.01834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Copper is an essential micronutrient for the performance of important biochemical processes such as respiration detoxification, and uptake of metals like iron. Studies have shown that copper deprivation is a strategy used by the host against pathogenic fungi such as Cryptoccocus neoformans and Candida albicans during growth and development of infections in the lungs and kidneys. Although there are some studies, little is known about the impact of copper deprivation in members of the Paracoccidioides genus. Therefore, using isobaric tag labeling (iTRAQ)-Based proteomic approach and LC-MS/MS, we analyzed the impact of in vitro copper deprivation in the metabolism of Paracoccidioides brasiliensis. One hundred and sixty-four (164) differentially abundant proteins were identified when yeast cells were deprived of copper, which affected cellular respiration and detoxification processes. Changes in cellular metabolism such as increased beta oxidation and cell wall remodeling were described.
Collapse
Affiliation(s)
- Guilherme Petito
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliana Santana de Curcio
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gabriel Brum Tristão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Marcelo Valle de Souza
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Brazil
| | | | - Wagner Fontes
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Brazil
| | | | | |
Collapse
|
5
|
Hu S, Yu Y, Lv Z, Shen J, Ke Y, Xiao X. Proteomics study unveils ROS balance in acid-adapted Salmonella Enteritidis. Food Microbiol 2020; 92:103585. [PMID: 32950169 DOI: 10.1016/j.fm.2020.103585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Salmonella Enteritidis is a major cause of foodborne gastroenteritis and is thus a persistent threat to global public health. The acid adaptation response helps Salmonella survive exposure to gastric environment during ingestion. In a previous study we highlighted the damage caused to cell membrane and the regulation of intracellular reactive oxygen species (ROS) in S. Enteritidis. In this study, we applied both physiologic and iTRAQ analyses to explore the regulatory mechanism of acid resistance in Salmonella. It was found that after S. Enteritidis was subject to a 1 h period of acid adaptation at pH 5.5, an additional 1 h period of acid shock stress at pH 3.0 caused less Salmonella cell death than in non-acid adapted Salmonella cells. Although there were no significant differences between adapted and non-adapted cells in terms of cell membrane damage (e.g., membrane permeability or lipid peroxidation) after 30 min, intracellular ROS level in acid adapted cells was dramatically reduced compared to that in non-acid adapted cells, indicating that acid adaption promoted less ROS generation or increased the ability of ROS scavenging with little reduction in the integrity of the cell membrane. These findings were confirmed via an iTRAQ analysis. The adapted cells were shown to trigger incorporation of exogenous long-chain fatty acids into the cellular membrane, resulting in a different membrane lipid profile and promoting survival rate under acid stress. S. Enteritidis experiences oxidative damage and iron deficiency under acid stress, but after acid adaption S. Enteritidis cells were able to balance their concentrations of intracellular ROS. Specifically, SodAB consumed the free protons responsible for forming reactive oxygen intermediates (ROIs) and KatE protected cells from the toxic effects of ROIs. Additionally, acid-labile proteins released free unbound iron promoting ferroptotic metabolism, and NADH reduced GSSH to G-SH, protecting cells from acid/oxidative stress.
Collapse
Affiliation(s)
- Shuangfang Hu
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 10083, PR China
| | - Yigang Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China
| | - Ziquan Lv
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 10083, PR China
| | - Yuebin Ke
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China.
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China.
| |
Collapse
|
6
|
Zhang Y, Yang J, Chen Y, Lv J, Zhang J, Zhang Y, Zhao X, Fang H, Liu C, Zhang Q, Cui X, Wang X, Gao F. iTRAQ-Based Proteomics Analysis of Plasma of Myasthenia Gravis Patients Treated with Jia Wei Bu Zhong Yi Qi Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:9147072. [PMID: 31915455 PMCID: PMC6930785 DOI: 10.1155/2019/9147072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/04/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disease. A proportion of MG patients did not get satisfactory results after treatment with pyridostigmine and prednisone. Jia Wei Bu Zhong Yi Qi (Jia Wei BZYQ) decoction, a water extract from multiple herbs, has been demonstrated to be effective in the treatment of multiple "Qi deficiency type" diseases including MG in China. In this text, we investigated protein alterations in the plasma from healthy volunteers (C), MG patients without any treatment (T1), MG patients with routine western medical treatment (T2), and MG patients with combined treatments of Jia Wei BZYQ decoction and routine western medicines (T3) and identified some potential proteins involved in the pathogenesis and treatment of MG. iTRAQ (isobaric tags for relative and absolute quantitation) and 2D-LC-MS/MS (two-dimensional liquid chromatography-tandem mass spectrometry technologies) were employed to screen differentially expressed proteins. The identification, quantification, functional annotation, and interaction of proteins were analyzed by matching software and databases. In our project, 618 proteins were identified, among which 447 proteins had quantitative data. The number of differentially expressed proteins was 110, 117, 143, 115, 86, and 158 in T1 vs. C, T2 vs. C, T2 vs. T1, T3 vs. C, T3 vs. T1, and T3 vs. T2 groups, respectively. Functional annotation results showed that many differentially expressed proteins were closely associated with immune responses. For instance, some key proteins such as C-reactive protein, apolipoprotein C-III, apolipoprotein A-II, alpha-actinin-1, and thrombospondin-1 have been found to be abnormally expressed in T3 group compared to T1 group or T2 group. Interaction network analyses also provided some potential biomarkers or targets for MG management.
Collapse
Affiliation(s)
- Yunke Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou City, Henan Province 450008, China
| | - Junhong Yang
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Zhengzhou City, Henan Province 450000, China
| | - Yingzhe Chen
- Department of Neurology, Pingdingshan Traditional Chinese Medicine Hospital, Henan No. 4 Courtyard, North Section of Zhongxing Road, Pingdingshan City 467000, China
| | - Jie Lv
- Department of Neuroimmunology Research, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, No. 40, University Road, Zhengzhou City, Henan Province 450052, China
| | - Jing Zhang
- Department of Neuroimmunology Research, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, No. 40, University Road, Zhengzhou City, Henan Province 450052, China
| | - Yingna Zhang
- Department of Neuroimmunology Research, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, No. 40, University Road, Zhengzhou City, Henan Province 450052, China
| | - Xue Zhao
- Department of Neuroimmunology Research, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, No. 40, University Road, Zhengzhou City, Henan Province 450052, China
| | - Hua Fang
- Department of Neuroimmunology Research, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, No. 40, University Road, Zhengzhou City, Henan Province 450052, China
| | - Chongchong Liu
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Qingyong Zhang
- Myasthenia Gravis Comprehensive Diagnosis and Treatment Center, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou City, Henan Province 450003, China
| | - Xinzheng Cui
- Myasthenia Gravis Comprehensive Diagnosis and Treatment Center, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou City, Henan Province 450003, China
| | - Xiaohan Wang
- Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou City, Henan Province 450008, China
| | - Feng Gao
- Department of Neuroimmunology Research, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, No. 40, University Road, Zhengzhou City, Henan Province 450052, China
| |
Collapse
|
7
|
Zeng L, Deng X, Zhong J, Yuan L, Tao X, Zhang S, Zeng Y, He G, Tan P, Tao Y. Prognostic value of biomarkers EpCAM and αB-crystallin associated with lymphatic metastasis in breast cancer by iTRAQ analysis. BMC Cancer 2019; 19:831. [PMID: 31443698 PMCID: PMC6708189 DOI: 10.1186/s12885-019-6016-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/05/2019] [Indexed: 02/08/2023] Open
Abstract
Background Metastasis is responsible for the majority of deaths in a variety of cancer types, including breast cancer. Although several factors or biomarkers have been identified to predict the outcome of patients with breast cancer, few studies have been conducted to identify metastasis-associated biomarkers. Methods Quantitative iTRAQ proteomics analysis was used to detect differentially expressed proteins between lymph node metastases and their paired primary tumor tissues from 23 patients with metastatic breast cancer. Immunohistochemistry was performed to validate the expression of two upregulated (EpCAM, FADD) and two downregulated (NDRG1, αB-crystallin) proteins in 190 paraffin-embedded tissue samples. These four proteins were further analyzed for their correlation with clinicopathological features in 190 breast cancer patients. Results We identified 637 differentially regulated proteins (397 upregulated and 240 downregulated) in lymph node metastases compared with their paired primary tumor tissues. Data are available via ProteomeXchange with identifier PXD013931. Furthermore, bioinformatics analysis using GEO profiling confirmed the difference in the expression of EpCAM between metastases and primary tumors tissues. Two upregulated (EpCAM, FADD) and two downregulated (NDRG1, αB-crystallin) proteins were associated with the progression of breast cancer. Obviously, EpCAM plays a role in the metastasis of breast cancer cells to the lymph node. We further identified αB-crystallin as an independent biomarker to predict lymph node metastasis and the outcome of breast cancer patients. Conclusion We have identified that EpCAM plays a role in the metastasis of breast cancer cells to the lymph node. αB-crystallin, a stress-related protein that has recently been shown to be important for cell invasion and survival, was identified as a potential prognostic biomarker to predict the outcome of breast cancer patients. Electronic supplementary material The online version of this article (10.1186/s12885-019-6016-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China.
