1
|
Armengaud J, Cardon T, Cristobal S, Matallana-Surget S, Bertile F. Novel model organisms and proteomics for a better biological understanding. J Proteomics 2025; 316:105441. [PMID: 40216077 DOI: 10.1016/j.jprot.2025.105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/26/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
The concept of « model organisms » is being revisited in the light of the latest advances in multi-omics technologies that can now capture the full range of molecular events that occur over time, regardless of the organism studied. Classic, well-studied models, such as Escherichia coli, Saccharomyces cerevisiae, to name a few, have long been valuable for hypothesis testing, reproducibility, and sharing common platforms among researchers. However, they are not suitable for all types of research. The complexity of unanswered questions in biology demands more elaborated systems, particularly to study plant and animal biodiversity, microbial ecosystems and their interactions with their hosts if any. More integrated systems, known as « holobionts », are emerging to describe and unify host organisms and associated microorganisms, providing an overview of all their possible interactions and trajectories. Comparative evolutionary proteomics offers interesting prospects for extrapolating knowledge from a few selected model organisms to others. This approach enables a deeper characterization of the diversity of proteins and proteoforms across the three branches of the tree of life, i.e. Bacteria, Archaea, and Eukarya. It also provides a powerful means to address remaining biological questions, such as identifying the key molecular players in organisms when they are confronted to environmental challenges, like anthropogenic toxicants, pathogens, dietary shifts or climate stressors, and proposing long-term sustainable solutions. SIGNIFICANCE: In this commentary, we reevaluated the concept of "model organisms" in light of advancements in multi-omics technologies. Traditional models have proven invaluable for hypothesis testing, reproducibility, and fostering shared research frameworks. However, we discussed that they are not universally applicable. To address complexities such as biodiversity and understand microbial ecosystems and their host interactions, integrated systems like "holobionts," which encompass host organisms and their associated microbes, are gaining prominence. Comparative evolutionary proteomics further enhances our understanding by enabling detailed exploration of protein diversity across organisms. This approach also facilitates the identification of critical molecular players in organisms facing environmental challenges, such as pollutants, pathogens, dietary changes, or climate stress, and contributes to developing sustainable long-term solutions.
Collapse
Affiliation(s)
- Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France.
| | - Tristan Cardon
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping 581 85, Sweden; Ikerbasque, Basque Foundation for Sciences, Department of Physiology, Faculty of Medicine, and Nursing, University of the Basque Country UPV/EHU, Leioa 489 40, Spain
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, United Kingdom
| | - Fabrice Bertile
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, Laboratoire de Spectrométrie de Masse BioOrganique, Strasbourg 67000, France
| |
Collapse
|
2
|
Munjal NS, Dey G, Parthasarathi KTS, Chauhan K, Pai K, Patole MS, Pawar H, Sharma J. A Proteogenomic Approach for the Identification of Virulence Factors in Leishmania Parasites. Methods Mol Biol 2025; 2859:279-296. [PMID: 39436608 DOI: 10.1007/978-1-0716-4152-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Identifying new genes involved in virulence and drug resistance may hold the key to a better understanding of parasitic diseases. The proteogenomic profiling of various Leishmania species, the causative agents of leishmaniasis, has identified several novel genes, N- and C-terminal extensions of proteins, and corrections of existing gene models. Various virulence factors (VFs) responsible for leishmaniasis have been previously annotated through a proteogenomic approach, including the C-terminal extension of heat shock protein 70 (HSP70). Furthermore, the diversity of VFs across Leishmania donovani, L. infantum, L. major, and L. mexicana was determined using phylogenetic analysis. Moreover, protein-protein interaction networks (PPINs) of VFs with HSPs aid in making significant biological interpretations. Overall, an integrated omics approach involving proteogenomics was used to identify and study the relationship among VFs with other interacting proteins, including HSPs. This chapter provides a step-by-step guide to the identification of new genes in Leishmania using a proteogenomic approach and their functional assignment using a bioinformatics-based approach.
Collapse
Affiliation(s)
| | - Gourav Dey
- Institute of Bioinformatics, Bangalore, India
| | - K T Shreya Parthasarathi
- Institute of Bioinformatics, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kshipra Chauhan
- School of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, India
| | - Kalpana Pai
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | | | - Harsh Pawar
- Biomedical and Life Sciences Division, Lancaster University, Lancaster, UK
| | - Jyoti Sharma
- Institute of Bioinformatics, Bangalore, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
3
|
Chen S, Tan Z, Wang B, Xu H, Zhao Y, Tian B, Hua Y, Wang L. The Construction of an Extreme Radiation-Resistant Perchlorate-Reducing Bacterium Using Deinococcus deserti Promoters. Int J Mol Sci 2024; 25:11533. [PMID: 39519086 PMCID: PMC11546323 DOI: 10.3390/ijms252111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Perchlorate is one of the major inorganic pollutants in the natural environment and the living environment, which is toxic to organisms and difficult to degrade due to its special structure. As previously reported, the Phoenix Mars lander detected approximately 0.6% perchlorate in the Martian soil, indicating challenges for Earth-based life to survive there. Currently, biological approaches using dissimilatory perchlorate-reducing bacteria (DPRB) are the most promising methods for perchlorate degradation. However, the majority of DPRB exhibit limited radiation resistance, rendering them unsuitable for survival on Mars. In this study, we obtained the transcriptome data of Deinococcus deserti, and predicted and identified multiple constitutive expression promoters of D. deserti with varying activities. The top-five most active promoters were separately fused to specific genes involved in the degradation of perchlorate from DPRB Dechloromonas agitata CKB, and transformed into Deinococcus radiodurans R1, forming a novel dissimilatory perchlorate-reducing bacterium, R1-CKB. It exhibited both efficient perchlorate degradation capability and strong radiation resistance, potentially offering a valuable tool for the further enhancement of the Martian atmosphere in the future.
Collapse
Affiliation(s)
- Shanhou Chen
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zichun Tan
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Binqiang Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (Z.T.); (B.W.); (H.X.); (Y.Z.); (B.T.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Chen W, Ji G, Wu R, Fang C, Lu H. Mass spectrometry-based candidate substrate and site identification of PTM enzymes. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
5
|
Pible O, Petit P, Steinmetz G, Rivasseau C, Armengaud J. Taxonomical composition and functional analysis of biofilms sampled from a nuclear storage pool. Front Microbiol 2023; 14:1148976. [PMID: 37125163 PMCID: PMC10133526 DOI: 10.3389/fmicb.2023.1148976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Sampling small amounts of biofilm from harsh environments such as the biofilm present on the walls of a radioactive material storage pool offers few analytical options if taxonomic characterization and estimation of the different biomass contributions are the objectives. Although 16S/18S rRNA amplification on extracted DNA and sequencing is the most widely applied method, its reliability in terms of quantitation has been questioned as yields can be species-dependent. Here, we propose a tandem-mass spectrometry proteotyping approach consisting of acquiring peptide data and interpreting then against a generalist database without any a priori. The peptide sequence information is transformed into useful taxonomical information that allows to obtain the different biomass contributions at different taxonomical ranks. This new methodology is applied for the first time to analyze the composition of biofilms from minute quantities of material collected from a pool used to store radioactive sources in a nuclear facility. For these biofilms, we report the identification of three genera, namely Sphingomonas, Caulobacter, and Acidovorax, and their functional characterization by metaproteomics which shows that these organisms are metabolic active. Differential expression of Gene Ontology GOslim terms between the two main microorganisms highlights their metabolic specialization.
Collapse
Affiliation(s)
- Olivier Pible
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Pauline Petit
- Université Grenoble Alpes, CEA, CNRS, IRIG, Grenoble, France
| | - Gérard Steinmetz
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Corinne Rivasseau
- Université Grenoble Alpes, CEA, CNRS, IRIG, Grenoble, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
- *Correspondence: Jean Armengaud,
| |
Collapse
|
6
|
Peters SL, Borges AL, Giannone RJ, Morowitz MJ, Banfield JF, Hettich RL. Experimental validation that human microbiome phages use alternative genetic coding. Nat Commun 2022; 13:5710. [PMID: 36175428 PMCID: PMC9523058 DOI: 10.1038/s41467-022-32979-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022] Open
Abstract
Previous bioinformatic analyses of metagenomic data have indicated that bacteriophages can use genetic codes different from those of their host bacteria. In particular, reassignment of stop codon TAG to glutamine (a variation known as 'genetic code 15') has been predicted. Here, we use LC-MS/MS-based metaproteomics of human fecal samples to provide experimental evidence of the use of genetic code 15 in two crAss-like phages. Furthermore, the proteomic data from several phage structural proteins supports the reassignment of the TAG stop codon to glutamine late in the phage infection cycle. Thus, our work experimentally validates the expression of genetic code 15 in human microbiome phages.
