1
|
Misal SA, Ovhal SD, Li S, Karty JA, Tang H, Radivojac P, Reilly JP. Non-Specific Signal Peptidase Processing of Extracellular Proteins in Staphylococcus aureus N315. Proteomes 2023; 11:proteomes11010008. [PMID: 36810564 PMCID: PMC9944065 DOI: 10.3390/proteomes11010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Staphylococcus aureus is one of the major community-acquired human pathogens, with growing multidrug-resistance, leading to a major threat of more prevalent infections to humans. A variety of virulence factors and toxic proteins are secreted during infection via the general secretory (Sec) pathway, which requires an N-terminal signal peptide to be cleaved from the N-terminus of the protein. This N-terminal signal peptide is recognized and processed by a type I signal peptidase (SPase). SPase-mediated signal peptide processing is the crucial step in the pathogenicity of S. aureus. In the present study, the SPase-mediated N-terminal protein processing and their cleavage specificity were evaluated using a combination of N-terminal amidination bottom-up and top-down proteomics-based mass spectrometry approaches. Secretory proteins were found to be cleaved by SPase, specifically and non-specifically, on both sides of the normal SPase cleavage site. The non-specific cleavages occur at the relatively smaller residues that are present next to the -1, +1, and +2 locations from the original SPase cleavage site to a lesser extent. Additional random cleavages at the middle and near the C-terminus of some protein sequences were also observed. This additional processing could be a part of some stress conditions and unknown signal peptidase mechanisms.
Collapse
Affiliation(s)
- Santosh A. Misal
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
- Correspondence: ; Tel.: +1-301-761-7277
| | - Shital D. Ovhal
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Sujun Li
- Luddy School of Informatics, Computing, and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN 47408, USA
| | - Jonathan A. Karty
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Haixu Tang
- Luddy School of Informatics, Computing, and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN 47408, USA
| | - Predrag Radivojac
- Luddy School of Informatics, Computing, and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN 47408, USA
- Khoury College of Computer Sciences, Northeastern University, 177 Huntington Avenue, Boston, MA 02115, USA
| | - James P. Reilly
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Khan MA, Amin A, Farid A, Ullah A, Waris A, Shinwari K, Hussain Y, Alsharif KF, Alzahrani KJ, Khan H. Recent Advances in Genomics-Based Approaches for the Development of Intracellular Bacterial Pathogen Vaccines. Pharmaceutics 2022; 15:pharmaceutics15010152. [PMID: 36678781 PMCID: PMC9863128 DOI: 10.3390/pharmaceutics15010152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Infectious diseases continue to be a leading cause of morbidity and mortality worldwide. The majority of infectious diseases are caused by intracellular pathogenic bacteria (IPB). Historically, conventional vaccination drives have helped control the pathogenesis of intracellular bacteria and the emergence of antimicrobial resistance, saving millions of lives. However, in light of various limitations, many diseases that involve IPB still do not have adequate vaccines. In response to increasing demand for novel vaccine development strategies, a new area of vaccine research emerged following the advent of genomics technology, which changed the paradigm of vaccine development by utilizing the complete genomic data of microorganisms against them. It became possible to identify genes related to disease virulence, genetic patterns linked to disease virulence, as well as the genetic components that supported immunity and favorable vaccine responses. Complete genomic databases, and advancements in transcriptomics, metabolomics, structural genomics, proteomics, immunomics, pan-genomics, synthetic genomics, and population biology have allowed researchers to identify potential vaccine candidates and predict their effects in patients. New vaccines have been created against diseases for which previously there were no vaccines available, and existing vaccines have been improved. This review highlights the key issues and explores the evolution of vaccines. The increasing volume of IPB genomic data, and their application in novel genome-based techniques for vaccine development, were also examined, along with their characteristics, and the opportunities and obstacles involved. Critically, the application of genomics technology has helped researchers rapidly select and evaluate candidate antigens. Novel vaccines capable of addressing the limitations associated with conventional vaccines have been developed and pressing healthcare issues are being addressed.
Collapse
Affiliation(s)
- Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- Correspondence: (M.A.K.); or (H.K.)
| | - Aftab Amin
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Awais Farid
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China
| | - Amin Ullah
- Molecular Virology Laboratory, Department of Microbiology and Biotechnology, Abasyn University, Peshawar 25000, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Khyber Shinwari
- Institute of Chemical Engineering, Department Immuno-Chemistry, Ural Federal University, Yekaterinbiurg 620002, Russia
| | - Yaseen Hussain
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (M.A.K.); or (H.K.)
| |
Collapse
|
3
|
Characterization of the Secreted Acid Phosphatase SapS Reveals a Novel Virulence Factor of Staphylococcus aureus That Contributes to Survival and Virulence in Mice. Int J Mol Sci 2022; 23:ijms232214031. [PMID: 36430506 PMCID: PMC9692844 DOI: 10.3390/ijms232214031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus possesses a large arsenal of immune-modulating factors, enabling it to bypass the immune system's response. Here, we demonstrate that the acid phosphatase SapS is secreted during macrophage infection and promotes its intracellular survival in this type of immune cell. In animal models, the SA564 sapS mutant demonstrated a significantly lower bacterial burden in liver and renal tissues of mice at four days post infection in comparison to the wild type, along with lower pathogenicity in a zebrafish infection model. The SA564 sapS mutant elicits a lower inflammatory response in mice than the wild-type strain, while S. aureus cells harbouring a functional sapS induce a chemokine response that favours the recruitment of neutrophils to the infection site. Our in vitro and quantitative transcript analysis show that SapS has an effect on S. aureus capacity to adapt to oxidative stress during growth. SapS is also involved in S. aureus biofilm formation. Thus, this study shows for the first time that SapS plays a significant role during infection, most likely through inhibiting a variety of the host's defence mechanisms.
Collapse
|
4
|
Zheng X, Ma SX, St. John A, Torres VJ. The Major Autolysin Atl Regulates the Virulence of Staphylococcus aureus by Controlling the Sorting of LukAB. Infect Immun 2022; 90:e0005622. [PMID: 35258336 PMCID: PMC9022505 DOI: 10.1128/iai.00056-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/14/2023] Open
Abstract
Infections caused by the Gram-positive bacterium Staphylococcus aureus remain a significant health threat globally. The production of bicomponent pore-forming leukocidins plays an important role in S. aureus pathogenesis. Transcriptionally, these toxins are primarily regulated by the Sae and Agr regulatory systems. However, the posttranslational regulation of these toxins is largely unexplored. In particular, one of the leukocidins, LukAB, has been shown to be both secreted into the extracellular milieu and associated with the bacterial cell envelope. Here, we report that a major cell wall hydrolase, autolysin (Atl), controls the sorting of LukAB from the cell envelope to the extracellular milieu, an effect independent of transcriptional regulation. By influencing the sorting of LukAB, Atl modulates S. aureus cytotoxicity toward primary human neutrophils. Mechanistically, we found that the reduction in peptidoglycan cleavage and increased LukAB secretion in the atl mutant can be reversed through the supplementation of exogenous mutanolysin. Altogether, our study revealed that the cell wall hydrolase activity of Atl and the cleavage of peptidoglycan play an important role in controlling the sorting of S. aureus toxins during secretion.
Collapse
Affiliation(s)
- Xuhui Zheng
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sheya Xiao Ma
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Amelia St. John
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
5
|
Multiplex Detection of 24 Staphylococcal Enterotoxins in Culture Supernatant Using Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Toxins (Basel) 2022; 14:toxins14040249. [PMID: 35448858 PMCID: PMC9031063 DOI: 10.3390/toxins14040249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcal food poisoning outbreaks are caused by the ingestion of food contaminated with staphylococcal enterotoxins (SEs). Among the 27 SEs described in the literature to date, only a few can be detected using immuno-enzymatic-based methods that are strongly dependent on the availability of antibodies. Liquid chromatography, coupled to high-resolution mass spectrometry (LC-HRMS), has, therefore, been put forward as a relevant complementary method, but only for the detection of a limited number of enterotoxins. In this work, LC-HRMS was developed for the detection and quantification of 24 SEs. A database of 93 specific signature peptides and LC-HRMS parameters was optimized using sequences from 24 SEs, including their 162 variants. A label-free quantification protocol was established to overcome the absence of calibration standards. The LC-HRMS method showed high performance in terms of specificity, sensitivity, and accuracy when applied to 49 enterotoxin-producing strains. SE concentrations measured depended on both SE type and the coagulase-positive staphylococci (CPS) strain. This study indicates that LC-MS is a relevant alternative and complementary tool to ELISA methods. The advantages of LC-MS clearly lie in both the multiplex analysis of a large number of SEs, and the automated analysis of a high number of samples.