| | - Jingmin Zhong
- Department of Pathology, Union Hospital, Tongji Medical College, HuaZhong University of Science and Technology, WuHan, China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaojun Tao
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Sai Zhang
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zeng
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Guangchun He
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Pingping Tan
- Department of Pathology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Edwards SL, Mergan L, Parmar B, Cockx B, De Haes W, Temmerman L, Schoofs L. Exploring neuropeptide signalling through proteomics and peptidomics. Expert Rev Proteomics 2018; 16:131-137. [DOI: 10.1080/14789450.2019.1559733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Lucas Mergan
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bhavesh Parmar
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bram Cockx
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Wouter De Haes
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Zheng JW, Liu SL, Lu SH, Li HY, Liu JS, Yang WD. Proteomic profile in the mussel Perna viridis after short-term exposure to the brown tide alga Aureococcus anophagefferens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:365-375. [PMID: 30007186 DOI: 10.1016/j.ecoenv.2018.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Blooms of Aureococcus anophagefferens, referred to as brown tides are responsible for massive mortalities and recruitment failure of some bivalves. However, the molecular mechanisms underlying the toxicity remain elusive despite its biological significance, and the information currently available on the molecular effects is still insufficient. In this study, to evaluate the toxicity and associated mechanism of A. anophagefferens on bivalves, we analyzed the protein expression profiles in digestive glands of the A. anophagefferens-exposed Perna viridis by using iTRAQ. A total of 3138 proteins were identified in the digestive glands of A. anophagefferens-exposed P. viridis based on iTRAQ. Amongst, a repertoire of 236 proteins involved in cell, cell part, catalytic activity, metabolic process, biological regulation, immune system process, and response to stimulus were found to be differentially expressed. Functional analysis of the differentially expressed proteins demonstrated that innate immune system of P. viridis was activated, and some proteins associated with stress response and lipid metabolism were induced after exposure to A. anophagefferens. Additionally, MDA content, SOD activity and GSH-Px activity was increased significantly in the digestive gland of A. anophagefferens-exposed P. viridis. Taken together, our results indicated that the A. anophagefferens could induce oxidative stress, activate complement system and alter fat acid metabolism of P. viridis.
Collapse
Affiliation(s)
- Jian-Wei Zheng
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Su-Li Liu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Song-Hui Lu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Zhang Y, Xin Q, Wu Z, Wang C, Wang Y, Wu Q, Niu R. Application of Isobaric Tags for Relative and Absolute Quantification (iTRAQ) Coupled with Two-Dimensional Liquid Chromatography/Tandem Mass Spectrometry in Quantitative Proteomic Analysis for Discovery of Serum Biomarkers for Idiopathic Pulmonary Fibrosis. Med Sci Monit 2018; 24:4146-4153. [PMID: 29909421 PMCID: PMC6036962 DOI: 10.12659/msm.908702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The present study was performed to explore the presence of informative protein biomarkers of human serum proteome in idiopathic pulmonary fibrosis (IPF). Material/Methods Serum samples were profiled using iTRAQ coupled with two-dimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) technique, and ELISA was used to validate candidate biomarkers. Results A total of 394 proteins were identified and 97 proteins were associated with IPF. Four biomarker candidates generated from iTRAQ experiments – CRP, fibrinogen-α chain, haptoglobin, and kininogen-1 – were successfully verified using ELISA. Conclusions The present study demonstrates that levels of CRP and fibrinogen-α are higher and levels of haptoglobin and kininogen-1 are lower in patients with IPF compared to levels in healthy controls. We found they are useful candidate biomarkers for IPF.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Qian Xin
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Zhen Wu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Chaochao Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Yongbin Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Qian Wu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Rui Niu
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
11
|
Yang S, Xing Z, Liu T, Zhou J, Liang Q, Tang T, Cui H, Peng W, Xiong X, Wang Y. Synovial tissue quantitative proteomics analysis reveals paeoniflorin decreases LIFR and ASPN proteins in experimental rheumatoid arthritis. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:463-473. [PMID: 29551890 PMCID: PMC5844255 DOI: 10.2147/dddt.s153927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Rheumatoid arthritis (RA) is a common worldwide public health problem, which causes a chronic, systemic inflammatory disorder of synovial joints. Paeoniflorin (PA) has achieved positive results to some extent for the treatment of RA. Purpose This study aimed to reveal the potential druggable targets of PA in an experimental RA model using quantitative proteomics analysis. Study design and methods Thirty Sprague-Dawley rats were randomly divided into a normal group, model group and PA group. PA (1 mg/kg) was used to treat collagen-induced arthritis (CIA) rats for 42 days. We used isobaric tags for relative and absolute quantitation-based quantitative proteomics to analyze the synovial tissue of rats. Ingenuity pathway analysis (IPA) software was applied to process the data. The proteins that were targeted via IPA software were verified by Western blots. Results We found that PA caused 86 differentially expressed proteins (≥1.2-fold or ≤0.84-fold) compared with the CIA group. Of these varied proteins, 20 significantly changed (p<0.05) proteins referred to 41 CIA-relative top pathways after IPA pathway analysis. Thirteen of the PA-regulated pathways were anchored, which intervened in 24 biological functions. Next, network analysis revealed that leukemia inhibitory factor receptor (LIFR) and asporin (ASPN), which participate in two significant networks, contributed the most to the efficacy of PA treatment. Additionally, Western blots confirmed the aforementioned druggable targets of PA for the treatment of RA. Conclusion The results reveal that PA may treat RA by decreasing two key proteins, LIFR and ASPN. Our research helps to identify potential agents for RA treatment.
Collapse
Affiliation(s)
- Shu Yang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tao Liu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jing Zhou
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qinghua Liang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hanjin Cui
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Weijun Peng
- Department of Traditional Chinese Medicine, 2nd Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xingui Xiong
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
12
|
Abstract
PURPOSE The authors' purpose is to reveal the value of osteoblast-derived exosomes in bone diseases. METHODS Microvesicles from supernatants of mouse Mc3t3 were isolated by ultracentrifugation and then the authors presented the protein profile by proteomics analysis. RESULTS The authors detected a total number of 1536 proteins by mass spectrometry and found 172 proteins overlap with bone database. The Ingenuity Pathway Analysis shows network of "Skeletal and Muscular System Development and Function, Developmental Disorder, Hereditary Disorder" and pathway about osteogenesis. EFNB1 and transforming growth factor beta receptor 3 in the network, LRP6, bone morphogenetic protein receptor type-1, and SMURF1 in the pathway seemed to be valuable in the exosome research of related bone disease. CONCLUSIONS The authors' study unveiled the content of osteoblast-derived exosome and discussed valuable protein in it which might provide novel prospective in bone diseases research.
Collapse
|
13
|
Shen L, Zhang K, Feng C, Chen Y, Li S, Iqbal J, Liao L, Zhao Y, Zhai J. iTRAQ-Based Proteomic Analysis Reveals Protein Profile in Plasma from Children with Autism. Proteomics Clin Appl 2018; 12:e1700085. [PMID: 29274201 DOI: 10.1002/prca.201700085] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/26/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Autism is a childhood neurological disorder with poorly understood etiology and pathology. This study is designed to identify differentially expressed proteins that might serve as potential biomarkers for autism. EXPERIMENTAL DESIGN We perform iTRAQ (isobaric tags for relative and absolute quantitation) analysis for normal and autistic children's plasma of the same age group. RESULTS The results show that 24 differentially expressed proteins were identified between autistic subjects and controls. For the first time, differential expression of complement C5 (C5) and fermitin family homolog 3 (FERMT3) are related to autism. Five proteins, that is, complement C3 (C3), C5, integrin alpha-IIb (ITGA2B), talin-1 (TLN1), and vitamin D-binding protein (GC) were validated via enzyme-linked immunosorbent assay (ELISA). By ROC (receiver operating characteristic) analysis, combinations of these five proteins C3, C5, GC, ITGA2B, and TLN1 distinguished autistic children from healthy controls with a high AUC (area under the ROC curve) value (0.982, 95% CI, 0.957-1.000, p < 0.000). CONCLUSION These above described proteins are found involved in different pathways that have previously been linked to the pathophysiology of autism spectrum disorders (ASDs). The results strongly support that focal adhesions, acting cytoskeleton, cell adhesion, motility and migration, synaptogenesis, and complement system are involved in the pathogenesis of autism, and highlight the important role of platelet function in the pathophysiology of autism.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, P. R. China
| | - Youjiao Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P. R. China.,Xiang Ya Changde Hospital, Changde City, Hunan Province, P. R. China
| | - Shuiming Li
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Javed Iqbal
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Liping Liao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Jian Zhai
- Maternal and Child Health Hospital of Baoan, Shenzhen, P. R. China
| |
Collapse
|
14
|
Wang Z, Li C, Jiang M, Chen J, Yang M, Pu J. Filamin A (FLNA) regulates autophagy of bladder carcinoma cell and affects its proliferation, invasion and metastasis. Int Urol Nephrol 2017; 50:263-273. [PMID: 29288417 DOI: 10.1007/s11255-017-1772-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE This research intended to explore the effect of FLNA on cell proliferation, invasion and migration in bladder carcinoma (BC). METHODS Microarray analysis was performed with the TCGA data, and the results were confirmed on 20 paired BC tissues and adjacent tissues using qRT-PCR and immunohistochemistry. Transmission electron microscope (TEM) and cell fluorescence assay were used to observe the quantity of autophagosomes. The expression of autophagy-related protein (LC3-I/II, p62) was detected by western blot. Cell proliferation was detected using CCK-8 and colony formation. The invasion and migration ability of the cell were tested by transwell and wound-healing assay. Tumor xenograft in BALB/c nude mice and HE staining were utilized to probe into the effects of FLNA-induced regulation of volume, weight and metastasis of tumors. RESULTS We confirmed that FLNA was down-regulated in BC tissues. TEM and fluorescence analysis proved that FLNA overexpression promoted autophagy in BC cells. Colony formation assay and CCK-8 experiment showed that FLNA overexpression suppressed the proliferation of BC cells. In addition, FLNA blocked cell cycle and promoted apoptosis of BC cell. Transwell assay and wound-healing assay further proved that FLNA suppressed invasion and migration ability in BC cell. Meanwhile, in vivo study indicated that FLNA inhibited the tumor growth. CONCLUSION Overexpression of FLNA suppressed the proliferation, migration and invasion of the BC cell, suggesting the potential role of FLNA in clinical treatment.