Collapse
Affiliation(s)
- Samantha L Peters
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | | | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
7
|
Zhu H, Jiang S, Zhou W, Chi H, Sun J, Shi J, Zhang Z, Chang L, Yu L, Zhang L, Lyu Z, Xu P, Zhang Y. Ac-LysargiNase efficiently helps genome reannotation of Mycolicibacterium smegmatis MC2 155. J Proteomics 2022; 264:104622. [DOI: 10.1016/j.jprot.2022.104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
8
|
Fernandez B, Armengaud J, Subra G, Enjalbal C. MALDI‐MS/MS of N‐Terminal TMPP‐Acyl Peptides: A Worthwhile Tool to Decipher Protein N‐Termini. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bernard Fernandez
- IBMM Université de Montpellier, CNRS, ENSCM 34293 Montpellier France
- Université Paris-Saclay, CEA, INRAE Département Médicaments et Technologies pour la Santé (DMTS) SPI 30200 Bagnols-sur-Cèze France
- Present address: CIRAD, UMR ASTRE 34398 Montpellier France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE Département Médicaments et Technologies pour la Santé (DMTS) SPI 30200 Bagnols-sur-Cèze France
| | - Gilles Subra
- IBMM Université de Montpellier, CNRS, ENSCM 34293 Montpellier France
| | | |
Collapse
|
9
|
Deep N-terminomics of Mycobacterium tuberculosis H37Rv extensively correct annotated encoding genes. Genomics 2021; 114:292-304. [PMID: 34915127 DOI: 10.1016/j.ygeno.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis (MTB) is a severe causing agent of tuberculosis (TB). Although H37Rv, the type strain of M. tuberculosis was sequenced in 1998, annotation errors of encoding genes have been frequently reported in hundreds of papers. This phenomenon is particularly severe at the 5' end of the genes. Here, we applied a TMPP [(N-Succinimidyloxycarbonylmethyl) tris (2,4,6-trimethoxyphenyl) phosphonium bromide] labeling combined with StageTip separating strategy on M. tuberculosis H37Rv to characterize the N-terminal start sites of its annotated encoding genes. Totally, 1047 proteins were identified with 2058 TMPP labeled N-terminal peptides from all the 2625 mass spectrometer (MS) sequenced proteins. Comparative genomics analysis allowed the re-annotation of 43 proteins' N-termini in H37Rv and 762 proteins in Mycobacteriaceae. All revised N-termini start sites were distributed in 5'-UTR of annotated genes due to over-annotation of previous N-terminal initiation codon, especially the ATG. In addition, we identified and verified a novel gene Rv1078A in +3 frame different from the annotated gene Rv1078 in +2 frame. Altogether, our findings contribute to the better understanding of N-terminal of H37Rv and other species from Mycobacteriaceae that can assist future studies on biological study.
Collapse
|
10
|
Nayak T, Sengupta I, Dhal PK. A new era of radiation resistance bacteria in bioremediation and production of bioactive compounds with therapeutic potential and other aspects: An in-perspective review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 237:106696. [PMID: 34265519 DOI: 10.1016/j.jenvrad.2021.106696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms that survive in extreme environmental conditions are known as 'extremophiles'. Recently, extremophiles draw an impression in biotechnology/pharmaceutical researches/industries because of their novel molecules, known as 'extremolytes'. The intriguing phenomenon of microbial radiation resistance probably arose independently throughout their evolution of selective pressures (e.g. UV, X-ray, Gamma radiation etc.). Radiation produces multiple types of damage/oxidation to nucleic acids, proteins and other crucial cellular components. Most of the literature on microbial radiation resistance is based on acute γ-irradiation experiments performed in the laboratory, typically involving pure cultures isolation and their application on bioremediation/therapeutic field. There is much less information other than bioremediation and therapeutic application of such promising microbes we called as 'new era'. Here we discus origin and diversity of radiation resistance bacteria as well as selective mechanisms by which microorganisms can sustain in radiation rich environment. Potential uses of these radiations resistant microbes in the field of bioremediation, bioactive compounds and therapeutic industry. Last but not the least, which is the new aspect of radiation resistance microbes. Our review suggest that resistance to chronic radiation is not limited to rare specialized strains from extreme environments, but can occur among common microbial taxa, perhaps due to overlap molecular mechanisms of resistance to radiation and other stressors. These stress tolerance potential make them potential for radionuclides remediation, their extremolytes can be useful as anti-oxidant and anti-proliferative agents. In current scenario they can be useful in various fields from natural dye synthesis to nanoparticles production and anti-cancer treatment.
Collapse
Affiliation(s)
- Tilak Nayak
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| | - Indraneel Sengupta
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| | - Paltu Kumar Dhal
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
11
|
Bagal D, Gibson BW. Identification of Proteolysis Products in Protein Therapeutics through TMPP N-Terminal Tagging and Electron Transfer Dissociation Product Triggered Collisional Induced Dissociation Fragmentation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1936-1944. [PMID: 33534996 DOI: 10.1021/jasms.0c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thorough characterization of protein therapeutics is often challenging due to the heterogeneity arising from primary sequence variants, post-translational modifications, proteolytic clipping, or incomplete processing of the signal peptide. Modern mass spectrometry (MS) techniques are now routinely used to characterize such heterogeneous protein populations. Here, we present an LC-MS/MS method using (N-succinimidyloxycarbonylmethyl)-tris (2,4,6-trimethoxyphenyl) phosphonium bromide (TMPP-Ac-OSu) to label any free N-terminal α-amines to rapidly and selectively identify proteolytic clipping events. Electron transfer dissociation (ETD) fragmentation of these chemically tagged peptides generates two unique TMPP product ions, TMPP+ and TMPP-Ac-NH2/c0. The presence of these signature ions following ETD is used to trigger subsequent collisional induced dissociation (CID) fragmentation of the precursor ion. This results in a small subset of CID tandem MS spectra that are used in a customized database search. Using a purified fusion monoclonal antibody (mAb) as an example, we demonstrate how TMPP labeling followed by ETD product ion triggered CID fragmentation is used to accurately identify two undesired clipping sites.
Collapse
Affiliation(s)
- Dhanashri Bagal
- Amgen Discovery Research, Discovery Attribute Sciences, South San Francisco, California 94080, United States
| | - Bradford W Gibson
- Amgen Discovery Research, Discovery Attribute Sciences, South San Francisco, California 94080, United States
| |
Collapse
|
12
|
Fijalkowska D, Fijalkowski I, Willems P, Van Damme P. Bacterial riboproteogenomics: the era of N-terminal proteoform existence revealed. FEMS Microbiol Rev 2021; 44:418-431. [PMID: 32386204 DOI: 10.1093/femsre/fuaa013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
With the rapid increase in the number of sequenced prokaryotic genomes, relying on automated gene annotation became a necessity. Multiple lines of evidence, however, suggest that current bacterial genome annotations may contain inconsistencies and are incomplete, even for so-called well-annotated genomes. We here discuss underexplored sources of protein diversity and new methodologies for high-throughput genome reannotation. The expression of multiple molecular forms of proteins (proteoforms) from a single gene, particularly driven by alternative translation initiation, is gaining interest as a prominent contributor to bacterial protein diversity. In consequence, riboproteogenomic pipelines were proposed to comprehensively capture proteoform expression in prokaryotes by the complementary use of (positional) proteomics and the direct readout of translated genomic regions using ribosome profiling. To complement these discoveries, tailored strategies are required for the functional characterization of newly discovered bacterial proteoforms.
Collapse
Affiliation(s)
- Daria Fijalkowska
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Igor Fijalkowski
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Patrick Willems
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
13
|
Kuhring M, Doellinger J, Nitsche A, Muth T, Renard BY. TaxIt: An Iterative Computational Pipeline for Untargeted Strain-Level Identification Using MS/MS Spectra from Pathogenic Single-Organism Samples. J Proteome Res 2020; 19:2501-2510. [PMID: 32362126 DOI: 10.1021/acs.jproteome.9b00714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Untargeted accurate strain-level classification of a priori unidentified organisms using tandem mass spectrometry is a challenging task. Reference databases often lack taxonomic depth, limiting peptide assignments to the species level. However, the extension with detailed strain information increases runtime and decreases statistical power. In addition, larger databases contain a higher number of similar proteomes. We present TaxIt, an iterative workflow to address the increasing search space required for MS/MS-based strain-level classification of samples with unknown taxonomic origin. TaxIt first applies reference sequence data for initial identification of species candidates, followed by automated acquisition of relevant strain sequences for low level classification. Furthermore, proteome similarities resulting in ambiguous taxonomic assignments are addressed with an abundance weighting strategy to increase the confidence in candidate taxa. For benchmarking the performance of our method, we apply our iterative workflow on several samples of bacterial and viral origin. In comparison to noniterative approaches using unique peptides or advanced abundance correction, TaxIt identifies microbial strains correctly in all examples presented (with one tie), thereby demonstrating the potential for untargeted and deeper taxonomic classification. TaxIt makes extensive use of public, unrestricted, and continuously growing sequence resources such as the NCBI databases and is available under open-source BSD license at https://gitlab.com/rki_bioinformatics/TaxIt.