Collapse
|
6
|
The cell envelope of Staphylococcus aureus selectively controls the sorting of virulence factors. Nat Commun 2021; 12:6193. [PMID: 34702812 PMCID: PMC8548510 DOI: 10.1038/s41467-021-26517-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 10/05/2021] [Indexed: 11/08/2022] Open
Abstract
Staphylococcus aureus bi-component pore-forming leukocidins are secreted toxins that directly target and lyse immune cells. Intriguingly, one of the leukocidins, Leukocidin AB (LukAB), is found associated with the bacterial cell envelope in addition to secreted into the extracellular milieu. Here, we report that retention of LukAB on the bacterial cells provides S. aureus with a pre-synthesized active toxin that kills immune cells. On the bacteria, LukAB is distributed as discrete foci in two distinct compartments: membrane-proximal and surface-exposed. Through genetic screens, we show that a membrane lipid, lysyl-phosphatidylglycerol (LPG), and lipoteichoic acid (LTA) contribute to LukAB deposition and release. Furthermore, by studying non-covalently surface-bound proteins we discovered that the sorting of additional exoproteins, such as IsaB, Hel, ScaH, and Geh, are also controlled by LPG and LTA. Collectively, our study reveals a multistep secretion system that controls exoprotein storage and protein translocation across the S. aureus cell wall.
Collapse
|
7
|
Identification of CD4 + T cell epitopes from Staphylococcus aureus secretome using immunoinformatic prediction and molecular docking. BIOTECHNOLOGIA 2021; 102:43-54. [PMID: 36605712 PMCID: PMC9642919 DOI: 10.5114/bta.2021.103761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/25/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023] Open
Abstract
One major reason for the lack of clinical success of Staphylococcus aureus vaccine candidates is the inability of the antigens to develop a CD4+ T cell-mediated immune response. Hence, it is important to identify CD4+ T cell antigens from S. aureus. CD4+ T cells are activated following the presentation of epitopes derived from exogenous proteins on HLA class II molecules. Fifty-nine secretory proteins of S. aureus were analyzed computationally for the presence of HLA class II binding peptides. Fifteen-mer peptides were generated, and their binding to 26 HLA class II alleles was predicted. The structural feasibility of the peptides binding to HLA-II was studied using molecular docking. Of the 16,724 peptides generated, 6991 (41.8%) were predicted to bind to any one of the alleles with an IC50 value below 50 nM. Comparative sequence analysis revealed that only 545 of the strong binding peptides are non-self in the human system. Approximately 50% of the binding peptides were monoallele-specific. Moreover, approximately 95% of the predicted strong binding non-self peptides interacted with the binding groove of at least one HLA class II molecule with a glide score better than -10 kcal/mol. On the basis of the analysis of the strength of binding, non-self presentation in the human host, propensity to bind to a higher number of alleles, and energetically favorable interactions with HLA molecules, a set of 11 CD4+ T cell epitopes that can be used as vaccine candidates was identified.
Collapse
|
8
|
Sharma A, Sanduja P, Anand A, Mahajan P, Guzman CA, Yadav P, Awasthi A, Hanski E, Dua M, Johri AK. Advanced strategies for development of vaccines against human bacterial pathogens. World J Microbiol Biotechnol 2021; 37:67. [PMID: 33748926 PMCID: PMC7982316 DOI: 10.1007/s11274-021-03021-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Infectious diseases are one of the main grounds of death and disabilities in human beings globally. Lack of effective treatment and immunization for many deadly infectious diseases and emerging drug resistance in pathogens underlines the need to either develop new vaccines or sufficiently improve the effectiveness of currently available drugs and vaccines. In this review, we discuss the application of advanced tools like bioinformatics, genomics, proteomics and associated techniques for a rational vaccine design.
Collapse
Affiliation(s)
- Abhinay Sharma
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Pooja Sanduja
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Carlos A Guzman
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendragarh, Harayana, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad-Gurgaon Expressway, PO box #04, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121001, India
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
9
|
Forrest S, Welch M. Arming the troops: Post-translational modification of extracellular bacterial proteins. Sci Prog 2020; 103:36850420964317. [PMID: 33148128 PMCID: PMC10450907 DOI: 10.1177/0036850420964317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein secretion is almost universally employed by bacteria. Some proteins are retained on the cell surface, whereas others are released into the extracellular milieu, often playing a key role in virulence. In this review, we discuss the diverse types and potential functions of post-translational modifications (PTMs) occurring to extracellular bacterial proteins.
Collapse
Affiliation(s)
- Suzanne Forrest
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Voichek M, Maaß S, Kroniger T, Becher D, Sorek R. Peptide-based quorum sensing systems in Paenibacillus polymyxa. Life Sci Alliance 2020; 3:3/10/e202000847. [PMID: 32764104 PMCID: PMC7425212 DOI: 10.26508/lsa.202000847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/26/2022] Open
Abstract
Discovery of conserved communication systems in the agriculturally important Paenibacillus bacteria. These systems are widespread, and some species encode more than 25 different peptide-receptor pairs. Paenibacillus polymyxa is an agriculturally important plant growth–promoting rhizobacterium. Many Paenibacillus species are known to be engaged in complex bacteria–bacteria and bacteria–host interactions, which in other species were shown to necessitate quorum sensing communication. However, to date, no quorum sensing systems have been described in Paenibacillus. Here, we show that the type strain P. polymyxa ATCC 842 encodes at least 16 peptide-based communication systems. Each of these systems is comprised of a pro-peptide that is secreted to the growth medium and processed to generate a mature short peptide. Each peptide has a cognate intracellular receptor of the RRNPP family, and we show that external addition of P. polymyxa communication peptides leads to reprogramming of the transcriptional response. We found that these quorum sensing systems are conserved across hundreds of species belonging to the Paenibacillaceae family, with some species encoding more than 25 different peptide-receptor pairs, representing a record number of quorum sensing systems encoded in a single genome.
Collapse
Affiliation(s)
- Maya Voichek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Tobias Kroniger
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
A Kayvirus Distant Homolog of Staphylococcal Virulence Determinants and VISA Biomarker Is a Phage Lytic Enzyme. Viruses 2020; 12:v12030292. [PMID: 32156046 PMCID: PMC7150955 DOI: 10.3390/v12030292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023] Open
Abstract
Staphylococcal bacteriophages of the Kayvirus genus are candidates for therapeutic applications. One of their proteins, Tgl, is slightly similar to two staphylococcal virulence factors, secreted autolysins of lytic transglycosylase motifs IsaA and SceD. We show that Tgl is a lytic enzyme secreted by the bacterial transport system and localizes to cell peripheries like IsaA and SceD. It causes lysis of E. coli cells expressing the cloned tgl gene, but could be overproduced when depleted of signal peptide. S. aureus cells producing Tgl lysed in the presence of nisin, which mimics the action of phage holin. In vitro, Tgl protein was able to destroy S. aureus cell walls. The production of Tgl decreased S. aureus tolerance to vancomycin, unlike the production of SceD, which is associated with decreased sensitivity to vancomycin. In the genomes of kayviruses, the tgl gene is located a few genes away from the lysK gene, encoding the major endolysin. While lysK is a late phage gene, tgl can be transcribed by a host RNA polymerase, like phage early genes. Taken together, our data indicate that tgl belongs to the kayvirus lytic module and encodes an additional endolysin that can act in concert with LysK in cell lysis.
Collapse
|
12
|
Das R, D`souza N, Choubey SK, Murlidharan S, Kurpad AV, Mandal AK. Analysis of Extracellular Proteome of Staphylococcus aureus: A Mass Spectrometry based Proteomics Method of Exotoxin Characterisation. CURR PROTEOMICS 2020. [DOI: 10.2174/1570164616666190204160627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Staphylococcus aureus (S. aureus), an important pathogen, causes a wide
range of infections in human starting from food poisoning to septicemia. It affects the host cells with
various exotoxins, known as virulence factors, which are synthesized in growth phase-dependent manner
of the bacteria. S. aureus has been reported to become resistant to antibiotics rapidly. Among two
common clinical isolates, Methicillin-sensitive S. aureus (MSSA) and Methicillin-resistant S. aureus
(MRSA), MRSA pose major problems across hospitals around the world.
Objective:
The objective of the present study was to profile the exoproteins of Methicillin-sensitive
S. aureus (ATCC 25293) and subsequently to establish a proteomics-based method of characterization
of S. aureus that is crucial in treating hospital-acquired infections.
Methods:
We used two-dimensional nanoLC/ESI-MS based proteomic platform to characterize and
quantify the exoproteins isolated from Methicillin-sensitive S. aureus (ATCC 25293) strain.
Results:
A total of 69 proteins were identified from extracellular proteome pool of ATCC 25293 strain
that includes 18 extracellular proteins, 40 cytoplasmic proteins, 2 membrane proteins, 3 cell wall proteins
and 6 uncharacterized proteins.
Conclusion:
We propose that this mass spectrometry-based proteomics method of characterization of
exoproteins might be useful to identify S. aureus strains that are resistant to antibiotics.