Collapse
Affiliation(s)
- Zhenfan Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Chen Li
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China
| | - Minjun Jiang
- Department of Urology, The First Hospital of Wujiang, Suzhou, 215200, Jiangsu, China
| | - Jianchun Chen
- Department of Urology, The First Hospital of Wujiang, Suzhou, 215200, Jiangsu, China
| | - Min Yang
- Department of Urology, The First Hospital of Wujiang, Suzhou, 215200, Jiangsu, China
| | - Jinxian Pu
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
15
|
Navas-Carrillo D, Rodriguez JM, Montoro-García S, Orenes-Piñero E. High-resolution proteomics and metabolomics in thyroid cancer: Deciphering novel biomarkers. Crit Rev Clin Lab Sci 2017; 54:446-457. [DOI: 10.1080/10408363.2017.1394266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Diana Navas-Carrillo
- Department of Surgery, Hospital de la Vega Lorenzo Guirao, University of Murcia, Murcia, Spain
| | - José Manuel Rodriguez
- Department of Surgery, Hospital Universitario Virgen de la Arrixaca, University of Murcia, Murcia, Spain
| | | | - Esteban Orenes-Piñero
- Proteomic Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| |
Collapse
|
16
|
Bai KJ, Chuang KJ, Chen JK, Hua HE, Shen YL, Liao WN, Lee CH, Chen KY, Lee KY, Hsiao TC, Pan CH, Ho KF, Chuang HC. Investigation into the pulmonary inflammopathology of exposure to nickel oxide nanoparticles in mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2329-2339. [PMID: 29074311 DOI: 10.1016/j.nano.2017.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/02/2017] [Accepted: 10/07/2017] [Indexed: 12/15/2022]
Abstract
We investigated the effects of nickel oxide nanoparticles (NiONPs) on the pulmonary inflammopathology. NiONPs were intratracheally installed into mice, and lung injury and inflammation were evaluated between 1 and 28 days. NiONPs caused significant increases in LDH, total protein, and IL-6 and a decrease in IL-10 in the BALF and increases in 8-OHdG and caspase-3 in lung tissues at 24 h. Airway inflammation was present in a dose-dependent manner from the upper to lower airways at 24 h of exposure as analyzed by SPECT. Lung parenchyma inflammation and small airway inflammation were observed by CT after NiONP exposure. 8-OHdG in lung tissues had increased with formation of fibrosis at 28 days. Focal adhesion was the most important pathways identified at 24 h as determined by protemics, whereas glutathione metabolism was the most important identified at 28 days. Our results demonstrated the pulmonary inflammopathology caused by NiONPs based on image-to-biochemical approaches.
Collapse
Affiliation(s)
- Kuan-Jen Bai
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - His-En Hua
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ling Shen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Wei-Neng Liao
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chii-Hong Lee
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kang-Yun Lee
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan
| | - Chih-Hong Pan
- Institute of Occupational Safety and Health, Council of Labor Affairs, Executive Yuan, New Taipei City, Taiwan; School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Kin-Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
17
|
Tian J, Al-Odaini AA, Wang Y, Korah J, Dai M, Xiao L, Ali S, Lebrun JJ. KiSS1 gene as a novel mediator of TGFβ-mediated cell invasion in triple negative breast cancer. Cell Signal 2017; 42:1-10. [PMID: 28988968 DOI: 10.1016/j.cellsig.2017.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/28/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022]
Abstract
The invasive and metastatic phenotypes of breast cancer correlate with high recurrence rates and poor survival outcomes. Transforming growth factor-β (TGFβ) promotes tumor progression and metastasis in aggressive breast cancer. Here, we identified the kisspeptin KiSS1 as a downstream target of canonical TGFβ/Smad2 pathway in triple negative breast cancer cells. We also found KiSS1 expression to be required for TGFβ-induced cancer cell invasion. Indeed, knockdown expression of KiSS1 blocked TGFβ-mediated cancer cell invasion as well as metalloproteinase (MMP9) expression and activity. Interestingly, Kisspeptin-10 (KP-10), the smallest active form of kisspeptin also stimulates cancer cell invasive behavior through activation of MAPK/Erk pathway. We described a positive feedback loop between KiSS1 and p21 downstream of TGFβ, further contributing to TGFβ-induced cancer cell invasion. Lastly, we explored both the clinical utility of KiSS1 as a lymph node involvement predictive tool and its potential as a therapeutic target. We found KiSS1 high expression to correlate with lymph node positive status. Furthermore, blocking KiSS1 using a specific small peptide antagonist (p234) impaired TGFβ-mediated cell invasion and MMP9 induction. Together, our results define an essential role of KiSS1 in regulating TGFβ pro-invasive effects and define KiSS1 as a therapeutic new target for triple negative breast cancer.
Collapse
Affiliation(s)
- Jun Tian
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, QC, H4A 3J1, Canada
| | - Amal A Al-Odaini
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, QC, H4A 3J1, Canada
| | - Yun Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Juliana Korah
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, QC, H4A 3J1, Canada
| | - Meiou Dai
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, QC, H4A 3J1, Canada
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Suhad Ali
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, QC, H4A 3J1, Canada
| | - Jean-Jacques Lebrun
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
18
|
Guo J, Jing R, Zhong JH, Dong X, Li YX, Liu YK, Huang TR, Zhang CY. Identification of CD14 as a potential biomarker of hepatocellular carcinoma using iTRAQ quantitative proteomics. Oncotarget 2017; 8:62011-62028. [PMID: 28977922 PMCID: PMC5617482 DOI: 10.18632/oncotarget.18782] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/14/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors without effective diagnostic biomarkers. This study intended to dynamically analyze serum proteomics in different pathological stages of liver diseases, and discover potential diagnostic biomarkers for early HCC. Patients with hepatitis B virus (HBV) infection, liver cirrhosis (LC), or HCC together with healthy controls (HC) were enrolled. Proteins differentially expressed between groups were screened using isobaric tagging for relative and absolute quantitation (iTRAQ), and promising HCC biomarker candidates were subjected to bioinformatics analysis, including K-means clustering, gene ontology (GO) and string network analysis. Potential biomarkers were validated by Western blotting and enzyme-linked immunosorbent assay (ELISA), and their diagnostic performance was evaluated using receiver operating characteristic (ROC) curve analysis. Finally, 93 differentially expressed proteins were identified, of which 43 differed between HBV and HC, 70 between LC and HC, and 51 between HCC and HC. Expression levels of gelsolin (GELS) and sulfhydryl oxidase 1 (QSOX1) varied with disease state as follows: HC < HBV < LC < HCC. The reverse trend was observed with CD14. These iTRAQ results were confirmed by Western blotting and ELISA. Logistic regression and ROC curve analysis identified the optimal cut-off for alpha-fetoprotein (AFP), CD14 and AFP/CD14 was 191.4 ng/mL (AUC 0.646, 95%CI 0.467-0.825, sensitivity 31.6%, specificity 94.4%), 3.16 ng/mL (AUC 0.760, 95%CI 0.604-0.917, sensitivity 94.7%, specificity 50%) and 0.197 ng/mL (AUC 0.889, 95%CI 0.785-0.993, sensitivity 84.2%, specificity 83.3%) respectively. In conclusion, Assaying CD14 levels may complement AFP measurement for early detection of HCC.