Collapse
Affiliation(s)
- Mathias Kuhring
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany.,Core Unit Bioinformatics, Berlin Institute of Health (BIH), 10178 Berlin, Germany.,Berlin Institute of Health Metabolomics Platform, Berlin Institute of Health (BIH), 10178 Berlin, Germany.,Max Delbrück Center (MDC) for Molecular Medicine, 13125 Berlin, Germany
| | - Joerg Doellinger
- Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS 6), Robert Koch Institute, 13353 Berlin, Germany.,Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353 Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353 Berlin, Germany
| | - Thilo Muth
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany.,eScience Division (S.3), Federal Institute for Materials Research and Testing, 12489 Berlin, Germany
| | - Bernhard Y Renard
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany.,Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, 14482 Potsdam, Germany
| |
Collapse
|
14
|
Armengaud J. In Vino Veritas: An Invitation for Ambitious, Collaborative Proteogenomics Campaigns on Plant and Animal Models. Proteomics 2018; 17. [PMID: 28994197 DOI: 10.1002/pmic.201700324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/02/2017] [Indexed: 11/06/2022]
Abstract
Vitis vinifera has been an emblematic plant for humans since the Neolithic period. Human civilization has been shaped by its domestication as both its medicinal and nutritional values were exploited. It is now cultivated on all habitable continents, and more than 5000 varieties have been developed. A global passion for the art of wine fuels innovation and a profound desire for knowledge on this plant. The genome sequence of a homozygotic cultivar and several RNA-seq datasets on other varieties have been released paving the way to gaining further insight into its biology and tailoring improvements to varieties. However, its genome annotation remains unpolished. In this issue of Proteomics, Chapman and Bellgard (Proteomics 2017, 17, 1700197) discuss how proteogenomics can help improve genome annotation. By mining shotgun proteomics data, they defined new protein-coding genes, refined gene structures, and corrected numerous mRNA splicing events. This stimulating study shows how large international consortia could work together to improve plant and animal genome annotation on a large scale. To achieve this aim, time should be invested to generate comprehensive, high-quality experimental datasets for a wide range of well-defined lineages and exploit them with pipelines capable of handling giant datasets.
Collapse
Affiliation(s)
- Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, France
| |
Collapse
|
15
|
Hücker SM, Vanderhaeghen S, Abellan-Schneyder I, Scherer S, Neuhaus K. The Novel Anaerobiosis-Responsive Overlapping Gene ano Is Overlapping Antisense to the Annotated Gene ECs2385 of Escherichia coli O157:H7 Sakai. Front Microbiol 2018; 9:931. [PMID: 29867840 PMCID: PMC5960689 DOI: 10.3389/fmicb.2018.00931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Current notion presumes that only one protein is encoded at a given bacterial genetic locus. However, transcription and translation of an overlapping open reading frame (ORF) of 186 bp length were discovered by RNAseq and RIBOseq experiments. This ORF is almost completely embedded in the annotated L,D-transpeptidase gene ECs2385 of Escherichia coli O157:H7 Sakai in the antisense reading frame -3. The ORF is transcribed as part of a bicistronic mRNA, which includes the annotated upstream gene ECs2384, encoding a murein lipoprotein. The transcriptional start site of the operon resides 38 bp upstream of the ECs2384 start codon and is driven by a predicted σ70 promoter, which is constitutively active under different growth conditions. The bicistronic operon contains a ρ-independent terminator just upstream of the novel gene, significantly decreasing its transcription. The novel gene can be stably expressed as an EGFP-fusion protein and a translationally arrested mutant of ano, unable to produce the protein, shows a growth advantage in competitive growth experiments compared to the wild type under anaerobiosis. Therefore, the novel antisense overlapping gene is named ano (anaerobiosis responsive overlapping gene). A phylostratigraphic analysis indicates that ano originated very recently de novo by overprinting after the Escherichia/Shigella clade separated from other enterobacteria. Therefore, ano is one of the very rare cases of overlapping genes known in the genus Escherichia.
Collapse
Affiliation(s)
- Sarah M Hücker
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Sonja Vanderhaeghen
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | | | - Siegfried Scherer
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany.,Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany.,Core Facility Microbiome/NGS, Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
16
|
Gallois N, Alpha-Bazin B, Ortet P, Barakat M, Piette L, Long J, Berthomieu C, Armengaud J, Chapon V. Proteogenomic insights into uranium tolerance of a Chernobyl's Microbacterium bacterial isolate. J Proteomics 2017; 177:148-157. [PMID: 29223802 DOI: 10.1016/j.jprot.2017.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
Microbacterium oleivorans A9 is a uranium-tolerant actinobacteria isolated from the trench T22 located near the Chernobyl nuclear power plant. This site is contaminated with different radionuclides including uranium. To observe the molecular changes at the proteome level occurring in this strain upon uranyl exposure and understand molecular mechanisms explaining its uranium tolerance, we established its draft genome and used this raw information to perform an in-depth proteogenomics study. High-throughput proteomics were performed on cells exposed or not to 10μM uranyl nitrate sampled at three previously identified phases of uranyl tolerance. We experimentally detected and annotated 1532 proteins and highlighted a total of 591 proteins for which abundances were significantly differing between conditions. Notably, proteins involved in phosphate and iron metabolisms show high dynamics. A large ratio of proteins more abundant upon uranyl stress, are distant from functionally-annotated known proteins, highlighting the lack of fundamental knowledge regarding numerous key molecular players from soil bacteria. BIOLOGICAL SIGNIFICANCE Microbacterium oleivorans A9 is an interesting environmental model to understand biological processes engaged in tolerance to radionuclides. Using an innovative proteogenomics approach, we explored its molecular mechanisms involved in uranium tolerance. We sequenced its genome, interpreted high-throughput proteomic data against a six-reading frame ORF database deduced from the draft genome, annotated the identified proteins and compared protein abundances from cells exposed or not to uranyl stress after a cascade search. These data show that a complex cellular response to uranium occurs in Microbacterium oleivorans A9, where one third of the experimental proteome is modified. In particular, the uranyl stress perturbed the phosphate and iron metabolic pathways. Furthermore, several transporters have been identified to be specifically associated to uranyl stress, paving the way to the development of biotechnological tools for uranium decontamination.
Collapse
Affiliation(s)
- Nicolas Gallois
- CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire des Interactions Protéine Métal, 13108 Saint-Paul-lez-Durance, France
| | - Béatrice Alpha-Bazin
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols sur Cèze, France
| | - Philippe Ortet
- CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'écologie microbienne de la rhizosphère et d'environnements extrêmes, 13108 Saint-Paul-lez-Durance, France
| | - Mohamed Barakat
- CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'écologie microbienne de la rhizosphère et d'environnements extrêmes, 13108 Saint-Paul-lez-Durance, France
| | - Laurie Piette
- CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire des Interactions Protéine Métal, 13108 Saint-Paul-lez-Durance, France
| | - Justine Long
- CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'écologie microbienne de la rhizosphère et d'environnements extrêmes, 13108 Saint-Paul-lez-Durance, France
| | - Catherine Berthomieu
- CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire des Interactions Protéine Métal, 13108 Saint-Paul-lez-Durance, France
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols sur Cèze, France.
| | - Virginie Chapon
- CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire des Interactions Protéine Métal, 13108 Saint-Paul-lez-Durance, France
| |
Collapse
|
17
|
Abendroth U, Adlung N, Otto A, Grüneisen B, Becher D, Bonas U. Identification of new protein-coding genes with a potential role in the virulence of the plant pathogen Xanthomonas euvesicatoria. BMC Genomics 2017; 18:625. [PMID: 28814272 PMCID: PMC5559785 DOI: 10.1186/s12864-017-4041-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/08/2017] [Indexed: 01/08/2023] Open
Abstract
Background Bacteria of the genus Xanthomonas are economically important plant pathogens. Pathogenicity of Xanthomonas spp. depends on the type III-secretion system and additional virulence determinants. The number of sequenced Xanthomonas genomes increases rapidly, however, accurate annotation of these genomes is difficult, because it relies on gene prediction programs. In this study, we used a mass-spectrometry (MS)-based approach to identify the proteome of Xanthomonas euvesicatoria (Xe) strain 85–10 also known as X. campestris pv. vesicatoria, a well-studied member of plant-pathogenic Xanthomonadaceae. Results Using different culture conditions, MS-datasets were searched against a six-frame-translated genome database of Xe. In total, we identified 2588 proteins covering 55% of the Xe genome, including 764 hitherto hypothetical proteins. Our proteogenomic approach identified 30 new protein-coding genes and allowed correction of the N-termini of 50 protein-coding genes. For five novel and two N-terminally corrected genes the corresponding proteins were confirmed by immunoblot. Furthermore, our data indicate that two putative type VI-secretion systems encoded in Xe play no role in bacterial virulence which was experimentally confirmed. Conclusions The discovery and re-annotation of numerous genes in the genome of Xe shows that also a well-annotated genome can be improved. Additionally, our proteogenomic analyses validates “hypothetical” proteins and will improve annotation of Xanthomonadaceae genomes, providing a solid basis for further studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4041-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulrike Abendroth
- Institute for Biology, Department of Genetics, Martin-Luther-Universität Halle-Wittenberg, D-06099, Halle, Germany.
| | - Norman Adlung
- Institute for Biology, Department of Genetics, Martin-Luther-Universität Halle-Wittenberg, D-06099, Halle, Germany
| | - Andreas Otto
- Institute for Microbiology, Department of Mass Spectrometry, Ernst-Moritz-Arndt-Universität, D-17487, Greifswald, Germany
| | - Benjamin Grüneisen
- Institute for Biology, Department of Genetics, Martin-Luther-Universität Halle-Wittenberg, D-06099, Halle, Germany.,Department of Psychiatry and Psychotherapy, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Dörte Becher
- Institute for Microbiology, Department of Mass Spectrometry, Ernst-Moritz-Arndt-Universität, D-17487, Greifswald, Germany
| | - Ulla Bonas
- Institute for Biology, Department of Genetics, Martin-Luther-Universität Halle-Wittenberg, D-06099, Halle, Germany.