Collapse
Affiliation(s)
- Rajdeep Das
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Nisha D`souza
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Surya K. Choubey
- Department of Urology and Renal Transplantation, St. John’s Medical College, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Sethumadhavan Murlidharan
- Department of Microbiology, St. John’s Medical College, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Anura V. Kurpad
- Department of Physiology, St. John’s Medical College, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Amit K. Mandal
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| |
Collapse
|
13
|
Bufe B, Teuchert Y, Schmid A, Pyrski M, Pérez-Gómez A, Eisenbeis J, Timm T, Ishii T, Lochnit G, Bischoff M, Mombaerts P, Leinders-Zufall T, Zufall F. Bacterial MgrB peptide activates chemoreceptor Fpr3 in mouse accessory olfactory system and drives avoidance behaviour. Nat Commun 2019; 10:4889. [PMID: 31653840 PMCID: PMC6814738 DOI: 10.1038/s41467-019-12842-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022] Open
Abstract
Innate immune chemoreceptors of the formyl peptide receptor (Fpr) family are expressed by vomeronasal sensory neurons (VSNs) in the accessory olfactory system. Their biological function and coding mechanisms remain unknown. We show that mouse Fpr3 (Fpr-rs1) recognizes the core peptide motif f-MKKFRW that is predominantly present in the signal sequence of the bacterial protein MgrB, a highly conserved regulator of virulence and antibiotic resistance in Enterobacteriaceae. MgrB peptide can be produced and secreted by bacteria, and is selectively recognized by a subset of VSNs. Exposure to the peptide also stimulates VSNs in freely behaving mice and drives innate avoidance. Our data shows that Fpr3 is required for neuronal detection and avoidance of peptides derived from a conserved master virulence regulator of enteric bacteria.
Collapse
Affiliation(s)
- Bernd Bufe
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany.,Molecular Immunology Section, Faculty of Computer Science and Microsystems Engineering, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibrücken, Germany
| | - Yannick Teuchert
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany
| | - Andreas Schmid
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany
| | - Anabel Pérez-Gómez
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany.,Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Janina Eisenbeis
- Institute for Medical Microbiology and Hygiene, Saarland University, 66424, Homburg, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Tomohiro Ishii
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438, Frankfurt, Germany.,Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, 66424, Homburg, Germany
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438, Frankfurt, Germany
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany.
| |
Collapse
|
14
|
Misal SA, Li S, Tang H, Radivojac P, Reilly JP. Identification of N-terminal protein processing sites by chemical labeling mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1015-1023. [PMID: 30884002 PMCID: PMC6522274 DOI: 10.1002/rcm.8435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Proteins undergo post-translational modifications and proteolytic processing that can affect their biological function. Processing often involves the loss of single residues. Cleavage of signal peptides from the N-terminus is commonly associated with translocation. Recent reports have suggested that other processing sites also exist. METHODS The secreted proteins from S. aureus N315 were precipitated with trichloroacetic acid (TCA) and amidinated with S-methyl thioacetimidate (SMTA). Amidinated proteins were digested with trypsin and analyzed with a high-resolution orbitrap mass spectrometer. RESULTS Sixteen examples of Staphylococcus aureus secretory proteins that lose an N-terminal signal peptide during their export were identified using this amidination approach. The N-termini of proteins with and without methionine were identified. Unanticipated protein cleavages due to sortase and an unknown protease were also uncovered. CONCLUSIONS A simple N-terminal amidination based mass spectrometry approach is described that facilitates identification of the N-terminus of a mature protein and the discovery of unexpected processing sites.
Collapse
Affiliation(s)
- Santosh A Misal
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Sujun Li
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, USA
| | - Haixu Tang
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, USA
| | - Predrag Radivojac
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, USA
| | - James P Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
15
|
Intact Staphylococcus Enterotoxin SEB from Culture Supernatant Detected by MALDI-TOF Mass Spectrometry. Toxins (Basel) 2019; 11:toxins11020101. [PMID: 30744109 PMCID: PMC6409910 DOI: 10.3390/toxins11020101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/30/2022] Open
Abstract
Routine identification of pathogens by MALDI-TOF MS (matrix-assisted laser desorption ionisation time-of-flight mass spectrometry) is based on the fingerprint of intracellular proteins. This work evaluated the use of MALDI-TOF MS for the identification of extracellular pathogen factors. A Staphylococcus aureus isolate from a food contaminant was exponentially grown in liquid cultures. Secreted proteins were collected using methanol⁻ chloroform precipitation and analysed by MALDI-TOF MS. A main peak m/z 28,250 was demonstrated, which was identified as S.aureus enterotoxin type B (SEB) by using the pure authentic SEB reference of 28.2 kDa and by amino acid sequence analysis. SEB was also detected in this intact form following pasteurization and cooking treatments. Further application of the elaborated MALDI-TOF MS protocol resulted in the detection of SEA at m/z 27,032 and SEC at m/z 27,629. In conclusion, a simple sample preparation from S.aureus cultures and an easy-to-perform identification of pathogen factors SE in intact form represents a promising next-generation application of MALDI-TOF MS.
Collapse
|
16
|
Majelan PA, Mahdavi M, Yazdi MH, Salimi E, Pourmand MR. Recombinant Staphylococcal Antigen-F (r-ScaF), a novel vaccine candidate against methicillin resistant Staphylococcus aureus infection: Potency and efficacy studies. Microb Pathog 2019; 127:159-165. [DOI: 10.1016/j.micpath.2018.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023]
|
17
|
Yu W, Missiakas D, Schneewind O. Septal secretion of protein A in Staphylococcus aureus requires SecA and lipoteichoic acid synthesis. eLife 2018; 7:34092. [PMID: 29757141 PMCID: PMC5962339 DOI: 10.7554/elife.34092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/05/2018] [Indexed: 12/26/2022] Open
Abstract
Surface proteins of Staphylococcus aureus are secreted across septal membranes for assembly into the bacterial cross-wall. This localized secretion requires the YSIRK/GXXS motif signal peptide, however the mechanisms supporting precursor trafficking are not known. We show here that the signal peptide of staphylococcal protein A (SpA) is cleaved at the YSIRK/GXXS motif. A SpA signal peptide mutant defective for YSIRK/GXXS cleavage is also impaired for septal secretion and co-purifies with SecA, SecDF and LtaS. SecA depletion blocks precursor targeting to septal membranes, whereas deletion of secDF diminishes SpA secretion into the cross-wall. Depletion of LtaS blocks lipoteichoic acid synthesis and abolishes SpA precursor trafficking to septal membranes. We propose a model whereby SecA directs SpA precursors to lipoteichoic acid-rich septal membranes for YSIRK/GXXS motif cleavage and secretion into the cross-wall.
Collapse
Affiliation(s)
- Wenqi Yu
- Department of Microbiology, University of Chicago, Chicago, United States
| | | | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, United States
| |
Collapse
|
18
|
Abstract
Protein secretion is essential, but how it is managed is poorly understood. In bacteria, most secreted proteins require release from the outer surface of the cytoplasmic membrane by type I signal peptidase (SPase), which cleaves the mature protein from its membrane-bound N-terminal signal peptide. As the first step that occurs outside the protected cytoplasmic environment and because insufficient activity can rapidly result in the toxic accumulation of preproteins, the activity of SPase is expected to be closely monitored and perhaps supplemented when insufficient. Indeed, we previously demonstrated that inhibition of SPase in Staphylococcus aureus results in derepression of the ayrRABC operon, which encodes an alternate mechanism to release proteins. However, in this case, the proteins are released with partially intact signal peptides, with the exception of IsaA, which is released with a virtually intact signal peptide. Here we show that mutation of AyrA [ayrA(R233K)] results in constitutive derepression of ayrRABC and that mutation of IsaA’s signal peptide [isaA(K2Q)] results in hyperderepression upon SPase inhibition, which also requires AyrA. Further studies demonstrate that the inducing signal for ayrRABC derepression is accumulation of a subset of preproteins with signal peptides that are stable toward further processing and that the signal is critically amplified by the K2Q mutation and relayed to AyrR by AyrA. These results elucidate the mechanism by which S. aureus monitors and responds to secretion stress. The presence of ayrRA in other bacteria suggests that it may represent a general strategy linking membrane stress to appropriate transcriptional responses. Bacteria interact with their environment by secreting proteins that perform a myriad of functions, and the final step is the release of the mature protein from the cell surface via the activity of type I signal peptidase (SPase). While the bacterial response to many stresses is understood in some detail, almost nothing is known about how cells respond to secretion stress, such as insufficient SPase activity, which would eventually result in cell death. We previously demonstrated that the inhibition of SPase in Staphylococcus aureus results in the derepression of the ayrRABC operon, which can functionally replace SPase, but which is normally repressed by AyrR. We now demonstrate that the inducing signal for derepression is accumulation of a subset of preproteins with signal peptides that are stable to further processing and that the signal is relayed to AyrR via AyrA.