Collapse
Affiliation(s)
- Jiao Guo
- Experimental Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Rui Jing
- Experimental Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
- Hematology Department, Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, PR China
| | - Jian-Hong Zhong
- Hepatobiliary Surgery Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Xin Dong
- Experimental Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
- Oncology Department, Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, PR China
| | - Yun-Xi Li
- Cancer Registry Department, People’s Hospital of Fusui County, Fusui, Guangxi, PR China
| | - Yin-Kun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Yangpu, Shanghai, PR China
| | - Tian-Ren Huang
- Experimental Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Chun-Yan Zhang
- Experimental Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| |
Collapse
|
19
|
Comparative proteomic analysis of Cronobacter sakazakii by iTRAQ provides insights into response to desiccation. Food Res Int 2017; 100:631-639. [PMID: 28873731 DOI: 10.1016/j.foodres.2017.06.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/18/2017] [Accepted: 06/20/2017] [Indexed: 11/21/2022]
Abstract
Cronobacter sakazakii is a foodborne pathogen throughout the world and survives extremely desiccation stress. However, the molecular basis involved in desiccation resistance of C. sakazakii is still unknown. In this study, the potential desiccation resistance factors of C. sakazakii ATCC 29544 were determined using iTRAQ-based quantitative proteomic analysis. A total of 2775 proteins were identified by iTRAQ, of which 233 showed a different protein expression between control group and desiccation stress group. Among these 233 proteins identified as desiccation resistance proteins, there were 146 proteins downregulated and 87 proteins upregulated. According to the comprehensive proteome coverage analysis, C. sakazakii increased its resistance to desiccation by reducing the gene involved with unnecessary survival functions such as those used for virulence, adhesion, invasion and flagella assembly, while increasing gene expression of genes used in withstanding osmotic stress such as those genes involved in trehalose and betaine uptake. However, the mechanism involved in amino acid metabolism in an osmotic stress response, including the producing of γ-aminobutyric acid in C. sakazakii is still uncertain. This is the first report to determine the potential desiccation resistant factors of C. sakazakii at the proteomic levels.
Collapse
|
20
|
Ibáñez de Opakua A, Merino N, Villate M, Cordeiro TN, Ormaza G, Sánchez-Carbayo M, Diercks T, Bernadó P, Blanco FJ. The metastasis suppressor KISS1 is an intrinsically disordered protein slightly more extended than a random coil. PLoS One 2017; 12:e0172507. [PMID: 28207895 PMCID: PMC5313212 DOI: 10.1371/journal.pone.0172507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/05/2017] [Indexed: 12/18/2022] Open
Abstract
The metastasis suppressor KISS1 is reported to be involved in the progression of several solid neoplasias, making it a promising molecular target for controlling their metastasis. The KISS1 sequence contains an N-terminal secretion signal and several dibasic sequences that are proposed to be the proteolytic cleavage sites. We present the first structural characterization of KISS1 by circular dichroism, multi-angle light scattering, small angle X-Ray scattering and NMR spectroscopy. An analysis of the KISS1 backbone NMR chemical shifts does not reveal any preferential conformation and deviation from a random coil ensemble. The backbone 15N transverse relaxation times indicate a mildly reduced mobility for two regions that are rich in bulky residues. The small angle X-ray scattering curve of KISS1 is likewise consistent with a predominantly random coil ensemble, although an ensemble optimization analysis indicates some preference for more extended conformations possibly due to positive charge repulsion between the abundant basic residues. Our results support the hypothesis that KISS1 mostly samples a random coil conformational space, which is consistent with its high susceptibility to proteolysis and the generation of Kisspeptin fragments.
Collapse
Affiliation(s)
| | | | | | - Tiago N. Cordeiro
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, Montpellier, France
| | | | - Marta Sánchez-Carbayo
- Lucio Lascaray Research Center, Universidad del País Vasco, Vitoria, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, Montpellier, France
| | - Francisco J. Blanco
- CIC bioGUNE, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- * E-mail:
| |
Collapse
|
21
|
Kavanagh P, Botting CH, Jana PS, Leech D, Abram F. Comparative Proteomics Implicates a Role for Multiple Secretion Systems in Electrode-Respiring Geobacter sulfurreducens Biofilms. J Proteome Res 2016; 15:4135-4145. [DOI: 10.1021/acs.jproteome.5b01019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Paul Kavanagh
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Catherine H. Botting
- Biomedical
Sciences Research Complex, University of St. Andrews, North Haugh, Fife KY16 9ST, United Kingdom
| | - Partha S. Jana
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Dónal Leech
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Florence Abram
- Functional
Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
22
|
Yan G, Li X, Cheng X, Peng Y, Long B, Fan Q, Wang Z, Zheng Z, Shi M, Yan X. Proteomic profiling reveals oxidative phosphorylation pathway is suppressed in longissimus dorsi muscle of weaned piglets fed low-protein diet supplemented with limiting amino acids. Int J Biochem Cell Biol 2016; 79:288-297. [DOI: 10.1016/j.biocel.2016.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 01/02/2023]
|
23
|
Li G, Zhang Z, Quan Q, Jiang R, Szeto SS, Yuan S, Wong WT, Lam HHC, Lee SMY, Chu IK. Discovery, Synthesis, and Functional Characterization of a Novel Neuroprotective Natural Product from the Fruit of Alpinia oxyphylla for use in Parkinson’s Disease Through LC/MS-Based Multivariate Data Analysis-Guided Fractionation. J Proteome Res 2016; 15:2595-606. [DOI: 10.1021/acs.jproteome.6b00152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guohui Li
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
- State
Key Laboratory of Quality Research in Chinese Medicine and Institute
of Chinese Medical Sciences, University of Macau, Avenue Padre
Tomás Pereira S.J., Taipa, Macao, China
| | - Zaijun Zhang
- State
Key Laboratory of Quality Research in Chinese Medicine and Institute
of Chinese Medical Sciences, University of Macau, Avenue Padre
Tomás Pereira S.J., Taipa, Macao, China
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangdong, China
| | - Quan Quan
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Renwang Jiang
- Institute
of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Samuel S.W. Szeto
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Shuai Yuan
- State
Key Laboratory of Quality Research in Chinese Medicine and Institute
of Chinese Medical Sciences, University of Macau, Avenue Padre
Tomás Pereira S.J., Taipa, Macao, China
| | - Wing-tak Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Herman H. C. Lam
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State
Key Laboratory of Quality Research in Chinese Medicine and Institute
of Chinese Medical Sciences, University of Macau, Avenue Padre
Tomás Pereira S.J., Taipa, Macao, China
| | - Ivan K. Chu
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Wang Y, Xiao X, Wang X, Zeng J, Kang H, Fan X, Sha L, Zhang H, Zhou Y. RNA-Seq and iTRAQ Reveal the Dwarfing Mechanism of Dwarf Polish Wheat (Triticum polonicum L.). Int J Biol Sci 2016; 12:653-66. [PMID: 27194943 PMCID: PMC4870709 DOI: 10.7150/ijbs.14577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/15/2016] [Indexed: 11/05/2022] Open
Abstract
The dwarfing mechanism of Rht-dp in dwarf Polish wheat (DPW) is unknown. Each internode of DPW was significantly shorter than it in high Polish wheat (HPW), and the dwarfism was insensitive to photoperiod, abscisic acid (ABA), gibberellin (GA), cytokinin (CK), auxin and brassinolide (BR). To understand the mechanism, three sets of transcripts, DPW, HPW, and a chimeric set (a combination of DPW and HPW), were constructed using RNA sequencing (RNA-Seq). Based on the chimeric transcripts, 2,446 proteins were identified using isobaric tags for relative and absolute quantification (iTRAQ). A total of 108 unigenes and 12 proteins were considered as dwarfism-related differentially expressed genes (DEGs) and differentially expressed proteins (DEPs), respectively. Among of these DEGs and DEPs, 6 DEGs and 6 DEPs were found to be involved in flavonoid and S-adenosyl-methionine (SAM) metabolisms; 5 DEGs and 3 DEPs were involved in cellulose metabolism, cell wall plasticity and cell expansion; 2 DEGs were auxin transporters; 2 DEPs were histones; 1 DEP was a peroxidase. These DEGs and DEPs reduced lignin and cellulose contents, increased flavonoid content, possibly decreased S-adenosyl-methionine (SAM) and polyamine contents and increased S-adenosyl-L-homocysteine hydrolase (SAHH) content in DPW stems, which could limit auxin transport and reduce extensibility of the cell wall, finally limited cell expansion (the cell size of DPW was significantly smaller than HPW cells) and caused dwarfism in DPW.