| |
Collapse
|
18
|
Li Y, Wang Z, Zhou W, Zhang K, Ma J, Wu F, Ji J, Hong X, Deng Z, He S, Xu P. A rapid and easy protein N-terminal profiling strategy using (N
-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) labeling and StageTip. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/21/2017] [Accepted: 06/03/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Yanchang Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing P. R. China
| | - Zhiqiang Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals; State Key Laboratory of Virology; Wuhan University School of Pharmaceutical Sciences; Wuhan P. R. China
| | - Wenjing Zhou
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology; CAS; Beijing P. R. China
| | - Kun Zhang
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology; CAS; Beijing P. R. China
| | - Jie Ma
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing P. R. China
| | - Feilin Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing P. R. China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences; Peking University; Beijing P. R. China
| | - Xuechuan Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals; State Key Laboratory of Virology; Wuhan University School of Pharmaceutical Sciences; Wuhan P. R. China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals; State Key Laboratory of Virology; Wuhan University School of Pharmaceutical Sciences; Wuhan P. R. China
| | - Simin He
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology; CAS; Beijing P. R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals; State Key Laboratory of Virology; Wuhan University School of Pharmaceutical Sciences; Wuhan P. R. China
- Anhui Medical University; Hefei P. R. China
| |
Collapse
|
19
|
Willems P, Ndah E, Jonckheere V, Stael S, Sticker A, Martens L, Van Breusegem F, Gevaert K, Van Damme P. N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana. Mol Cell Proteomics 2017; 16:1064-1080. [PMID: 28432195 PMCID: PMC5461538 DOI: 10.1074/mcp.m116.066662] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/11/2017] [Indexed: 01/05/2023] Open
Abstract
Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well- and poorly-annotated genomes.
Collapse
Affiliation(s)
- Patrick Willems
- From the ‡VIB/UGent Center for Plant Systems Biology, 9052 Ghent, Belgium.,§Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent.,¶VIB/UGent Center for Medical Biotechnology, 9000 Ghent, Belgium.,‖Ghent University, Department of Biochemistry, 9000 Ghent, Belgium
| | - Elvis Ndah
- ¶VIB/UGent Center for Medical Biotechnology, 9000 Ghent, Belgium.,‖Ghent University, Department of Biochemistry, 9000 Ghent, Belgium.,**Ghent University, Department of Mathematical Modeling, Statistics and Bioinformatics, 9000 Ghent, Belgium
| | - Veronique Jonckheere
- ¶VIB/UGent Center for Medical Biotechnology, 9000 Ghent, Belgium.,‖Ghent University, Department of Biochemistry, 9000 Ghent, Belgium
| | - Simon Stael
- From the ‡VIB/UGent Center for Plant Systems Biology, 9052 Ghent, Belgium.,§Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent.,¶VIB/UGent Center for Medical Biotechnology, 9000 Ghent, Belgium.,‖Ghent University, Department of Biochemistry, 9000 Ghent, Belgium
| | - Adriaan Sticker
- ¶VIB/UGent Center for Medical Biotechnology, 9000 Ghent, Belgium.,‖Ghent University, Department of Biochemistry, 9000 Ghent, Belgium.,**Ghent University, Department of Mathematical Modeling, Statistics and Bioinformatics, 9000 Ghent, Belgium
| | - Lennart Martens
- ¶VIB/UGent Center for Medical Biotechnology, 9000 Ghent, Belgium.,‖Ghent University, Department of Biochemistry, 9000 Ghent, Belgium.,**Ghent University, Department of Mathematical Modeling, Statistics and Bioinformatics, 9000 Ghent, Belgium
| | - Frank Van Breusegem
- From the ‡VIB/UGent Center for Plant Systems Biology, 9052 Ghent, Belgium.,§Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent
| | - Kris Gevaert
- ¶VIB/UGent Center for Medical Biotechnology, 9000 Ghent, Belgium.,‖Ghent University, Department of Biochemistry, 9000 Ghent, Belgium
| | - Petra Van Damme
- ¶VIB/UGent Center for Medical Biotechnology, 9000 Ghent, Belgium; .,‖Ghent University, Department of Biochemistry, 9000 Ghent, Belgium
| |
Collapse
|
20
|
Blanchard L, Guérin P, Roche D, Cruveiller S, Pignol D, Vallenet D, Armengaud J, de Groot A. Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. Microbiologyopen 2017; 6. [PMID: 28397370 PMCID: PMC5552922 DOI: 10.1002/mbo3.477] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 12/26/2022] Open
Abstract
The extreme radiation resistance of Deinococcus bacteria requires the radiation‐stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation‐induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo‐IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM‐containing DNA or interaction of IrrE with DNA‐bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE‐dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation‐resistant Deinococcus species.
Collapse
Affiliation(s)
- Laurence Blanchard
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | - Philippe Guérin
- Laboratory "Innovative technologies for Detection and Diagnostic", CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Bagnols-sur-Cèze, France
| | - David Roche
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - Stéphane Cruveiller
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - David Pignol
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | - David Vallenet
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - Jean Armengaud
- Laboratory "Innovative technologies for Detection and Diagnostic", CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Bagnols-sur-Cèze, France
| | - Arjan de Groot
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| |
Collapse
|
21
|
Marshall NC, Finlay BB, Overall CM. Sharpening Host Defenses during Infection: Proteases Cut to the Chase. Mol Cell Proteomics 2017; 16:S161-S171. [PMID: 28179412 PMCID: PMC5393396 DOI: 10.1074/mcp.o116.066456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/03/2017] [Indexed: 01/14/2023] Open
Abstract
The human immune system consists of an intricate network of tightly controlled pathways, where proteases are essential instigators and executioners at multiple levels. Invading microbial pathogens also encode proteases that have evolved to manipulate and dysregulate host proteins, including host proteases during the course of disease. The identification of pathogen proteases as well as their substrates and mechanisms of action have empowered significant developments in therapeutics for infectious diseases. Yet for many pathogens, there remains a great deal to be discovered. Recently, proteomic techniques have been developed that can identify proteolytically processed proteins across the proteome. These “degradomics” approaches can identify human substrates of microbial proteases during infection in vivo and expose the molecular-level changes that occur in the human proteome during infection as an operational network to develop hypotheses for further research as well as new therapeutics. This Perspective Article reviews how proteases are utilized during infection by both the human host and invading bacterial pathogens, including archetypal virulence-associated microbial proteases, such as the Clostridia spp. botulinum and tetanus neurotoxins. We highlight the potential knowledge that degradomics studies of host–pathogen interactions would uncover, as well as how degradomics has been successfully applied in similar contexts, including use with a viral protease. We review how microbial proteases have been targeted in current therapeutic approaches and how microbial proteases have shaped and even contributed to human therapeutics beyond infectious disease. Finally, we discuss how, moving forward, degradomics research can greatly contribute to our understanding of how microbial pathogens cause disease in vivo and lead to the identification of novel substrates in vivo, and the development of improved therapeutics to counter these pathogens.
Collapse
Affiliation(s)
- Natalie C Marshall
- From the ‡Department of Microbiology & Immunology.,§Michael Smith Laboratories
| | - B Brett Finlay
- From the ‡Department of Microbiology & Immunology.,§Michael Smith Laboratories.,¶Department of Biochemistry & Molecular Biology
| | - Christopher M Overall
- ¶Department of Biochemistry & Molecular Biology, .,**Department of Oral Biological & Medical Sciences, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Seligmann H. Natural mitochondrial proteolysis confirms transcription systematically exchanging/deleting nucleotides, peptides coded by expanded codons. J Theor Biol 2016; 414:76-90. [PMID: 27899286 DOI: 10.1016/j.jtbi.2016.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
Protein sequences have higher linguistic complexities than human languages. This indicates undeciphered multilayered, overprinted information/genetic codes. Some superimposed genetic information is revealed by detections of transcripts systematically (a) exchanging nucleotides (nine symmetric, e.g. A<->C, fourteen asymmetric, e.g. A->C->G->A, swinger RNAs) translated according to tri-, tetra- and pentacodons, and (b) deleting mono-, dinucleotides after each trinucleotide (delRNAs). Here analyses of two independent proteomic datasets considering natural proteolysis confirm independently translation of these non-canonical RNAs, also along tetra- and pentacodons, increasing coverage of putative, cryptically encoded proteins. Analyses assuming endoproteinase GluC and elastase digestions (cleavages after residues D, E, and A, L, I, V, respectively) detect additional peptides colocalizing with detected non-canonical RNAs. Analyses detect fewer peptides matching GluC-, elastase- than trypsin-digestions: artificial trypsin-digestion outweighs natural proteolysis. Results suggest occurrences of complete proteins entirely matching non-canonical, superimposed encoding(s). Protein-coding after bijective transformations could explain genetic code symmetries, such as along Rumer's transformation.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMER 6236, IHU (Institut Hospitalo-Universitaire), Aix-Marseille University, Marseille, France.
| |
Collapse
|
23
|
Abstract
Omics approaches have become popular in biology as powerful discovery tools, and currently gain in interest for diagnostic applications. Establishing the accurate genome sequence of any organism is easy, but the outcome of its annotation by means of automatic pipelines remains imprecise. Some protein-encoding genes may be missed as soon as they are specific and poorly conserved in a given taxon, while important to explain the specific traits of the organism. Translational starts are also poorly predicted in a relatively important number of cases, thus impacting the protein sequence database used in proteomics, comparative genomics, and systems biology. The use of high-throughput proteomics data to improve genome annotation is an attractive option to obtain a more comprehensive molecular picture of a given organism. Here, protocols for reannotating prokaryote genomes are described based on shotgun proteomics and derivatization of protein N-termini with a positively charged reagent coupled to high-resolution tandem mass spectrometry.