Collapse
|
19
|
Kumari N, Götz F, Nguyen MT. Aspartate tightens the anchoring of staphylococcal lipoproteins to the cytoplasmic membrane. Microbiologyopen 2017; 6. [PMID: 28901671 PMCID: PMC5727369 DOI: 10.1002/mbo3.525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/22/2017] [Accepted: 07/03/2017] [Indexed: 12/16/2022] Open
Abstract
In gram-negative bacteria, the ABC transporter LolCDE complex translocates outer membrane-specific lipoproteins (Lpp) from the inner membrane to the outer membrane. Lpp possessing aspartate (Asp) at position +2 are not translocated because it functions as a LolCDE avoidance signal. In gram-positive bacteria, lacking an outer membrane and the Lol system, Lpp are only anchored at the outer leaflet of the cytoplasmic membrane. However, the release of Lpp particularly in pathogenic or commensal species is crucial for immune modulation. Here, we provide evidence that in Staphylococcus aureus Asp at position +2 plays a role in withholding Lpp to the cytoplasmic membrane. Screening of published exoproteomic data of S. aureus revealed that Lpp mainly with Gly or Ser at position +2 were found in exoproteome, but there was no Lpp with Asp+2. The occurrence of Lpp with Asp+2 is infrequent in gram-positive bacteria. In S. aureus USA300 only seven of the 67 Lpp possess Asp+2; among them five Lpp represented Lpl lipoproteins involved in host cell invasion. Our study demonstrated that replacing the Asp+2 present in Lpl8 with a Ser enhances its release into the supernatant. However, there is no different release of Asp+2 and Ser+2 in mprF mutant that lacks the positive charge of lysyl-phosphatidylglycerol (Lys-PG). Moreover, substitution of Ser+2 by Asp in SitC (MntC) did not lead to a decreased release indicating that in staphylococci positions +3 and +4 might also be important for a tighter anchoring of Lpp. Here, we show that Asp in position +2 and adjacent amino acids contribute in tightening the anchoring of Lpp by interaction of the negative charged Asp with the positive charged Lys-PG.
Collapse
Affiliation(s)
- Nimerta Kumari
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany.,Institute of Microbiology, University of Sindh, Jamshoro, Pakistan
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Minh-Thu Nguyen
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany.,School of Biological and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
20
|
The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.biori.2017.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Walsh SI, Craney A, Romesberg FE. Not just an antibiotic target: Exploring the role of type I signal peptidase in bacterial virulence. Bioorg Med Chem 2016; 24:6370-6378. [PMID: 27769673 PMCID: PMC5279723 DOI: 10.1016/j.bmc.2016.09.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 01/23/2023]
Abstract
The looming antibiotic crisis has prompted the development of new strategies towards fighting infection. Traditional antibiotics target bacterial processes essential for viability, whereas proposed antivirulence approaches rely on the inhibition of factors that are required only for the initiation and propagation of infection within a host. Although antivirulence compounds have yet to prove their efficacy in the clinic, bacterial signal peptidase I (SPase) represents an attractive target in that SPase inhibitors exhibit broad-spectrum antibiotic activity, but even at sub-MIC doses also impair the secretion of essential virulence factors. The potential consequences of SPase inhibition on bacterial virulence have not been thoroughly examined, and are explored within this review. In addition, we review growing evidence that SPase has relevant biological functions outside of mediating secretion, and discuss how the inhibition of these functions may be clinically significant.
Collapse
Affiliation(s)
- Shawn I Walsh
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arryn Craney
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
22
|
Bastos PAD, da Costa JP, Vitorino R. A glimpse into the modulation of post-translational modifications of human-colonizing bacteria. J Proteomics 2016; 152:254-275. [PMID: 27888141 DOI: 10.1016/j.jprot.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/22/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
Protein post-translational modifications (PTMs) are a key bacterial feature that holds the capability to modulate protein function and responses to environmental cues. Until recently, their role in the regulation of prokaryotic systems has been largely neglected. However, the latest developments in mass spectrometry-based proteomics have allowed an unparalleled identification and quantification of proteins and peptides that undergo PTMs in bacteria, including in species which directly or indirectly affect human health. Herein, we address this issue by carrying out the largest and most comprehensive global pooling and comparison of PTM peptides and proteins from bacterial species performed to date. Data was collected from 91 studies relating to PTM bacterial peptides or proteins identified by mass spectrometry-based methods. The present analysis revealed that there was a considerable overlap between PTMs across species, especially between acetylation and other PTMs, particularly succinylation. Phylogenetically closer species may present more overlapping phosphoproteomes, but environmental triggers also contribute to this proximity. PTMs among bacteria were found to be extremely versatile and diverse, meaning that the same protein may undergo a wide variety of different modifications across several species, but it could also suffer different modifications within the same species.
Collapse
Affiliation(s)
- Paulo André Dias Bastos
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal; Department of Chemistry, University of Aveiro, Portugal
| | | | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
23
|
Guillot A, Boulay M, Chambellon É, Gitton C, Monnet V, Juillard V. Mass Spectrometry Analysis of the Extracellular Peptidome of Lactococcus lactis: Lines of Evidence for the Coexistence of Extracellular Protein Hydrolysis and Intracellular Peptide Excretion. J Proteome Res 2016; 15:3214-24. [DOI: 10.1021/acs.jproteome.6b00424] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alain Guillot
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Mylène Boulay
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Émilie Chambellon
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Christophe Gitton
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Véronique Monnet
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - Vincent Juillard
- UMR Micalis,
INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| |
Collapse
|
24
|
Smith DS, Siggins MK, Gierula M, Pichon B, Turner CE, Lynskey NN, Mosavie M, Kearns AM, Edwards RJ, Sriskandan S. Identification of commonly expressed exoproteins and proteolytic cleavage events by proteomic mining of clinically relevant UK isolates of Staphylococcus aureus. Microb Genom 2016; 2:e000049. [PMID: 28348843 PMCID: PMC5320583 DOI: 10.1099/mgen.0.000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022] Open
Abstract
The range of exoproteins and core exoproteome of 14 Staphylococcus aureus isolates representing major lineages associated with asymptomatic carriage and clinical disease in the UK was identified by MS proteomics using a combined database incorporating sequences derived from 39 S. aureus genomes. In all, 632 different proteins were identified and, of these, only 52 (8 %) were found in all 14 isolates whereas 144 (23 %) were found in just a single isolate. Comparison of the observed mass of each protein (based on migration by SDS-PAGE) with its predicted mass (based on amino acid sequence) suggested that 95 % of the proteins identified were not subject to any major post-translational modification. Migration of 5 % of the proteins was not as expected: 1 % of the proteins migrated at a mass greater than predicted, while 4 % appeared to have undergone proteolytic cleavage; these included SsaA2, Aur, SspP, Ebh as well as BlaR1, MecR1, FsH, OatA and LtaS. Intriguingly, a truncated SasG was produced by a single CC8 USA300-like strain. The analysis provided evidence of the marked heterogeneity in protein expression by S. aureus in broth, while yielding a core but narrow common exoproteome.
Collapse
Affiliation(s)
- Debra S Smith
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Matthew K Siggins
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Magdalena Gierula
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Bruno Pichon
- 2Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Claire E Turner
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Nicola N Lynskey
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Mia Mosavie
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Angela M Kearns
- 2Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Robert J Edwards
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Shiranee Sriskandan
- 1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
25
|
Chan YGY, Frankel MB, Missiakas D, Schneewind O. SagB Glucosaminidase Is a Determinant of Staphylococcus aureus Glycan Chain Length, Antibiotic Susceptibility, and Protein Secretion. J Bacteriol 2016; 198:1123-36. [PMID: 26811319 PMCID: PMC4800868 DOI: 10.1128/jb.00983-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/20/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED The envelope of Staphylococcus aureus is comprised of peptidoglycan and its attached secondary polymers, teichoic acid, capsular polysaccharide, and protein. Peptidoglycan synthesis involves polymerization of lipid II precursors into glycan strands that are cross-linked at wall peptides. It is not clear whether peptidoglycan structure is principally determined during polymerization or whether processive enzymes affect cell wall structure and function, for example, by generating conduits for protein secretion. We show here that S. aureus lacking SagB, a membrane-associated N-acetylglucosaminidase, displays growth and cell-morphological defects caused by the exaggerated length of peptidoglycan strands. SagB cleaves polymerized glycan strands to their physiological length and modulates antibiotic resistance in methicillin-resistant S. aureus (MRSA). Deletion of sagB perturbs protein trafficking into and across the envelope, conferring defects in cell wall anchoring and secretion, as well as aberrant excretion of cytoplasmic proteins. IMPORTANCE Staphylococcus aureus is thought to secrete proteins across the plasma membrane via the Sec pathway; however, protein transport across the cell wall envelope has heretofore not been studied. We report that S. aureus sagB mutants generate elongated peptidoglycan strands and display defects in protein secretion as well as aberrant excretion of cytoplasmic proteins. These results suggest that the thick peptidoglycan layer of staphylococci presents a barrier for protein secretion and that SagB appears to extend the Sec pathway across the cell wall envelope.