Collapse
Affiliation(s)
- Yi Wang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xue Xiao
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xiaolu Wang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Zeng
- 2. College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| |
Collapse
|
25
|
Long B, Muhamad R, Yan G, Yu J, Fan Q, Wang Z, Li X, Purnomoadi A, Achmadi J, Yan X. Quantitative proteomics analysis reveals glutamine deprivation activates fatty acid β-oxidation pathway in HepG2 cells. Amino Acids 2016; 48:1297-307. [PMID: 26837383 DOI: 10.1007/s00726-016-2182-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023]
Abstract
Glutamine, a multifunctional amino acid, functions in nutrient metabolism, energy balance, apoptosis, and cell proliferation. Lipid is an important nutrient and controls a broad range of physiological processes. Previous studies have demonstrated that glutamine can affect lipolysis and lipogenesis, but the effect of glutamine on the detailed lipid metabolism remains incompletely understood. Here, we applied the quantitative proteomics approach to estimate the relative abundance of proteins in HepG2 cells treated by glutamine deprivation. The results showed that there were 212 differentially abundant proteins in response to glutamine deprivation, including 150 significantly increased proteins and 62 significantly decreased proteins. Interestingly, functional classification showed that 43 differentially abundant proteins were related to lipid metabolism. Further bioinformatics analysis and western blotting validation revealed that lipid accumulation may be affected by β-oxidation of fatty acid induced by glutamine deprivation in HepG2 cells. Together, our results may provide the potential for regulating lipid metabolism by glutamine in animal production and human nutrition. The MS data have been deposited to the ProteomeXchange Consortium with identifier PXD003387.
Collapse
Affiliation(s)
- Baisheng Long
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Rodiallah Muhamad
- Faculty of Animal and Agricultural Sciences, Diponegoro University, Tembalang Campus, Semarang, 50275, Central Java, Indonesia
| | - Guokai Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Jie Yu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Qiwen Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zhichang Wang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Xiuzhi Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Agung Purnomoadi
- Faculty of Animal and Agricultural Sciences, Diponegoro University, Tembalang Campus, Semarang, 50275, Central Java, Indonesia
| | - Joelal Achmadi
- Faculty of Animal and Agricultural Sciences, Diponegoro University, Tembalang Campus, Semarang, 50275, Central Java, Indonesia
| | - Xianghua Yan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|
26
|
Wahab F, Atika B, Shahab M, Behr R. Kisspeptin signalling in the physiology and pathophysiology of the urogenital system. Nat Rev Urol 2015; 13:21-32. [DOI: 10.1038/nrurol.2015.277] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Li M, Yang Y, Li X, Gu L, Wang F, Feng F, Tian Y, Wang F, Wang X, Lin W, Chen X, Zhang Z. Analysis of integrated multiple 'omics' datasets reveals the mechanisms of initiation and determination in the formation of tuberous roots in Rehmannia glutinosa. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5837-51. [PMID: 26077835 DOI: 10.1093/jxb/erv288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
All tuberous roots in Rehmannia glutinosa originate from the expansion of fibrous roots (FRs), but not all FRs can successfully transform into tuberous roots. This study identified differentially expressed genes and proteins associated with the expansion of FRs, by comparing the tuberous root at expansion stages (initiated tuberous root, ITRs) and FRs at the seedling stage (initiated FRs, IFRs). The role of miRNAs in the expansion of FRs was also explored using the sRNA transcriptome and degradome to identify miRNAs and their target genes that were differentially expressed between ITRs and FRs at the mature stage (unexpanded FRs, UFRs, which are unable to expand into ITRs). A total of 6032 genes and 450 proteins were differentially expressed between ITRs and IFRs. Integrated analyses of these data revealed several genes and proteins involved in light signalling, hormone response, and signal transduction that might participate in the induction of tuberous root formation. Several genes related to cell division and cell wall metabolism were involved in initiating the expansion of IFRs. Of 135 miRNAs differentially expressed between ITRs and UFRs, there were 27 miRNAs whose targets were specifically identified in the degradome. Analysis of target genes showed that several miRNAs specifically expressed in UFRs were involved in the degradation of key genes required for the formation of tuberous roots. As far as could be ascertained, this is the first time that the miRNAs that control the transition of FRs to tuberous roots in R. glutinosa have been identified. This comprehensive analysis of 'omics' data sheds new light on the mechanisms involved in the regulation of tuberous roots formation.
Collapse
Affiliation(s)
- Mingjie Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Yanhui Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, China, 450001
| | - Xinyu Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Li Gu
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Fengji Wang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Fajie Feng
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Yunhe Tian
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Fengqing Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Xiaoran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Wenxiong Lin
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| | - Xinjian Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China, 450002
| | - Zhongyi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| |
Collapse
|
28
|
Identification of proteins responsible for adriamycin resistance in breast cancer cells using proteomics analysis. Sci Rep 2015; 5:9301. [PMID: 25818003 PMCID: PMC4377623 DOI: 10.1038/srep09301] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 02/24/2015] [Indexed: 01/02/2023] Open
Abstract
Chemoresistance is a poor prognostic factor in breast cancer and is a major obstacle to the successful treatment of patients receiving chemotherapy. However, the precise mechanism of resistance remains unclear. In this study, a pair of breast cancer cell lines, MCF-7 and its adriamycin-resistant counterpart MCF-7/ADR was used to examine resistance-dependent cellular responses and to identify potential therapeutic targets. We applied nanoflow liquid chromatography (nLC) and tandem mass tags (TmT) quantitative mass spectrometry to distinguish the differentially expressed proteins (DEPs) between the two cell lines. Bioinformatics analyses were used to identify functionally active proteins and networks. 80 DEPs were identified with either up- or down-regulation. Basing on the human protein-protein interactions (PPI), we have retrieved the associated functional interaction networks for the DEPs and analyzed the biological functions. Six different signaling pathways and most of the DEPs strongly linked to chemoresistance, invasion, metastasis development, proliferation, and apoptosis. The identified proteins in biological networks served to resistant drug and to select critical candidates for validation analyses by western blot. The glucose-6-phosphate dehydrogenase (G6PD), gamma-glutamyl cyclotransferase (GGCT), isocitrate dehydrogenase 1 (NADP+,soluble)(IDH1), isocitrate dehydrogenase 2 (NADP+,mitochondrial) (IDH2) and glutathione S-transferase pi 1(GSTP1), five of the critical components of GSH pathway, contribute to chemoresistance.
Collapse
|
29
|
Yang SS, Tan JL, Liu DS, Loreni F, Peng X, Yang QQ, He WF, Yao ZH, Zhang XR, Dal Prà I, Luo GX, Wu J. eIF6 modulates myofibroblast differentiation at TGF-β1 transcription level via H2A.Z occupancy and Sp1 recruitment. J Cell Sci 2015; 128:3977-89. [PMID: 26395397 DOI: 10.1242/jcs.174870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/13/2015] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic initiation factor 6 (eIF6) is a pivotal regulator of ribosomal function, participating in translational control. Previously our data suggest that eIF6 acts as a key binding protein of P311 (a hypertrophic scar-related protein). However, a comprehensive investigation of its functional role and the underlying mechanisms in modulation myofibroblast (a key effector of hypertrophic scar formation) differentiation remains unclear. Here, we identified that eIF6 is a novel regulator of the TGF-β1 expression at transcription level, which has a key role in myofibroblast differentiation. Mechanistically, this effect is associated with eIF6 altering the occupancy of the TGF-β1 promoter by H2A.Z and Sp1. Accordingly, modulation of eIF6 expression in myofibroblasts significantly affects their differentiation via the TGF-β/Smad signaling pathway, which was verified in vivo by the observation that heterozygote eIF6+/− mice exhibited enhanced TGF-β1 production coupled with increased α-SMA+ myofibroblasts after skin injury. Overall, our data reveal that a novel transcriptional regulatory mechanism of eIF6 that acts on facilitating Sp1 recruitment to TGF-β1 promoter via H2A.Z depletion and thus results in increased TGF-β1 transcription, which contributes to myofibroblast differentiation.
Collapse
Affiliation(s)
- Si-si Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jiang-lin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Dai-song Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Fabrizio Loreni
- Department of Biology, University ‘Tor Vergata’, Via Ricerca Scientifica, Roma 00133, Italy
| | - Xu Peng
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Qing-qing Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Wei-feng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Zhi-hui Yao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Xiao-rong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Ilaria Dal Prà
- Histology and Embryology Section, Department of Life and Reproduction Sciences, University of Verona Medical School, Verona, Venetia, Italy
| | - Gao-xing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| |
Collapse
|
30
|
Gallart-Palau X, Serra A, Qian J, Chen CP, Kalaria RN, Sze SK. Temporal lobe proteins implicated in synaptic failure exhibit differential expression and deamidation in vascular dementia. Neurochem Int 2014; 80:87-98. [PMID: 25497727 DOI: 10.1016/j.neuint.2014.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/20/2022]
Abstract
Progressive synaptic failure precedes the loss of neurons and decline in cognitive function in neurodegenerative disorders, but the specific proteins and posttranslational modifications that promote synaptic failure in vascular dementia (VaD) remain largely unknown. We therefore used an isobaric tag for relative and absolute proteomic quantitation (iTRAQ) to profile the synapse-associated proteome of post-mortem human cortex from vascular dementia patients and age-matched controls. Brain tissue from VaD patients exhibited significant down-regulation of critical synaptic proteins including clathrin (0.29; p < 1.0⋅10(-3)) and GDI1 (0.51; p = 3.0⋅10(-3)), whereas SNAP25 (1.6; p = 5.5⋅10(-3)), bassoon (1.4; p = 1.3⋅10(-3)), excitatory amino acid transporter 2 (2.6; p = 9.2⋅10(-3)) and Ca(2+)/calmodulin dependent kinase II (1.6; p = 3.0⋅10(-2)) were substantially up-regulated. Our analyses further revealed divergent patterns of protein modification in the dementia patient samples, including a specific deamidation of synapsin1 predicted to compromise protein structure. Our results reveal potential molecular targets for intervention in synaptic failure and prevention of cognitive decline in VaD.