Collapse
|
24
|
Zhang J, Yang MK, Zeng H, Ge F. GAPP: A Proteogenomic Software for Genome Annotation and Global Profiling of Post-translational Modifications in Prokaryotes. Mol Cell Proteomics 2016; 15:3529-3539. [PMID: 27630248 DOI: 10.1074/mcp.m116.060046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Indexed: 11/06/2022] Open
Abstract
Although the number of sequenced prokaryotic genomes is growing rapidly, experimentally verified annotation of prokaryotic genome remains patchy and challenging. To facilitate genome annotation efforts for prokaryotes, we developed an open source software called GAPP for genome annotation and global profiling of post-translational modifications (PTMs) in prokaryotes. With a single command, it provides a standard workflow to validate and refine predicted genetic models and discover diverse PTM events. We demonstrated the utility of GAPP using proteomic data from Helicobacter pylori, one of the major human pathogens that is responsible for many gastric diseases. Our results confirmed 84.9% of the existing predicted H. pylori proteins, identified 20 novel protein coding genes, and corrected four existing gene models with regard to translation initiation sites. In particular, GAPP revealed a large repertoire of PTMs using the same proteomic data and provided a rich resource that can be used to examine the functions of reversible modifications in this human pathogen. This software is a powerful tool for genome annotation and global discovery of PTMs and is applicable to any sequenced prokaryotic organism; we expect that it will become an integral part of ongoing genome annotation efforts for prokaryotes. GAPP is freely available at https://sourceforge.net/projects/gappproteogenomic/.
Collapse
Affiliation(s)
- Jia Zhang
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ming-Kun Yang
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Honghui Zeng
- §Wuhan Branch, Supercomputing Center, Chinese Academy of Sciences, China
| | - Feng Ge
- From the ‡Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; .,§Wuhan Branch, Supercomputing Center, Chinese Academy of Sciences, China
| |
Collapse
|
25
|
Armengaud J. Power of positive thinking in quantitative proteomics. Proteomics 2016; 15:2898-900. [PMID: 26227558 DOI: 10.1002/pmic.201500307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 01/20/2023]
Abstract
Derivatization of proteins with specific isotope reagents has been widely explored for quantitative proteomics where the relative abundances of proteins present in different complex samples are compared by MS. This represents an interesting arena for innovation, where protein chemistry and MS are associated for the best of both worlds. Among the numerous reagents developed, those that introduce a permanent positive charge, such as (N-succinimidyloxycarbonylmethyl)-tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP), increase the ionizability of their targets and thus improve the sensitivity of the approach. TMPP labeling also modifies the hydrophobicity and changes the peptide fragmentation pattern. Because TMPP reacts preferably with the N-termini of proteins and peptides, its use has been explored for proteogenomics and de novo protein sequencing. In this issue of Proteomics, Shen et al. (Proteomics 2015, 15, 2903-2909) show that accurate quantitation of proteins can be obtained with light/heavy TMPP-labeling of peptides, which can be easily prepared and desalted in a homemade C8-SCX-C8 stagetip, and then monitored by nano-LC-MS/MS analysis. Their results demonstrate enhanced sequence coverage compared with other approaches. Combined with an efficient enrichment procedure, the higher sensitivity of this "positive attitude" reagent may facilitate much deeper investigations into the quantitative proteomics of complex samples.
Collapse
Affiliation(s)
- Jean Armengaud
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze, France
| |
Collapse
|
26
|
Zhu X, Xie S, Armengaud J, Xie W, Guo Z, Kang S, Wu Q, Wang S, Xia J, He R, Zhang Y. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline. Mol Cell Proteomics 2016; 15:1791-807. [PMID: 26902207 PMCID: PMC5083088 DOI: 10.1074/mcp.m115.050989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 02/04/2016] [Indexed: 11/06/2022] Open
Abstract
The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest.
Collapse
Affiliation(s)
- Xun Zhu
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Jean Armengaud
- ¶CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory, BP 17171, F-30200, Bagnols-sur-Cèze, F-30207, France
| | - Wen Xie
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhaojiang Guo
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Kang
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoli Wang
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jixing Xia
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rongjun He
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Youjun Zhang
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China;
| |
Collapse
|
27
|
Locard-Paulet M, Pible O, Gonzalez de Peredo A, Alpha-Bazin B, Almunia C, Burlet-Schiltz O, Armengaud J. Clinical implications of recent advances in proteogenomics. Expert Rev Proteomics 2016; 13:185-99. [DOI: 10.1586/14789450.2016.1132169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Olexiouk V, Menschaert G. Identification of Small Novel Coding Sequences, a Proteogenomics Endeavor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 926:49-64. [PMID: 27686805 DOI: 10.1007/978-3-319-42316-6_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of small proteins and peptides has consistently proven to be challenging. However, technological advances as well as multi-omics endeavors facilitate the identification of novel small coding sequences, leading to new insights. Specifically, the application of next generation sequencing technologies (NGS), providing accurate and sample specific transcriptome / translatome information, into the proteomics field led to more comprehensive results and new discoveries. This book chapter focuses on the inclusion of RNA-Seq and RIBO-Seq also known as ribosome profiling, an RNA-Seq based technique sequencing the +/- 30 bp long fragments captured by translating ribosomes. We emphasize the identification of micropeptides and neo-antigens, two distinct classes of small translation products, triggering our current understanding of biology. RNA-Seq is capable of capturing sample specific genomic variations, enabling focused neo-antigen identification. RIBO-Seq can identify translation events in small open reading frames which are considered to be non-coding, leading to the discovery of micropeptides. The identification of small translation products requires the integration of multi-omics data, stressing the importance of proteogenomics in this novel research area.
Collapse
Affiliation(s)
- Volodimir Olexiouk
- Lab of Bioinformatics and Computational Genomics (BioBix), Faculty of Bioscience Engineering, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, Building A, Ghent, 9000, Belgium.
| | - Gerben Menschaert
- Lab of Bioinformatics and Computational Genomics (BioBix), Faculty of Bioscience Engineering, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, Building A, Ghent, 9000, Belgium
| |
Collapse
|
29
|
Berry IJ, Steele JR, Padula MP, Djordjevic SP. The application of terminomics for the identification of protein start sites and proteoforms in bacteria. Proteomics 2015; 16:257-72. [DOI: 10.1002/pmic.201500319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Iain J. Berry
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Joel R. Steele
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Matthew P. Padula
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Steven P. Djordjevic
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| |
Collapse
|
30
|
Kumar D, Mondal AK, Kutum R, Dash D. Proteogenomics of rare taxonomic phyla: A prospective treasure trove of protein coding genes. Proteomics 2015; 16:226-40. [PMID: 26773550 DOI: 10.1002/pmic.201500263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 01/04/2023]
Abstract
Sustainable innovations in sequencing technologies have resulted in a torrent of microbial genome sequencing projects. However, the prokaryotic genomes sequenced so far are unequally distributed along their phylogenetic tree; few phyla contain the majority, the rest only a few representatives. Accurate genome annotation lags far behind genome sequencing. While automated computational prediction, aided by comparative genomics, remains a popular choice for genome annotation, substantial fraction of these annotations are erroneous. Proteogenomics utilizes protein level experimental observations to annotate protein coding genes on a genome wide scale. Benefits of proteogenomics include discovery and correction of gene annotations regardless of their phylogenetic conservation. This not only allows detection of common, conserved proteins but also the discovery of protein products of rare genes that may be horizontally transferred or taxonomy specific. Chances of encountering such genes are more in rare phyla that comprise a small number of complete genome sequences. We collated all bacterial and archaeal proteogenomic studies carried out to date and reviewed them in the context of genome sequencing projects. Here, we present a comprehensive list of microbial proteogenomic studies, their taxonomic distribution, and also urge for targeted proteogenomics of underexplored taxa to build an extensive reference of protein coding genes.
Collapse
Affiliation(s)
- Dhirendra Kumar
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| | - Anupam Kumar Mondal
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| | - Rintu Kutum
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| | - Debasis Dash
- G. N. Ramachandran Knowledge Center of Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, South Campus, Sukhdev Vihar, Delhi, India
| |
Collapse
|
31
|
Li L, Yan G, Zhang X. Isolation of acetylated and free N-terminal peptides from proteomic samples based on tresyl-functionalized microspheres. Talanta 2015; 144:122-8. [DOI: 10.1016/j.talanta.2015.05.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 12/26/2022]
|
32
|
Bouthier de la Tour C, Blanchard L, Dulermo R, Ludanyi M, Devigne A, Armengaud J, Sommer S, de Groot A. The abundant and essential HU proteins in Deinococcus deserti and Deinococcus radiodurans are translated from leaderless mRNA. MICROBIOLOGY-SGM 2015; 161:2410-22. [PMID: 26385459 DOI: 10.1099/mic.0.000186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
HU proteins have an important architectural role in nucleoid organization in bacteria. Compared with HU of many bacteria, HU proteins from Deinococcus species possess an N-terminal lysine-rich extension similar to the eukaryotic histone H1 C-terminal domain involved in DNA compaction. The single HU gene in Deinococcus radiodurans, encoding DrHU, is required for nucleoid compaction and cell viability. Deinococcus deserti contains three expressed HU genes, encoding DdHU1, DdHU2 and DdHU3. Here, we show that either DdHU1 or DdHU2 is essential in D. deserti. DdHU1 and DdHU2, but not DdHU3, can substitute for DrHU in D. radiodurans, indicating that DdHU3 may have a non-essential function different from DdHU1, DdHU2 and DrHU. Interestingly, the highly abundant DrHU and DdHU1 proteins, and also the less expressed DdHU2, are translated in Deinococcus from leaderless mRNAs, which lack a 5'-untranslated region and, hence, the Shine-Dalgarno sequence. Unexpectedly, cloning the DrHU or DdHU1 gene under control of a strong promoter in an expression plasmid, which results in leadered transcripts, strongly reduced the DrHU and DdHU1 protein level in D. radiodurans compared with that obtained from the natural leaderless gene. We also show that the start codon position for DrHU and DdHU1 should be reannotated, resulting in proteins that are 15 and 4 aa residues shorter than initially reported. The expression level and start codon correction were crucial for functional characterization of HU in Deinococcus.