Collapse
Affiliation(s)
- Yvonne G Y Chan
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Matthew B Frankel
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois, USA
| |
Collapse
|
26
|
The Staphylococcus aureus Chaperone PrsA Is a New Auxiliary Factor of Oxacillin Resistance Affecting Penicillin-Binding Protein 2A. Antimicrob Agents Chemother 2015; 60:1656-66. [PMID: 26711778 DOI: 10.1128/aac.02333-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022] Open
Abstract
Expression of the methicillin-resistant S. aureus (MRSA) phenotype results from the expression of the extra penicillin-binding protein 2A (PBP2A), which is encoded by mecA and acquired horizontally on part of the SCCmec cassette. PBP2A can catalyze dd-transpeptidation of peptidoglycan (PG) because of its low affinity for β-lactam antibiotics and can functionally cooperate with the PBP2 transglycosylase in the biosynthesis of PG. Here, we focus upon the role of the membrane-bound PrsA foldase protein as a regulator of β-lactam resistance expression. Deletion of prsA altered oxacillin resistance in three different SCCmec backgrounds and, more importantly, caused a decrease in PBP2A membrane amounts without affecting mecA mRNA levels. The N- and C-terminal domains of PrsA were found to be critical features for PBP2A protein membrane levels and oxacillin resistance. We propose that PrsA has a role in posttranscriptional maturation of PBP2A, possibly in the export and/or folding of newly synthesized PBP2A. This additional level of control in the expression of the mecA-dependent MRSA phenotype constitutes an opportunity to expand the strategies to design anti-infective agents.
Collapse
|
27
|
Tesařová M, Horká M, Moravcová D, Svojanovská L, Mlynarikova K, Růžička F. SDS-PAGE and Gel IEF: Tool for Differentiation of Methicillin-Resistant and Methicillin-Sensitive Strains of Staphylococcus aureus. Curr Microbiol 2015; 72:315-20. [PMID: 26687464 DOI: 10.1007/s00284-015-0939-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/01/2015] [Indexed: 11/29/2022]
Abstract
The methicillin-resistant Staphylococcus aureus causes difficult-to-treat healthcare-associated infections in humans. For fast and effective selection of an appropriate antibiotic therapy, it is essential to have rapid and reliable methods for differentiation of methicillin-resistant S. aureus from less dangerous methicillin-sensitive S. aureus. There have been many methods for the identification of methicillin-resistant S. aureus described but none has been accepted as an international standard. The most commonly used techniques such as phenotyping and genotyping have a few disadvantages, for instance, these techniques are not reproducible and stable. In addition, they are time-consuming, expensive, and they are not capable to distinguish all S. aureus strains. In this study, the methicillin-resistant and methicillin-sensitive S. aureus isolates obtained from patients were extracted in hot water. The released proteins were characterised by sodium dodecyl sulphate polyacrylamide gel electrophoresis and gel isoelectric focusing. These two methods were able to differentiate among tested bacterial strains. The proposed methods are time saving, they are applicable in standard biochemical laboratories, and they do not require any expensive equipment.
Collapse
Affiliation(s)
- Marie Tesařová
- Institute of Analytical Chemistry of the CAS, v. v. i., Veveří 97, 602 00, Brno, Czech Republic.
| | - Marie Horká
- Institute of Analytical Chemistry of the CAS, v. v. i., Veveří 97, 602 00, Brno, Czech Republic
| | - Dana Moravcová
- Institute of Analytical Chemistry of the CAS, v. v. i., Veveří 97, 602 00, Brno, Czech Republic
| | - Lenka Svojanovská
- Institute of Analytical Chemistry of the CAS, v. v. i., Veveří 97, 602 00, Brno, Czech Republic
| | - Katarina Mlynarikova
- The Department of Microbiology, Faculty of Medicine, Masaryk University, Kamenice 53/5, 625 00, Brno, Czech Republic
| | - Filip Růžička
- The Department of Microbiology, Faculty of Medicine, Masaryk University, Kamenice 53/5, 625 00, Brno, Czech Republic.,The Department of Microbiology, St. Anne's University Hospital, Brno, Pekařská 53, 602 00, Brno, Czech Republic
| |
Collapse
|
28
|
Berry IJ, Steele JR, Padula MP, Djordjevic SP. The application of terminomics for the identification of protein start sites and proteoforms in bacteria. Proteomics 2015; 16:257-72. [DOI: 10.1002/pmic.201500319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Iain J. Berry
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Joel R. Steele
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Matthew P. Padula
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Steven P. Djordjevic
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| |
Collapse
|
29
|
Kalhapure RS, Sonawane SJ, Sikwal DR, Jadhav M, Rambharose S, Mocktar C, Govender T. Solid lipid nanoparticles of clotrimazole silver complex: An efficient nano antibacterial against Staphylococcus aureus and MRSA. Colloids Surf B Biointerfaces 2015; 136:651-8. [PMID: 26492156 DOI: 10.1016/j.colsurfb.2015.10.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 01/08/2023]
Abstract
New and effective strategies to transform current antimicrobials are required to address the increasing issue of microbial resistance and declining introduction of new antibiotic drugs. In this context, metal complexes of known drugs and nano delivery systems for antibiotics are proving to be promising strategies. The aim of the study was therefore to synthesize a silver complex of clotrimazole and formulate it into a nano delivery system for enhanced and sustained antibacterial activity against susceptible and resistant Staphylococcus aureus. A silver complex of clotrimazole was synthesized, characterized and further encapsulated into solid lipid nanoparticles to evaluate its antibacterial activity against S. aureus and methicillin-resistant S. aureus (MRSA). An in vitro cytotoxicity study was performed on HepG2 cell lines to assess the overall biosafety of the synthesized clotrimazole silver complex to mammalian cells, and was found to be non-toxic to mammalian cells (cell viability >80%). The minimum inhibitory concentrations (MIC) of clotrimazole and clotrimazole-silver were 31.25 and 9.76 μg/mL against S. aureus, and 31.25 and 15.62 against MRSA, respectively. Clotrimazole SLNs exhibited MIC values of 104 and 208 μg/mL against both MSSA and MRSA at the end of 18 and 36 h, respectively, but thereafter completely lost its antibacterial activity. Clotrimazole-silver SLNs had an MIC value of 52 μg/mL up to 54 h, after which the MIC value was 104 μg/mL against both strains at the end of 72 h. Thus, clotrimazole-silver SLNs was found to be an efficient nanoantibiotic.
Collapse
Affiliation(s)
- Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Sandeep J Sonawane
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Dhiraj R Sikwal
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mahantesh Jadhav
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Sanjeev Rambharose
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
30
|
Craney A, Romesberg FE. The inhibition of type I bacterial signal peptidase: Biological consequences and therapeutic potential. Bioorg Med Chem Lett 2015; 25:4761-4766. [PMID: 26276537 DOI: 10.1016/j.bmcl.2015.07.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 01/05/2023]
Abstract
The general secretory pathway has long been regarded as a potential antibiotic drug target. In particular, bacterial type I signal peptidase (SPase) is emerging as a strong candidate for therapeutic use. In this review, we focus on the information gained from the use of SPase inhibitors as probes of prokaryote biology. A thorough understanding of the consequences of SPase inhibition and the mechanisms of resistance that arise are essential to the success of SPase as an antibiotic target. In addition to the role of SPase in processing secreted proteins, the use of SPase inhibitors has elucidated a previously unknown function for SPase in regulating cleavage events of membrane proteins.
Collapse
Affiliation(s)
- Arryn Craney
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
31
|
Determination of methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteria in blood by capillary zone electrophoresis. Anal Chim Acta 2015; 868:67-72. [DOI: 10.1016/j.aca.2015.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/28/2015] [Accepted: 02/01/2015] [Indexed: 12/13/2022]
|
32
|
Kolata JB, Kühbandner I, Link C, Normann N, Vu CH, Steil L, Weidenmaier C, Bröker BM. The Fall of a Dogma? Unexpected High T-Cell Memory Response to Staphylococcus aureus in Humans. J Infect Dis 2015; 212:830-8. [PMID: 25737563 DOI: 10.1093/infdis/jiv128] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/20/2015] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Though Staphylococcus aureus is a major pathogen, vaccine trials have failed. In contrast, class-switched antibodies specific to S. aureus are common, implying immune memory formation and suggesting a large pool of S. aureus-reactive helper T-cells. OBJECTIVE To elucidate the cellular arm of S. aureus-specific immune memory, the T-cell response in humans was characterized. METHODS The proliferative response of human peripheral blood mononuclear cells (PBMCs) to S. aureus antigens and the frequency of S. aureus-specific T-cells were quantified by (3)H-thymidine incorporation; cytokine release was measured by flow cytometry. RESULTS Staphylococcus aureus particles and extracellular proteins elicited pronounced proliferation in PBMCs of healthy adults. This reflected a memory response with high frequencies of T-cells being activated by single S. aureus antigens. The whole S. aureus-specific T-cell pool was estimated to comprise 3.6% of T-cells with 35-fold differences between individuals (range, 0.2%-5.7%). When exposed to S. aureus antigens, the T-cells released predominantly but not solely T helper (Th)1/Th17 cytokines. CONCLUSIONS The large number of S. aureus antigen-reactive memory T-lymphocytes is likely to influence the course of S. aureus infection. To enable rational vaccine design, the naturally acquired human T-cell memory needs to be explored at high priority.