Collapse
Affiliation(s)
| | - Aida Serra
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jingru Qian
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory, Aging and Cognition Centre, National University Health System, Singapore
| | - Raj N Kalaria
- Institute for Ageing and Health, NIHR Biomedical Research Building, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
31
|
Mujahid M, Prasuna ML, Sasikala C, Ramana CV. Integrated Metabolomic and Proteomic Analysis Reveals Systemic Responses of Rubrivivax benzoatilyticus JA2 to Aniline Stress. J Proteome Res 2014; 14:711-27. [DOI: 10.1021/pr500725b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Md Mujahid
- Department
of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - M Lakshmi Prasuna
- Department
of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Ch Sasikala
- Bacterial
Discovery Laboratory, Center for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad 500 085, India
| | - Ch Venkata Ramana
- Department
of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| |
Collapse
|
32
|
Serum differential proteomic analysis of endometriosis and adenomyosis by iTRAQ technique. Eur J Obstet Gynecol Reprod Biol 2014; 182:62-5. [DOI: 10.1016/j.ejogrb.2014.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/15/2014] [Accepted: 08/26/2014] [Indexed: 11/20/2022]
|
33
|
Ma R, Zhang Y, Liu H, Ning P. Proteome profile of swine testicular cells infected with porcine transmissible gastroenteritis coronavirus. PLoS One 2014; 9:e110647. [PMID: 25333634 PMCID: PMC4204940 DOI: 10.1371/journal.pone.0110647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/19/2014] [Indexed: 02/06/2023] Open
Abstract
The interactions occurring between a virus and a host cell during a viral infection are complex. The purpose of this paper was to analyze altered cellular protein levels in porcine transmissible gastroenteritis coronavirus (TGEV)-infected swine testicular (ST) cells in order to determine potential virus-host interactions. A proteomic approach using isobaric tags for relative and absolute quantitation (iTRAQ)-coupled two-dimensional liquid chromatography-tandem mass spectrometry identification was conducted on the TGEV-infected ST cells. The results showed that the 4-plex iTRAQ-based quantitative approach identified 4,112 proteins, 146 of which showed significant changes in expression 48 h after infection. At 64 h post infection, 219 of these proteins showed significant change, further indicating that a larger number of proteomic changes appear to occur during the later stages of infection. Gene ontology analysis of the altered proteins showed enrichment in multiple biological processes, including cell adhesion, response to stress, generation of precursor metabolites and energy, cell motility, protein complex assembly, growth, developmental maturation, immune system process, extracellular matrix organization, locomotion, cell-cell signaling, neurological system process, and cell junction organization. Changes in the expression levels of transforming growth factor beta 1 (TGF-β1), caspase-8, and heat shock protein 90 alpha (HSP90α) were also verified by western blot analysis. To our knowledge, this study is the first time the response profile of ST host cells following TGEV infection has been analyzed using iTRAQ technology, and our description of the late proteomic changes that are occurring after the time of vigorous viral production are novel. Therefore, this study provides a solid foundation for further investigation, and will likely help us to better understand the mechanisms of TGEV infection and pathogenesis.
Collapse
MESH Headings
- Animals
- Cell Line
- Chromatography, Liquid
- Gastroenteritis, Transmissible, of Swine/genetics
- Gastroenteritis, Transmissible, of Swine/metabolism
- Gastroenteritis, Transmissible, of Swine/pathology
- Gastroenteritis, Transmissible, of Swine/virology
- Gene Expression Regulation, Viral
- Male
- Proteome/genetics
- Swine
- Testis/metabolism
- Testis/pathology
- Testis/virology
- Transmissible gastroenteritis virus/genetics
- Transmissible gastroenteritis virus/pathogenicity
Collapse
Affiliation(s)
- Ruili Ma
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- * E-mail:
| | - Haiquan Liu
- School of Computer Science and Engineering, Xi’an Technological University, Xi’an, Shaanxi, China
| | - Pengbo Ning
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
34
|
Pereira M, Bartolomé CM, Sánchez-Fortún S. Photosynthetic activity and protein overexpression found in Cr(III)-tolerant cells of the green algae Dictyosphaerium chlorelloides. CHEMOSPHERE 2014; 108:274-280. [PMID: 24556547 DOI: 10.1016/j.chemosphere.2014.01.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 01/09/2014] [Accepted: 01/12/2014] [Indexed: 06/03/2023]
Abstract
Chromium is an important constituent in effluents obtained from chromium plating industries. Due to the highly toxic nature of Cr(VI), attention has been shifted to less hazardous Cr(III) electroplating processes. This study evaluated aquatic toxicity of Cr(III)-containing laboratory samples representative of effluents from chromium electroplating industries, on the photosynthetic activity exhibited by both Cr(III)-sensitive (Dc1M(wt)) and tolerant (Dc1M(Cr(III)R30)) Dictyosphaerium chlorelloides strains. Additionally, selected de novo-determined peptide sequences, obtained from Dc1M(Cr(III)R30), have been analyzed to evidence the possible Cr(III) toxic mechanism involved in the resistance of these cells to high Cr(III) levels in aquatic environments. Dc1M(Cr(III)R30) strain exhibited a gross photosynthetic balance of about five times lower than that exhibited by Dc1M(wt) strain, demonstrating that Dc1M(Cr(III)R30) has a photosynthetic yield significantly lower than Dc1M(wt). SDS-PAGE of Dc1M(Cr(III)R30) samples showed the presence of at least two protein bands (23.05 and 153.46 KDa, respectively) absent in wild-type strain samples. Although it has achieved a low coincidence between the lower molecular weight band and a GTPase identified from genome of the green alga Chlamydomonas reinhardtii, none of de novo peptide sequences obtained showed a significant MS-BLAST score, so that further studies will be required.
Collapse
Affiliation(s)
- M Pereira
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - C M Bartolomé
- School of Chemistry-Pharmacobiology, Michoacana de San Nicolás de Hidalgo University, 43 Santiago Tapia St., 58000 Morelia, Michoacán, Mexico
| | - S Sánchez-Fortún
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain.
| |
Collapse
|
35
|
iTRAQ-based quantitative proteomics study on the neuroprotective effects of extract of Acanthopanax senticosus harm on SH-SY5Y cells overexpressing A53T mutant α-synuclein. Neurochem Int 2014; 72:37-47. [DOI: 10.1016/j.neuint.2014.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 01/10/2023]
|
36
|
Proteomic analysis of detergent resistant membrane domains during early interaction of macrophages with rough and smooth Brucella melitensis. PLoS One 2014; 9:e91706. [PMID: 24643124 PMCID: PMC3958395 DOI: 10.1371/journal.pone.0091706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 02/13/2014] [Indexed: 12/20/2022] Open
Abstract
The plasma membrane contains discrete nanometer-sized domains that are resistant to non-ionic detergents, and which are called detergent resistant membrane domains (DRMDs) or lipid rafts. Exposure of host cells to pathogenic bacteria has been shown to induce the re-distribution of specific host proteins between DRMDs and detergent soluble membranes, which leads to the initiation of cell signaling that enable pathogens to access host cells. DRMDs have been shown to play a role in the invasion of Brucella into host macrophages and the formation of replicative phagosomes called Brucella-containing vacuoles (BCVs). In this study we sought to characterize changes to the protein expression profiles in DRMDs and to respective cellular pathways and networks of Mono Mac 6 cells in response to the adherence of rough VTRM1 and smooth 16 M B. melitensis strains. DRMDs were extracted from Mono Mac 6 cells exposed for 2 minutes at 4°C to Brucella (no infection occurs) and from unexposed control cells. Protein expression was determined using the non-gel based quantitative iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) mass spectrometry technique. Using the identified iTRAQ proteins we performed enrichment analyses and probed constructed human biochemical networks for interactions and metabolic reactions. We identified 149 proteins, which either became enriched, depleted or whose amounts did not change in DRMDs upon Brucella exposure. Several of these proteins were distinctly enriched or depleted in DRMDs upon exposure to rough and smooth B. melitensis strains which results in the differential engagement of cellular pathways and networks immediately upon Brucella encounter. For some of the proteins such as myosin 9, small G protein signaling modulator 3, lysine-specific demethylase 5D, erlin-2, and voltage-dependent anion-selective channel protein 2, we observed extreme differential depletion or enrichment in DRMDs. The identified proteins and pathways could provide the basis for novel ways of treating or diagnosing Brucellosis.