Collapse
Affiliation(s)
- Claire Bouthier de la Tour
- 1Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, F-91405 Orsay, France
| | - Laurence Blanchard
- 2CEA, DSV, IBEB, Lab Bioenerget Cellulaire, F-13108 Saint-Paul-lez-Durance, France 3CNRS, UMR 7265 Biol Veget & Microbiol Environ, F-13108 Saint-Paul-lez-Durance, France 4Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France
| | - Rémi Dulermo
- 1Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, F-91405 Orsay, France 3CNRS, UMR 7265 Biol Veget & Microbiol Environ, F-13108 Saint-Paul-lez-Durance, France 4Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France 5CEA, DSV, IBEB, Lab Ecol Microb Rhizosphere & Environ Extrem, F-13108 Saint-Paul-lez-Durance, France
| | - Monika Ludanyi
- 2CEA, DSV, IBEB, Lab Bioenerget Cellulaire, F-13108 Saint-Paul-lez-Durance, France 3CNRS, UMR 7265 Biol Veget & Microbiol Environ, F-13108 Saint-Paul-lez-Durance, France 4Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France
| | - Alice Devigne
- 1Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, F-91405 Orsay, France
| | - Jean Armengaud
- 6CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory 'Innovative technologies for Detection and Diagnostic', BP 17171, F-30207 Bagnols-sur-Cèze, France
| | - Suzanne Sommer
- 1Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Bâtiment 409, F-91405 Orsay, France
| | - Arjan de Groot
- 3CNRS, UMR 7265 Biol Veget & Microbiol Environ, F-13108 Saint-Paul-lez-Durance, France 2CEA, DSV, IBEB, Lab Bioenerget Cellulaire, F-13108 Saint-Paul-lez-Durance, France 4Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France
| |
Collapse
|
33
|
Pible O, Armengaud J. Improving the quality of genome, protein sequence, and taxonomy databases: A prerequisite for microbiome meta-omics 2.0. Proteomics 2015; 15:3418-23. [DOI: 10.1002/pmic.201500104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/17/2015] [Accepted: 05/30/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Olivier Pible
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D; Laboratory “Innovative technologies for Detection and Diagnostics”; Bagnols-sur-Cèze France
| | - Jean Armengaud
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D; Laboratory “Innovative technologies for Detection and Diagnostics”; Bagnols-sur-Cèze France
| |
Collapse
|
34
|
Kuhring M, Renard BY. Estimating the computational limits of detection of microbial non-model organisms. Proteomics 2015; 15:3580-4. [DOI: 10.1002/pmic.201400598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/20/2015] [Accepted: 06/26/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Mathias Kuhring
- Research Group Bioinformatics (NG4); Robert Koch Institute; Berlin Germany
| | - Bernhard Y. Renard
- Research Group Bioinformatics (NG4); Robert Koch Institute; Berlin Germany
| |
Collapse
|
35
|
Tripp HJ, Sutton G, White O, Wortman J, Pati A, Mikhailova N, Ovchinnikova G, Payne SH, Kyrpides NC, Ivanova N. Toward a standard in structural genome annotation for prokaryotes. Stand Genomic Sci 2015; 10:45. [PMID: 26380633 PMCID: PMC4572445 DOI: 10.1186/s40793-015-0034-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 07/01/2015] [Indexed: 11/17/2022] Open
Abstract
Background In an effort to identify the best practice for finding genes in prokaryotic genomes and propose it as a standard for automated annotation pipelines, 1,004,576 peptides were collected from various publicly available resources, and were used as a basis to evaluate various gene-calling methods. The peptides came from 45 bacterial replicons with an average GC content from 31 % to 74 %, biased toward higher GC content genomes. Automated, manual, and semi-manual methods were used to tally errors in three widely used gene calling methods, as evidenced by peptides mapped outside the boundaries of called genes. Results We found that the consensus set of identical genes predicted by the three methods constitutes only about 70 % of the genes predicted by each individual method (with start and stop required to coincide). Peptide data was useful for evaluating some of the differences between gene callers, but not reliable enough to make the results conclusive, due to limitations inherent in any proteogenomic study. Conclusions A single, unambiguous, unanimous best practice did not emerge from this analysis, since the available proteomics data were not adequate to provide an objective measurement of differences in the accuracy between these methods. However, as a result of this study, software, reference data, and procedures have been better matched among participants, representing a step toward a much-needed standard. In the absence of sufficient amount of exprimental data to achieve a universal standard, our recommendation is that any of these methods can be used by the community, as long as a single method is employed across all datasets to be compared. Electronic supplementary material The online version of this article (doi:10.1186/s40793-015-0034-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H James Tripp
- DOE Joint Genome Institute, Walnut Creek, California USA
| | | | - Owen White
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California USA
| | | | | | | | | | | |
Collapse
|
36
|
Structural and functional characterization of two unusual endonuclease III enzymes from Deinococcus radiodurans. J Struct Biol 2015; 191:87-99. [PMID: 26172070 DOI: 10.1016/j.jsb.2015.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/14/2022]
Abstract
While most bacteria possess a single gene encoding the bifunctional DNA glycosylase Endonuclease III (EndoIII) in their genomes, Deinococcus radiodurans possesses three: DR2438 (DrEndoIII1), DR0289 (DrEndoIII2) and DR0982 (DrEndoIII3). Here we have determined the crystal structures of DrEndoIII1 and an N-terminally truncated form of DrEndoIII3 (DrEndoIII3Δ76). We have also generated a homology model of DrEndoIII2 and measured activity of the three enzymes. All three structures consist of two all α-helical domains, one of which exhibits a [4Fe-4S] cluster and the other a HhH-motif, separated by a DNA binding cleft, similar to previously determined structures of endonuclease III from Escherichia coli and Geobacillus stearothermophilus. However, both DrEndoIII1 and DrEndoIII3 possess an extended HhH motif with extra helical features and an altered electrostatic surface potential. In addition, the DNA binding cleft of DrEndoIII3 seems to be less accessible for DNA interactions, while in DrEndoIII1 it seems to be more open. Analysis of the enzyme activities shows that DrEndoIII2 is most similar to the previously studied enzymes, while DrEndoIII1 seems to be more distant with a weaker activity towards substrate DNA containing either thymine glycol or an abasic site. DrEndoIII3 is the most distantly related enzyme and displays no detectable activity towards these substrates even though the suggested catalytic residues are conserved. Based on a comparative structural analysis, we suggest that the altered surface potential, shape of the substrate-binding pockets and specific amino acid substitutions close to the active site and in the DNA interacting loops may underlie the unexpected differences in activity.
Collapse
|
37
|
Shen H, An M, Zou X, Zhao X, Wang Q, Xing G, Ji J. Evaluation of the accuracy of protein quantification using isotope TMPP-labeled peptides. Proteomics 2015; 15:2903-9. [DOI: 10.1002/pmic.201400495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/12/2015] [Accepted: 04/28/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Hongyan Shen
- State Key Laboratory of Protein and Plant Gene Research; College of Life Sciences; Peking University; Beijing P. R. China
| | - Mingrui An
- State Key Laboratory of Protein and Plant Gene Research; College of Life Sciences; Peking University; Beijing P. R. China
| | - Xiao Zou
- State Key Laboratory of Protein and Plant Gene Research; College of Life Sciences; Peking University; Beijing P. R. China
| | - Xuyang Zhao
- State Key Laboratory of Protein and Plant Gene Research; College of Life Sciences; Peking University; Beijing P. R. China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research; College of Life Sciences; Peking University; Beijing P. R. China
| | - Guowen Xing
- Institute of Organic Chemistry; College of Chemistry; Beijing Normal University; Beijing P. R. China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research; College of Life Sciences; Peking University; Beijing P. R. China
| |
Collapse
|
38
|
Mehboob F, Oosterkamp MJ, Koehorst JJ, Farrakh S, Veuskens T, Plugge CM, Boeren S, de Vos WM, Schraa G, Stams AJM, Schaap PJ. Genome and proteome analysis of Pseudomonas chloritidismutans AW-1 T that grows on n-decane with chlorate or oxygen as electron acceptor. Environ Microbiol 2015; 18:3247-3257. [PMID: 25900248 DOI: 10.1111/1462-2920.12880] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/25/2015] [Accepted: 03/05/2015] [Indexed: 01/15/2023]
Abstract
Growth of Pseudomonas chloritidismutans AW-1T on C7 to C12 n-alkanes with oxygen or chlorate as electron acceptor was studied by genome and proteome analysis. Whole genome shotgun sequencing resulted in a 5 Mbp assembled sequence with a G + C content of 62.5%. The automatic annotation identified 4767 protein-encoding genes and a putative function could be assigned to almost 80% of the predicted proteins. The distinct phylogenetic position of P. chloritidismutans AW-1T within the Pseudomonas stutzeri cluster became clear by comparison of average nucleotide identity values of sequenced genomes. Analysis of the proteome of P. chloritidismutans AW-1T showed the versatility of this bacterium to adapt to aerobic and anaerobic growth conditions with acetate or n-decane as substrates. All enzymes involved in the alkane oxidation pathway were identified. An alkane monooxygenase was detected in n-decane-grown cells, but not in acetate-grown cells. The enzyme was found when grown in the presence of oxygen or chlorate, indicating that under both conditions an oxygenase-mediated pathway is employed for alkane degradation. Proteomic and biochemical data also showed that both chlorate reductase and chlorite dismutase are constitutively present, but most abundant under chlorate-reducing conditions.