Collapse
Affiliation(s)
- Julia B Kolata
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald
| | - Iris Kühbandner
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald
| | - Christopher Link
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald
| | - Nicole Normann
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald
| | - Chi Hai Vu
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald
| | - Leif Steil
- Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald
| | - Christopher Weidenmaier
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, Eberhard-Karls-University, Germany
| | - Barbara M Bröker
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald
| |
Collapse
|
33
|
Bufe B, Schumann T, Kappl R, Bogeski I, Kummerow C, Podgórska M, Smola S, Hoth M, Zufall F. Recognition of bacterial signal peptides by mammalian formyl peptide receptors: a new mechanism for sensing pathogens. J Biol Chem 2015; 290:7369-87. [PMID: 25605714 DOI: 10.1074/jbc.m114.626747] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Formyl peptide receptors (FPRs) are G-protein-coupled receptors that function as chemoattractant receptors in innate immune responses. Here we perform systematic structure-function analyses of FPRs from six mammalian species using structurally diverse FPR peptide agonists and identify a common set of conserved agonist properties with typical features of pathogen-associated molecular patterns. Guided by these results, we discover that bacterial signal peptides, normally used to translocate proteins across cytoplasmic membranes, are a vast family of natural FPR agonists. N-terminally formylated signal peptide fragments with variable sequence and length activate human and mouse FPR1 and FPR2 at low nanomolar concentrations, thus establishing FPR1 and FPR2 as sensitive and broad signal peptide receptors. The vomeronasal receptor mFpr-rs1 and its sequence orthologue hFPR3 also react to signal peptides but are much more narrowly tuned in signal peptide recognition. Furthermore, all signal peptides examined here function as potent activators of the innate immune system. They elicit robust, FPR-dependent calcium mobilization in human and mouse leukocytes and trigger a range of classical innate defense mechanisms, such as the production of reactive oxygen species, metalloprotease release, and chemotaxis. Thus, bacterial signal peptides constitute a novel class of immune activators that are likely to contribute to mammalian immune defense against bacteria. This evolutionarily conserved detection mechanism combines structural promiscuity with high specificity and enables discrimination between bacterial and eukaryotic signal sequences. With at least 175,542 predicted sequences, bacterial signal peptides represent the largest and structurally most heterogeneous class of G-protein-coupled receptor agonists currently known for the innate immune system.
Collapse
Affiliation(s)
| | | | | | | | | | - Marta Podgórska
- Virology, University of Saarland School of Medicine, 66421 Homburg, Germany
| | - Sigrun Smola
- Virology, University of Saarland School of Medicine, 66421 Homburg, Germany
| | | | | |
Collapse
|
34
|
Efficient production of secreted staphylococcal antigens in a non-lysing and proteolytically reduced Lactococcus lactis strain. Appl Microbiol Biotechnol 2014; 98:10131-41. [DOI: 10.1007/s00253-014-6030-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/06/2014] [Accepted: 08/21/2014] [Indexed: 01/20/2023]
|
35
|
Fevre C, Bestebroer J, Mebius MM, de Haas CJC, van Strijp JAG, Fitzgerald JR, Haas PJA. Staphylococcus aureus proteins SSL6 and SElX interact with neutrophil receptors as identified using secretome phage display. Cell Microbiol 2014; 16:1646-65. [PMID: 24840181 DOI: 10.1111/cmi.12313] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 12/20/2022]
Abstract
In order to cause colonization and invasive disease, pathogenic bacteria secrete proteins that modulate host immune defences. Identification and characterization of these proteins leads to a better understanding of the pathological processes underlying infectious and inflammatory diseases and is essential in the development of new strategies for their prevention and treatment. Current techniques to functionally characterize these proteins are laborious and inefficient. Here we describe a high-throughput functional selection strategy using phage display in order to identify immune evasion proteins. Using this technique we identified two previously uncharacterized proteins secreted by Staphylococcus aureus, SElX and SSL6 that bind to neutrophil surface receptors. SElX binds PSGL-1 on neutrophils and thereby inhibits the interaction between PSGL-1 and P-selectin, a crucial step in the recruitment of neutrophils to the site of infection. SSL6 is the first bacterial protein identified that binds CD47, a widely expressed cell surface protein recently described as an interesting target in anti-cancer therapy. Our findings provide new insights into the pathogenesis of S. aureus infections and support phage display as an efficient method to identify bacterial secretome proteins interacting with humoral or cellular immune components.
Collapse
Affiliation(s)
- Cindy Fevre
- Department of Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Siljamäki P, Varmanen P, Kankainen M, Sukura A, Savijoki K, Nyman TA. Comparative exoprotein profiling of different Staphylococcus epidermidis strains reveals potential link between nonclassical protein export and virulence. J Proteome Res 2014; 13:3249-61. [PMID: 24840314 DOI: 10.1021/pr500075j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Staphylococcus epidermidis (SE) includes commensal and pathogenic strains capable of infecting humans and animals. This study reports global exoproteome profiling of bovine mastitis strain PM221 and two human strains, commensal-type ATCC12228 and sepsis-associated RP62A. We identified 451, 395, and 518 proteins from culture supernatants of PM221, ATCC12228, and RP62A, respectively. Comparison of the identified exoproteomes revealed several strain-specific differences related to secreted antigens and adhesins, higher virulence capability for RP62A, and similarities between the PM221 and RP62A exoproteomes. The majority of the identified proteins (∼80%) were predicted to be cytoplasmic, including proteins known to be associated in membrane vesicles (MVs) in Staphylococcus aureus and immunogenic/adhesive moonlighting proteins. Enrichment of MV fractions from culture supernatants and analysis of their protein composition indicated that this nonclassical protein secretion pathway was being exploited under the conditions used and that there are strain-specific differences in nonclassical protein export. In addition, several predicted cell-surface proteins were identified in the culture media. In summary, the present study is the first in-depth exoproteome analysis of SE highlighting strain-specific factors able to contribute to virulence and adaptation.
Collapse
Affiliation(s)
- Pia Siljamäki
- Department of Food and Environmental Sciences, ‡Institute of Biotechnology, and §Department of Veterinary Biosciences, University of Helsinki , FI-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
37
|
Mining the bacterial unknown proteome: identification and characterization of a novel family of highly conserved protective antigens in Staphylococcus aureus. Biochem J 2014; 455:273-84. [PMID: 23895222 DOI: 10.1042/bj20130540] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the human pathogen Staphylococcus aureus, there exists an enormous diversity of proteins containing DUFs (domains of unknown function). In the present study, we characterized the family of conserved staphylococcal antigens (Csa) classified as DUF576 and taxonomically restricted to Staphylococci. The 18 Csa paralogues in S. aureus Newman are highly similar at the sequence level, yet were found to be expressed in multiple cellular locations. Extracellular Csa1A was shown to be post-translationally processed and released. Molecular interaction studies revealed that Csa1A interacts with other Csa paralogues, suggesting that these proteins are involved in the same cellular process. The structures of Csa1A and Csa1B were determined by X-ray crystallography, unveiling a peculiar structure with limited structural similarity to other known proteins. Our results provide the first detailed biological characterization of this family and confirm the uniqueness of this family also at the structural level. We also provide evidence that Csa family members elicit protective immunity in in vivo animal models of staphylococcal infections, indicating a possible important role for these proteins in S. aureus biology and pathogenesis. These findings identify the Csa family as new potential vaccine candidates, and underline the importance of mining the bacterial unknown proteome to identify new targets for preventive vaccines.