Collapse
|
37
|
Ge P, Hao P, Cao M, Guo G, Lv D, Subburaj S, Li X, Yan X, Xiao J, Ma W, Yan Y. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress. Proteomics 2013; 13:3046-58. [DOI: 10.1002/pmic.201300042] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/16/2013] [Accepted: 06/26/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Pei Ge
- College of Life Sciences; Capital Normal University; Beijing China
| | - Pengchao Hao
- College of Life Sciences; Capital Normal University; Beijing China
| | - Min Cao
- College of Life Sciences; Capital Normal University; Beijing China
| | - Guangfang Guo
- College of Life Sciences; Capital Normal University; Beijing China
| | - Dongwen Lv
- College of Life Sciences; Capital Normal University; Beijing China
| | | | - Xiaohui Li
- College of Life Sciences; Capital Normal University; Beijing China
| | - Xing Yan
- College of Life Sciences; Capital Normal University; Beijing China
| | - Jitian Xiao
- School of Computer and Security Science; Edith Cowan University; Perth WA Australia
| | - Wujun Ma
- State Agriculture Biotechnology Centre; Murdoch University; Perth WA Australia
- Western Australian Department of Agriculture and Food; Perth WA Australia
| | - Yueming Yan
- College of Life Sciences; Capital Normal University; Beijing China
| |
Collapse
|
38
|
Comparative serum proteomic analysis of adenomyosis using the isobaric tags for relative and absolute quantitation technique. Fertil Steril 2013; 100:505-10. [DOI: 10.1016/j.fertnstert.2013.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/31/2013] [Accepted: 04/03/2013] [Indexed: 01/15/2023]
|
39
|
Grau L, Luque-Garcia JL, González-Peramato P, Theodorescu D, Palou J, Fernandez-Gomez JM, Sánchez-Carbayo M. A quantitative proteomic analysis uncovers the relevance of CUL3 in bladder cancer aggressiveness. PLoS One 2013; 8:e53328. [PMID: 23308193 PMCID: PMC3540081 DOI: 10.1371/journal.pone.0053328] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 11/30/2012] [Indexed: 01/02/2023] Open
Abstract
To identify aggressiveness-associated molecular mechanisms and biomarker candidates in bladder cancer, we performed a SILAC (Stable Isotope Labelling by Amino acids in Cell culture) proteomic analysis comparing an invasive T24 and an aggressive metastatic derived T24T bladder cancer cell line. A total of 289 proteins were identified differentially expressed between these cells with high confidence. Complementary and validation analyses included comparison of protein SILAC data with mRNA expression ratios obtained from oligonucleotide microarrays, and immunoblotting. Cul3, an overexpressed protein in T24T, involved in the ubiquitination and subsequent proteasomal degradation of target proteins, was selected for further investigation. Functional analyses revealed that Cul3 silencing diminished proliferative, migration and invasive rates of T24T cells, and restored the expression of cytoskeleton proteins identified to be underexpressed in T24T cells by SILAC, such as ezrin, moesin, filamin or caveolin. Cul3 immunohistochemical protein patterns performed on bladder tumours spotted onto tissue microarrays (n = 284), were associated with tumor staging, lymph node metastasis and disease-specific survival. Thus, the SILAC approach identified that Cul3 modulated the aggressive phenotype of T24T cells by modifying the expression of cytoskeleton proteins involved in bladder cancer aggressiveness; and played a biomarker role for bladder cancer progression, nodal metastasis and clinical outcome assessment.
Collapse
Affiliation(s)
- Laura Grau
- Tumor Markers Group, Spanish National Cancer Research Center, Madrid, Spain
| | - Jose L. Luque-Garcia
- Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| | | | - Dan Theodorescu
- Mellon Urologic Cancer Institute, University of Virginia, Charlottesville, Virginia, United States of America
| | - Joan Palou
- Urology Department, Fundacio Puigvert, Barcelona, Spain
| | | | - Marta Sánchez-Carbayo
- Tumor Markers Group, Spanish National Cancer Research Center, Madrid, Spain
- * E-mail:
| |
Collapse
|
40
|
Rodríguez-Suárez E, Whetton AD. The application of quantification techniques in proteomics for biomedical research. MASS SPECTROMETRY REVIEWS 2013; 32:1-26. [PMID: 22847841 DOI: 10.1002/mas.21347] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 06/01/2023]
Abstract
The systematic analysis of biological processes requires an understanding of the quantitative expression patterns of proteins, their interacting partners and their subcellular localization. This information was formerly difficult to accrue as the relative quantification of proteins relied on antibody-based methods and other approaches with low throughput. The advent of soft ionization techniques in mass spectrometry plus advances in separation technologies has aligned protein systems biology with messenger RNA, DNA, and microarray technologies to provide data on systems as opposed to singular protein entities. Another aspect of quantitative proteomics that increases its importance for the coming few years is the significant technical developments underway both for high pressure liquid chromatography and mass spectrum devices. Hence, robustness, reproducibility and mass accuracy are still improving with every new generation of instruments. Nonetheless, the methods employed require validation and comparison to design fit for purpose experiments in advanced protein analyses. This review considers the newly developed systematic protein investigation methods and their value from the standpoint that relative or absolute protein quantification is required de rigueur in biomedical research.
Collapse
|
41
|
Said N, Sanchez-Carbayo M, Smith SC, Theodorescu D. RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. J Clin Invest 2012; 122:1503-18. [PMID: 22406535 DOI: 10.1172/jci61392] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/18/2012] [Indexed: 12/19/2022] Open
Abstract
Half of patients with muscle-invasive bladder cancer develop metastatic disease, and this is responsible for most of the deaths from this cancer. Low expression of RhoGTP dissociation inhibitor 2 (RhoGDI2; also known as ARHGDIB and Ly-GDI) is associated with metastatic disease in patients with muscle-invasive bladder cancer. Moreover, a reduction in metastasis is observed upon reexpression of RhoGDI2 in xenograft models of metastatic cancer. Here, we show that RhoGDI2 suppresses lung metastasis in mouse models by reducing the expression of isoforms V1 and V3 of the proteoglycan versican (VCAN; also known as chondroitin sulfate proteoglycan 2 [CSPG2]). In addition, we found that high versican levels portended poor prognosis in patients with bladder cancer. The functional importance of tumor expression of versican in promoting metastasis was established in in vitro and in vivo studies in mice that implicated a role for the chemokine CCL2 (also known as MCP1) and macrophages. Further analysis indicated that RhoGDI2 suppressed metastasis by altering inflammation in the tumor microenvironment. In summary, we demonstrate what we believe to be a new mechanism of metastasis suppression that works by reducing host responses that promote metastatic colonization of the lung. Therapeutic targeting of these interactions may provide a novel adjuvant strategy for delaying the appearance of clinical metastasis in patients.
Collapse
Affiliation(s)
- Neveen Said
- Department of Urology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
42
|
Prudovsky I, Vary CPH, Markaki Y, Olins AL, Olins DE. Phosphatidylserine colocalizes with epichromatin in interphase nuclei and mitotic chromosomes. Nucleus 2012; 3:200-10. [PMID: 22555604 PMCID: PMC3383575 DOI: 10.4161/nucl.19662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cycling eukaryotic cells rapidly re-establish the nuclear envelope and internal architecture following mitosis. Studies with a specific anti-nucleosome antibody recently demonstrated that the surface (“epichromatin”) of interphase and mitotic chromatin possesses a unique and conserved conformation, suggesting a role in postmitotic nuclear reformation. Here we present evidence showing that the anionic glycerophospholipid phosphatidylserine is specifically located in epichromatin throughout the cell cycle and is associated with nucleosome core histones. This suggests that chromatin bound phosphatidylserine may function as a nucleation site for the binding of ER and re-establishment of the nuclear envelope.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | | | | | | | | |
Collapse
|
43
|
Hypermethylation in bladder cancer: biological pathways and translational applications. Tumour Biol 2012; 33:347-61. [PMID: 22274923 DOI: 10.1007/s13277-011-0310-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 12/28/2011] [Indexed: 12/18/2022] Open
Abstract
A compelling body of evidences sustains the importance of epigenetic mechanisms in the development and progression of cancer. Assessing the epigenetic component of bladder tumors is strongly improving our understanding of their biology and clinical behavior. In terms of DNA methylation, cancer cells show genome-wide hypomethylation and site-specific CpG island promoter hypermethylation. In the context of other epigenetic alterations, this review will focus on the hypermethylation of CpG islands in promoter regions, as the most widely described epigenetic modification in bladder cancer. CpG islands hypermethylation is believed to be critical in the transcriptional silencing and regulation of tumor suppressor and crucial cancer genes involved in the major molecular pathways controlling bladder cancer development and progression. In particular, several biological pathways of frequently methylated genes include cell cycle, DNA repair, apoptosis, and invasion, among others. Furthermore, translational aspects of bladder cancer methylomes described to date will be discussed towards their potential application as bladder cancer biomarkers. Several tissue methylation signatures and individual candidates have been evidenced, that could potentially stratify tumors histopathologically, and discriminate patients in terms of their clinical outcome. Tumor methylation profiles could also be detected in urinary specimens showing a promising role as non-invasive markers for cancer diagnosis towards an early detection and potentially for the surveillance of bladder cancer patients in a near future. However, the epigenomic exploration of bladder cancer has only just begun. Genome-scale DNA methylation profiling studies will further highlight the relevance of the epigenetic component to gain knowledge of bladder cancer biology and identify those profiles and candidates better correlating with clinical behavior.