Collapse
Affiliation(s)
- Farrakh Mehboob
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Margreet J Oosterkamp
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Sumaira Farrakh
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Teun Veuskens
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, Wageningen, 6703 HA, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Gosse Schraa
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands.,Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands.
| |
Collapse
|
39
|
Abstract
Mycobacteriophages--viruses of mycobacterial hosts--are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages--Corndog, Catdawg, Dylan, Firecracker, and YungJamal--designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange.
Collapse
|
40
|
Niiranen L, Lian K, Johnson KA, Moe E. Crystal structure of the DNA polymerase III β subunit (β-clamp) from the extremophile Deinococcus radiodurans. BMC STRUCTURAL BIOLOGY 2015; 15:5. [PMID: 25886944 PMCID: PMC4350885 DOI: 10.1186/s12900-015-0032-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/13/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Deinococcus radiodurans is an extremely radiation and desiccation resistant bacterium which can tolerate radiation doses up to 5,000 Grays without losing viability. We are studying the role of DNA repair and replication proteins for this unusual phenotype by a structural biology approach. The DNA polymerase III β subunit (β-clamp) acts as a sliding clamp on DNA, promoting the binding and processivity of many DNA-acting proteins, and here we report the crystal structure of D. radiodurans β-clamp (Drβ-clamp) at 2.0 Å resolution. RESULTS The sequence verification process revealed that at the time of the study the gene encoding Drβ-clamp was wrongly annotated in the genome database, encoding a protein of 393 instead of 362 amino acids. The short protein was successfully expressed, purified and used for crystallisation purposes in complex with Cy5-labeled DNA. The structure, which was obtained from blue crystals, shows a typical ring-shaped bacterial β-clamp formed of two monomers, each with three domains of identical topology, but with no visible DNA in electron density. A visualisation of the electrostatic surface potential reveals a highly negatively charged outer surface while the inner surface and the dimer forming interface have a more even charge distribution. CONCLUSIONS The structure of Drβ-clamp was determined to 2.0 Å resolution and shows an evenly distributed electrostatic surface charge on the DNA interacting side. We hypothesise that this charge distribution may facilitate efficient movement on encircled DNA and help ensure efficient DNA metabolism in D. radiodurans upon exposure to high doses of ionizing irradiation or desiccation.
Collapse
Affiliation(s)
- Laila Niiranen
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UIT - the Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Kjersti Lian
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UIT - the Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Kenneth A Johnson
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UIT - the Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Elin Moe
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UIT - the Arctic University of Norway, N-9037, Tromsø, Norway. .,The Macromolecular Crystallography Unit, Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal.
| |
Collapse
|
41
|
de Groot A, Roche D, Fernandez B, Ludanyi M, Cruveiller S, Pignol D, Vallenet D, Armengaud J, Blanchard L. RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus deserti. Genome Biol Evol 2015; 6:932-48. [PMID: 24723731 PMCID: PMC4007540 DOI: 10.1093/gbe/evu069] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Deinococcus deserti is a desiccation- and radiation-tolerant desert bacterium. Differential RNA sequencing (RNA-seq) was performed to explore the specificities of its transcriptome. Strikingly, for 1,174 (60%) mRNAs, the transcription start site was found exactly at (916 cases, 47%) or very close to the translation initiation codon AUG or GUG. Such proportion of leaderless mRNAs, which may resemble ancestral mRNAs, is unprecedented for a bacterial species. Proteomics showed that leaderless mRNAs are efficiently translated in D. deserti. Interestingly, we also found 173 additional transcripts with a 5′-AUG or 5′-GUG that would make them competent for ribosome binding and translation into novel small polypeptides. Fourteen of these are predicted to be leader peptides involved in transcription attenuation. Another 30 correlated with new gene predictions and/or showed conservation with annotated and nonannotated genes in other Deinococcus species, and five of these novel polypeptides were indeed detected by mass spectrometry. The data also allowed reannotation of the start codon position of 257 genes, including several DNA repair genes. Moreover, several novel highly radiation-induced genes were found, and their potential roles are discussed. On the basis of our RNA-seq and proteogenomics data, we propose that translation of many of the novel leaderless transcripts, which may have resulted from single-nucleotide changes and maintained by selective pressure, provides a new explanation for the generation of a cellular pool of small peptides important for protection of proteins against oxidation and thus for radiation/desiccation tolerance and adaptation to harsh environmental conditions.
Collapse
Affiliation(s)
- Arjan de Groot
- CEA, DSV, IBEB, Lab Bioénergétique Cellulaire, Saint-Paul-lez-Durance, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang YS, Fernandez B, Lagorce A, Aloin V, De Guillen KM, Boyer JB, Dedieu A, Confalonieri F, Armengaud J, Roumestand C. Prioritizing targets for structural biology through the lens of proteomics: the archaeal protein TGAM_1934 from Thermococcus gammatolerans. Proteomics 2015; 15:114-23. [PMID: 25359407 DOI: 10.1002/pmic.201300535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 10/01/2014] [Accepted: 10/24/2014] [Indexed: 11/09/2022]
Abstract
ORFans are hypothetical proteins lacking any significant sequence similarity with other proteins. Here, we highlighted by quantitative proteomics the TGAM_1934 ORFan from the hyperradioresistant Thermococcus gammatolerans archaeon as one of the most abundant hypothetical proteins. This protein has been selected as a priority target for structure determination on the basis of its abundance in three cellular conditions. Its solution structure has been determined using multidimensional heteronuclear NMR spectroscopy. TGAM_1934 displays an original fold, although sharing some similarities with the 3D structure of the bacterial ortholog of frataxin, CyaY, a protein conserved in bacteria and eukaryotes and involved in iron-sulfur cluster biogenesis. These results highlight the potential of structural proteomics in prioritizing ORFan targets for structure determination based on quantitative proteomics data. The proteomic data and structure coordinates have been deposited to the ProteomeXchange with identifier PXD000402 (http://proteomecentral.proteomexchange.org/dataset/PXD000402) and Protein Data Bank under the accession number 2mcf, respectively.
Collapse
Affiliation(s)
- Yin-Shan Yang
- Centre de Biochimie Structurale, Universités de Montpellier, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Guo M, Weng G, Yin D, Hu X, Han J, Du Y, Liu Y, Tang D, Pan Y. Identification of the over alkylation sites of a protein by IAM in MALDI-TOF/TOF tandem mass spectrometry. RSC Adv 2015. [DOI: 10.1039/c5ra18595e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Overalkylation often appears during the proteolytic digestion process when using iodoacetamide (IAM) to protect the produced side chain thiol of Cys from disulfide bonds.
Collapse
Affiliation(s)
- Mengzhe Guo
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
- Key Laboratory of New Drug Research and Clinical Pharmacy
| | - Guofeng Weng
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Dengyang Yin
- Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
- Department of Pharmaceutical Analysis
| | - Xunxiu Hu
- Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
- Department of Pharmaceutical Analysis
| | - Jie Han
- Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
- Department of Pharmaceutical Analysis
| | - Yan Du
- Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
- Department of Pharmaceutical Analysis
| | - Yaqin Liu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Daoquan Tang
- Key Laboratory of New Drug Research and Clinical Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
- Department of Pharmaceutical Analysis
| | - Yuanjiang Pan
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
44
|
Kucharova V, Wiker HG. Proteogenomics in microbiology: taking the right turn at the junction of genomics and proteomics. Proteomics 2014; 14:2360-675. [PMID: 25263021 DOI: 10.1002/pmic.201400168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/18/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022]
Abstract
High-accuracy and high-throughput proteomic methods have completely changed the way we can identify and characterize proteins. MS-based proteomics can now provide a unique supplement to genomic data and add a new level of information to the interpretation of genomic sequences. Proteomics-driven genome annotation has become especially relevant in microbiology where genomes are sequenced on a daily basis and limitations of an in silico driven annotation process are well recognized. In this review paper, we outline different strategies on how one can design a proteogenomic experiment, for example on genome-sequenced (synonymous proteogenomics) versus unsequenced organisms (ortho-proteogenomics) or with the aid of other "omic" data such as RNA-seq. We touch upon many challenges that are encountered during a typical proteogenomic study, mostly concerning bioinformatics methods and downstream data analysis, but also related to creation and use of sequence databases. A large list of proteogenomic case studies of different microorganisms is provided to illustrate the mapping of MS/MS-derived peptide spectra to genomic DNA sequences. These investigations have led to accurate determination of translational initiation sites, pointed out eventual read-throughs or programmed frameshifts, detected signal peptide processing or other protein maturation events, removed questionable annotation assignments, and provided evidence for predicted hypothetical proteins.