Collapse
|
38
|
Identification of a novel zinc metalloprotease through a global analysis of Clostridium difficile extracellular proteins. PLoS One 2013; 8:e81306. [PMID: 24303041 PMCID: PMC3841139 DOI: 10.1371/journal.pone.0081306] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is a major cause of infectious diarrhea worldwide. Although the cell surface proteins are recognized to be important in clostridial pathogenesis, biological functions of only a few are known. Also, apart from the toxins, proteins exported by C. difficile into the extracellular milieu have been poorly studied. In order to identify novel extracellular factors of C. difficile, we analyzed bacterial culture supernatants prepared from clinical isolates, 630 and R20291, using liquid chromatography-tandem mass spectrometry. The majority of the proteins identified were non-canonical extracellular proteins. These could be largely classified into proteins associated to the cell wall (including CWPs and extracellular hydrolases), transporters and flagellar proteins. Seven unknown hypothetical proteins were also identified. One of these proteins, CD630_28300, shared sequence similarity with the anthrax lethal factor, a known zinc metallopeptidase. We demonstrated that CD630_28300 (named Zmp1) binds zinc and is able to cleave fibronectin and fibrinogen in vitro in a zinc-dependent manner. Using site-directed mutagenesis, we identified residues important in zinc binding and enzymatic activity. Furthermore, we demonstrated that Zmp1 destabilizes the fibronectin network produced by human fibroblasts. Thus, by analyzing the exoproteome of C. difficile, we identified a novel extracellular metalloprotease that may be important in key steps of clostridial pathogenesis.
Collapse
|
39
|
Saravanan SR, Paul VD, George S, Sundarrajan S, Kumar N, Hebbur M, Kumar N, Veena A, Maheshwari U, Appaiah CB, Chidambaran M, Bhat AG, Hariharan S, Padmanabhan S. Properties and mutation studies of a bacteriophage-derived chimeric recombinant staphylolytic protein P128: Comparison to recombinant lysostaphin. BACTERIOPHAGE 2013; 3:e26564. [PMID: 24251076 DOI: 10.4161/bact.26564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 11/19/2022]
Abstract
P128 is a chimeric anti-staphylococcal protein having a catalytic domain from a Staphylococcus bacteriophage K tail associated structural protein and a cell wall targeting domain from the Staphylococcus bacteriocin-lysostaphin. In this study, we disclose additional properties of P128 and compared the same with lysostaphin. While lysostaphin was found to get inactivated by heat and was inactive on its parent strain S. simulans biovar staphylolyticus, P128 was thermostable and was lytic towards S. simulans biovar staphylolyticus demonstrating a difference in their mechanism of action. Selected mutation studies of the catalytic domain of P128 showed that arginine and cysteine, at 40th and 76th positions respectively, are critical for the staphylolytic activity of P128, although these amino acids are not conserved residues. In comparison to native P128, only the R40S mutant (P301) was catalytically active on zymogram gel and had a similar secondary structure, as assessed by circular dichroism analysis and in silico modeling with similar cell binding properties. Mutation of the arginine residue at 40th position of the P128 molecule caused dramatic reduction in the Vmax (∆OD600 [mg/min]) value (nearly 270 fold) and the recombinant lysostaphin also showed lesser Vmax value (nearly 1.5 fold) in comparison to the unmodified P128 protein. The kinetic parameters such as apparent Km (KmAPP) and apparent Kcat (KcatAPP) of the native P128 protein also showed significant differences in comparison to the values observed for P301 and lysostaphin.
Collapse
|
40
|
Cain JA, Solis N, Cordwell SJ. Beyond gene expression: the impact of protein post-translational modifications in bacteria. J Proteomics 2013; 97:265-86. [PMID: 23994099 DOI: 10.1016/j.jprot.2013.08.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/08/2013] [Accepted: 08/10/2013] [Indexed: 12/12/2022]
Abstract
The post-translational modification (PTM) of proteins plays a critical role in the regulation of a broad range of cellular processes in eukaryotes. Yet their role in governing similar systems in the conventionally presumed 'simpler' forms of life has been largely neglected and, until recently, was thought to occur only rarely, with some modifications assumed to be limited to higher organisms alone. Recent developments in mass spectrometry-based proteomics have provided an unparalleled power to enrich, identify and quantify peptides with PTMs. Additional modifications to biological molecules such as lipids and carbohydrates that are essential for bacterial pathophysiology have only recently been detected on proteins. Here we review bacterial protein PTMs, focusing on phosphorylation, acetylation, proteolytic degradation, methylation and lipidation and the roles they play in bacterial adaptation - thus highlighting the importance of proteomic techniques in a field that is only just in its infancy. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Joel A Cain
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Nestor Solis
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia; Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006, Australia.
| |
Collapse
|
41
|
Quiblier C, Seidl K, Roschitzki B, Zinkernagel AS, Berger-Bächi B, Senn MM. Secretome analysis defines the major role of SecDF in Staphylococcus aureus virulence. PLoS One 2013; 8:e63513. [PMID: 23658837 PMCID: PMC3643904 DOI: 10.1371/journal.pone.0063513] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/02/2013] [Indexed: 01/27/2023] Open
Abstract
The Sec pathway plays a prominent role in protein export and membrane insertion, including the secretion of major bacterial virulence determinants. The accessory Sec constituent SecDF has been proposed to contribute to protein export. Deletion of Staphylococcus aureus secDF has previously been shown to reduce resistance, to alter cell separation, and to change the expression of certain virulence factors. To analyse the impact of the secDF deletion in S. aureus on protein secretion, a quantitative secretome analysis was performed. Numerous Sec signal containing proteins involved in virulence were found to be decreased in the supernatant of the secDF mutant. However, two Sec-dependent hydrolases were increased in comparison to the wild type, suggesting additional indirect, regulatory effects to occur upon deletion of secDF. Adhesion, invasion, and cytotoxicity of the secDF mutant were reduced in human umbilical vein endothelial cells. Virulence was significantly reduced using a Galleria mellonella insect model. Altogether, SecDF is a promising therapeutic target for controlling S. aureus infections.
Collapse
Affiliation(s)
- Chantal Quiblier
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Kati Seidl
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Maria M. Senn
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol Mol Biol Rev 2012; 76:311-30. [PMID: 22688815 DOI: 10.1128/mmbr.05019-11] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteolytic cleavage of proteins that are permanently or transiently associated with the cytoplasmic membrane is crucially important for a wide range of essential processes in bacteria. This applies in particular to the secretion of proteins and to membrane protein quality control. Major progress has been made in elucidating the structure-function relationships of many of the responsible membrane proteases, including signal peptidases, signal peptide hydrolases, FtsH, the rhomboid protease GlpG, and the site 1 protease DegS. These enzymes employ very different mechanisms to cleave substrates at the cytoplasmic and extracytoplasmic membrane surfaces or within the plane of the membrane. This review highlights the different ways that bacterial membrane proteases degrade their substrates, with special emphasis on catalytic mechanisms and substrate delivery to the respective active sites.
Collapse
|
43
|
Broadening the spectrum of β-lactam antibiotics through inhibition of signal peptidase type I. Antimicrob Agents Chemother 2012; 56:4662-70. [PMID: 22710113 DOI: 10.1128/aac.00726-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The resistance of methicillin-resistant Staphylococcus aureus (MRSA) to all β-lactam classes limits treatment options for serious infections involving this organism. Our goal is to discover new agents that restore the activity of β-lactams against MRSA, an approach that has led to the discovery of two classes of natural product antibiotics, a cyclic depsipeptide (krisynomycin) and a lipoglycopeptide (actinocarbasin), which potentiate the activity of imipenem against MRSA strain COL. We report here that these imipenem synergists are inhibitors of the bacterial type I signal peptidase SpsB, a serine protease that is required for the secretion of proteins that are exported through the Sec and Tat systems. A synthetic derivative of actinocarbasin, M131, synergized with imipenem both in vitro and in vivo with potent efficacy. The in vitro activity of M131 extends to clinical isolates of MRSA but not to a methicillin-sensitive strain. Synergy is restricted to β-lactam antibiotics and is not observed with other antibiotic classes. We propose that the SpsB inhibitors synergize with β-lactams by preventing the signal peptidase-mediated secretion of proteins required for β-lactam resistance. Combinations of SpsB inhibitors and β-lactams may expand the utility of these widely prescribed antibiotics to treat MRSA infections, analogous to β-lactamase inhibitors which restored the utility of this antibiotic class for the treatment of resistant Gram-negative infections.
Collapse
|
44
|
Abstract
Staphylococcus aureus is an important human pathogen whose virulence relies on the secretion of many different proteins. In general, the secretion of most proteins in S. aureus, as well as other bacteria, is dependent on the type I signal peptidase (SPase)-mediated cleavage of the N-terminal signal peptide that targets a protein to the general secretory pathway. The arylomycins are a class of natural product antibiotics that inhibit SPase, suggesting that they may be useful chemical biology tools for characterizing the secretome. While wild-type S. aureus (NCTC 8325) is naturally resistant to the arylomycins, sensitivity is conferred via a point mutation in its SPase. Here, we use a synthetic arylomycin along with a sensitized strain of S. aureus and multidimensional protein identification technology (MudPIT) mass spectrometry to identify 46 proteins whose extracellular accumulation requires SPase activity. Forty-four possess identifiable Sec-type signal peptides and thus are likely canonically secreted proteins, while four also appear to possess cell wall retention signals. We also identified the soluble C-terminal domains of two transmembrane proteins, lipoteichoic acid synthase, LtaS, and O-acyteltransferase, OatA, both of which appear to have noncanonical, internal SPase cleavage sites. Lastly, we identified three proteins, HtrA, PrsA, and SAOUHSC_01761, whose secretion is induced by arylomycin treatment. In addition to elucidating fundamental aspects of the physiology and pathology of S. aureus, the data suggest that an arylomycin-based therapeutic would reduce virulence while simultaneously eradicating an infection.