Collapse
|
44
|
Cuello S, Ximénez-Embún P, Ruppen I, Schonthaler HB, Ashman K, Madrid Y, Luque-Garcia JL, Cámara C. Analysis of protein expression in developmental toxicity induced by MeHg in zebrafish. Analyst 2012; 137:5302-11. [DOI: 10.1039/c2an35913h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Ruiz MT, Galbiatti ALS, Pavarino EC, Maniglia JV, Goloni-Bertollo EM. Q36R polymorphism of KiSS-1 gene in Brazilian head and neck cancer patients. Mol Biol Rep 2012; 39:6029-34. [PMID: 22209985 DOI: 10.1007/s11033-011-1416-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/19/2011] [Indexed: 01/18/2023]
Abstract
The KiSS-1 metastasis-suppressor gene (KiSS-1) product (metastin, kisspeptin) is reported to act after binding with the natural ligand of a G-protein coupled receptor and this gene product inhibits chemotaxis, invasion, and metastasis of cells. The aim of this study was to evaluate the Q36R polymorphism of KiSS-1 in patients with head and neck cancer and to compare the results with healthy individuals and its association with clinicopathological parameters. Gender, age, smoking and alcohol consumption were analyzed for 744 individual (252 head and neck cancer patients and in 522 control individuals). The molecular analysis of these individuals was made after extraction of genomic DNA using the SSCP-PCR technique. This study did not reveal any significant differences in genotype frequencies between healthy individuals and patients with head and neck cancer or with the clinical parameters. This study showed an increase frequency of the Q36R polymorphism in pharyngeal cancer.
Collapse
Affiliation(s)
- Mariângela Torreglosa Ruiz
- Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | | | | | | | | |
Collapse
|
46
|
Fernández-Puente P, Mateos J, Fernández-Costa C, Oreiro N, Fernández-López C, Ruiz-Romero C, Blanco FJ. Identification of a panel of novel serum osteoarthritis biomarkers. J Proteome Res 2011; 10:5095-101. [PMID: 21973172 DOI: 10.1021/pr200695p] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Osteoarthritis (OA) is the most common rheumatic pathology. Because currently available diagnostic methods are limited and lack sensitivity, the identification of new specific biological markers for OA has become a focus. The purpose of this study was to identify novel protein biomarkers for moderate and severe OA in serum. Sera were obtained from 50 moderate OA patients, 50 severe OA patients, and 50 nonsymptomatic controls. Serum protein levels were analyzed using isobaric tags for relative and absolute quantitation (iTRAQ) and matrix-assisted laser desorption/ionization (MALDI)-TOF/TOF mass spectrometry. We identified 349 different proteins in the sera, 262 of which could be quantified by calculation of their iTRAQ ratios. Three sets of proteins were significantly (p < 0.05) changed in OA samples compared to controls. Of these, 6 were modulated only in moderate OA, 13 only in severe OA and 7 in both degrees. Although some of these proteins, such as cartilage oligomeric matrix protein, have a previously reported putative biomarker value for OA, most are novel biomarker candidates for the disease. These include some complement components, lipoproteins, von Willebrand factor, tetranectin, and lumican. The specificity and selectivity of these candidates need to be validated before new molecular diagnostic or prognostic tests for OA can be developed.
Collapse
|
47
|
Said N, Smith S, Sanchez-Carbayo M, Theodorescu D. Tumor endothelin-1 enhances metastatic colonization of the lung in mouse xenograft models of bladder cancer. J Clin Invest 2010; 121:132-47. [PMID: 21183790 DOI: 10.1172/jci42912] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 10/27/2010] [Indexed: 12/14/2022] Open
Abstract
Many patients with advanced bladder cancer develop lethal metastases to the lung. The vasoconstricting protein endothelin-1 (ET-1) has been implicated in this process, although the mechanism(s) by which it promotes metastasis remains unclear. Here, we have evaluated whether tumor ET-1 expression can serve as a biomarker for lung metastasis and whether it is required for metastatic disease. Evaluation of ET-1 mRNA and protein expression in four patient cohorts revealed that levels of ET-1 are higher in patients with muscle-invasive bladder cancers, which are associated with higher incidence of metastasis, and that high ET-1 levels are associated with decreased disease-specific survival. Consistent with its proinflammatory activity, we found that tumor-derived ET-1 acts through endothelin-1 receptor A (ETAR) to enhance migration and invasion of both tumor cells and macrophages and induces expression of inflammatory cytokines and proteases. Using human and mouse cancer cells depleted of ET-1 and pharmacologic blockade of ET receptors in lung metastasis models, we found that tumor ET-1 expression and ETAR activity are necessary for metastatic lung colonization and that this process is preceded by and dependent on macrophage infiltration of the lung. In contrast, tumor ET-1 expression and ETAR activity appeared less important in established primary or metastatic tumor growth. These findings strongly suggest that ETAR inhibitors might be more effective as adjuvant therapeutic agents than as initial treatment for advanced primary or metastatic disease.
Collapse
Affiliation(s)
- Neveen Said
- Department of Molecular Physiology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
48
|
Profiling the Aspergillus fumigatus proteome in response to caspofungin. Antimicrob Agents Chemother 2010; 55:146-54. [PMID: 20974863 DOI: 10.1128/aac.00884-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The proteomic response of Aspergillus fumigatus to caspofungin was evaluated by gel-free isobaric tagging for relative and absolute quantitation (iTRAQ) as a means to determine potential biomarkers of drug action. A cell fractionation approach yielding 4 subcellular compartment fractions was used to enhance the resolution of proteins for proteomic analysis. Using iTRAQ, a total of 471 unique proteins were identified in soluble and cell wall/plasma membrane fractions at 24 and 48 h of growth in rich media in a wild-type drug-susceptible strain. A total of 122 proteins showed at least a 2-fold change in relative abundance following exposure to caspofungin (CSF) at just below the minimum effective concentration (0.12 μg/ml). The largest changes were seen in the mitochondrial hypoxia response domain protein (AFUA_1G12250), the level of which decreased >16-fold in the secreted fraction, and ChiA1, the level of which decreased 12.1-fold in the cell wall/plasma membrane fraction. The level of the major allergen and cytotoxin AspF1 was also shown to decrease by 12.1-fold upon the addition of drug. A subsequent iTRAQ analysis of an echinocandin-resistant strain (fks1-S678P) was used to validate proteins specific to drug action. A total of 103 proteins in the 2 fractions tested by iTRAQ were differentially expressed in the wild-type susceptible strain but not significantly changed in the resistant strain. Of these potential biomarkers, 11 had levels that changed at least 12-fold. Microarray analysis of the susceptible strain was performed to evaluate the correlation between proteomics and genomics, with a total of 117 genes found to be changing at least 2-fold. Of these, a total of 22 proteins with significant changes identified by iTRAQ also showed significant gene expression level changes by microarray. Overall, these data have the potential to identify biomarkers that assess the relative efficacy of echinocandin drug therapy.
Collapse
|
49
|
David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol 2010; 8:e1000450. [PMID: 20711477 PMCID: PMC2919420 DOI: 10.1371/journal.pbio.1000450] [Citation(s) in RCA: 478] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/02/2010] [Indexed: 12/20/2022] Open
Abstract
Aberrant protein aggregation is a hallmark of many age-related diseases, yet little is known about whether proteins aggregate with age in a non-disease setting. Using a systematic proteomics approach, we identified several hundred proteins that become more insoluble with age in the multicellular organism Caenorhabditis elegans. These proteins are predicted to be significantly enriched in beta-sheets, which promote disease protein aggregation. Strikingly, these insoluble proteins are highly over-represented in aggregates found in human neurodegeneration. We examined several of these proteins in vivo and confirmed their propensity to aggregate with age. Different proteins aggregated in different tissues and cellular compartments. Protein insolubility and aggregation were significantly delayed or even halted by reduced insulin/IGF-1-signaling, which also slows aging. We found a significant overlap between proteins that become insoluble and proteins that influence lifespan and/or polyglutamine-repeat aggregation. Moreover, overexpressing one aggregating protein enhanced polyglutamine-repeat pathology. Together our findings indicate that widespread protein insolubility and aggregation is an inherent part of aging and that it may influence both lifespan and neurodegenerative disease.
Collapse
Affiliation(s)
- Della C. David
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Noah Ollikainen
- Graduate Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California, United States of America
| | - Jonathan C. Trinidad
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Michael P. Cary
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Alma L. Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Cynthia Kenyon
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|