Collapse
Affiliation(s)
- Veronika Kucharova
- Department of Clinical Science, The Gade Research Group for Infection and Immunity, University of Bergen, Norway
| | | |
Collapse
|
45
|
Hartmann EM, Armengaud J. N-terminomics and proteogenomics, getting off to a good start. Proteomics 2014; 14:2637-46. [PMID: 25116052 DOI: 10.1002/pmic.201400157] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 04/23/2014] [Accepted: 08/08/2014] [Indexed: 12/11/2022]
Abstract
Proteogenomics consists of the annotation or reannotation of protein-coding nucleic acid sequences based on the empirical observation of their gene products. While functional annotation of predicted genes is increasingly feasible given the multiplicity of genomes available for many branches of the tree of life, the accurate annotation of the translational start sites is still a point of contention. Extensive coverage of the proteome, including specifically the N-termini, is now possible, thanks to next-generation mass spectrometers able to record data from thousands of proteins at once. Efforts to increase the peptide coverage of protein sequences and to detect low abundance proteins are important to make proteomic and proteogenomic studies more comprehensive. In this review, we present the panoply of N-terminus-oriented strategies that have been developed over the last decade.
Collapse
Affiliation(s)
- Erica M Hartmann
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | | |
Collapse
|
46
|
Pawar H, Renuse S, Khobragade SN, Chavan S, Sathe G, Kumar P, Mahale KN, Gore K, Kulkarni A, Dixit T, Raju R, Prasad TSK, Harsha HC, Patole MS, Pandey A. Neglected Tropical Diseases and Omics Science: Proteogenomics Analysis of the Promastigote Stage ofLeishmania majorParasite. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:499-512. [DOI: 10.1089/omi.2013.0159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Harsh Pawar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Department of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | | | - Sandip Chavan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal University, Madhav Nagar, Manipal, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal University, Madhav Nagar, Manipal, India
| | - Praveen Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | | | | | - Tanwi Dixit
- National Centre for Cell Sciences, Pune, India
| | - Rajesh Raju
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | - H. C. Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
47
|
Wang X, Zhang B. Integrating genomic, transcriptomic, and interactome data to improve Peptide and protein identification in shotgun proteomics. J Proteome Res 2014; 13:2715-23. [PMID: 24792918 PMCID: PMC4059263 DOI: 10.1021/pr500194t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Mass spectrometry (MS)-based shotgun
proteomics is an effective
technology for global proteome profiling. The ultimate goal is to
assign tandem MS spectra to peptides and subsequently infer proteins
and their abundance. In addition to database searching and protein
assembly algorithms, computational approaches have been developed
to integrate genomic, transcriptomic, and interactome information
to improve peptide and protein identification. Earlier efforts focus
primarily on making databases more comprehensive using publicly available
genomic and transcriptomic data. More recently, with the increasing
affordability of the Next Generation Sequencing (NGS) technologies,
personalized protein databases derived from sample-specific genomic
and transcriptomic data have emerged as an attractive strategy. In
addition, incorporating interactome data not only improves protein
identification but also puts identified proteins into their functional
context and thus facilitates data interpretation. In this paper, we
survey the major integrative bioinformatics approaches that have been
developed during the past decade and discuss their merits and demerits.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Biomedical Informatics, ‡Vanderbilt-Ingram Cancer Center, and §Department of Cancer Biology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | | |
Collapse
|
48
|
Durighello E, Christie-Oleza JA, Armengaud J. Assessing the exoproteome of marine bacteria, lesson from a RTX-toxin abundantly secreted by Phaeobacter strain DSM 17395. PLoS One 2014; 9:e89691. [PMID: 24586966 PMCID: PMC3933643 DOI: 10.1371/journal.pone.0089691] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/21/2014] [Indexed: 11/24/2022] Open
Abstract
Bacteria from the Roseobacter clade are abundant in surface marine ecosystems as over 10% of bacterial cells in the open ocean and 20% in coastal waters belong to this group. In order to document how these marine bacteria interact with their environment, we analyzed the exoproteome of Phaeobacter strain DSM 17395. We grew the strain in marine medium, collected the exoproteome and catalogued its content with high-throughput nanoLC-MS/MS shotgun proteomics. The major component represented 60% of the total protein content but was refractory to either classical proteomic identification or proteogenomics. We de novo sequenced this abundant protein with high-resolution tandem mass spectra which turned out being the 53 kDa RTX-toxin ZP_02147451. It comprised a peptidase M10 serralysin domain. We explained its recalcitrance to trypsin proteolysis and proteomic identification by its unusual low number of basic residues. We found this is a conserved trait in RTX-toxins from Roseobacter strains which probably explains their persistence in the harsh conditions around bacteria. Comprehensive analysis of exoproteomes from environmental bacteria should take into account this proteolytic recalcitrance.
Collapse
Affiliation(s)
- Emie Durighello
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | | | - Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
- * E-mail:
| |
Collapse
|
49
|
Bland C, Hartmann EM, Christie-Oleza JA, Fernandez B, Armengaud J. N-Terminal-oriented proteogenomics of the marine bacterium roseobacter denitrificans Och114 using N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) labeling and diagonal chromatography. Mol Cell Proteomics 2014; 13:1369-81. [PMID: 24536027 DOI: 10.1074/mcp.o113.032854] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Given the ease of whole genome sequencing with next-generation sequencers, structural and functional gene annotation is now purely based on automated prediction. However, errors in gene structure are frequent, the correct determination of start codons being one of the main concerns. Here, we combine protein N termini derivatization using (N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP Ac-OSu) as a labeling reagent with the COmbined FRActional DIagonal Chromatography (COFRADIC) sorting method to enrich labeled N-terminal peptides for mass spectrometry detection. Protein digestion was performed in parallel with three proteases to obtain a reliable automatic validation of protein N termini. The analysis of these N-terminal enriched fractions by high-resolution tandem mass spectrometry allowed the annotation refinement of 534 proteins of the model marine bacterium Roseobacter denitrificans OCh114. This study is especially efficient regarding mass spectrometry analytical time. From the 534 validated N termini, 480 confirmed existing gene annotations, 41 highlighted erroneous start codon annotations, five revealed totally new mis-annotated genes; the mass spectrometry data also suggested the existence of multiple start sites for eight different genes, a result that challenges the current view of protein translation initiation. Finally, we identified several proteins for which classical genome homology-driven annotation was inconsistent, questioning the validity of automatic annotation pipelines and emphasizing the need for complementary proteomic data. All data have been deposited to the ProteomeXchange with identifier PXD000337.
Collapse
Affiliation(s)
- Céline Bland
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | | | | | | | | |
Collapse
|
50
|
Nirujogi RS, Pawar H, Renuse S, Kumar P, Chavan S, Sathe G, Sharma J, Khobragade S, Pande J, Modak B, Prasad TSK, Harsha HC, Patole MS, Pandey A. Moving from unsequenced to sequenced genome: reanalysis of the proteome of Leishmania donovani. J Proteomics 2014; 97:48-61. [PMID: 23665000 PMCID: PMC4710096 DOI: 10.1016/j.jprot.2013.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/02/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
The kinetoplastid protozoan parasite, Leishmania donovani, is the causative agent of kala azar or visceral leishmaniasis. Kala azar is a severe form of leishmaniasis that is fatal in the majority of untreated cases. Studies on proteomic analysis of L. donovani thus far have been carried out using homology-based identification based on related Leishmania species (L. infantum, L. major and L. braziliensis) whose genomes have been sequenced. Recently, the genome of L. donovani was fully sequenced and the data became publicly available. We took advantage of the availability of its genomic sequence to carry out a more accurate proteogenomic analysis of L. donovani proteome using our previously generated dataset. This resulted in identification of 17,504 unique peptides upon database-dependent search against the annotated proteins in L. donovani. These peptides were assigned to 3999 unique proteins in L. donovani. 2296 proteins were identified in both the life stages of L. donovani, while 613 and 1090 proteins were identified only from amastigote and promastigote stages, respectively. The proteomic data was also searched against six-frame translated L. donovani genome, which led to 255 genome search-specific peptides (GSSPs) resulting in identification of 20 novel genes and correction of 40 existing gene models in L. donovani. BIOLOGICAL SIGNIFICANCE Leishmania donovani genome sequencing was recently completed, which permitted us to use a proteogenomic approach to map its proteome and to carry out annotation of it genome. This resulted in mapping of 50% (3999 proteins) of L. donovani proteome. Our study identified 20 novel genes previously not predicted from the L. donovani genome in addition to correcting annotations of 40 existing gene models. The identified proteins may help in better understanding of stage-specific protein expression profiles in L. donovani and to identify novel stage-specific drug targets in L. donovani which could be used in the treatment of leishmaniasis. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Raja Sekhar Nirujogi
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Harsh Pawar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Rajiv Gandhi University of Health Sciences, Bangalore 560041, India
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Department of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Praveen Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Sandip Chavan
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Manipal University, Madhav Nagar, Manipal 576104, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Manipal University, Madhav Nagar, Manipal 576104, India
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Manipal University, Madhav Nagar, Manipal 576104, India
| | | | | | - Bhakti Modak
- National Centre for Cell Sciences, Pune 411007, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry 605014, India; Manipal University, Madhav Nagar, Manipal 576104, India
| | - H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | | | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA.
| |
Collapse
|