Collapse
|
45
|
Li Y, Champion MM, Sun L, DiGiuseppe Champion PA, Wojcik R, Dovichi NJ. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry as an alternative proteomics platform to ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry for samples of intermediate complexity. Anal Chem 2012; 84:1617-22. [PMID: 22182061 PMCID: PMC3277681 DOI: 10.1021/ac202899p] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We demonstrate the use of capillary zone electrophoresis with an electrokinetically pumped sheath-flow electrospray interface for the analysis of a tryptic digest of a sample of intermediate protein complexity, the secreted protein fraction of Mycobacterium marinum. For electrophoretic analysis, 11 fractions were generated from the sample using reverse-phase liquid chromatography; each fraction was analyzed by CZE-ESI-MS/MS, and 334 peptides corresponding to 140 proteins were identified in 165 min of mass spectrometer time at 95% confidence (FDR < 0.15%). In comparison, 388 peptides corresponding to 134 proteins were identified in 180 min of mass spectrometer time by triplicate UPLC-ESI-MS/MS analyses, each using 250 ng of the unfractionated peptide mixture, at 95% confidence (FDR < 0.15%). Overall, 62% of peptides identified in CZE-ESI-MS/MS and 67% in UPLC-ESI-MS/MS were unique. CZE-ESI-MS/MS favored basic and hydrophilic peptides with low molecular masses. Combining the two data sets increased the number of unique peptides by 53%. Our approach identified more than twice as many proteins as the previous record for capillary electrophoresis proteome analysis. CE-ESI-MS/MS is a useful tool for the analysis of proteome samples of intermediate complexity.
Collapse
Affiliation(s)
- Yihan Li
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN USA 46556
- Department of Chemistry, University of Washington, Seattle WA USA 98195
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN USA 46556
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN USA 46556
| | | | - Roza Wojcik
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN USA 46556
| | - Norman J. Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN USA 46556
| |
Collapse
|
46
|
Seyffert N, Le Maréchal C, Jardin J, McCulloch JA, Rosado FR, Miyoshi A, Even S, Jan G, Berkova N, Vautor E, Thiéry R, Azevedo V, Le Loir Y. Staphylococcus aureus proteins differentially recognized by the ovine immune response in mastitis or nasal carriage. Vet Microbiol 2012; 157:439-47. [PMID: 22342493 DOI: 10.1016/j.vetmic.2012.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen in dairy ruminants where it is found in healthy carriage and can be a major cause of mastitis. A better knowledge of the host-pathogen interactions is needed to tackle this serious animal health problem. This study aimed at identifying S. aureus proteins differentially expressed by S. aureus in nasal colonization versus mastitis. Serological proteome analysis (SERPA) was used to examine protein samples prepared from culture supernatants of S. aureus strains originally isolated from gangrenous mastitis and nasal carriage (O11) or subclinical mastitis (O46) and to compare patterns of immune-reactive proteins. These staphylococcal proteins were revealed by sera obtained from ewes suffering from S. aureus mastitis and by sera obtained from healthy nulliparous ewes (i.e. no lactation and no mastitis or other symptoms) that were nasally colonized by S. aureus. Altogether 49 staphylococcal immune-reactive proteins were identified in this study. Patterns of proteins revealed by sera from infected- or healthy carrier- animals were comparable and analysis singled out one immune-reactive protein, N-acetylmuramyl-L-alanine amidase, which was recognized by each of the 6 sera from infected animals, when tested individually, and not by the sera of healthy carriers. This is the first study that compares the S. aureus seroproteome in colonization versus mastitis context in ruminants. These results open avenues for studies aiming at a better understanding of the balance between infection and commensal lifestyle in this opportunistic pathogen and at new prevention strategies.
Collapse
Affiliation(s)
- Nubia Seyffert
- INRA, UMR1253, Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Waridel P, Ythier M, Gfeller A, Moreillon P, Quadroni M. Evidence for a new post-translational modification in Staphylococcus aureus: hydroxymethylation of asparagine and glutamine. J Proteomics 2011; 75:1742-51. [PMID: 22207155 DOI: 10.1016/j.jprot.2011.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/01/2011] [Accepted: 12/08/2011] [Indexed: 01/11/2023]
Abstract
Staphylococcus aureus is an opportunistic pathogen whose infectious capacity depends on surface proteins, which enable bacteria to colonize and invade host tissues and cells. We analyzed "trypsin-shaved" surface proteins of S. aureus cultures by high resolution LC-MS/MS at different growth stages and culture conditions. Some modified peptides were identified, with a mass shift corresponding to the addition of a CH₂O group (+30.0106 u). We present evidence that this shift corresponds to a hyxdroxymethylation of asparagine and glutamine residues. This known but poorly documented post-translational modification was only found in a few proteins of S. aureus grown under specific conditions. This specificity seemed to exclude the hypothesis of an artifact due to sample preparation. Altogether hydroxymethylation was observed in 35 peptides from 15 proteins in our dataset, which corresponded to 41 modified sites, 35 of them being univocally localized. While no function can currently be assigned to this post-translational modification, we hypothesize that it could be linked to modulation of virulence factors, since it was mostly found on some surface proteins of S. aureus.
Collapse
Affiliation(s)
- Patrice Waridel
- Protein Analysis Facility, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
48
|
Solis N, Cordwell SJ. Current methodologies for proteomics of bacterial surface-exposed and cell envelope proteins. Proteomics 2011; 11:3169-89. [DOI: 10.1002/pmic.201000808] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/16/2011] [Accepted: 04/05/2011] [Indexed: 12/18/2022]
|
49
|
Bagnoli F, Baudner B, Mishra RPN, Bartolini E, Fiaschi L, Mariotti P, Nardi-Dei V, Boucher P, Rappuoli R. Designing the next generation of vaccines for global public health. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:545-66. [PMID: 21682594 DOI: 10.1089/omi.2010.0127] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vaccine research and development are experiencing a renaissance of interest from the global scientific community. There are four major reasons for this: (1) the lack of efficacious treatment for many devastating infections; (2) the emergence of multidrug resistant bacteria; (3) the need for improving the safety of the more traditional licensed vaccines; and finally, (4) the great promise for innovative vaccine design and research with convergence of omics sciences, such as genomics, proteomics, immunomics, and vaccinology. Our first project based on omics was initiated in 2000 and was termed reverse vaccinology. At that time, antigen identification was mainly based on bioinformatic analysis of a singular genome. Since then, omics-guided approaches have been applied to its full potential in several proof-of-concept studies in the industry, with the first reverse vaccinology-derived vaccine now in late stage clinical trials and several vaccines developed by omics in preclinical studies. In the meantime, vaccine discovery and development has been further improved with the support of proteomics, functional genomics, comparative genomics, structural biology, and most recently vaccinomics. We illustrate in this review how omics biotechnologies and integrative biology are expected to accelerate the identification of vaccine candidates against difficult pathogens for which traditional vaccine development has thus far been failing, and how research will provide safer vaccines and improved formulations for immunocompromised patients in the near future. Finally, we present a discussion to situate omics-guided rational vaccine design in the broader context of global public health and how it can benefit citizens in both developed and developing countries.
Collapse
|
50
|
Dreisbach A, van Dijl JM, Buist G. The cell surface proteome of Staphylococcus aureus. Proteomics 2011; 11:3154-68. [PMID: 21630461 DOI: 10.1002/pmic.201000823] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 02/27/2011] [Accepted: 03/07/2011] [Indexed: 01/15/2023]
Abstract
The Gram-positive bacterium Staphylococcus aureus is a wide spread opportunistic pathogen that can cause a range of life-threatening diseases. To obtain a better understanding of the global mechanisms for pathogenesis and to identify novel targets for therapeutic interventions, the S. aureus proteome has been recently 'dissected' in several studies. Proteins that are exposed on the cell surface - collectively referred to as the 'surfacome' - have received particular attention, because they can directly interact with extracellular molecules, including drugs and antibodies. Accordingly, these proteins represent interesting candidate targets for active or passive immunization against S. aureus. Here, we review the proteomics strategies used, and we compare the results that were so far obtained. Since the surfacome is part of the cell wall proteome, we first present an overview of general properties of the S. aureus cell envelope, cell wall-associated proteins and mechanisms for protein attachment to the cell wall. Then we zoom in on the surfacome, and discuss the pro's and con's of the specific strategies that have been applied for surfacome profiling. The insights thus obtained may serve as leads for future studies on the S. aureus surfacome and possible applications.
Collapse
Affiliation(s)
- Annette Dreisbach
- Department of Medical Microbiology, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|